Universidade Estadual Paulista “Júlio de Mesquita Filho” Faculdade de Odontologia de Araraquara KARLA ORFELINA CARPIO HORTA �������� �� ���� �������� ���� ��� �������������� �� ���������������������� ���� ���� ����� � � Araraquara 2012 Universidade Estadual Paulista “Júlio de Mesquita Filho” Faculdade de Odontologia de Araraquara KARLA ORFELINA CARPIO HORTA �������� �� ���� �������� ����� �������� ������ ������������������������ ���� ���� ����� Dissertação apresentada ao Programa de Pós-Graduação em Ciências Odontológicas - Área de Ortodontia, da Faculdade de Odontologia de Araraquara, da Universidade Estadual Paulista, para obtenção do título de Mestre em Ciências Odontológicas. Orientador: Prof. Dr. João Roberto Gonçalves Araraquara 2012 Horta, Karla Orfelina Carpio Método não radiográfico para diagnóstico do padrão esquelético classe II hiperdivergente / Karla Orfelina Carpio Horta - Araraquara: [s.n.], 2012. 136 f. ; 30 cm. Dissertação (Mestrado) – Universidade Estadual Paulista, Faculdade de Odontologia Orientadora: Prof. Dr. João Roberto Gonçalves 1. Diagnóstico 2. Antropometria 3. Crescimento e desenvolvimento 4. Maloclusão de Angle Classe II 5. Estudos de validação I.Título Ficha catalográfica elaborada pela Bibliotecária Disleide Silvia Valério Gounella CRB-8/5629 Serviço Técnico de Biblioteca e Documentação da Faculdade de Odontologia de Araraquara / UNESP KARLA ORFELINA CARPIO HORTA �������� �� ���� �������� ����� �������� ������ ������������������������ ���� ���� ����� COMISSÃO JULGADORA DISSERTAÇÃO PARA OBTENÇÃO DO GRAU DE MESTRE Presidente e Orientador: Prof. Dr. João Roberto Gonçalves 2° Examinador: Profa. Dra. Mirian Aiko Nakane Matsumoto 3° Examinador: Prof. Dr. Ary dos Santos Pinto Araraquara, 20 de setembro 2012 Dados Curriculares ����������� !�����" #��#�$�� Nascimento: 19/10/1984 – Machupicchu- Cusco/Perú Filiação: Alberto Abad Carpio Delgado Martha Horta Ccasa 2001-2005: Curso de Graduação em Odontologia na Universidad Católica de Santa Maria- Arequipa/ Perú 2006-2008: Curso de Especialização em Ortodontia na Universidade de São Paulo – Ribeirão Preto/SP 2009: Curso de Extensão Universitária na modalidade de atualização: Ortodontia Preventiva e Interceptatora na Universidade de São Paulo – Ribeirão Preto/SP 2010-2012: Associações: Curso de Pós-Graduação em Ciências Odontológicas, Área de Concentração em Ortodontia, nível Mestrado - Faculdade de Odontologia de Araraquara - FOAr/UNESP International Association of Oral Dental Research. Associação Brasileira de Ortodontia Associação dos Ex-Alunos de Ortodontia de Araraquara- AOA Sociedade Brasileira de Pesquisa Odontológica – SBPqO Dedicatória Dedicatória À Deus, por ser a força maior que guia minha vida! Aos meus pais, Martha Horta Ccasa e Alberto Abad Carpio Delgado, pelo infinito amor e apoio incondicional. Vocês são meu porto seguro! Mãe, exemplo de filha, irmã, mãe, mulher, amiga... você é um exemplo de vida! Obrigada por estar sempre do meu lado dando seu carinho infinito e com o coração aberto para me ouvir e aconselhar. Pai, o seu exemplo de luta sempre foi minha inspiração e graças ao seu amor todos os seus filhos estão realizando seus sonhos. Amo muito vocês! À meu esposo, Cristiano Queiroz Melo dos Reis, pelo amor incondicional!. Você foi e sempre será meu melhor amigo, cúmplice e companheiro de muitas lutas e alegrias... Amo você com todo meu coração! Á minha irmã, Paola Milagros Carpio Horta, por estar sempre presente nos momentos mais importantes da minha vida. Por me dar o maior exemplo de amor que uma pessoa pode brindar a outra. E por me mostrar tantas vezes como a gente pode fazer e ser feliz com pequenos gestos. Cristian Amaru Carpio Horta, obrigado pelo exemplo de determinação e luta... admiro muito você!. Amo vocês demais! Agradecimentos Especiais Agradecimentos Especiais À Deus, nosso criador, pela fortaleza e felicidade que sempre me deu para atingir os meus objetivos de vida! Ao meu orientador, Prof. Dr. João Roberto Gonçalves, muito obrigada pela sua enorme generosidade, orientação, ensinamentos, exemplos de profissionalismo e sobre tudo pela sua compreensão e respeito. Meus sinceros agradecimentos por todas as lições de vida que o senhor me deu, com certeza ficaram marcadas no meu coração e na minha vida para sempre! À minha amiga e colega, Liliane de Carvalho Rosas Gomes, por ser uma grande companheira nesses anos de mestrado. Muito obrigada por cada momento compartilhado! Em cada um deles aprendi muitas coisas valiosas! À Prof. Dra. Ana Maria Elias, pela execução da análise estatística do trabalho. Muito obrigado pela paciência e atenção!. Admiro muito a senhora pelo exemplo de paixão ao trabalho e dedicação, além da sua entrega ao serviço dos mais necessitados realizando obras de caridade de valor infinito. Meus sinceros agradecimentos! � Á minha mãe brasileira, dona Amélia Augusta Soares Cunha Machado, quem me acolheu todo este tempo na sua casa abençoada. Muito obrigada por cada palavra de ânimo e paciência, de esperança e de amor que a senhora me brindou e especialmente por cada conselho grandioso que serviram para guiar a minha vida em momentos difíceis e felizes. A senhora é um exemplo de humanidade e amor ao próximo! Agradecimentos Agradecimentos À Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, na presença de seu Magnífico Reitor Ricardo Samih Georges Abi Rached. À Faculdade de Odontologia de Araraquara - FOAr, da Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, na pessoa de sua Diretora Profa. Dra. Andreia Affonso Barretto Montandon e de sua vice diretora Profa. Dra. Elaine Maria Sgavioli Massucato Ao Departamento de Clínica Infantil da Faculdade de Odontologia de Araraquara - UNESP, representados pelo Chefe de Departamento Profa. Dra. Lídia Parsekian Martins e pela vice-chefe Prof. Dr. Fábio Cesar Braga De Abreu E Lima. Ao Programa de Pós-Graduação em Ciências Odontológicas da Faculdade de Odontologia de Araraquara - UNESP, coordenado pela Profa. Dra. Josimeri Hebling Costa e Prof. Dr. Edson Alves de Campos. Aos docentes da Disciplina de Ortodontia da Faculdade de Odontologia de Araraquara - UNESP, Prof. Dr. Ary dos Santos Pinto, Prof. Dr. Dirceu Barnabé Raveli, Prof. Dr. João Roberto Gonçalves, Profa. Dra. Lídia Parsekian Martins, Prof. Dr. Luiz Gonzaga Gandini Júnior e Prof. Dr. Maurício Tatsuei Sakima, pela contribuição à minha formação profissional, meus sinceros agradecimentos, admiração e profundo respeito. Principalmente ao Prof. Dr. Luiz Gonzaga Gandini Júnior, pela oportunidade de ser aluna deste tão conceituado programa e pelo A G R A D E C I M E N T O S exemplo de compreensão, paciência, respeito e humanidade. E ao Dr. Ary dos Santos Pinto, sempre atento, prestativo e com una incomparável dedicação ao ensino, contribuindo grandiosamente ao desenvolvimento profissional de todos os seus alunos. Aos docentes da Disciplina de Odontopediatria da Faculdade de Odontologia de Araraquara - UNESP, Profa. Dra. Ângela Cristina Cilense Zuanon, Profa. Profa. Dra. Josimeri Hebling Costa, Profa. Dra. Lourdes Aparecida Martins dos Santos Pinto, Dra. Elisa Maria Aparecida Giro, Prof. Dr. Fábio César Braga de Abreu e Lima, Profa. Dra. Rita de Cássia Loiola Cordeiro e Prof. Dr. Cyneu Aguiar Pansani. Aos funcionários do Departamento de Clínica Infantil da Faculdade de Odontologia de Araraquara - UNESP, Tânia Aparecida Moreira dos Santos, Antonio Parciaseppe Cabrini, Célia Aparecida Brogna Braga da Silva, Cristina Ferreira Affonso, Dulce Helena de Oliveira, Odete Amaral, Pedro César Alves, Regina Aparecida Favarin Bausells, Sílvia Maria Sandaniello e Sônia Maria Tircailo por sempre nos auxiliarem com muita dedicação. Aos funcionários da Seção de Pós-Graduação da Faculdade de Odontologia de Araraquara - UNESP, Mara Cândida Munhoz do Amaral, José Alexandre Garcia, Rosangela Aparecida Silva dos Santos, e Flávia Souza de Jesus, pela ajuda prestada durante todo o curso. Ao pessoal da ARADOC e SDO, pela colaboração importantíssima na obtenção da amostra. Às colegas e amigas de turma do curso de Pós-Graduação em Ciências Odontológicas, Área de Concentração em Ortodontia, Nível Mestrado da A G R A D E C I M E N T O S Faculdade de Odontologia de Araraquara - UNESP, Liliane de Carvalho Rosas Gomes, Cibele Braga de Oliveira, Kélei Cristina de Mathias Almeida, Ana Patrícia de Sousa Pereira, Vanessa Barbosa da Silva e Patrícia Alves Ferreira Amato, pela amizade e convivência. Aos amigos do curso de Pós-Graduação em Ciências Odontológicas, Área de Concentração em Ortodontia, Nível Mestrado e Nível Doutorado da Faculdade de Odontologia de Araraquara - UNESP, Camilla Ivini Viana Vieira, Tiago Turri de Castro Ribeiro, Isabela Parsekian Martins, Taisa Boamorte Ravelli, Sandra Palomino Gómes, Adriano Porto Peixoto, Alexandre Protasio Vianna, Amanda Fahning Ferreira Magno, André da Costa Monini, Renata de Cássia Gonçalves, Alexandre Antonio Ribeiro, Aldrieli Regina Ambrósio, André Wilson Lima Machado, Aparecida Fernanda Meloti, Denise Rocha Góes Landazuri, Helder Baldi Jacob, Ingrid Madeira Nunes, Luana Paz Sampaio Dib, Luis Guilherme Martins Maia e Roberta Maria de Paula Amaral. Especialmente a Sandra Palomino Gómes, pela sua linda e valiosa amizade construída neste tempo todo. Aos amigos do curso de Pós-Graduação da Faculdade de Odontologia de Araraquara - UNESP, Fabiano Jeremias, Manuel Restrepo, Dany Omar Mendoça Marin, Eduardo Mariscal e Marco Aurelio Paschoal, pela linda amizade!. Em especial para Fabiano Jeremias que sempre se mostrou prestativo estando perto ou longe do país, aprecio de mais a sua amizade e obrigada por toda a sua ajuda! Aos docentes da Especialização em Ortodontia da FORP/USP, Prof. Dr. Adílson Thomazinho, Profa. Dra. Mirian Aiko Nakane Matsumoto, Prof. Dr. Ademar Valente, Profa. Dra. Carla Enoki Itikawa, Prof. Marcelo Antonio Mestriner, Prof. Dr. José Tarcísio Lima Ferreira, Profa. Dra. Maria Bernadete Sasso Stuani e Profa. Marcela C. Damião Andrucioli por terem sido os responsáveis pela minha paixão pela Ortodontia e convivência tão agradável A G R A D E C I M E N T O S durante os três anos do curso. Em especial, à Profa. Mirian Aiko Nakane Matsumoto, por ter acreditado e incentivado meu sonho de realizar o mestrado e ser meu referencial no apaixonante mundo da Ortodontia. Ao Prof. Dr. Ramiro Rojas Manrique, por ser a primeira pessoa a me apresentar esta apaixonante profissão de Odontologia, mais especificamente da Ortodontia. Sempre me lembro de você com muito carinho e admiração, tanto no âmbito profissional como pessoal! Aos funcionários da Biblioteca da Faculdade de Odontologia de Araraquara - UNESP, pela ajuda na busca de livros, artigos e revistas. À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela bolsa de estudo concedida durante o curso. À minha amada família pela torcida e pelo apoio incondicional nas horas mais difíceis. Em especial para minha dedicadíssima mãe, minha doce irmã e meu admirado esposo... Os amo demais! Aos meus amigos Antuanett Cornejo Lecaros, Carol Godinho, Luis Alberto Garcia Cipriano, Davidson Celio, Sandra Oliveira Oliveira, Mirko Alva, Thatiane Pianoschi, Juliana Regina Cafer, Karen Pintado Palomino, Carla Cecilia Alandia Roman, Lily Jacqueline Alvarado Llanos, Harry Auhing Chusan, Wilson Nariño, Ruth Labovitch e Isela González, por se tornar uma parte importante na minha vida, mis hermanos de corazón! ! Epígrafe E P Í G R A F E ‘’Se você é... Se você é um vencedor, terá alguns falsos amigos e alguns amigos verdadeiros. Vença assim mesmo. Se você é honesto e franco, as pessoas podem enganá-lo Seja honesto e franco assim mesmo. O que você levou anos para construir Alguém pode destruir de uma hora para outra. Construa assim mesmo. Se você tem paz e é feliz, As pessoas podem sentir inveja. Seja feliz assim mesmo. Dê ao mundo o melhor de você, mas isso pode nunca ser o bastante. Dê o melhor de você assim mesmo. Veja você que, no final de tudo Será você ... e Deus. E não você ... e as pessoas!’’ (Madre Tereza de Calcutá) Sumário SUMÁRIO RESUMO .................................................................................................................17 ABSTRACT..............................................................................................................20 1 INTRODUÇÃO ......................................................................................................23 2 PROPOSIÇÃO.......................................................................................................28 ARTIGO 1 RELIABILITY OF A NONRADIOGRAPHIC ASSESSMENT OF MAXILLO- MANDIBULAR RELATIONSHIPS.................................................................................31 ARTIGO 2 NONRADIOGRAPHIC ASSESSMENT OF THE HYPERDIVERGENT SKELETAL CLASS II PATIENT.....................................................................................................60 3 CONSIDERAÇÕES FINAIS.....................................................................................95 4 REFERÊNCIAS......................................................................................................97 ANEXOS................................................................................................................106 APÊNDICE.............................................................................................................110 RESUMO Horta KOC. Método não radiográfico para diagnóstico do padrão esquelético classe II hiperdivergente [Dissertação de Mestrado]. Araraquara: Faculdade de Odontologia da UNESP; 2012. RESUMO Objetivo: Testar a validade do método de uso do paquímetro facial no diagnóstico da classe II esquelética hiperdivergente, assim como possibilitar a análise da postura crânio-cervical. Materiais e Métodos: Dois artigos científicos foram redigidos e utilizados para a avaliação dos propósitos apresentados. Resultados: As reprodutibilidades intra e interclasse para quase todas as medidas (Wits (POF)’, Wits (HV)’, N.Sn.Pg’, N.Sn.B’, T.Go.Me’, AFA’, AFP’, AFAI’, Proporção AFA/AFP’, Proporção AFP/AFAI’, C7.TN’, C7.FH’) foram maiores do que 0.90, indicando uma reprodutibilidade excelente. Algumas mensurações (ANB’, FMA’, Proporção AFAI/AFA’, TN.VER’, FH.VER’) apresentaram resultados que variaram entre excelentes e bons. Somente FNP’ apresentou uma reprodutibilidade interclasse fraca (intervalo: <0.65). As características faciais mensuradas com o paquímetro facial mostraram fortes e moderadas correlações estatisticamente significantes (p<0.01 and p<0.05). Correlações fracas foram achadas para a variável FNP’ e não foram encontradas correlações significativas para as variáveis que caracterizam a postura da cabeça. A função discriminante canônica, resultado da combinação das medidas Wits (POF)’, N.Sn.Pg’ e FMA’, R E S U M O classificou corretamente 73,5% dos pacientes de classe II hiperdivergentes na validação interna. Na validação externa, o método mostrou sensibilidade de 81,3% e especificidade de 79,2%. Conclusões: O paquímetro facial é uma ferramenta válida para realizar o diagnóstico do padrão esquelético de classe II hiperdivergente. Este método não é recomendado para a avaliação da postura da cabeça nem para realizar a medida FNP’. Um cuidado especial deve ser tomado quando forem realizadas medidas angulares agudas e/ou pobremente definidas. Palavras-chave: Diagnóstico; Antropometria; Crescimento e desenvolvimento; Má oclusão de Angle classe II; Estudos de validação. ABSTRACT Horta KOC. Nonradiographic assessment of the hyperdivergent skeletal class II patient [Dissertação de Mestrado]. Araraquara: Faculdade de Odontologia da UNESP; 2012. ABSTRACT Objective: To assess the validity of a non-radiographic method in diagnosing skeletal class II hyperdivergent patients, as well as to enable the analysis of cranio-cervical posture. Materials and Methods: Two research papers were written and analyzed for the evaluation of the aims presented. Results: The intraclass and interclass reliabilities for almost all measurements (Wits (FOP)’, Wits (TV)’, N.Sn.Pg’, N.Sn.B’, T.Go.Me’, AFH’, PFH’, LFH’, Proportion AFH/PFH’, Proportion PFH/LFH’, C7.TN’, C7.FH’) were greater than 0.90, indicating an excellent reliability. Some variables (ANB’, FMA’, Prop. LFH/AFH’, TN.VER’, FH.VER’) showed excellent and good results (interval: 0.90-0.99; 0.80-0.89). Only FNP’ presented a weak interclass reliability (interval: <0.69). Soft- tissue facial characteristics showed strong to moderate significant correlations (p<0.01 and p<0.05). Weak correlations were found for the FNP’ variable and non-significant correlations were found for postural variables. The canonical discriminant function involved combining Wits (FOP)’, N.Sn.Pg’ and FMA’ measurements, correctly classified 73.5% of the hyperdivergent class II A B S T R A C T patients in the internal validation. On the external validation, the method showed 81.3% sensitivity and 79.2% specificity. Conclusions: The facial paquimeter is a valuable diagnostic tool in determining the hyperdivergent skeletal class II pattern. Parameters characterizing hyperdivergent skeletal class II are identifiable through the use of the FP. This method is not recommended to assess the head posture and the FNP’ measurement. Key words: Diagnosis; Anthropometry; Growth and Development; Malocclusion, Angle class II; Validation study. INTRODUÇÃO 24 1 INTRODUÇÃO O diagnóstico dos pacientes associados ao padrão esquelético de classe II hiperdivergente é importante, uma vez que estes pacientes têm sido associados a vários distúrbios, tais como mudanças na postura da cabeça25,35,41,43-45 para uma melhor adequação das vias aéreas24 e desordens temporomandibulares (DTM)8,19,23,29,31,36,49,52,56, os quais muitas vezes comprometem a saúde geral destes indivíduos. Nos campos da Ortodontia e Cirurgia, as discrepâncias maxilares esqueléticas são diagnosticadas através da análise de radiografias cefalométricas. Neste sentido, no início do século XX, grande parte das pesquisas científicas e das condutas clínicas dos ortodontistas e cirurgiões, baseava-se fortemente nos padrões dentários e esqueléticos determinados por diferentes análises cefalométricas13. Esse fato tornou a cefalometria fundamental para o planejamento de tratamentos ortodônticos e orto-cirúrgicos. Apesar de a cefalometria radiográfica ser o método de escolha para avaliação das relações maxilo-mandibulares e da morfologia facial, para a realização de estudos epidemiológicos de larga escala faz-se necessário aplicar métodos mais simplificados e validados com este fim59, realizados sem a exposição do paciente à radiação. Com o intuito de reduzir a exposição à radiação, métodos não invasivos têm sido propostos, uma vez que, não há nenhuma dose abaixo da qual os danos I N T R O D U Ç Ã O 25 biológicos não ocorrem37. Além disso, a crescente valorização da estética facial, a grande variabilidade étnica e a popularização da cirurgia ortognática, geraram a necessidade de valorizar as características individuais da face, fazendo com que a análise facial assumisse um papel cada vez mais importante na planificação dos tratamentos1,2,6,30. Estes métodos alternativos que incluem antropometria3,10, fotogrametria bidimensional34,50,59, fotogrametria tridimensional4,57, e técnicas de imagem tridimensional48,51 têm sido realizados diretamente sobre os tecidos moles. Estas pesquisas que relacionaram os tecidos moles com as estruturas ósseas subjacentes foram realizadas em particular na área de morfoanálise22. Na ortodontia esta relação foi encontrada através de métodos e amostras variadas5,7,12,33,59. No entanto, uma amostra com um número representativo de pacientes de classe II esquelética associada ao padrão hiperdivergente não foi investigada até o momento. A comprovada existência de relações entre os pontos e mensurações nos tecidos moles e seus correspondentes no tecido duro, fornecem um bom sinal sobre a possível capacidade destes métodos na realização do diagnóstico das relações maxilo-mandibulares, mas não verificam este fato. Assim mesmo, métodos subjetivos32, objetivos50 e clínicos60 tem sido propostos para realizar previsões do crescimento do esqueleto, embora os resultados obtidos fossem limitados. Ao considerar o método antropométrico, como alternativa para os objetivos propostos, a literatura revela que as principais vantagens são as seguintes: a I N T R O D U Ç Ã O 26 natureza não invasiva, a simplicidade tecnológica, de baixo custo, a existência de parâmetros divididos por idade e sexo com as quais os indivíduos podem ser comparados54 e satisfatórios níveis de reprodutibilidade55. Outro fator importante a destacar é o resultado imediato (evitando tempo de laboratório investido durante o processamento dos achados). Além disso, a antropometria fornece um acesso e resultados objetivos em vez de apenas subjetivos. Todas estas características tornam este método uma ferramenta viável para esta finalidade. No entanto, o método antropométrico está sujeito a erros inerentes ao tipo de metodologia. Esses erros de medição e precisões foram avaliados em estudos que envolviam a antropometria do corpo inteiro21 ou a região craniofacial55 utilizando medidas lineares. A precisão de erros de mensurações angulares e lineares para realizar a avaliação da região craniofacial, especificamente as relações maxilo-mandibulares e posição da cabeça, receberam pouca atenção. Assim, torna-se evidente a necessidade de desenvolver um método que permita fazer uma análise simples, confiável e quantitativa deste tipo de mensuração. Quando da análise da postura crânio-cervical, a literatura relata uma consistente associação entre a morfologia dento-esquelética e a variação individual na postura da cabeça, evidenciando o quanto os princípios biomecânicos da coluna e do pescoço são de especial interesse na Ortodontia e Ortopedia Dentomaxilofacial. Em geral, indivíduos que apresentam uma altura facial anterior inferior aumentada por um padrão de crescimento vertical, assim como aqueles que apresentam retrognatismo mandibular, tendem a desenvolver um posicionamento mais anteriorizado e extensão da cabeça. Por outro lado, I N T R O D U Ç Ã O 27 indivíduos face curta e aqueles que apresentam prognatismo mandibular tendem a evidenciar retificação da coluna e posteriorização da cabeça40. Contudo, estudos têm mostrado a existência de uma forte relação entre a adequação das vias aéreas e postura da cabeça, onde uma obstrução ou diminuição da adequação das vias aéreas foi associado a maiores ângulos crânio-cervicais e crânio-verticais20,38,43,53,58. Além disso, a adequação das vias aéreas está relacionada ao tamanho e posição da mandíbula, onde uma diminuição dessas vias aéreas está correlacionada a uma mandíbula menor e mais posteriormente posicionada43. No entanto, a relação causa-efeito entre este padrão de crescimento craniofacial específico e as condições acima mencionadas não está totalmente clara. Métodos simplificados, embora ainda não desenvolvidos e/ou acurados, para a detecção destes indivíduos em larga escala ou em estudos epidemiológicos podem oferecer uma melhor compreensão dessas complexas relações. PROPOSIÇÃO 29 2 PROPOSIÇÃO 2.1 Objetivo geral Testar a validade do método de uso do Paquímetro Facial no diagnóstico de pacientes de classe II esquelética associada ao padrão hiperdivergente e na análise da postura da cabeça. 2.2 Objetivos específicos: 1. Avaliar a confiabilidade de o método de uso do Paquímetro Facial na realização de mensurações faciais 2. Avaliar a correlação existente entre as variáveis faciais realizadas fazendo uso do Paquímetro Facial e suas correspondentes variáveis cefalométricas; 3. Detectar as mensurações faciais realizadas diretamente na face do paciente fazendo uso do Paquímetro Facial, capazes de realizar o diagnóstico da classe II esquelética associada ao padrão hiperdivergente. Os objetivos específicos serão tratados em dois artigos separadamente: P R O P O S I Ç Ã O 30 ARTIGO 1: Reliability of a nonradiographic assessment of maxillo-mandibular relationships. Artigo a ser enviado para publicação no periódico American Journal of Orthodontics and Dentofacial Orthopedics. ARTIGO 2: Nonradiographic assessment of the hyperdivergent skeletal class II patient. Artigo a ser enviado para publicação no periódico American Journal of Orthodontics and Dentofacial Orthopedics. 31 ARTIGO 1 A R T I G O 1 32 Reliability of a nonradiographic assessment of maxillo- mandibular relationships Karla Orfelina Carpio Hortaa; Liliane de Carvalho Rosas Gomesa; Marcelo Gonçalvesb; Ary dos Santos Pintob; João Roberto Gonçalvesb a MS student, Faculdade de Odontologia de Araraquara, Univ Estadual Paulista- UNESP, Araraquara, São Paulo, Brazil. b Professor, Faculdade de Odontologia de Araraquara, Univ Estadual Paulista- UNESP, Araraquara, São Paulo, Brazil. Corresponding Author: Karla Orfelina Carpio Horta, Universidade Estadual Paulista, UNESP, Department of Orthodontics, Rua Humaitá 1680, Araraquara, São Paulo 14801-385, Brazil. e-mail: karlitach@hotmail.com A R T I G O 1 33 Reliability of a nonradiographic assessment of maxillo-mandibular relationships ABSTRACT Objective: The aim of this study was evaluate the reliability of a non- radiographic assessment of maxillo-mandibular relationships. Furthermore, the reliability of the method assessing the head posture was tested. Material and methods: A random sample of 26 healthy children was studied. Two trained operators undertook 8 linear and 10 angular measurements directly on the patient’s face by using a new non-radiographic tool also 3 proportions were calculated. Intraclass and interclass reliability were assessed through the Intraclass Correlation Coefficient of reliability that statistically analyzed the data with a confidence interval of 95%. Results: The intraclass and interclass reliabilities for almost all measurements (Wits (FOP)’, Wits (TV)’, N.Sn.Pg’, N.Sn.B’, T.Go.Me’, AFH’, PFH’, LFH’, Proportion AFH/PFH’, Proportion PFH/LFH’, C7.TN’, C7.FH’) were within an interval of 0.90-0.99, indicating an excellent reliability. Some variables (ANB’, FMA’, Prop. LFH/AFH’, TN.VER’, FH.VER’) showed excellent and good (interval: 0.80-89) results. Only FNP’ presented a week interclass reliability (interval: <0.69). Conclusions: The proposed method has proven to be a reliable diagnostic tool for assessing maxillo- mandibular relationships and head position. This method is not recommended for taking the A R T I G O 1 34 FNP’ measurement. Special care must be taken when acute angular and/or poorly defined measurements are made. KEY WORDS: Diagnosis; anthropometry; growth and development, jaw relationships; skeletal pattern; reliability. INTRODUCTION A very important factor when planning the orthodontic treatment and the assessment of treatment changes is to evaluate the soft tissue,1 mainly as regards jaw relationships. The soft tissue evaluation has been carried out by different methods such as anthropometry,2,3 two dimensional photogrammetry,4-6 three dimensional photogrammetry7,8 and three dimensional imaging techniques.9,10 The main advantages of the anthropometric method are its noninvasive nature, technological simplicity, low cost, and the existence of age and sex-matched standards to which subjects can be compared.11 However, the anthropometric method is subject to sources of errors. These measurement errors and precisions were assessed for whole body anthropometry12 and craniofacial region11 using linear measures. Nevertheless, the precision of angular and linear measurement errors assessing maxillo-mandibular relationships of the craniofacial region and head position received little attention. Thus, the need to develop a method that allows a simple, reliable and quantitative analyses of this important facial feature is evident. A R T I G O 1 35 In addition, during the initial clinical examination, patients almost always ask about the diagnosis and the type and duration of the orthodontic treatment. With an objective rather than only a subjective facial assessment, the orthodontist will be more confident and able to satisfy this requirement providing a preliminary or provisional diagnosis and prognostic. Therefore, the aim of this study is to assess the reliability of a non- radiographic assessment of maxillo-mandibular relationships. Also, the reliability of the method assessing the head position was tested. Material and methods: 1. The facial meter and its parts: The development of this tool was inspired in another instrument, the Caliper of the Facial Profile,13 which have different objectives than the Facial Paquimeter (FP). The Facial Paquimeter (FP) (Figure 1) is a tool developed to allow vertical and horizontal, linear and angular measurements characterized to determine the craniofacial growth pattern and the head position directly on the patient's face. In this sense, the exposure to radiation resulting from cephalometric radiographs is eliminated and after its validation, the instrument can be used on large-scale studies. The FP was developed in a joint work with a group of technical professionals specializing in the construction of new technologies. A R T I G O 1 36 The FP is essentially made of acrylic, polyethylene, plastic and little parts of metal. It is made up of three areas: head support, measurement and articulation. The head support adjusts the instrument on the patient’s head in both vertical and antero-posterior directions. The three rulers make vertical and horizontal linear measurements assisted by clamps. The protractor allows angular measurements. Some parts are transparent to improve the visualization of the facial landmarks. To hold the apparatus in a fixed position, the FP has polyethylene screws. Finally, the articulation area joint the two areas mentioned above. One clamp holds the acrylic rod and the other holds the rulers still and allows some movement aided by an occlusal device (reference of the occlusal plane, Figure 4) and a metallic pendulum (reference of the true vertical, Figure 5). A protractor device is used to record the Natural Head Position (NHP) angle14 confirming its constancy when necessary. These two devices are auxiliary instruments and are not part of the FP. 2. The method and its reliability: Ethics Committee of the Araraquara Dental School, Univ Estadual Paulista (UNESP), Brazil approved the study under the protocol nº 66/10. Twenty-six children of a sample of 120 children aged between 7 to 12 years were randomly selected for this study. All subjects had facial symmetry and none had a history of facial and/or cervical trauma, facial abnormality and/or cranio-cervical deformities, neurological disorders or congenital abnormality, A R T I G O 1 37 absence of any upper front teeth, previous orthodontic or surgical treatment. The children’s parents were informed about the procedures, accepted the terms and signed the consent forms. Two trained operators undertook all measurements and an assistant recorded the data. The measurements were made in profile with the right side of the face toward the investigator, always in maximum intercuspation and with the lips in a relaxed posture. Furthermore, the subjects were instructed to wear headbands to remove hair strands from the face, ear and neck when needed. In addition, the landmarks15,16 used were identified by palpation and/or visualization (Table I). Four adhesive dots and two adhesive mini balls were placed on the children’s faces to better identify some landmarks (Figure 2). A total of 5 linear and 10 angular measurements were taken and 3 proportions were calculated (Table II). The facial measurements were chosen to be counterparts of commonly cephalometric measurements used to characterize the assessment of maxillo-mandibular relationships and the head and cervical posture. Before the procedure the NHP angle was recorded. The subjects were asked to stand up and positioned in ‘’orthoposition’’,18 i.e. the intension position from standing to walking. The children were situated in front of a mirror (placed 55 cm away) with their arms and lips relaxed and their teeth in maximum intercuspation. Then, they were asked to look into the mirror image of their own eyes, after tilting their head up and down with decreasing amplitude until they felt that they were relaxed. When the individual’s NHP, ‘’mirror position’’,17 was A R T I G O 1 38 achieved, its angle was recorded using the protractor device (Figure 3).14 When taking the facial measurements, the patient was sitting in a chair with their spine erect and head centered over the vertebral column,19 viewing his own eyes in a mirror placed 25 cm away. The oclusal approach was positioned with its inner part being held by the bite of the patient’s right occlusal hemi arch. Subsequently, the FP completely armed, was positioned on the patient’s head with its anterior part at the height of the middle of the forehead. Then, the head support was adjusted turning its two plastic devices. By sliding the support clamp on the acrylic rod, the vertical ruler was located 15 mm in front of the tip of the nose, and fixed adjusting it’s fixative screw. The metallic rod was lowered towards occlusal device by sliding its clamp. Then, by rotating the articulable clamp (in a clockwise or counterclockwise direction), the metallic rod was placed parallel to the occlusal device. This first position (Figure 4) was fixed adjusting the screw and the occlusal device was taken out of the patient mouth. Then, the measurement Wits Facial Oclusal Plane (Wits (FOP)’) (Table II, Figure 4) was made using the patient’s occlusal plane as a reference. Subsequently, the screw of the articulable clamp was unscrewed, the NHP was conferred using the protractor (Fig. 3) and the metallic pendulum was positioned. By rotating the articulable clamp (in a clockwise or counterclockwise direction), the long axis of the metallic pendulum was aligned with the laser drawn line of the protractor’s principal ruler. This second position was fixed by adjusting the fixative screw (Figure 5). Thus, the measurements, Wits True A R T I G O 1 39 Vertical (Wits (TV)’), AFH’ and LFH’ were made with the true vertical as a reference (Figure 5). The FM was removed from the patient´s head and dissembled (third position) (Figure 6). The rest of the measurements, PFH’, ANB’, FNP’, N.Sn.Pg’, N.Sn.B’, T.GoMe’, and FMA’, were made using only the complex ruler- protractor and the metallic pendulum. All these measurements were made using the inner part of the principal and secondary rulers with the hole of the protractor as the intersection point (Figure 6). Finally, the patient had to stand up and being in NHP.17 The NHP angle was confirmed using the protractor device, and subsequently, the craniocervical measurements, TrN.VER’, FH. VER’, C7.TrN’, C7.FH’, were made. Finally, the calculation of the proportions, ALFH/AFH’, PFH’/AFH’ and PFH’/ALFH’, were performed. Reliability For accessing the intraclass reliability i.e. repeatability, all measurements were made in each patient by the same investigator at two different times, with an interval of 15 days. Also, for accessing the interclass reliability, all the measurements were made in each patient by two operators the same day. The Intraclass Correlation Coefficient of reliability (ICC)20 statistically analyzed the data with a confidence interval (CI) of 95%. All the analyses were carried out using the Statistical Package for Social Sciences 16.0 (SPSS Inc., Chicago, Illinois, USA). A R T I G O 1 40 Results: The reliability of the proposed method was satisfactory, almost all measurements had an ICC value above 0.84. Table III presents the intraclass correlation coefficient of reliability i.e. repeatability. For almost all measurements (Wits (FOP)’, Wits (TV)’, ANB’, N.Sn.Pg’, N.Sn.B’, T.Go.Me’, FMA’, AFH’, PFH’, LFH’, Prop. AFH/PFH’, Prop. PFH/LFH’, C7.TN’, C7.FH’) the ICC were within an interval of 0.90-0.99. Their inferior limits varied from 0.79 to 0.95 and the superior ones from 0.95 to 0.99. The rest of the variables (FNP’, Prop. LFH/AFH’, TrN.VER’ and FH.VER’) presented an ICC within an interval of 0.80-0.89. Their inferior limits varied from 0.68 to 0.73, and the superior limits from 0.93 to 0.94. Table VI presents the interclass correlation coefficient of reliability for each variable. For almost all measurements (Wits (FOP)’, Wits (TV)’, N.Sn.Pg’, N.Sn.B’, T.Go.Me’, AFH’, PFH’, LFH’, Prop. LFH/AFH’, Prop. AFH/PFH’, Prop. PFH/LFH’, C7.TN’, C7.FH’) the ICC were within an interval of 0.90-0.99. Their inferior limits varied from 0.80 to 0.96 and the superior ones from 0.96 to 0.99. Three variables (ANB’, FMA’, and FH.VER’) presented an ICC in an interval of 0.80-0.89 and their limits varied from 0.68 to 0.72 for the inferior limits and from 0.93 to 0.94 for the superior ones. Only FNP’ presented the ICC in the interval <0.69, its inferior limit was 0.34 and its superior limit was 0.82. A R T I G O 1 41 Discussion Although other methods21,22 have been described to assessing maxillo- mandibular relationships through the soft tissue, they showed limitations e.g. the inability to adequately quantifying the soft tissue by cephalographic techniques.21 Also, the complexity of the analysis, the costly equipment, and the questionable accuracies of other techniques (stereo photogrammetry,23 mesh grid analysis24 and photocephalometry25) made them impractical for general use.26 Subsequently, they would be useless on large-scale studies. In this sense, the simplicity, speed and low cost of the FP made the proposed method feasible to meet the above- mentioned purposes. The sample selected represent an age group where the interrelationship between hard and soft-tissue shapes should be particularly close, without the added variability of the aging effects in adults.27 Also, they were selected to be in an ideal age group to have their malocclusions treated. However, since the anthropometric procedure requires collaboration and patience from the evaluated subject, working with child presented difficulties that could have influenced the results. To minimize this factor, the posture of their body (sitting or standing), head (NHP)17 and lips (relaxed)28 were standardized. In addition, the landmarks were signalized with adhesives dots and mini balls to reduce the time of the complete procedure (maximum 15 minutes). All measurements were taken with the patients in NHP, the ‘’mirror position’’.17 The body position varied according to the measurement taken. A R T I G O 1 42 Almost all measurements were made in a sitting position and only the craniocervical measures were made with the patient standing as recommended by other authors.17 The upper and lower movements of their heads were controlled using the protractor device (Fig. 3) (in either standing or sitting positions). However, the extension or flexion of the neck that influences the position of the c7 landmark was not. Therefore, before the craniocervical measurements were taken, the patient was repositioned with his/her body in the orthoposition18 and in the NHP.17 The relaxed lip posture was always monitored because many children use to force their lips to achieve closure. Straining the lips not only changes the shape of the lips but also affects the chin area,27 compromising the real position of important landmarks (me, pg, b, a, sn). The criterion for selecting the facial variables was more approximately and corresponding to cephalometric measures (gold standard) commonly used to characterize jaw relationships and head position (Table II). To clarify and simplify the understanding of the variables, the landmarks were abbreviated with lower case letters15 (e.g. a, n and b) while facial measures with upper case letters accompanied with the symbol quotes (e.g. ANB’). This procedure also helps to differentiate the facial measures to their cephalometric hard tissue counterparts. Some landmarks denominations of common measurements used in anthropometric studies were changed to better correspond with their A R T I G O 1 43 cephalometric hard tissue counterparts. For example, the AFH’ (n-gn) and LFH’ (sn-gn) established by Farkas,15 instead of using ‘gn’, ‘me’ was used, i.e. AFH’ (n-me) LFH’ (sn- me) whose counterparts are AFH (N-Me) and LFH (Sn-Me). The intraclass and interclass reliabilities for almost all measurements were greater than 0.90, indicating an excellent reliability (interval: 0.90-0.99). The rest of the measurements (ANB’, FMA’, Prop. LFH/AFH’, TN.VER’, FH.VER’) had excellent and good (interval: 0.80-0.89) reliabilities. Only one variable FNP’ presented a weak interclass reliability (interval: <0.69). The best results were expected for linear measurements because they are easily taken. For example, it was expected that PFH’ (0.96- 0.98) presented the best results not only for being a linear measurement, but because its landmarks were signalized by adhesives. Instead, N.Sn.Pg’ (0.98- 0.95) presented the highest intraclass reproducibility. This could be explained through the difficulty30 and the consequent variation when signalizing the landmark go, whereas, n, sn, and pg are more easily visualized. The interclass reliability for PFH’ (0.98) presented the best result because as it was taken the same day. Therefore, the variation of the go position mentioned above, did not exist. A factor affecting the reliability was the difficulty in identifying the landmarks. In accordance to Ward and Jamison,11 measurements derived from one or more well-defined bony or anatomical landmarks, had better reliabilities than those derived only from constructed or estimated points. For example, N.Sn.B’ A R T I G O 1 44 (0.96- 0.97) showed better results than ANB’ (0.92- 0.84). Probably because subnasal was an easily identified landmark compared with nasion. Despite FMA’ (0.94- 0.87) being formed by well- defined landmarks, its reliability varied, perhaps by difficult founded on measuring obtuse FMA angles where the support rod had to be used. (Figure 6). Another factor affecting the reliability of angular measurements is its size. In accordance with other authors,11 acute angles were more difficult to measure than obtuse ones. For example: T.Go.Me’ had better inter and intraclass reliabilities than ANB’. Although, the variables AFH’, PFH’, and LFH’, presented excellent reliabilities. The intraclass reproducibility of LFH’ and AFH’ presented better results when compared with another author’s results (0.88 and 0.85 respectively).11 Between the craniocervical measurements, it was expected that, C7.TN’ and C7.FH’ presented the worst results. This is because it is difficult to locate the c7 landmark and orthodontists are not used to recognizing it. It is possible that the interdisciplinary collaboration of the physiotherapists in training the operators and the use of a rigid protocol31 for identifying this structure, improved the results. The measurements TN.VER’ and FH.VER’ presented good reproducibility; except by the interclass reproducibility of TN.VER that was excellent. Perhaps the difficulty in taking the True Vertical (VER’) could explain this situation. A R T I G O 1 45 The most unreliable measure was FNP’. The intraclass reliability was good, however, its interclass reliability was weak. The difficulty in taking this measure can be justified by the absence of a well- defined center of rotation like other angular measurements such as T.Go.Me’, where the center of rotation was at the point go. CONCLUSION The proposed method has proven to be a reliable diagnostic tool for assessing maxilo- mandibular relationships and head posture. This method is not recommended for taking the FNP’ measurement. Special care must be taken when acute angular and/or poorly defined measurements are made. REFERENCES ��� ����� ��� ��� ������������������������� �������������������������������� ������������� �������� ������!"�"#$"%&'(&$!)*�� !�� +������ ,- � .������ -�� +������ �� ����� � ��� ������ � /����� ��������� .����������������������������������� �������� �������*$�#0�%�'(1") 1�� 2�� ������� 3- � -��4� . � ����5� 6 � ����� 7��� .���������� ��� ������� �������������������������������������������8������� ������������ 9�������������������� ���������������:�����3����!""$#2!%!'(!2&)&!�� A R T I G O 1 46 &�� 3������.6 ������������3���������������������������������������.��������� ��������� ��������������� ��� 7� ������ ������������ ������ !""*#�2;%�'(0!)$�� 0�� <����� = � >���� - � -������ - � ��������� >, � �������� 3�� .������������ ���9���� �������������� ���� ������� ������������� ������������� ��� ����������������������7� ������������������ ������!""1#�2�%�'(;1)1��� ;�� 3��?����> � <���)3��?��@ � ��� A����).������� � �/��B���.�� 3���� ������� �������� ��� 9����� 6��C������ ������� 9���� ������� ����������� ���� 9���) ���������������������� ������!""$#1$%�'(0$);2�� 1�� @���� 7D � ���� � ���� E � ��� ���� A������ � ���� ���������� � ��� ������������� ������������������������������2�������������������������� �������� .�����:������.���������7�!""$#&0%2'(!2!)*�� $�� � ������ / � ,������ 6E � ,���)3���C��� A � 6�������� 3�� ������� � ���� ���������� ��� �� 2�� ��������������� ������� ���� ���� 9���� ���� 9������� ��������� ��������� ������� ������ ��F���������� ������ ������ !"��#$�%!'(!&0)0!�� *�� 3��G������ � � .���� D � ������� - � 3?������� E � -����?����� 8�� ����������� ��� ������� ��������� 9���� �� ������ �������� 3����� 7� :����� ���������3����>����3�����**$#2!%�'(*�);�� �"�� 3������ � 6������ ��� E?��������� ��� ������� ����� ������� �������� 9���� ��������������������������������������������������.����������������������7� ���� �H��������3����!""&#;!%��'(�22�)&"�� A R T I G O 1 47 ���� @���� �E � 7������� :,�� ����������� ���������� ���� ���������� � ��� ������������� ������������ (� ������������� ���� ������������ ���� ��������� ��������������7�.���������-�������?�6�����**�#��%2'(�0;);&�� �!�� 7�������:, � <������3,�������?������� ���������?������� �H������������� ������������ ������ ��� ������������ �� ��� 7� :� �� ���������� �*1&#&"%!'(�*1)!"2�� �2�� ��� +������ �,�� ��������������� ���� �����������C������ ��� ���� � ���� ��� ������� ��������� ������ ���� .������� ��� ���� +������ :������� � ���� ���������� �?��������� ������ ������� ������������� I3������� ������J�� �����F����(� 3�����K��?����� ��,���� ��F�����+����#�!"";�� �&�� ����� 37 � -���� � 7: � 3���� - � ������������� ��� �� ��9� ������������� ����������� ������F��(� ���� 3 ��� � ����������� � ������ ��� 7� ������ ������������ ������!""1#�2�%2'(22&)&!�� �0�� +������,-�� LL������������ ���� ����>��������+���� ��� �������LL��/�9� D���(�E���?����3�������,����*$��� �;�� >�9����� @@�� 8��� ������������ ��� ���� ���������� ��������������� ������������������������������������7�:� �������������*21#!!(&11) *&�� �1�� 3���9�6 �8�����������/��������������������� ���������������M����������� �������3������*1�#!*%0'(0*�);"1�� �$�� ����?�� ��� �� ���������� ��?������������ 8��� ��������� �������� ��� ���� ������������ � ���� �������������� � ������������� ����� ������ 3����� �*;"#!*(!*�)2""�� A R T I G O 1 48 �*�� -������8 �� �����������)���������������������������:�����������(�@��6�� 3�������#��*1!�� !"�� +������7,��8������������������ �������.��������EH���������������(�@��� ) ������������#��*$;�� !��� :�������� . � -����� 7 � A��� : � �������� 3�� :��������������� (� ������� ��� ���M���������������������������������7� �������*$&#$;%2'(!22)&2�� !!�� ������) ������ � /����)3�����C� � � ����C).��������� � ,���C)��) ����������A������������������������������������������� ������3������E��� 7� ������!"�!#2&%2'(2!!);�� !2�� 6����� ,+>�� 8��� �?�������� ��� ������������������� � ������������� ������������ ��������������������� �� ���6������������*;1#�1(!")!0�� !&�� ��������.+� �,������,��8������������������������������������������ �������*;!#2!(!�&)2��� !0�� >����8> �@�������, �E�����6/ �+�������+7��.����������������������(��� ������������������� ������F��� ���� ���� ����������� ���� �?��������� ��� ���������������������� �������*1$#&$%!'(��&)!0�� !;�� E�) ������ �/> � �������D� ����� �E �3��������+�����������(�����9� � ���H� ���� ������� �������� ���� ����� ���� 7� ������ �������� ���������� 3�����**;#��%�'(1�)$!�� !1�� >���C������� �7�� ������������ ������������ ���9���� ������� ����)������� �������� ������ ���� ��������� �������� ��� ��������� ���� ������������� ��� 7� ������������������ ������!""1#�2!%&'(&0")1�� A R T I G O 1 49 !$�� +���B���C)��?�����: �3� ��).�������E �3�B��C)N������������ �3�B��C) .��F������ �� �������� ���������������� ���� ���� ��� ���� ����� ������� ����������������E���7� ������!""2#!0%&'(2*2)*�� !*�� ����?�� ��� �� ���������� ��?����������(� ���� ��������� �������� ��� ���� ������������ � ���� �������������� � ������������� .���������(� ���������#��*0$�� 2"�� +������,- �8�������6 �:��������7> ������� 7 �.�������� ,��.���������� �������������������������������������������������������������������� 7�.���������3�����***#�"%�'(�$)!0#������������!;�� 2��� 3����3 �D����� �D�����6�� ������������������ ���������������?����� ��?��� � ����������������������������������������������!"��#��!%0'(�!2!)0�� � FIGURE LEGENDS Figure 1: The Facial Paquimeter and its parts. A) Disassembled facial paquimeter; a) Head support área ( ): adjustment devices (1), protective foams (2), plastic strips (3), articulable screws (4), protective rubber band (5), complex metal plate- screw (6) and acrylic rod (7); b) Articulation area ( ): support clamp (8), articulable clamp (9) and fixative screws (10); c) Measurement area ( ): vertical ruler (11), protractor (12), principal ruler and its laser drawn line (13), secondary ruler (14), metallic A R T I G O 1 50 pendulum (15), support rod (16), horizontal rulers (17) clamps (18), metallic rod (19), acrylic rod (20) and clamp (21). B) Assembled Facial Paquimeter. Figure 2: Facial landmarks: adhesive dots placed on tragion (t), gonion (go), orbitale (or), nasion (n); adhesive miniballs placed on: menton (me) and C7 (c7). Figure 3: Protractor device on E-line for assessment of NHP.14 Figure 4: The Facial Paquimeter taking the measurement Wits (FOP)’. A) First position i.e. the metallic rod parallel to the oclusal device; B) Occlusal device; C) Measurement Wits (FOP)’: b- vr ( )/a-vr ( ); (vr // clamp, Table II). Figure 5: The Facial Paquimeter taking the measurement Wits (TV)’. A) Second position i.e. the metallic pendulum aligned with the laser drawn line of the protractor’s principal ruler; B) Measurement Wits (TV)’: b- vr ( )/a-vr ( ); (vr // clamp, Table II). Figure 6: Third position, the FP dissembled. A) Measurement T.Go.Me’; B) Measurement FMA’; a and b lines are parallel. ( )/ ( ) ( )/ ( ); A R T I G O 1 51 Figure 1: The Facial Paquimeter and its parts. B) Disassembled facial paquimeter; a) Head support área ( ): adjustment devices (1), protective foams (2), plastic strips (3), articulable screws (4), protective rubber band (5), complex metal plate- screw (6) and acrylic rod (7); b) Articulation area ( ): support clamp (8), articulable clamp (9) and fixative screws (10); c) Measurement area ( ): vertical ruler (11), protractor (12), principal ruler and its laser drawn line (13), secondary ruler (14), metallic pendulum (15), support rod (16), horizontal rulers (17) clamps (18), metallic rod (19), acrylic rod (20) and clamp (21). B) Assembled Facial Paquimeter. A R T I G O 1 52 Figure 2: Facial landmarks: adhesive dots placed on tragion (t), gonion (go), orbitale (or), nasion (n); adhesive miniballs placed on: menton (me) and C7 (c7). Figure 3: Protractor device on E-line for assessment of NHP.14 A R T I G O 1 53 Figure 4: The Facial Paquimeter taking the measurement Wits (FOP)’. A) First position i.e. the metallic rod parallel to the oclusal device; B) Occlusal device; C) Measurement Wits (FOP)’: b- vr ( )/a-vr ( ); (vr // clamp, Table II). Figure 5: The Facial Paquimeter taking the measurement Wits (TV)’. A) Second position i.e. the metallic pendulum aligned with the laser drawn line of the protractor’s principal ruler; B) Measurement Wits (TV)’: b- vr ( )/a-vr ( ); (vr // clamp, Table II). ( )/ ( ); ( )/ ( ) A R T I G O 1 54 Figure 6: Third position, the FP dissembled. A) Measurement T.Go.Me’; B) Measurement FMA’; a and b lines are parallel. A R T I G O 1 55 Table I: Facial landmarks, planes and type of identification. Landmarks Description Identification method Soft tissue nasion (n) Most anterior point of frontonasal suture, located in the curvature of the nasal bridge in soft tissue. Visualization and palpation Soft tissue orbitale (or) Lowest point on the lower margin of the right orbit. Palpation Soft tissue tragion (t) The middle point on the center of the tragus of the ear. Visualization Soft tissue gonion (go) Most postero- inferior point of the mandibular angle (gonial angle) Palpation Soft tissue menton (me) The most inferior midline point on the chin. Visualization Soft tissue A point (a) Deepest point of the concavity of the anterior border of the upper lip. Visualization Soft tissue B point (b) Deepest point of the concavity of the anterior border of the lower lip. Visualization Soft tissue pogonion (pg) Outermost point on the soft-tissue chin. Visualization Soft tissue subnasal (sn) Midpoint of the angle at the columella base where the lower border of the nasal septum and the surface of the upper lip meet. Visualization Soft tissue C7 (c7) Most prominent point of the spinous process of C7 vertebra in the soft tissue. Palpation1 Soft tissue Frankfurt horizontal plane (FH’) Line extending between t and or. Soft tissue mandibular plane (MP’) Line extending between go and me. Soft tissue facial plane (NP’) Line extending between n and pg. Soft tissue occlusal plane (OP’) Line defined by the oclusal device when it is positioned on patient’s mouth. True vertical (VER’) Defined by vertical ruler when the drawn laser line of the principal ruler coincided with the metallic pendulum. 1Protocol to identify c7: Localize 2 or 3 prominences (sixth cervical vertebra (C6), seventh cervical vertebra (C7) and/or the first thoracic vertebra (T1) respectively) on the area of the seventh cervical vertebra. Ask the patient to extend the head slowly. During this movement, the C6 spinous process moves anteriorly in normal healthy subjects, while C7 and T1 remaining stationary. The c7 is the superior cervical spinous process between the remaining stationary vertebrae.30 A R T I G O 1 56 Table II: Facial variables description. Variables/ Assessment Facial variables* Method for taking the facial measurement Sagittal assessment 1. Wits (FOP)’ (mm) (b- vr/a-vra) Difference between the horizontal linear distances b point to the vertical ruler and the a point to the vertical ruler, where the edges of the horizontal rulers are positioned on the a and b points. The vr is represented by the horizontal ruler’s nuts because they are parallel. 2. Wits (VERb)’ (mm) (b- vr/a-vr) Difference between the horizontal linear distances b point to the vertical ruler and the a point to the vertical ruler. Where the edges of the horizontal rulers are positioned on the a and b points. The posterior surface of the horizontal ruler’s, the vertical ruler and the true vertical are parallel. This is because the long axis of the metallic pendulum coincided with the line drawn laser of the principal ruler. Therefore, as the horizontal rulers were perpendicular the vertical ruler this measurement correspond to the distance between points a and b measured along the true horizontal. 3. ANB’ (°) (a.n.b) Angle between the line a-n, located with the inner part of the principal ruler and the line n-b, located with the inner part of the secondary ruler. The intersection point n was located by the hole in the protractor 4. FNP’ (°) (t.or/n.pg) Angle between the line t-or located with the inner part of the principal ruler and the line n-pog located with the inner part of the secondary ruler. 5. N.Sn.Pg’ (°) (n.sn.pg) Angle between the line n- sn located with the inner part of the principal ruler and the line sn-pog located with the inner part of the secondary ruler. The intersection point sn was located by the hole in the protractor. 6. N.Sn.B’ (°) (n.sn.b) Angle between the line n-sn located with the inner part of the principal ruler and the line sn-b, located with the inner part of the secondary ruler. The intersection point sn was located by the hole in the protractor. Vertical assessment 7. T.Go.Me’ (°) (t.go.me) Angle between the line t-go located with the inner part of the principal ruler and the line go-me located with the inner part of the secondary ruler. The intersection point go was located by the hole in the protractor. 8. FMA’ (°) (t-or/go-me) Angle between the line go-me located with the inner part of the principal ruler and the line t-or located with the inner part of the secondary ruler. The intersection point go was located by the hole in the protractor. In cases where the angle was very obtuse, the support rod was used to transfer the t-or plane to the go-me plane. 9. AFH’ (mm) (n-me) Linear distance between the edges of the horizontal rulers positioned on the n and me points respectively. *Landmarks abbreviated with lower case letters while facial measures with upper case letters accompanied with the symbol quotes (’). avr: vertical ruler; bVER’: true vertical represented by the vertical ruler when the drawn laser line od the principal ruler coincided with the metallic pendulum.. A R T I G O 1 57 Table II: Facial variables description. Variables/ Assessment Facial variables* Method for taking the measurement Vertical assessment 10. LFH’ (mm) (sn-me) Linear distance between the edges of the horizontal rulers positioned on the sn and me points respectively. 11. PFH’ (mm) (t-go) Linear distance between the t and go measured using the vertical ruler. 12. Proportion LFH/AFH’ (%) (sn-me/ n-me) Numeric calculus: proportion LFH’/AFH’ 13. Proportion PFH’/AFH’ (%) (t-go/ n-me) Numeric calculus: proportion PFH’/AFH’ 14. Proportion PFH’/LFH’ (%) (t-go/ sn-me) Numeric calculus proportion PFH’/LFH’ Head and cervical posture assessment 15. TN.VER’ (°) (t.n.ver) Angle between the line t-n located with the inner part of the secondary ruler and the principal ruler parallel to true vertical i.e. the long axis of the metallic pendulum coincided with the line drawn laser of the principal ruler. 16. FH’.VER’ (°) (t.or.ver) Angle between the line Frankfurt’ (t-or), located with the inner part of the secondary ruler and the principal ruler parallel to true vertical. 17. C7.TN’ (°) (c7.t.n) Angle between the line c7-t located with the inner part of the principal ruler and the line t-n located with the inner part of the secondary ruler. The intersection point t was located by the hole in the protractor. 18. C7.FH’ (c7.t.or) Angle between the line c7-t located with the inner part of the principal ruler and the line Frankfurt’ (t-or) located with the inner part of the secondary ruler. The intersection point t was located by the hole in the protractor. *Landmarks abbreviated with lower case letters while facial measures with upper case letters accompanied with the symbol quotes (’) A R T I G O 1 58 Table III. Estimation of intraclass reproducibility (repeatability – one researcher) of the method. Measurements ICC 95% CI Lower bound Upper bound Wits (FOP)’ 0,900 0,789 0,954 Wits (TV)’ 0,930 0,850 0,969 FNP’ 0,870 0,730 0,940 ANB’ 0,922 0,833 0,965 N.Sn.Pg’ 0,976 0,947 0,989 N.Sn.B’ 0,962 0,916 0,983 TGoMe’ 0,948 0,888 0,977 FMA’ 0,935 0,860 0,971 AFH’ 0,952 0,895 0,978 PFH’ 0,955 0,903 0,980 LFH’ 0,934 0,857 0,970 Prop. LFH/AFH’ 0,853 0,698 0,932 Prop. AFH/PFH’ 0,944 0,880 0,975 Prop. PFH/LFH’ 0,913 0,815 0,961 C7.TN’ 0,951 0,894 0,978 C7.FH’ 0,936 0,862 0,971 TrN.VER’ 0,842 0,677 0,927 FH.VER’ 0,847 0,686 0,929 A R T I G O 1 59 Table IV. Estimation of interclass reproducibility (reproducibility – two researches) of the method. Measurements ICC 95% CI Lower bound Upper bound Wits (FOP)’ 0,950 0,892 0,978 Wits (TV)’ 0,930 0,850 0,968 FNP’ 0,640 0,340 0,823 ANB’ 0,844 0,681 0,928 N.Sn.Pg’ 0,952 0,896 0,979 N.Sn.B’ 0,971 0,937 0,987 TGoMe’ 0,928 0,846 0,968 FMA’ 0,866 0,723 0,938 AFH’ 0,968 0,929 0,986 PFH’ 0,982 0,960 0,992 LFH’ 0,939 0,867 0,972 Prop. LFH/AFH’ 0,904 0,796 0,956 Prop. AFH/PFH’ 0,973 0,940 0,988 Prop. PFH/LFH’ 0,943 0,877 0,975 C7.TN’ 0,955 0,903 0,980 C7.FH’ 0,952 0,894 0,978 TrN.VER’ 0,928 0,845 0,967 FH.VER’ 0,847 0,687 0,929 60 ARTIGO 2 A R T I G O 2 61 Nonradiographic assessment of the hyperdivergent skeletal class II patient Karla Orfelina Carpio Hortaa; Liliane de Carvalho Rosas Gomesa; Marcelo Gonçalvesb; Ary dos Santos Pintob; João Roberto Gonçalvesb a MS student, Faculdade de Odontologia de Araraquara, Univ Estadual Paulista- UNESP, Araraquara, São Paulo, Brazil. b Professor, Faculdade de Odontologia de Araraquara, Univ Estadual Paulista UNESP, Araraquara, São Paulo, Brazil. Corresponding Author: Karla Orfelina Carpio Horta, Universidade Estadual Paulista, UNESP, Department of Orthodontics, Rua Humaitá 1680, Araraquara, São Paulo 14801-385, Brazil. e-mail: karlitach@hotmail.com A R T I G O 2 62 Nonradiographic assessment of the hyperdivergent skeletal class II patient ABSTRACT Introduction: Hyperdivergent skeletal class II patients have often been associated with several disturbances such as postural changes by airway adequacy and temporomandibular disorders. Simplified and objective non-radiographic assessment, of these patients is crucial for the development of epidemiological studies in order to better understand the mentioned associations. Objectives: To assess the validity of a non-radiographic method in diagnosing skeletal class II hyperdivergent patients. Methods: Direct facial measurements were taken in 120 pre-orthodontic children using a specially developed facial caliper and correlated with indirect measurements made in standardized lateral cephalograms. Discriminant analysis calculated a mathematical model used to diagnose the hyperdivergent class II patient through facial assessment. Intraclass correlation coefficients (ICC) were calculated from repeated facial measurements in order to evaluate the intra and inter-rater reliability. Results: Soft- tissue facial characteristics showed strong to moderate significant correlations (p<0.01 and p<0.05). Non-significant correlations were found for postural variables. The canonical discriminant function involved combining Wits (FOP)’, N.Sn.Pg’ and FMA’ measurements, correctly classified 73.5% of the hyperdivergent class II patients in the internal validation. On the external validation, the method showed 81.3% sensitivity and 79.2% specificity. Conclusion: The facial paquimeter is a valuable diagnostic tool in determining the hyperdivergent skeletal class II pattern. Parameters characterizing hyperdivergent skeletal class II are identifiable through the use of the FP. This method is not recommended for the head posture assessment. KEY WORDS: Diagnosis; anthropometry; growth and development, jaw relationships; skeletal pattern; validity. A R T I G O 2 63 INTRODUCTION In orthodontics, the skeletal discrepancies are shown through cephalometric radiographs. In order to reduce radiation exposure, non-invasive methods have been proposed since there is no onset dose below which biologic damage does not occur.1 These alternatives methods including anthropometry,2,3 two dimensional photogrammetry,4-6 three dimensional photogrammetry7,8 and three dimensional imaging techniques9,10 have been performed over the soft tissues. Researches relating soft tissues to the underlying bony structures have been undertaken particularly in the area of morphanalyses.11 Because of the soft tissue variation in thickness, the relationship between soft tissue profile and skeletal pattern might not be linear.12 However, dealings between specific soft- tissue and skeletal variables have been found.5,13-15 Also, subjective16 and clinical17 methods have been proposed to perform skeletal predictions, but their results were limited. It was indicated that lateral photographs were not sufficient in determining neither skeletal class nor facial biotype of patients,16 while overjet was considered a good predictor of sagittal relationship only in subjects with a Class II division 1 malocclusion.17 When considering the anthropometric method, the main advantages are the following: a noninvasive nature, technological simplicity, low cost, the existence of age and sex-matched standards to which subjects can be compared,18 satisfatory levels of reliability19 and more importantly, immediate results (avoiding the A R T I G O 2 64 processing time results in the laboratory). Furthermore, the anthropometry provides an objective rather than only a subjective facial assessment. These characteristics make this method a feasible tool for this purpose by providing objective scientific data. Several investigations were executed on Class I, Class II13 and Class III4 patients, however, a sample with a representative number of hyperdivergent class II patients has not been investigated until now. For these patients, evidence on correlation between soft-tissue and skeletal features would be valuable. This is because the hyperdivergent class II patients have been related to several disturbances such as postural changes20-25 by airway adequacy26 and temporomandibular disorders (TMD).27 Nevertheless, the cause- effect relationship between this specific craniofacial pattern and those conditions is still unclear. Simplified methods, while still undeveloped, for detecting these individuals in large scale epidemiological studies may offer an improvement in understanding this complex relationship. Therefore, the aim of this study was to assess the validity of a non- radiographic method in diagnosing skeletal class II hyperdivergent patients. It was hypothesized that parameters characterizing those patients are identifiable by such method. MATERIAL AND METHODS The direct measurements were made up using an instrument specially developed for this investigation; the Facial Paquimeter (FP) (Figure 1) and two A R T I G O 2 65 auxiliary devices (Figures 3 and 5). The FP and its entire method of use was described in a previous article (Reference paper 1). The measurements were made in profile with the right side of the face toward the investigator, in maximum intercuspation, in natural head position (‘’mirror position’’) and with the lips in a relaxed posture. Furthermore, the subjects were instructed to wear headbands to remove hair strands from the face, ear and neck when needed. The landmarks28,29 used were identified by palpation and/or visualization (Table II). Four adhesive dots and two adhesive mini balls were placed on the children’s faces to better identify some landmarks (Figure 2). Before the procedure the NHP30 angle was recorded. The subjects were asked to stand up using the ‘’orthoposition’’.31,32 i.e. the intension position from standing to walking. The children were positioned in front of a mirror (placed 55 cm away), with the arms and lips relaxed and the teeth in contact in maximum intercuspation. Then, they were asked to look into a mirror image of their own eyes, after tilting their head up and down with decreasing amplitude until they felt they were relaxed. When the individual’s NHP, ‘’mirror position’’, was achieved, its angle was recorded using the protractor device33 (Figures 3 and 4). Almost all facial measurements were taken with the patient sitting in a chair with the spine erect, the head centered over his/her vertebral column34 and viewing his/her own eyes in a mirror placed 25 cm away (Figures 5, 6 and 7). Only the cranio-cervical and cranio-vertical measurements were taken with the patient standing and in NHP30,15,16 (Figure 3). A R T I G O 2 66 The same operator (K.O.C.H) undertook five linear and ten angular measurements and calculated three proportions while an assistant recorded the data (Table III). Indirect measurements: The lateral cephalometric radiographs were obtained for all the subjects. Aimed at standardization, the procedure for taking the NHP described above was repeated. Three important factors were confirmed in the patients before the cephalogram was taken: NHP angle (same angle as recorded in the facial assessment confirmed using the protractor device), occlusion (maximum intercuspation) and lip posture (relaxed and in a natural position).35 Radiograph images were acquired using the Kodak 8000 C (Kodak Dental Systems, Carestream Health, Atlanta, USA). The exposure data was 78 kV, 10 mA and 0.6 s. The film was fixed at a focus plane distance of 152 cm and a midsagittal focus plane distance of 20 cm with a final enlargement of 15 per cent. In addition, a pendulum with a chain was suspended on the X-ray device in front of the patient’s midsagittal plane and functioned as a true-vertical locator device (Figure 5). To allow the recording of the NHP,30 a mirror of 82 x 22 cm was placed 60 cm in front of the ear rods. The images were saved in a JPEG format. The cephalometric analysis was performed using Radiocef Studio 2 software (Radio Memory Ltda., Belo Horizonte, MG, Brazil), in accordance with the manufacturer’s recommendations. Before performing the measurements, the cephalograms were calibrated for magnification by the length of the true-vertical locator device (the pendulum with a chain suspended) (Figure 5). A R T I G O 2 67 To obtain linear and angular measurements (Table III), cephalometric points were marked on the digital images by a single examiner (Table IV). The same operator made direct and indirect measurements in a blind design. Statitics Interclass and interclass correlation coefficients (ICC) were estimated to measure the reliability of the repeated facial measurements of 26 randomly selected subjects. Descriptive statistics including means, standard deviations, and minimum/maximum values were given for each facial/cephalometric variables for the entire sample and subgroups (class II hyperdivergent patients/others). Equal variances of the two groups were compared using the Levene test. Depending on the results, the means of groups were compared using the Student t test for independent samples from populations with equal variances or unequal variances. The Pearson correlation coefficient was calculated to estimate correlation between the facial and cephalometric variables. The discriminant analysis (DA) performed a variable selection to obtain a model (group of measurements) with the smallest set of facial variables capable to diagnose class II hyperdivergent patients by using the proposed method. Therefore, through the method stepwise, a canonical discriminant function was calculated by using 80 random selected patients (Calibration set) of the entire sample (120 patients). To validate the model, the classifying power of the selected facial variables was tested on the remaining 40 patients (Test set). This model was adjusted involving subjects with complete data measurements. As the FMA’ was not measured in some individuals, measurements missing were replaced by the A R T I G O 2 68 average value of FMA' according to the group and gender. All the analyses were carried out using the Statistical Package for Social Sciences 16.0 (SPSS Inc., Chicago, Illinois, USA). Statistical significance was accepted at p<0.05. RESULTS The final sample included 120 patients divided into two subgroups: the hyperdivergent class II (70 patients) and the other skeletal pattern group (50 patients). The intraclass and interclass reliabilities for almost all direct measurements was excellent (ICC in an interval 0.90-0.99) and a few presented good (interval: 0.75<0.90) results. Only one variable (FNP’) presented a weak interclass reliability (interval: <0.65) (Table V). Means, standard deviations, and the ranges for all cephalometric and facial measurements are shown in Tables VI and VII. The cephalometric measurements showed significant differences (p<0.01 and p<0.05) between the subgroups for the sagittal and vertical assessment, except for measurements PFH, LPFH and LFH/AFH. The facial measurements showed significant differences (p<0.01) for almost all the variables on the sagittal assessment, except for FNP’. Only FMA’, AFH’, LFH/AFH’, PFH’/AFH’ of the vertical assessment showed significant differences (p<0.01 and p<0.05) between the groups. Measurements for head and cervical posture assessment showed no significant differences between the subgroups for neither facial nor cephalometric assessments. Considering the entire sample, significant correlations (p<0.01 and A R T I G O 2 69 p<0.05) were found between cephalometric and facial measurements for almost all variables, except for the FH.OPT/C7.FH’ correlation. For the sagittal assessment the coefficients were higher than 0.4. On the vertical assessment, the correlations ranged from 0.3 to 0.7. The lowest results were presented for the head and cervical posture assessment (rage from 0.2 to 0.4). The subgroups also presented significant correlations (p<0.01 and p<0.05) for most of the variables. The best results were presented by the sagittal and vertical assessment variables (range from 0.4 to 0.7), with the exception of the proportions of both groups and FNP (0.3) and PFH (S-Go) (0.3) variables of the other skeletal patterns group. There is no evidence of correlation between C7.FH’ and FH.OPT measurements. Only significant correlations are showed in Table VIII. The DA performed through the stepwise method, showed the highest discriminating power given by the following canonical discriminant function (D): D= 17.074 + 0.212 � Wits (FOP)’ - 0.144 � N.Sn.Pg’ + 0.198 � FMA’ Between the 80 selected patients (Calibration set), the adjusted model classified correctly 73.5% of the class II hyperdivergent subjects and 69.6% of individuals of the other skeletal pattern group (Table IX). By applying this model in the 40 remaining patients (Test set), the method showed a total accuracy of 80,0%, sensitivity of 81,3%, specificity of 79.2%, positive predictive value of 72.2% and negative predictive value of 86.4% (Table IX). DISCUSION A R T I G O 2 70 The sample included 120 children (64 females and 56 males) with an age range of 7 to 12 years with different types of vertical and sagittal skeletal discrepancies. The sample selected represent an age group where the interrelationship between hard and soft-tissue shapes should be particularly close, without the added variability of the aging effects.36 However, since the anthropometric procedure requires collaboration and patience from the evaluated subject, working with child presented difficulties that could have influenced the results. To minimize this factor, the posture of their body (sitting or standing), head (NHP)37 and lips (relaxed)35 were standardized. In addition, the landmarks were signalized by adhesives dots and mini balls to reduce the time of the complete procedure (maximum 15 minutes). With the objective of identifying the hyperdivergent class II patients in the population, the sample was divided into two subgroups (Table I). The first group consisted of patients with class II skeletal hyperdivergent pattern (ANB>4º and SN.GoMe>36º) while the second group included those with different antero- posterior and vertical relationships. The descriptive analyses showed significant differences between the subgroups for most cephalometric and facial variables on the sagittal and vertical assessments, except for some linear measurements. FNP’ showed no significant differences between the groups, perhaps because it was the most difficult measurement to take due to a lack of a clear reference for the n-pg plane. The absence of significant differences between the groups on the Tr.Go.Me’ variable, could be explained by the presence of more extreme vertical A R T I G O 2 71 patients (Tr.Go.Me’=150.00) in the second group (table VII). Despite these problems, the proposed method possibilities distinguish the hyperdivergent class II patients from the other skeletal types by several variables. The cephalometric and facial assessments of the head and cervical variables did not corroborate the ‘’soft-tissue stretching’’ hypothesis,38 in which an extended head posture and/or forward inclination of the cervical column were related to subjects with high mandibular plane angle, long-face morphology and retrognathic profile.22, 39 The reproducibility of the method was satisfactory. Only FNP’ presented a weak reproducibility. On the sagittal and vertical assessment, the soft tissue measurements Wits (FOP)’, ANB’, N.Sn.Pog’, N.Sn.B’ Tr.Go.Me’ and AFH’ were the variables best associated with skeletal parameters describing the sagittal and vertical jaw relationship. Their correlations were considered strong (r≥0.65).15 FMA’ and LFH’ measurements showed moderate correlations (0.5���� - � -������ - � ��������� >, � �������� 3�� .������������ ���9���� �������������� ���� ������� ������������� ������������� ��� ����������������������7� ������������������ ������!""1#�2�%�'(;1)1��� ;�� 3��?����> � <���)3��?��@ � ��� A����).������� � �/��B���.�� 3���� ������� �������� ��� 9����� 6��C������ ������� 9���� ������� ����������� ���� 9���) ���������������������� ������!""$#1$%�'(0$);2�� A R T I G O 2 74 1�� @���� 7D � ���� � ���� E � ��� ���� A������ � ���� ���������� � ��� ������������� ������������������������������2�������������������������� �������� .�����:������.���������7�!""$#&0%2'(!2!)*�� $�� � ������ / � ,������ 6E � ,���)3���C��� A � 6�������� 3�� ������� � ���� ���������� ��� �� 2�� ��������������� ������� ���� ���� 9���� ���� 9������� ��������� ��������� ������� ������ ��F���������� ������ ������ !"��#$�%!'(!&0)0!�� *�� 3��G������ � � .���� D � ������� - � 3?������� E � -����?����� 8�� ����������� ��� ������� ��������� 9���� �� ������ �������� 3����� 7� :����� ���������3����>����3�����**$#2!%�'(*�);�� �"�� 3������ � 6������ ��� E?��������� ��� ������� ����� ������� �������� 9���� ��������������������������������������������������.����������������������7� ���� �H��������3����!""&#;!%��'(�22�)&"�� ���� 7� ��������� :8 � 3����?����� -7 � ����?����9����� -�� .�����)������� ��������� ���(� �� ��9� ������� ���� ���������� ���������� � 9����� ������� ���� ������� � � ������ ����������������� +�������� 3��� ���� !""�#��1%�)!'(�!�)&2�� �!�� 6��������.7��8����������������������������7� �������*0$#&&(�)!0�� �2�� 3�H� � :7 � +����� 87�� �������������� ������������� ��� ����� ������� ��������� �������� �������*$0#00%!'(�&1)0&�� �&�� 6��������:��A���������������������������������������������������?�������� ���������������������������������������������6��7� �������*10#!%&'(!20) $�� A R T I G O 2 75 �0�� +������,- �8�������6 �:��������7> ������� 7 �.�������� ,��.���������� �������������������������������������������������������������������� 7�.���������3�����***#�"%�'(�$)!0#������������!;�� �;�� ������) ������ � /����)3�����C� � � ����C).��������� � ,���C)��) ����������A������������������������������������������� ������3������E��� 7� ������!"�!#2&%2'(2!!);�� �1�� <�������� 3 �:����� �+�������+ � ?������ �� ?��M��� ��� ��������������� ���������������������������������E���7� ������!""$#2"%2'(!;*)12�� �$�� @���� �E�� +������ ��������� � ��� ����������� � � ������������ (� �������������������7�.���������-�������?�6�����*$*#*%�'(&0);"�� �*�� @���� �E � 7������� :,�� ����������� ���������� ���� ���������� � ��� ������������� ������������ (� ������������� ���� ������������ ���� ��������� ��������������7�.���������-�������?�6�����**�#��%2'(�0;);&�� !"�� �������� ���>����������������������������������������������� ������ �*$�#0�%2'(!"$)�2�� !��� 3���9�6 � 3��������)/������� 3�� .��?����� ���� ���������?����� �������� ��� ����������� ��� ������������� ���9���� ��� 7� ������ ������������ ������ �**!#�"�%0'(&&*)0$�� !!�� 3���9�6 �8�����������>�������������������������������������� �����7� :� �������������*1;#&&%2'(&�1)20�� !2�� 3���9� 6 � 8�������� ��� �������?������ ��������� � ��� ��������� ��� ���������?�������������������� �������*11#&1%2'(�01);&�� A R T I G O 2 76 !&�� 3���9�6 �3��������)/�������3 �-��?��E�����9� ����F��� ������������� � �������������������������� �����7� �������*$&#$;%2'(!�&)!2�� !0�� 3��9���C�� ��:���������������������������������������������M�9�������7� �������*!$#�&(0;)$�� !;�� ,�9���� �3����������7� �+��������7� �:�����.��+��������������� ����� ���������?�� ������ ������� ��� 7� ������ ������������ ������ �*$;#*"%;'(&$&)*��� !1�� /�����6 � �M���:@ �:������/- �-����� �����������,3��8 7���������� ������������ ���� ����������� ���������������������� (� �� ������ ���� �� ������ �������**1#;1%;'(&"1)�&�� !$�� +������,-�� LL������������ ���� ����>��������+���� ��� �������LL��/�9� D���(�E���?����3�������,����*$��� !*�� >�9����� @@�� 8��� ������������ ��� ���� ���������� ��������������� ������������������������������������7�:� �������������*21#!!(&11) *&�� 2"�� 3���9�6 �8�����������/��������������������� ���������������M����������� �������3������*1�#!*%0'(0*�);"1�� 2��� ����?�� ��� �� ���������� ��?����������(� ���� ��������� �������� ��� ���� ������������ � ���� �������������� � ������������� .���������(� ���������#��*0$�� 2!�� ����?�� ��� �� ���������� ��?������������ 8��� ��������� �������� ��� ���� ������������ � ���� �������������� � ������������� ����� ������ 3����� �*;"#!*(!*�)2""�� A R T I G O 2 77 22�� ����� 37 � -���� � 7: � 3���� - � ������������� ��� �� ��9� ������������� ����������� ������F��(� ���� 3 ��� � ����������� � ������ ��� 7� ������ ������������ ������!""1#�2�%2'(22&)&!�� 2&�� -������8 �� �����������)���������������������������:�����������(�@��6�� 3�������#��*1!�� 20�� +���B���C)��?�����: �3� ��).�������E �3�B��C)N������������ �3�B��C) .��F������ �� �������� ���������������� ���� ���� ��� ���� ����� ������� ����������������E���7� ������!""2#!0%&'(2*2)*�� 2;�� >���C������� �7�� ������������ ������������ ���9���� ������� ����)������� �������� ������ ���� ��������� �������� ��� ��������� ���� ������������� ��� 7� ������������������ ������!""1#�2!%&'(&0")1�� 21�� 3���9�6 �8�����������/��������������������� ���������������M����������� �������3������*1�#!*%0'(0*�);"1�� 2$�� 3���9�6 ����������3��3���)�����������������(������������������������������ ����������������������������3�����7�����������*11#$0%;'(0"0)1�� 2*�� 3���9� 6 � 3������� ��� .�����)���?����� �������(� �� ������� ��� ���� ��?������������������������� ����������������������������E��� 7� ������ !""!#!&%0'(&&1)0;�� &"�� >��� � � �9��� >7 � .���� 8> � ���� 7> � 3��� ��� .���������� ��� ������������ �9����������������� ���������������������C������������ ������������� ������F��� ������ �� ������������ ���� ������� 7� .�������H��������3����!"�"#2$%!'(*;)�"1�� A R T I G O 2 78 &��� >�������� E � �@������� 7 � ������ 8 � 3��������� E�� 8��� ������������� ���9�������������������������� ����������������������������?������ ���$ ���������0) ���)��������������E���7� �������*$1#*%&'(!0&);&�� &!�� 7�������� ��� 8��� O@���O� ���������� ��� M�9� ��������� �� ��� 7� ������ �*10#;1%!'(�!0)2$� &2�� 3����3 �D����� �D�����6�� ������������������ ���������������?����� ��?��� � ����������������������������������������������!"��#��!%0'(�!2!)0�� � FIGURE LEGENDS Figure 1: The Facial Paquimeter and its parts. A) Disassembled facial paquimeter; a) Head support área ( ): adjustment devices (1), protective foams (2), plastic strips (3), articulable screws (4), protective rubber band (5), complex metal plate- screw (6) and acrylic rod (7); b) Articulation area ( ): support clamp (8), articulable clamp (9) and fixative screws (10); c) Measurement area ( ): vertical ruler (11), protractor (12), principal ruler and its laser drawn line (13), secondary ruler (14), metallic pendulum (15), support rod (16), horizontal rulers (17) clamps (18), metallic rod (19), acrylic rod (20) and clamp (21). B) Assembled Facial Paquimeter. Figure 2: Facial landmarks: adhesive dots placed on tragion (t), gonion (go), orbitale (or), nasion (n); adhesive miniballs placed on: menton (me) and C7 (c7). Figure 3: Patient standing and in natural head position. A R T I G O 2 79 Figure 4: Protractor device on E-line for assessment of NHP.31 Figure 5: The Facial Paquimeter taking the measurement Wits (FOP)’. A) First position i.e. the metallic rod parallel to the oclusal device; B) Occlusal device; C) Measurement Wits (FOP)’: b- vr ( )/a-vr ( ); (vr // clamp, Table II). Figure 6: The Facial Paquimeter taking the measurement Wits (TV)’. A) Second position i.e. the metallic pendulum aligned with the laser drawn line of the protractor’s principal ruler; B) Measurement Wits (TV)’: b- vr ( )/a-vr ( ); (vr // clamp, Table II). Figure 7: Third position, the FP dissembled. A) Measurement T.Go.Me’, B) Measurement FMA’; a and b lines are parallel. Figure 8: Cephalometric radiograph with the patient in NHP. ( ) ( ); ( )/ ( ) A R T I G O 2 80 Figure 1: The Facial Paquimeter and its parts. A) Disassembled facial paquimeter; a) Head support área ( ): adjustment devices (1), protective foams (2), plastic strips (3), articulable screws (4), protective rubber band (5), complex metal plate- screw (6) and acrylic rod (7); b) Articulation area ( ): support clamp (8), articulable clamp (9) and fixative screws (10); c) Measurement area ( ): vertical ruler (11), protractor (12), principal ruler and its laser drawn line (13), secondary ruler (14), metallic pendulum (15), support rod (16), horizontal rulers (17) clamps (18), metallic rod (19), acrylic rod (20) and clamp (21). B) Assembled Facial Paquimeter. A R T I G O 2 81 Figure 2: Facial landmarks. Adhesive dots placed on tragion (t), gonion (go), orbitale (or), nasion (n). Adhesive miniballs placed on: menton (me) and C7 (c7). Figure 3: Patient standing and in natural head position. A R T I G O 2 82 Figure 4: Protractor device on E-line for assessment of NHP.31 Figure 5: The Facial Paquimeter taking the measurement Wits (FOP)’. A) First position i.e. the metallic rod parallel to the oclusal device; B) Occlusal device; C) Measurement Wits (FOP)’: b- vr ( )/a-vr ( ); (vr // clamp, Table II). )/a ); ( A R T I G O 2 83 Figure 6: The Facial Paquimeter taking the measurement Wits (TV)’. A) Second position i.e. the metallic pendulum aligned with the laser drawn line of the protractor’s principal ruler; B) Measurement Wits (TV)’: b- vr ( )/a-vr ( ); (vr // clamp, Table II). Figure 7: Third position, the FP dissembled. A) Measurement T.Go.Me’, B) Measurement FMA’; a and b lines are parallel. ( )/ ( ) A R T I G O 2 84 Figure 8: Cephalometric radiograph with the patient in NHP. A R T I G O 2 85 Table I: Sample characterization. 120 PATIENTS Cephalometric diagnosis (Gold standard) HYPERDIVERGENT CLASS II (ANB>4,5º, SN.GoMe>36º) OTHERS SKELETAL PATTERNS (ANB≤4,5º, SN.GoMe≤36º) 50 patients 70 patients A R T I G O 2 86 Table II: Facial landmarks, planes and type of identification. Landmarks Description Identification method Soft tissue nasion (n) Most anterior point of frontonasal suture, located in the curvature of the nasal bridge in soft tissue. Visualization and palpation Soft tissue orbitale (or) Lowest point on the lower margin of the right orbit. Palpation Soft tissue tragion (t) The middle point on the center of the tragus of the ear. Visualization Soft tissue gonion (go) Posterior and inferior point of the mandibular angle (gonial angle) Palpation Soft tissue menton (me) The most inferior midline point on the chin. Visualization Soft tissue A point (a) Deepest point of the concavity of the anterior border of the upper lip. Visualization Soft tissue B point (b) Deepest point of the concavity of the anterior border of the lower lip. Visualization Soft tissue pogonion (pg) Outermost point on the soft-tissue chin. Visualization Soft tissue subnasal (sn) Midpoint of the angle at the columella base where the lower border of the nasal septum and the surface of the upper lip meet. Visualization Soft tissue C7 (c7) Most prominent point of the spinous process of C7 vertebra in the soft tissue. Palpation1 Soft tissue Frankfurt horizontal plane (FH’) Line extending between t and or. Soft tissue mandibular plane (MP’) Line extending between go and me. Soft tissue facial plane (NP’) Line extending between n and pg. Soft tissue occlusal plane (OP’) Line defined by the oclusal device when it is positioned on patient’s mouth. True vertical (VER’) Defined by vertical ruler when the drawn laser line od the principal ruler coincided with the metallic pendulum. 1Protocol to identify c7: Localize 2 or 3 prominences (sixth cervical vertebra (C6), seventh cervical vertebra (C7) and/or the first thoracic vertebra (T1) respectively) on the area of the seventh cervical vertebra. Ask the patient to extend the head slowly. During this movement, the C6 spinous process moves anteriorly in normal healthy subjects, while C7 and T1 remaining stationary. The c7 is the superior cervical spinous process between the remaining stationary vertebrae.43 A R T I G O 2 87 Table III: Cephalometrics and their corresponding facial measurements. Variables/ Assessments Cephalometric variables Facial variables* Sagittal Assessment 1. Wits 1. Wits (FOP)’1: b-vr/a-vr2 (mm) 2. Wits (VER)’3: b-vr/a-vr (mm) 2. ANB 3. ANB’: a.n.b (°) 3. FNP 4. FNP’: t.or/n.pg (°) 4. N.ANS.Pog 5. N.Sn.Pg’: n.sn.pg (°) 5. N.ANS.B 6. N.Sn.B’: n.sn.b (°) Vertical Assessment 6. Ar.Go.Me 7. T.Go.Me’: t.MP’ (°) 7. FMA 8. FMA’: FH’/MP’ (°) 8. SNGoMe - 9. AFH 9. AFH’: n-me (mm) 10. LFH 10. LFH’: sn-me: (mm) 11. PFH (S- Go) 11. PFH’: t-go (mm) 12. LPFH (Ar- Go) 13. LFH/AFH 12. Proportion LFH/AFH’: sn-me/ n-me (%) 14. PFH/AFH 13. Proportion PFH’/AFH’: t-go/ n-me (%) 15. LPFH/AFH 16. PFH/LFH 14. Proportion PFH’/LFH’: t-go/ sn-me (%) 17. LPFH/LFH Head and cervical posture assessment 18. NSL.VER 15. TN.VER’: t.n.VER’ (°) 19. FH.VER 16. FH.VER’ (°) 20. NSL.CVT 17. C7.TN’: c7.t.n (°) 21. NSL.OPT 22. NSL.EVT 23. FH.CVT 18. C7.FH’ (°) 24. FH.OPT 25. FH.EVT *Landmarks abbreviated with lower case letters while facial measures with upper case letters accompanied with the symbol quotes (’). 1 Wits (FOP)’: Wits Facial Occlusal Plane; 2 vr: vertical ruler; 3 Wits (VER)’: Wits True Vertical. A R T I G O 2 88 Table IV: Cephalometric landmarks and planes. Anatomical landmarks Definition Nasion (N) The anterior point of the suture at the junction of the frontal and nasal bones in the mid-sagittal plane. Articulare (Ar) The projection of the posterior outline of the condylar process onto the inferior outline of the cranial base. Porion (Po) The midpoint on the upper edge of the externals acoustic meatus. Orbitale (Or) The lowest point on the lower margin of the bony orbit. Subspinale (A) The deepest point on the distance between anterior nasal spine and