3-(1-Hydroxy-2-phenylprop-2-en-1-yl)- phenol Ignez Caracelli,a* Julio Zukerman-Schpector,b Fateh V. Singh,c Hélio A. Stefanic and Edward R. T. Tiekinkd aBioMat-Physics Department, Univ Estadual Paulista, UNESP, 17033-360 Bauru, SP, Brazil, bDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo-SP, Brazil, and dDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia Correspondence e-mail: ignez@fc.unesp.br Received 29 March 2010; accepted 30 March 2010 Key indicators: single-crystal X-ray study; T = 100 K; mean �(C–C) = 0.004 Å; R factor = 0.035; wR factor = 0.084; data-to-parameter ratio = 7.6. Two independent pseudo-enantiomeric molecules comprise the asymmetric unit in the title compound, C15H14O2. While the central O—C—C—C residue approaches planarity [torsion angles = �15.8 (3) (molecule a) and 15.4 (3)� (molecule b)], the benzene rings are approximately ortho- gonal [the dihedral angles formed between the benzene rings are 62.89 (12) (molecule a) and 80.15 (12)� (molecule b)]. Two-dimensional arrays in the ab plane sustained by O— H� � �O hydrogen bonding are found in the crystal structure. Related literature For the synthesis of the title compound and the motivation for its study, see: Singh et al. (2010). Experimental Crystal data C15H14O2 Mr = 226.28 Orthorhombic, P212121 a = 9.1301 (2) Å b = 10.2026 (2) Å c = 24.8379 (6) Å V = 2313.67 (9) Å3 Z = 8 Mo K� radiation � = 0.09 mm�1 T = 100 K 0.27 � 0.13 � 0.13 mm Data collection Bruker SMART APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.883, Tmax = 1 31791 measured reflections 2368 independent reflections 2150 reflections with I > 2�(I) Rint = 0.042 Refinement R[F 2 > 2�(F 2)] = 0.035 wR(F 2) = 0.084 S = 1.15 2368 reflections 311 parameters H-atom parameters constrained ��max = 0.17 e Å�3 ��min = �0.15 e Å�3 Table 1 Hydrogen-bond geometry (Å, �). D—H� � �A D—H H� � �A D� � �A D—H� � �A O1—H1O� � �O4 0.84 1.89 2.727 (2) 175 O2—H2O� � �O1i 0.84 2.00 2.823 (2) 168 O3—H3O� � �O2ii 0.84 1.89 2.728 (2) 174 O4—H4O� � �O3iii 0.84 2.02 2.825 (2) 161 Symmetry codes: (i) �xþ 2; yþ 1 2;�zþ 1 2; (ii) x; y� 1; z; (iii) �xþ 1; yþ 1 2;�zþ 1 2. Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (Chemaxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010). We thank FAPESP (07/59404–2 to HAS), CNPq (472237/ 2008–0 to IC, 300613/2007 to HAS, and 306532/2009–3 to JZ- S) and CAPES (808/2009 to JZ-S and IC) for financial support. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2665). References Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Chemaxon (2009). MarvinSketch. URL: www.chemaxon.com. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Singh, F. V., Pena, J. M. & Stefani, H. A. (2010). Tetrahedron Lett. 51, 1671– 1673. Westrip, S. P. (2010). publCIF. In preparation. organic compounds Acta Cryst. (2010). E66, o1033 doi:10.1107/S1600536810012018 Caracelli et al. o1033 Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2665&bbid=BB1 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2665&bbid=BB1 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2665&bbid=BB1 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2665&bbid=BB2 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2665&bbid=BB3 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2665&bbid=BB3 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2665&bbid=BB4 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2665&bbid=BB5 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2665&bbid=BB6 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2665&bbid=BB7 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2665&bbid=BB8 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2665&bbid=BB8 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2665&bbid=BB9 http://crossmark.crossref.org/dialog/?doi=10.1107/S1600536810012018&domain=pdf&date_stamp=2010-04-10 supplementary materials supplementary materials sup-1 Acta Cryst. (2010). E66, o1033 [ doi:10.1107/S1600536810012018 ] 3-(1-Hydroxy-2-phenylprop-2-en-1-yl)phenol I. Caracelli, J. Zukerman-Schpector, F. V. Singh, H. A. Stefani and E. R. T. Tiekink Comment The title compound, (I), was prepared in connection with a study of the synthesis of α,β-epoxy ketones using a palladium- catalyzed epoxidation-oxidation sequence (Singh et al., 2010). Two independent molecules, molecule a (Fig. 1) and mo- lecule b (Fig. 2), comprise the crystallographic asymmetric unit. Molecules a and b are related by a non-crystallographic centre of inversion. Close intramolecular O2···H9b and O4···H24b contacts which close S(6) motifs are noted, Table 1. These interactions are probably responsible for the near planarity of the O2–C7–C8–C9 and O4–C22–C23–C24 residues as seen in the respective torsion angles of -15.8 (3) and 15.4 (3)°. The benzene rings are approximately orthogonal [the dihedral angles formed between the benzene rings is 62.89 (12) ° (molecule a) and 80.15 (12) ° (molecule b)]. In the crystal packing, O–H···O interactions predominate, Table 1, and lead to the formation of two-dimensional arrays in the ab plane, Fig. 3, that stack along the c axis, Fig. 4. Experimental The synthesis was described in Singh et al. (2010) and crystals were grown by slow evaporation from a solution of 15% of acetyl acetate in hexane. Refinement The H atoms were geometrically placed (O–H = 0.84 Å and C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O). In the absence of significant anomalous scattering effects, 1752 Friedel pairs were averaged in the final refinement. Figures Fig. 1. The molecular structure of the first independent molecule in (I) showing atom la- belling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms). Fig. 2. The molecular structure of the second independent molecule in (I) showing atom la- belling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms). http://dx.doi.org/10.1107/S1600536810012018 http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Caracelli,%20I. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Zukerman-Schpector,%20J. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Singh,%20F.V. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Stefani,%20H.A. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Tiekink,%20E.R.T. supplementary materials sup-2 Fig. 3. The supramolecular arrangement showing the formation of two-dimensional arrays in the ab plane. Fig. 4. The stacking of the two-dimensional arrays along the c axis. 3-(1-Hydroxy-2-phenylprop-2-en-1-yl)phenol Crystal data C15H14O2 F(000) = 960 Mr = 226.28 Dx = 1.299 Mg m−3 Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å Hall symbol: P 2ac 2ab Cell parameters from 9974 reflections a = 9.1301 (2) Å θ = 2.5–25.0° b = 10.2026 (2) Å µ = 0.09 mm−1 c = 24.8379 (6) Å T = 100 K V = 2313.67 (9) Å3 Block, colourless Z = 8 0.27 × 0.13 × 0.13 mm Data collection Bruker SMART APEXII diffractometer 2368 independent reflections Radiation source: sealed tube 2150 reflections with I > 2σ(I) graphite Rint = 0.042 φ and ω scans θmax = 25.1°, θmin = 1.6° Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10 Tmin = 0.883, Tmax = 1 k = −12→11 31791 measured reflections l = −29→29 Refinement Refinement on F2 Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites supplementary materials sup-3 wR(F2) = 0.084 H-atom parameters constrained S = 1.15 w = 1/[σ2(Fo 2) + (0.0381P)2 + 0.6989P] where P = (Fo 2 + 2Fc 2)/3 2368 reflections (Δ/σ)max < 0.001 311 parameters Δρmax = 0.17 e Å−3 0 restraints Δρmin = −0.15 e Å−3 Special details Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, convention- al R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) x y z Uiso*/Ueq O1 1.06075 (18) 0.29142 (16) 0.21652 (7) 0.0217 (4) H1O 0.9766 0.2581 0.2163 0.033* O2 0.70773 (18) 0.69539 (17) 0.21929 (6) 0.0203 (4) H2O 0.7719 0.7160 0.2420 0.031* C1 1.0535 (3) 0.4174 (2) 0.19749 (8) 0.0177 (5) C2 0.9221 (3) 0.4834 (3) 0.19232 (9) 0.0177 (5) H2 0.8332 0.4418 0.2023 0.021* C3 0.9201 (3) 0.6112 (2) 0.17244 (9) 0.0169 (5) C4 1.0502 (3) 0.6719 (3) 0.15824 (9) 0.0189 (5) H4 1.0492 0.7590 0.1447 0.023* C5 1.1816 (3) 0.6054 (2) 0.16377 (9) 0.0194 (5) H5 1.2708 0.6474 0.1541 0.023* C6 1.1841 (3) 0.4781 (3) 0.18328 (9) 0.0194 (5) H6 1.2744 0.4327 0.1869 0.023* C7 0.7742 (2) 0.6817 (2) 0.16736 (9) 0.0176 (5) H7 0.7917 0.7710 0.1520 0.021* C8 0.6701 (3) 0.6085 (2) 0.13080 (9) 0.0177 (5) C9 0.5564 (3) 0.5408 (2) 0.14915 (10) 0.0204 (5) H9A 0.4929 0.4973 0.1247 0.025* H9B 0.5384 0.5359 0.1868 0.025* C10 0.7000 (3) 0.6172 (2) 0.07155 (9) 0.0182 (5) C11 0.6005 (3) 0.6817 (3) 0.03877 (10) 0.0260 (6) H11 0.5163 0.7213 0.0543 0.031* C12 0.6225 (3) 0.6892 (3) −0.01631 (10) 0.0288 (6) H12 0.5540 0.7345 −0.0383 0.035* supplementary materials sup-4 C13 0.7432 (3) 0.6313 (3) −0.03926 (10) 0.0270 (6) H13 0.7582 0.6362 −0.0771 0.032* C14 0.8429 (3) 0.5659 (3) −0.00699 (10) 0.0286 (6) H14 0.9257 0.5247 −0.0228 0.034* C15 0.8223 (3) 0.5602 (3) 0.04816 (10) 0.0242 (6) H15 0.8925 0.5171 0.0701 0.029* O3 0.43410 (18) −0.19891 (17) 0.22734 (7) 0.0221 (4) H3O 0.5183 −0.2321 0.2274 0.033* O4 0.78763 (17) 0.18479 (17) 0.20933 (6) 0.0200 (4) H4O 0.7310 0.2091 0.2341 0.030* C16 0.4372 (3) −0.0816 (2) 0.20043 (9) 0.0171 (5) C17 0.5664 (3) −0.0131 (2) 0.19299 (9) 0.0186 (5) H17 0.6560 −0.0481 0.2061 0.022* C18 0.5656 (3) 0.1067 (2) 0.16646 (9) 0.0168 (5) C19 0.4346 (3) 0.1569 (2) 0.14687 (9) 0.0205 (5) H19 0.4335 0.2381 0.1282 0.025* C20 0.3058 (3) 0.0881 (2) 0.15472 (9) 0.0208 (5) H20 0.2162 0.1228 0.1415 0.025* C21 0.3063 (3) −0.0308 (3) 0.18165 (9) 0.0188 (5) H21 0.2173 −0.0772 0.1872 0.023* C22 0.7091 (3) 0.1805 (2) 0.15946 (9) 0.0180 (5) H22 0.6873 0.2722 0.1476 0.022* C23 0.8034 (3) 0.1145 (2) 0.11719 (9) 0.0181 (5) C24 0.9210 (3) 0.0451 (3) 0.13067 (10) 0.0237 (6) H24A 0.9762 0.0015 0.1036 0.028* H24B 0.9499 0.0391 0.1673 0.028* C25 0.7532 (3) 0.1273 (2) 0.06044 (9) 0.0198 (5) C26 0.6886 (3) 0.2420 (3) 0.04143 (10) 0.0291 (6) H26 0.6748 0.3136 0.0653 0.035* C27 0.6439 (3) 0.2536 (3) −0.01169 (11) 0.0367 (7) H27 0.5991 0.3323 −0.0239 0.044* C28 0.6648 (3) 0.1505 (3) −0.04687 (11) 0.0349 (7) H28 0.6359 0.1585 −0.0835 0.042* C29 0.7273 (3) 0.0368 (3) −0.02884 (10) 0.0325 (7) H29 0.7414 −0.0342 −0.0530 0.039* C30 0.7702 (3) 0.0245 (3) 0.02443 (10) 0.0258 (6) H30 0.8119 −0.0556 0.0365 0.031* Atomic displacement parameters (Å2) U11 U22 U33 U12 U13 U23 O1 0.0130 (8) 0.0196 (9) 0.0326 (9) −0.0014 (8) −0.0031 (8) 0.0047 (8) O2 0.0157 (9) 0.0261 (9) 0.0192 (8) 0.0022 (8) −0.0011 (7) −0.0020 (8) C1 0.0173 (12) 0.0196 (13) 0.0163 (11) −0.0006 (11) −0.0021 (10) −0.0016 (10) C2 0.0105 (11) 0.0241 (14) 0.0186 (11) −0.0027 (11) −0.0003 (9) −0.0010 (10) C3 0.0148 (12) 0.0191 (13) 0.0167 (11) 0.0003 (11) −0.0027 (9) −0.0034 (10) C4 0.0194 (12) 0.0205 (14) 0.0169 (11) −0.0013 (11) −0.0009 (10) −0.0009 (10) C5 0.0140 (12) 0.0239 (14) 0.0205 (11) −0.0079 (11) 0.0009 (10) −0.0031 (11) supplementary materials sup-5 C6 0.0120 (12) 0.0251 (14) 0.0212 (11) 0.0015 (11) −0.0011 (10) −0.0029 (10) C7 0.0157 (12) 0.0172 (12) 0.0197 (11) −0.0014 (11) −0.0002 (9) 0.0015 (10) C8 0.0124 (12) 0.0159 (13) 0.0248 (12) 0.0032 (11) −0.0013 (10) −0.0007 (10) C9 0.0142 (12) 0.0235 (14) 0.0236 (12) −0.0002 (11) −0.0026 (10) −0.0011 (11) C10 0.0151 (12) 0.0131 (12) 0.0263 (12) −0.0042 (11) −0.0008 (10) −0.0006 (10) C11 0.0214 (14) 0.0273 (14) 0.0293 (13) 0.0040 (12) −0.0024 (11) 0.0007 (12) C12 0.0275 (15) 0.0305 (15) 0.0283 (13) 0.0014 (13) −0.0069 (12) 0.0050 (12) C13 0.0319 (15) 0.0264 (14) 0.0226 (12) −0.0094 (13) 0.0003 (11) 0.0001 (11) C14 0.0243 (14) 0.0334 (16) 0.0282 (13) −0.0034 (13) 0.0043 (11) −0.0058 (12) C15 0.0186 (13) 0.0274 (14) 0.0266 (12) 0.0011 (12) −0.0021 (11) −0.0010 (11) O3 0.0142 (9) 0.0208 (9) 0.0313 (9) 0.0014 (8) 0.0024 (7) 0.0046 (8) O4 0.0149 (8) 0.0252 (9) 0.0198 (8) −0.0019 (8) 0.0012 (7) −0.0015 (7) C16 0.0157 (12) 0.0163 (12) 0.0194 (11) −0.0012 (11) 0.0025 (10) −0.0034 (10) C17 0.0137 (12) 0.0216 (14) 0.0204 (11) 0.0005 (11) −0.0003 (10) −0.0025 (10) C18 0.0143 (12) 0.0183 (13) 0.0178 (11) −0.0012 (11) −0.0001 (9) −0.0036 (10) C19 0.0198 (13) 0.0191 (14) 0.0227 (12) 0.0015 (11) 0.0001 (10) −0.0006 (10) C20 0.0123 (12) 0.0244 (14) 0.0255 (12) −0.0001 (11) −0.0031 (10) −0.0018 (11) C21 0.0136 (12) 0.0216 (13) 0.0211 (11) −0.0045 (11) 0.0017 (10) −0.0037 (10) C22 0.0181 (12) 0.0167 (12) 0.0192 (11) −0.0018 (11) −0.0024 (10) 0.0012 (10) C23 0.0146 (12) 0.0163 (12) 0.0235 (11) −0.0056 (11) 0.0025 (10) −0.0004 (10) C24 0.0175 (13) 0.0263 (14) 0.0273 (13) −0.0031 (12) 0.0021 (11) −0.0024 (11) C25 0.0137 (12) 0.0219 (13) 0.0239 (12) −0.0058 (11) 0.0033 (10) 0.0012 (10) C26 0.0357 (16) 0.0253 (14) 0.0262 (13) −0.0008 (13) 0.0011 (12) −0.0013 (11) C27 0.0452 (19) 0.0330 (16) 0.0318 (15) −0.0030 (14) −0.0044 (13) 0.0088 (14) C28 0.0398 (17) 0.0419 (18) 0.0229 (13) −0.0148 (15) −0.0025 (13) 0.0022 (12) C29 0.0343 (16) 0.0360 (16) 0.0272 (13) −0.0089 (14) 0.0029 (12) −0.0085 (12) C30 0.0230 (14) 0.0271 (14) 0.0273 (13) −0.0030 (12) 0.0024 (11) −0.0026 (11) Geometric parameters (Å, °) O1—C1 1.371 (3) O3—C16 1.371 (3) O1—H1O 0.8400 O3—H3O 0.8400 O2—C7 1.432 (3) O4—C22 1.432 (3) O2—H2O 0.8400 O4—H4O 0.8400 C1—C2 1.382 (3) C16—C21 1.383 (3) C1—C6 1.389 (4) C16—C17 1.384 (3) C2—C3 1.394 (4) C17—C18 1.389 (3) C2—H2 0.9500 C17—H17 0.9500 C3—C4 1.385 (3) C18—C19 1.388 (3) C3—C7 1.520 (3) C18—C22 1.521 (3) C4—C5 1.386 (3) C19—C20 1.383 (3) C4—H4 0.9500 C19—H19 0.9500 C5—C6 1.387 (4) C20—C21 1.386 (4) C5—H5 0.9500 C20—H20 0.9500 C6—H6 0.9500 C21—H21 0.9500 C7—C8 1.512 (3) C22—C23 1.516 (3) C7—H7 1.0000 C22—H22 1.0000 C8—C9 1.327 (3) C23—C24 1.329 (3) C8—C10 1.499 (3) C23—C25 1.488 (3) supplementary materials sup-6 C9—H9A 0.9500 C24—H24A 0.9500 C9—H9B 0.9500 C24—H24B 0.9500 C10—C11 1.386 (3) C25—C30 1.388 (3) C10—C15 1.387 (3) C25—C26 1.393 (4) C11—C12 1.385 (4) C26—C27 1.386 (4) C11—H11 0.9500 C26—H26 0.9500 C12—C13 1.374 (4) C27—C28 1.381 (4) C12—H12 0.9500 C27—H27 0.9500 C13—C14 1.384 (4) C28—C29 1.368 (4) C13—H13 0.9500 C28—H28 0.9500 C14—C15 1.384 (3) C29—C30 1.385 (4) C14—H14 0.9500 C29—H29 0.9500 C15—H15 0.9500 C30—H30 0.9500 C1—O1—H1O 109.5 C16—O3—H3O 109.5 C7—O2—H2O 109.5 C22—O4—H4O 109.5 O1—C1—C2 122.1 (2) O3—C16—C21 118.3 (2) O1—C1—C6 117.6 (2) O3—C16—C17 121.6 (2) C2—C1—C6 120.3 (2) C21—C16—C17 120.1 (2) C1—C2—C3 120.0 (2) C16—C17—C18 120.2 (2) C1—C2—H2 120.0 C16—C17—H17 119.9 C3—C2—H2 120.0 C18—C17—H17 119.9 C4—C3—C2 119.8 (2) C19—C18—C17 119.7 (2) C4—C3—C7 121.3 (2) C19—C18—C22 121.3 (2) C2—C3—C7 118.9 (2) C17—C18—C22 119.0 (2) C3—C4—C5 119.9 (2) C20—C19—C18 119.7 (2) C3—C4—H4 120.0 C20—C19—H19 120.1 C5—C4—H4 120.0 C18—C19—H19 120.1 C4—C5—C6 120.5 (2) C19—C20—C21 120.6 (2) C4—C5—H5 119.8 C19—C20—H20 119.7 C6—C5—H5 119.8 C21—C20—H20 119.7 C5—C6—C1 119.5 (2) C16—C21—C20 119.6 (2) C5—C6—H6 120.3 C16—C21—H21 120.2 C1—C6—H6 120.3 C20—C21—H21 120.2 O2—C7—C8 108.83 (18) O4—C22—C23 109.16 (19) O2—C7—C3 110.03 (18) O4—C22—C18 110.34 (18) C8—C7—C3 111.52 (19) C23—C22—C18 110.42 (19) O2—C7—H7 108.8 O4—C22—H22 109.0 C8—C7—H7 108.8 C23—C22—H22 109.0 C3—C7—H7 108.8 C18—C22—H22 109.0 C9—C8—C10 120.7 (2) C24—C23—C25 122.3 (2) C9—C8—C7 122.8 (2) C24—C23—C22 121.4 (2) C10—C8—C7 116.5 (2) C25—C23—C22 116.2 (2) C8—C9—H9A 120.0 C23—C24—H24A 120.0 C8—C9—H9B 120.0 C23—C24—H24B 120.0 H9A—C9—H9B 120.0 H24A—C24—H24B 120.0 C11—C10—C15 118.7 (2) C30—C25—C26 117.7 (2) C11—C10—C8 119.1 (2) C30—C25—C23 120.6 (2) C15—C10—C8 122.2 (2) C26—C25—C23 121.7 (2) C12—C11—C10 120.8 (2) C27—C26—C25 121.3 (3) supplementary materials sup-7 C12—C11—H11 119.6 C27—C26—H26 119.4 C10—C11—H11 119.6 C25—C26—H26 119.4 C13—C12—C11 120.1 (2) C28—C27—C26 119.8 (3) C13—C12—H12 119.9 C28—C27—H27 120.1 C11—C12—H12 119.9 C26—C27—H27 120.1 C12—C13—C14 119.6 (2) C29—C28—C27 119.8 (2) C12—C13—H13 120.2 C29—C28—H28 120.1 C14—C13—H13 120.2 C27—C28—H28 120.1 C15—C14—C13 120.3 (3) C28—C29—C30 120.5 (3) C15—C14—H14 119.9 C28—C29—H29 119.7 C13—C14—H14 119.9 C30—C29—H29 119.7 C14—C15—C10 120.4 (2) C29—C30—C25 121.0 (3) C14—C15—H15 119.8 C29—C30—H30 119.5 C10—C15—H15 119.8 C25—C30—H30 119.5 O1—C1—C2—C3 −179.59 (19) O3—C16—C17—C18 −178.75 (19) C6—C1—C2—C3 0.4 (3) C21—C16—C17—C18 −0.2 (3) C1—C2—C3—C4 −0.4 (3) C16—C17—C18—C19 −0.7 (3) C1—C2—C3—C7 −179.8 (2) C16—C17—C18—C22 179.3 (2) C2—C3—C4—C5 0.1 (3) C17—C18—C19—C20 1.1 (3) C7—C3—C4—C5 179.4 (2) C22—C18—C19—C20 −179.0 (2) C3—C4—C5—C6 0.3 (3) C18—C19—C20—C21 −0.4 (4) C4—C5—C6—C1 −0.2 (3) O3—C16—C21—C20 179.43 (19) O1—C1—C6—C5 179.91 (19) C17—C16—C21—C20 0.9 (3) C2—C1—C6—C5 −0.1 (3) C19—C20—C21—C16 −0.5 (3) C4—C3—C7—O2 −117.5 (2) C19—C18—C22—O4 132.6 (2) C2—C3—C7—O2 61.8 (3) C17—C18—C22—O4 −47.4 (3) C4—C3—C7—C8 121.6 (2) C19—C18—C22—C23 −106.6 (2) C2—C3—C7—C8 −59.0 (3) C17—C18—C22—C23 73.3 (3) O2—C7—C8—C9 −15.8 (3) O4—C22—C23—C24 15.4 (3) C3—C7—C8—C9 105.8 (3) C18—C22—C23—C24 −106.1 (3) O2—C7—C8—C10 163.3 (2) O4—C22—C23—C25 −167.12 (19) C3—C7—C8—C10 −75.2 (3) C18—C22—C23—C25 71.4 (3) C9—C8—C10—C11 65.5 (3) C24—C23—C25—C30 33.9 (4) C7—C8—C10—C11 −113.6 (3) C22—C23—C25—C30 −143.6 (2) C9—C8—C10—C15 −113.0 (3) C24—C23—C25—C26 −145.8 (3) C7—C8—C10—C15 67.9 (3) C22—C23—C25—C26 36.8 (3) C15—C10—C11—C12 0.1 (4) C30—C25—C26—C27 −0.6 (4) C8—C10—C11—C12 −178.5 (2) C23—C25—C26—C27 179.1 (3) C10—C11—C12—C13 0.6 (4) C25—C26—C27—C28 −0.7 (4) C11—C12—C13—C14 −0.2 (4) C26—C27—C28—C29 1.1 (4) C12—C13—C14—C15 −0.9 (4) C27—C28—C29—C30 −0.2 (4) C13—C14—C15—C10 1.6 (4) C28—C29—C30—C25 −1.1 (4) C11—C10—C15—C14 −1.2 (4) C26—C25—C30—C29 1.4 (4) C8—C10—C15—C14 177.3 (2) C23—C25—C30—C29 −178.3 (2) Hydrogen-bond geometry (Å, °) D—H···A D—H H···A D···A D—H···A C9—H9b···O2 0.95 2.39 2.726 (3) 101 supplementary materials sup-8 C24—H24b···O4 0.95 2.34 2.708 (3) 102 O1—H1O···O4 0.84 1.89 2.727 (2) 175 O2—H2O···O1i 0.84 2.00 2.823 (2) 168 O3—H3O···O2ii 0.84 1.89 2.728 (2) 174 O4—H4O···O3iii 0.84 2.02 2.825 (2) 161 Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x, y−1, z; (iii) −x+1, y+1/2, −z+1/2. supplementary materials sup-9 Fig. 1 supplementary materials sup-10 Fig. 2 supplementary materials sup-11 Fig. 3 supplementary materials sup-12 Fig. 4