1 Fixação de nitrogênio e micorrização em leguminosas de mata ciliar CAMILA MAISTRO PATREZE Dissertação apresentada ao Instituto de Biociências da Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Rio Claro, para a obtenção do título de Mestre em Ciências Biológicas (Área de Concentração: Biologia Vegetal). Rio Claro Estado de São Paulo – Brasil Janeiro de 2003 2 Fixação de nitrogênio e micorrização em leguminosas de mata ciliar CAMILA MAISTRO PATREZE Orientadora: Profa. Dra. LÁZARA CORDEIRO Dissertação apresentada ao Instituto de Biociências da Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Rio Claro, para a obtenção do título de Mestre em Ciências Biológicas (Área de Concentração: Biologia Vegetal). Rio Claro Estado de São Paulo – Brasil Janeiro de 2003 3 581.13 Patreze, Camila Maistro P314f Fixação de nitrogênio e micorrização em leguminosas de mata ciliar / Camila Maistro Patreze. – Rio Claro : [s.n.], 2003 100 f. : il., gráfs, tabs. + fots. Dissertação (Mestrado) – Universidade Estadual Paulista, Instituto de Biociências Orientador: Lázara Cordeiro 1. Plantas – Nutrição. 2. Ecofisiologia vegetal. 3. Ribózio. 4. Micorriza. 5. Nodulação 6. Dupla inoculação. 7. Simbiose. I. Título. Ficha catalográfica elaborada pela STATI – Biblioteca da UNESP Campus de Rio Claro/SP 4 ÍNDICE Página AGRADECIMENTOS...............................................................................................iii RESUMO.................................................................................................................v ABSTRACT.............................................................................................................vii 1-INTRODUÇÃO....................................................................................................01 1.1. Considerações sobre as matas ciliares e as leguminosas...................01 1.2. A Simbiose rizóbio-leguminosas..........................................................02 1.3. Micorrizas vesículo-arbusculares (MVA)..............................................04 1.4. As relações rizóbio-micorriza-leguminosas..........................................06 2- OBJETIVOS.......................................................................................................09 2.1. Objetivos gerais....................................................................................09 2.2. Objetivos específicos............................................................................10 3- LITERATURA CITADA......................................................................................11 CAPÍTULO 1. Nitrogen-fixing and vesicular-arbuscular mycorrhizal symbiosis in tropical tree of tribe Mimoseae (Leguminosae-Mimosoideae)………………..........17 CAPÍTULO 2. Nodulation, mycorrhizal colonization and growth of Enterolobium contortisiliquum and Inga laurina seedlings in the nursery…...……………… …...45 CAPÍTULO 3. Inoculation of Lonchocarpus muehlbergianus and Platypodium elegans with rhizobia and/or mycorrhizal fungi……………....….………………..…67 4. CONSIDERAÇÕES FINAIS...............................................................................84 5. APÊNDICE.........................................................................................................86 i Aos meus pais João e Ângela e minhas irmãs Flávia e Larissa, - minha família querida - dedico este trabalho. ii Metade (Oswaldo Montenegro) Que a força do medo que tenho não me impeça de ver o que anseio. Que a morte de tudo que acredito não me tape os ouvidos e a boca. Porque metade de mim é o que eu grito, mas a outra metade é silêncio. Que a música que eu ouço ao longe seja linda, ainda que triste. Que a mulher que eu amo seja sempre amada, mesmo que distante. Porque metade de mim é partida e a outra metade é saudade. Que as palavras que eu falo não sejam ouvidas como prece nem repetidas com fervor, Apenas respeitadas como a única coisa que resta a um homem inundado de sentimento. Porque metade de mim é o que eu ouço, mas a outra metade é o que calo. Que essa minha vontade de ir embora se transforme na calma e na paz que eu mereço, Que essa tensão que me corrói por dentro seja um dia recompensada. Porque metade de mim é o que eu penso, e a outra metade é um vulcão. Que o medo da solidão se afaste, que o convívio comigo mesmo se torne ao menos suportável Que o espelho reflita em meu rosto o doce sorriso que eu me lembro de ter dado na infância. Porque metade de mim é a lembrança do que fui, a outra metade eu não sei... Que não seja preciso mais do que uma simples alegria para me fazer aquietar o espírito. E que o teu silêncio me fale cada vez mais. Porque metade de mim é abrigo, mas a outra metade é cansaço. Que a arte nos aponte uma resposta, mesmo que ela não saiba, e que ninguém a tente Complicar porque é preciso simplicidade para fazê-la florescer. Porque metade de mim é a platéia e a outra metade, a canção. E que minha loucura seja perdoada. Porque metade de mim é amor e a outra metade... também. iii AGRADECIMENTOS Agradeço a Profa. Dra. Lázara Cordeiro, minha orientadora e exemplo de mulher, pelos ensinamentos científicos, idéias, vibração a cada passo deste trabalho e acima de tudo pelo prazeroso convívio e amizade. Com a licença de suas palavras, valeu parceira!!! Aos demais professores e aos funcionários do Depto. de Botânica que contribuíram para o desenvolvimento deste trabalho: À Coordenadora do Curso de Pós-Graduação em Biologia Vegetal, Profa. Dra. Leonor Patrícia C. Morelatto, pelo apoio nas questões burocráticas e contribuição para minha formação em suas disciplinas; Ao chefe do Departamento de Botânica Prof. Dr. Victor J. Mendes Cardoso pela utilização dos laboratórios e equipamentos, jardim experimental e por sua contribuição no meu exame de qualificação, juntamente com o Prof. Dr. Osvaldo Aulino da Silva, que muito tem me ensinado nas poucas vezes em que conversamos; Aos Profs. Marco Antonio de Assis e Reinaldo Monteiro deste depto., e aos Profs. Dr. Jorge Yoshio Tamashiro e Dra. Ana Maria Gourlart de Azevedo Tozzi, da Unicamp pelas identificações taxonômicas das plantas selecionadas para este trabalho; Aos técnicos e funcionários pelo envolvimento e ajuda ao longo destes anos, em especial ao José Cecílio Toledo (Zi) e ao Edward, do laboratório de fisiologia vegetal, pelos valorosos ensinamentos práticos e convivência, os quais foram fundamentais na execução deste trabalho. Também agradeço a ajuda de, Ari R. Pesce, Ruy, Valnice, Wenilton Luís Daltro e da secretária mais legal do departamento, Célia Maria Hebling pela disponibilidade e amizade. Às Instituições de fomento e pesquisa : Ao Conselho Nacional de Pesquisa Científica e Tecnológica (CNPq) pela concessão da bolsa de mestrado; iv À Fundação para o Desenvolvimento da UNESP (Fundunesp) pelo auxílio financeiro para a execução de parte do trabalho; Ao Instituto de Pesquisas e Estudos Florestais –IPEF, Esalq/USP e ao Instituto Florestal de São Paulo – IF , pela doação de sementes; Ao Centro de Pesquisas CENA na pessoa da Profa. Dra. Siu Mui Tsai, que além de disponibilizar equipamentos e dependências do laboratório para algumas análises sempre foi muito receptiva e transmitiu muitos ensinamentos. Aos técnicos Francisco e Wagner deste lab. por suas contribuições. Aos amigos: Do departamento, de convívio diário ou esporádico que muito contribuíram com este trabalho diretamente, na ajuda prática do trabalho manual, nas dicas de uso do computador, dos sites interessantes da internet, dos programas estatísticos, no uso dos aparelhos do laboratório, etc. Também por compartilharem dos afazeres e prazos. Agradeço em especial a ajuda indireta de muitos, nas horas de descanso ou do café, onde muito se aprende da biologia e da vida num sentido mais humano, entretanto agradeço em especial a: Mayra Teruya Eichemberg, por compartilhar de muitos momentos importantes em minha vida e por suas sábias colocações e Victor Fernandes Oliveira de Miranda, um exemplo de profissionalismo e amizade, por me ajudar sempre com muito prazer. Obrigada! À Tiago Pires Marques que me auxiliou nas etapas iniciais deste trabalho; Às grandes amigas: Simone Peixoto Brito e Simeire Manarim; E aos amigos mais próximos: Elias, Denise, Luiza, Mauricio, Eduardo (Bob), Bibiana, João, Mantovani, Gil e Marcelinho, pela agradável convivência. E para finalizar, agradeço em especial Eduardo Gross, uma pessoa admirável em todos os sentidos e que me faz querer ser cada dia melhor. Obrigado pela ajuda mais que direta neste trabalho, por compartilhar sonhos e por me ensinar o amor. v Fixação de nitrogênio e micorrização em leguminosas de mata ciliar Camila Maistro Patreze Orientadora: Lázara Cordeiro RESUMO Algumas leguminosas formam simbiose mutualística com bactérias fixadoras de nitrogênio e com fungos micorrízicos arbusculares. Conseqüentemente, estas plantas podem crescer mais rapidamente, além de enriquecer o solo com nitrogênio, fósforo e outros nutrientes. O presente trabalho analisou a nodulação, colonização micorrízica, crescimento e desenvolvimento iniciais de Anadenanthera colubrina (Vell. Conc.) Brenan. (angico-branco); Mimosa bimucronata (DC.) Kuntze (espinho-de-maricá); Parapiptadenia rigida (Benth.) Brenan (angico-vermelho); Enterolobium contortisiliquum (Vell. Conc.) Morong (tamboril); Inga laurina (Sw.) Willd. (ingá); Platypodium elegans Vogel (jacarandá-banana) e Lonchocarpus muehlbergianus Hassl (embira-de-sapo), usando solo de mata ciliar não esterilizado, adubação mineral e inoculação de rizóbio e micorriza, em viveiro. Todas as espécies foram colonizadas por fungos micorrízicos (inoculados e nativos) e nodularam. Somente P. rigida e P. elegans não apresentaram nodulação espontânea. A adição de nitrogênio mineral inibiu o número e a massa seca de nódulos, a atividade da nitrogenase e o teor de leg-hemoglobina em todas as espécies. A adição de fósforo mineral diminuiu a colonização micorrízica somente em A. colubrina e M. bimucronata. A inoculação dos fungos não afetou o crescimento das plantas e não favoreceu a absorção de fósforo; entretanto, a inoculação de rizóbio favoreceu a nodulação de A. colubrina e a nodulação e crescimento de M .bimucronata, L. muehlbergianus e E. vi contortisiliquum em tratamentos inoculados apenas com rizóbio ou conjuntamente com fungo micorrízico. vii Nitrogen fixation and mycorrhizal in legumes from riparian forest Camila Maistro Patreze Orientadora: Lázara Cordeiro ABSTRACT Some legumes develop mutualistic symbiosis with nitrogen-fixing bacteria, as rhizobia and arbuscular mycorrhizal fungus. As a result, these plants can grow more rapidly and also to amend the soil with nitrogen, phosphorus and others nutrients. The present study examined the nodulation, mycorrhizal colonization, initial growth and development of seven species: Anadenanthera colubrina (Vell. Conc.) Brenan. (angico-branco); Mimosa bimucronata (DC.) Kuntze (espinho-de-maricá); Parapiptadenia rigida (Benth.) Brenan (angico- vermelho); Enterolobium contortisiliquum (Vell. Conc.) Morong (tamboril); Inga laurina (Sw.) Willd. (ingá); Platypodium elegans Vogel (jacarandá-banana) and Lonchocarpus muehlbergianus Hassl (embira-de-sapo), using riparian forest soil non-sterilized, mineral fertilization and inoculation of rhizobia and mycorrhiza, in the nursery. All species were colonized by mycorrhizal fungus (inoculated and native) and were nodulated. Only P. rigida and P. elegans did not show spontaneous nodulation. The mineral nitrogen added inhibited nodules number and dry weight, nitrogenase activity and leghemoglobin content in all species. The mineral phosphorus added diminished the mycorrhizal colonization only in A. colubrina and M. bimucronata. Fungi inoculation did not affect the plants growth and neither support the P uptake; however, rhizobial inoculation supported the nodulation of A. colubrina and the nodulation and growth of M. bimucronata, L. muehlbergianus and E. contortisiliquum in inoculated treatments only with rhizobia or associated with mycorrhizal fungusinoculation. 1 1. INTRODUÇÃO 1.1. Considerações sobre as matas ciliares e as leguminosas As matas ciliares ou florestas ripárias são importantes facilitadoras dos fluxos biológicos, reduzem a erosão, estabilizam as margens dos rios e exercem função protetora sobre os recursos naturais bióticos e abióticos. Esta vegetação apresenta ampla distribuição pelo território nacional e grande heterogeneidade florística (Rodrigues & Nave 2000). No entanto, apesar das matas ciliares terem sido incluídas como áreas de preservação permanente (Lei n. 4771/65 do Código Florestal Brasileiro), elas vem sendo degradadas e/ou destruídas por interesses que, muitas vezes, desrespeitam o ambiente e as relações ecológicas. A família Leguminosae representa uma parcela significativa na composição florística de vários ecossistemas, inclusive nas matas ciliares. Gibbs & Leitão Filho (1978) encontraram 10 representantes desta família em uma área de floresta de galeria próxima de Mogi Guaçu - SP, tendo sido esta a família que apresentou maior número de espécies. Bernacci et al. (1998) constataram uma segunda maior riqueza de espécies pertencentes à subfamília Fabaceae em 15 fragmentos florestais ripários da Bacia do Jacaré- Pepira – SP 2 e, se considerarmos também Mimosaceae e Caesalpiniaceae como subfamílias da família Leguminosae (Polhill & Raven, 1981), esta família apresentará maior riqueza. Segundo Leitão Filho (1982), o estrato superior das matas ciliares apresenta uma clara dominância de espécies da família Leguminosae. Plantas dessa família podem crescer mais rapidamente e ter importante papel na recuperação de áreas florestais, uma vez que elas são capazes de se associar a bactérias conhecidas como rizóbios e também a fungos micorrízicos, relacionados ao processo de fixação do nitrogênio atmosférico e à maior absorção de fósforo e alguns nutrientes, respectivamente. Estas associações garantem um suprimento adequado de nutrientes para a planta, além de aumentar o potencial de enriquecimento do solo. 1.2. A simbiose rizóbio-leguminosa A associação entre rizóbios e leguminosas traz benefícios para ambos os simbiontes e é visualizada comumente pela presença de nódulos na superfície das raízes. A nodulação, quer seja expontânea ou através da inoculação de estirpes do rizóbio, pode apresentar diferentes graus de eficiência na fixação biológica de nitrogênio (FBN). A FBN é a incorporação de dinitrogênio (N2) à planta por meio de sua transformação em amônia realizada por diversos seres vivos, entre os quais, o rizóbio. A nodulação não parece freqüente na subfamília Caesalpinioideae (23%), mas é muito freqüente em Mimosoideae (90%) e Papilionoideae (97% das espécies estudadas) (Roggy & Prévost, 1999). Apesar disso, 40% dos 643 gêneros de Leguminosae ainda não foram estudados quanto à capacidade de nodular e fixar nitrogênio (Sprent, 2001). A eficiência do processo de fixação de nitrogênio pode ser analisada observando-se os efeitos dessa associação na planta hospedeira, tais como no crescimento da parte aérea e 3 do sistema radicular, no aumento da área foliar, teor de nitrogênio, do número de nódulos e na disposição destes no sistema radicular, entre outros. Além disso, o teor de leg- hemoglobina (Lb), coloração dos nódulos e atividade da enzima nitrogenase podem evidenciar o potencial de fixação. A enzima nitrogenase é responsável pela catálise do nitrogênio atmosférico (N2) e sua transformação em amônia (NH3), que corresponde à fixação do nitrogênio propriamente dita. Essa atividade é regulada por nodulinas, como a Lb, produzidas pela planta em associação. A Lb tem por função transportar oxigênio para o bacteróide na zona central do nódulo, devido à alta sensibilidade que a enzima nitrogenase apresenta em relação ao oxigênio, apesar do rizóbio ser aeróbico. Na região central do nódulo a concentração de oxigênio é baixa, e conseqüentemente não inativa o complexo nitrogenase (Bruijn et al., 1994). A associação com rizóbio ocorre na natureza geralmente quando há deficiência de nitrogênio no solo, pois o processo de fixação biológica é altamente energético. A aplicação de nitrogênio combinado na forma de nitrato ou uréia pode inibir a infecção das raízes por rizóbio ou inibir a nodulação e também a atividade da enzima nitrogenase. O nitrato, na forma KNO3, foi inibitório para o crescimento e nodulação de Anadenanthera colubrina e Anadenanthera peregrina nos experimentos conduzidos por Mendonça & Schiavinato (1996). Entretanto alguns pesquisadores enfatizam que a aplicação de nitrogênio combinado é requerida para maximizar a produção ou ainda que, em concentrações baixas, doses iniciais de nitrogênio combinado podem estimular a fixação de nitrogênio (Becker et al. 1991), principalmente em espécies anuais. Estes autores observaram em Sesbania rostrata que o aumento na quantidade de N mineral inibiu a nitrogenase (ARA) e diminuiu o número de nódulos nas raízes, mas não afetou em nódulos caulinares e, no campo, uma 4 dose inicial de 30 Kg ha-1 estimulou a FBN, o crescimento e a acumulação de nitrogênio. Desta maneira, a inibição ou o estímulo do processo de FBN pela presença de nitrogênio no solo dependem do requerimento nutricional da planta, da concentração e formas de nitrogênio disponíveis no solo. Há uma certa especificidade entre o rizóbio e a planta hospedeira que depende de propriedades intrínsecas dos simbiontes, compatibilidade genética e da influência ambiental. Os principais fatores ambientais que ocorrem nos trópicos e influenciam a FBN são alta temperatura, déficit hídrico e acidez do solo, a qual influencia no balanço nutricional do mesmo, favorecendo o aumento na concentração ou a deficiência de determinados nutrientes. Assim, a toxidez por Al provocada pela acidez do solo pode provocar a deficiência de P e Mo e o aumento do pH aumenta a disponibilidade de Ca para a planta e para a bactéria (Hungria & Vargas, 2000). 1.3. Micorrizas vesículo-arbusculares (MVA) Micorriza é um termo geral para designar as associações mutualísticas entre certos fungos do solo e as raízes da maioria das espécies vegetais. Existem vários tipos de micorrizas, sendo as MVA as de maior importância ecológica (Smith & Read, 1997). Nessa associação morfológica e fisiológica, a planta beneficia-se pelo aumento da absorção de água e nutrientes, principalmente o fósforo, proporcionado pelas hifas fúngicas, que funcionam como uma extensão do sistema radicular (Lopes et al. 1983), enquanto fornece ao fungo fotoassimilados permitindo que ele complete seu ciclo, o que só ocorre na presença da planta hospedeira (Smith & Read, 1997). Além disso, estas associações são conhecidas por aumentar a resistência das plantas a estresses ambientais e a patógenos (Hirsh & Kapulnik, 1998). 5 O fungo funciona como um “competidor” por produtos elaborados pela planta, pois ele aumenta a respiração das raízes e causa acúmulo de carbono no citoplasma das células corticais. Para compensar essas perdas, plantas colonizadas exibem maiores taxas fotossintéticas. O balanço entre o efeito benéfico do fungo na maior absorção de nutrientes e a utilização dos produtos da planta geralmente resulta em aumento no crescimento das plantas colonizadas, mas pode também resultar em redução no caso de plantas crescendo em altos níveis de P disponível (Lopes et al. 1983). Entretanto, a fertilização com N ou P pode aumentar o crescimento dos fungos micorrízicos onde há uma limitação inicial de nutrientes, diminuir o crescimento micorrízico onde as plantas são limitadas em termos nutricionais mas os fungos não o são e pode não ter efeito no crescimento dos fungos quando nenhum organismo é limitado em termos nutricionais (Treseder & Allen, 2002). Os fungos MVA são atualmente classificados na ordem Glomales, nos gêneros Glomus, Acaulospora, Scutellospora, Gigaspora, Paraglomus e Archaeospora (Morton & Redecker, 2001) e são conhecidos por ocorrerem na maioria das plantas tropicais, sendo uma parte integral do sistema radicular de quase todas as plantas nos trópicos, não somente sob condições naturais mas também em condições de cultivo (Michelsen, 1992) e apresentar, geralmente, baixa especificidade (Zhu et al. 2000). Os fungos são simbiontes obrigatórios que na ausência de uma planta hospedeira estão presentes no solo como esporos multinucleados envolvidos por uma parede celular ou como fragmentos de hifas em raízes mortas ou secas. A germinação do esporo, proliferação e ramificação das hifas são estimuladas por sinais moleculares sintetizados e secretados pela raiz. Essas moléculas são geralmente flavonóides, várias das quais também servem como sinais nas simbioses rizóbio-leguminosas (Hirsch & Kapulnik, 1998). Embora seja possível quantificar a colonização micorrízica, é necessário levar em consideração as interações fisiológicas entre os fungos e as plantas hospedeiras e também 6 medidas da viabilidade dos fungos uma vez que a biomassa nem sempre reflete a eficiência das associações simbióticas em termos de aumento de crescimento da planta hospedeira (Zhao et al. 1997) 1.4. As relações rizóbio-micorriza-leguminosas Os fungos MVA também podem aumentar a performance de leguminosas inoculadas por rizóbio (Barea et al. 1992, Abd-Alla et al. 2000), sendo portanto benéfica a dupla inoculação de rizóbio e esses fungos. A dupla inoculação melhora a aquisição de nutrientes, ajuda as plantas a se estabelecerem no campo e confere resistência ao estresse hídrico (Herrera et al., 1993). A presença de fungos micorrízicos e o aumento na fixação de N2 também podem estar relacionados ao fato de que plantas micorrizadas podem ter altas concentrações de P, Zn, e Cu, os quais influenciam a nodulação e fixação de N2. (Redente & Reeves, 1981). Existem muitos estudos envolvendo a dupla inoculação em plantas de interesse agronômico (Ross & Harper, 1970; Mosse, 1977; Abbott & Robson, 1977; Redente & Reeves, 1981; Barea & Azcon-Aguilar, 1983, Ames & Bethlenfalvay (1987), Vejsadová et al., 1992, Abd-Alla, 2000; Goss & Varennes, 2002), sendo que a maior parte deles envolve a soja. Os trabalhos de dupla inoculação em espécies arbóreas florestais são geralmente conduzidos em viveiro, enfocando a posterior utilização das plantas em sistemas agroflorestais ou objetivando a recuperação de áreas degradadas. No campo, Bakarr et al. (1996), ao examinar as raízes de espécies arbóreas em uma floresta plantada e um sítio de reflorestamento na África, encontraram 7, de 11 espécies de Mimosoideae e 2, de 3 espécies de Papilionoideae com dupla infecção por rizóbio e micorriza. Marques et al. (2001) trabalhando com Centrolobium tomentosum (araribá) 7 cultivado em mata ciliar observaram que a dupla inoculação com estirpes selecionadas de rizóbio e fungos micorrízicos melhoraram o crescimento dessa leguminosa nativa da Floresta Atlântica Brasileira. Gonçalves (2000) estudou o crescimento de Dalbergia nigra (jacarandá-da-bahia) inoculada com rizóbio e fungos micorrízicos em área ciliar e constatou que os níveis de nitrogênio foliar da espécie estudada consolidaram a efetiva contribuição dos inoculantes para o enriquecimento do solo, especialmente com nitrogênio, favorecendo o crescimento das espécies consorciadas. Entretanto, Santiago et al. (2002) observaram que a co- inoculação de uma estirpe de rizóbio e fungo micorrízico não aumentaram o peso seco desta mesma espécie vegetal, conteúdo de nitrogênio e fósforo ou colonização micorrízica em solo de floresta Atlântica e solo de eucalipto. O tempo de análise dos dados pode não ter sido suficiente para a observação dos efeitos dos simbiontes no crescimento do jacarandá-da-bahia, uma vez que essa espécie apresenta crescimento lento e os dados analisados por esses autores foram em plantas de até 12 meses de idade. Em condições de viveiro, Rocha (1995) observou em plantas de Acacia mangium que a nodulação foi favorecida pela pré-colonização com fungos micorrízicos, independentemente das doses de P testadas, apesar das plantas não terem sido inoculadas com rizóbio. Outras espécies de Acacia foram estudadas por De La Cruz et al. (1988) Khan & Uniyal (1999) e Munro et al. (1999). Khan & Uniyal (1999) observaram maior crescimento em termos de biomassa seca nos tratamentos com dupla inoculação seguido da inoculação simples com micorriza em A. nilotica, e, Munro et al. (1999), verificaram que a nodulação foi baixa em todos os tratamentos de A. tortilis, embora tenham sido inoculados com rizóbio, mas a micorrização melhorou a infecção micorrízica e o crescimento das plântulas em solo não esterilizado. Esses últimos autores sugerem que os métodos de inoculação por eles aplicados podem ser adaptados a condições de viveiro a baixo custo. 8 Burity et al. (2000) verificaram que mudas de Mimosa caesalpiniifolia com dupla inoculação apresentaram valores significativos no crescimento, área foliar, atividade da enzima nitrogenase e porcentagem de colonização radicular, independentemente do nível de P usado. Khan et al. (2001) investigaram o crescimento de Dalbergia sissoo e verificaram que a inoculação apenas com micorriza pode reduzir a dependência de D. sissoo da fertilização. Entretanto, todos os tratamentos com combinações entre rizóbio e micorriza não diferiram dos três tratamentos com diferentes doses do fertilizante testado. Ingleby et al (2001) concluíram que a inoculação micorrízica de Calliandra calothyrsus tem o potencial de aumentar o crescimento e a nodulação das plântulas em casa de vegetação. Além destes estudos, há as revisões de Hirsch & Kapulnik (1998), sobre a transmissão de sinais em associações micorrízicas em comparação com a simbiose Rhizobium – leguminosas, onde é discutido que alguns sinais moleculares como flavonóides produzidos pela raiz são conservados em ambas as simbioses e de Provorov et al. (2002), sobre desenvolvimento da genética e evolução de estruturas simbióticas em nódulos fixadores de nitrogênio e micorrizas arbusculares. Pode-se contudo perceber que ainda existem muitas espécies a serem testadas quanto a dupla inoculação, o que requer uma “simbiose” entre os estudos de taxonomia, anatomia, fisiologia, genética, evolução e ecologia desses microrganismos e das relações destes com o sistema radicular das plantas hospedeiras nas mais diversas condições ambientais. 9 2. OBJETIVOS 2.1 Objetivos gerais Estudar o potencial de fixação de nitrogênio e micorrização de 7 espécies de leguminosas que ocorrem em matas ciliares brasileiras e fornecer subsídios para utilização dessas espécies em plantios de recuperação de áreas alteradas, sendo elas: Mimosoideae (Mimosae): Anadenanthera colubrina (Vell.Conc.) Brenan. (angico-branco); Mimosa bimucronata (DC.) Kuntze (espinho-de-maricá); Parapiptadenia rigida (Benth.) Brenan (angico-vermelho); Mimosoideae (Ingeae): Enterolobium contortisiliquum (Vell. Conc.) Morong (tamboril); Inga laurina (Sw.) Willd. (ingá); Papilionoideae (Tephrosieae): Platypodium elegans Vogel (jacarandá-banana); Lonchocarpus muehlbergianus Hassl (embira-de-sapo). 10 2.2 Objetivos específicos 1- Verificar se a fertilização com adição de N mineral inibe a nodulação das plantas; 2- Verificar se a fertilização com P inibe a colonização micorrízica; 3- Verificar a ocorrência de nodulação e colonização micorrízica em tratamentos não inoculados com rizóbio ou micorriza; 4- Verificar se a colonização micorrízica é favorecida pelas inoculações simples ou dupla de rizóbio e fungos MVA; 5- Verificar o crescimento das plantas no tratamento com deficiência em N e inoculação com rizóbio ou com rizóbio e micorriza, comparado ao crescimento das plantas do mesmo tratamento, porém não inoculadas; 6- Verificar o crescimento das plantas no tratamento com deficiência em P e inoculação com micorriza ou com rizóbio e micorriza, comparado ao crescimento das plantas do mesmo tratamento, porém não inoculadas; 7- Verificar se a nodulação, atividade da nitrogenase e os teores de leg-hemoglobina são aumentados em tratamentos com inoculação de rizóbio. 11 3. LITERATURA CITADA ABD-ALLA, M. H.; OMAR S A & KARANXHA, S. The impact of pesticides on arbuscular mycorrhizal and nitrogen-fixing symbioses in legumes. Applied Soil Ecoogy, v.14, p.191-200, 2000. AMES, R.N. & BETHLENFALVAY, G. J. Localized increase in nodule activity but no competitive interaction of cowpea rhizobia due to pre-establishment of vesicular- arbuscular mycorrhiza. New Phytologist, v.106, p. 207-215, 1987. BAKKAR, M. I. & JANOS, D. P. Mycorrhizal associations of tropical legume trees in Sierra Leone, West Africa. Forest Ecology and Management, v.89, p. 89-92, 1996. BAREA, J. M. & AZCON-AGUILAR, C. Mycorrhizas and their significance in nodulating nitrogen-fixing plants. Advances in Agronomy, v. 36, p. 1-54, 1983. BAREA, J. M.; AZCÓN- AGUILLAR, C.; AZCÓN, R. Vesicular- arbuscular mycorrhizal fungi in nitrogen- fixing systems. Methods Microbiology, v. 24, p. 391-446, 1992. BECKER, M.; DIEKMANN, K. H.; LADHA, J. K.; DATTA, S. K. & OTTOW, J. C. G. Effect of NPK on growth and nitrogen fixation of Sesbania rostrata as a green manure for lowland rice (Oryza sativa L.). Plant and Soil, v.132, p. 149-158, 1991. 12 BERNACCI, L.C; GOLDENBERG, R.; METZGER, J.P. Estrutura florística de 15 fragmentos florestais ripários da Bacia do Jacaré- Pepira (SP). Naturalia, São Paulo, v.23, p. 23-54, 1998. BRUIJN, F. J.; CHEN, R.; FUJIMOTO, S. Y.; PINAEV, A.; SILVER, D.; SZCZYGLOWSKI, K. Regulation of nodulin gene expression. Plant and Soil, v. 161, p. 59-68, 1994. BURITY, H. A.; LYRA, M. C. C. P.; SOUZA, E. S.; MERGULHÃO, A. C. E. S. & SILVA, M. L. R. B.. Efetividade da inoculação com rizóbio e fungos micorrízicos arbusculares em mudas de sabiá submetidas a diferentes níveis de fósforo. Pesquisa agropecuária brasileira, v.35, n.4, p. 801-807, 2000. DE LA CRUZ, R. E; MANALO, M. Q.; AGGAGAN, N. S. & TAMBALO, J. D. Growth of three legume trees inoculated with VA mycorrhizal fungi and Rhizobium. Plant and Soil, v.108, n.111-15. GIBBS, P. E., H. F. LEITÃO FILHO & ABBOTT, R. J. Aplication of the point-centred quarter method in a floristic survey of an area of gallery forest at Mogi-Guaçu, SP, Brazil. Revista Brasileira de Botânica, v.3, p.17-22, 1980. GONÇALVES, L.M.B. Crescimento de Dalbergia nigra (jacarandá-da-Bahia) inoculada com rizóbio e fungos micorrízicos em plantio misto com Eucalyptus grandis e decomposição de sua liteira nas margens do Rio Doce. 2000. 105f. Dissertação (Mestrado em Ecologia, Conservação e Manejo de Vida Silvestre) - Universidade Federal de Minas Gerais, Belo Horizonte. GOSS, M. J. & DE VARENNES, A. Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biology & Biochemistry, v. 34, p. 1167-1173, 2002. 13 HERRERA, M. A.; SALAMANCA, C. P.; BAREA, J. M. Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified mediterranean Ecossystems. Applied and Environment Microbiology, v.59, n.1, p. 129- 133, 1993. HIRSCH, A.M. & KAPULNIK, Y. Signal Transduction Pathways in Mycorrhizal Associations : Comparisions with the Rhizobium-Legume Symbiosis. Fungal Genetics and Biology, v. 23, p. 205-212, 1998. HUNGRIA, M. & VARGAS, M.A.T. Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Research, v. 65, p.151- 164, 2000. INGLEBY, K.; FAHMER, A.; WILSON, J. NEWTON, A. C.; MASON, P. A. & SMITH, R. I. Interactions between mycorrhizal colonisation, nodulation and growth of Calliandra calothyrsus seedlings supplied with different concentrations of Phosphorus solution. Symbiosis, v.30,p.15-28, 2001. KHAN, S. N. & UNIYAL, K. Growth response of two forest tree species to VAM and Rhizobium inoculations. Indian Forester, v.125, n.11, 1125-1128, 1999. KHAN, S.N., UNIYAL, K. & PANDEY, R. Growth response of Dalbergia sissoo to AM and Rhizobium inoculations and fertilization in nursery. Indian Forester, v.127, n.8, p. 906-909, 2001. LEITÃO FILHO, H.F. Aspectos taxonômicos das florestas do Estado de São Paulo. Silvicultura em São Paulo, 1982. p. 197-206. LOPES, E. S., SIQUEIRA, J. O. & ZAMBOLIM, L. Caracterização das micorrizas vesicular-arbusculares (MVA) e seus efeitos no crescimento das plantas. Revista Brasileira de Ciência do Solo, v.7, n.1,p.1-19, 1983. 14 MARQUES, M. S.; PAGANO, M. & SCOTTI, M. R. M. M. L. Dual inoculation of a woody legume (Centrolobium tomentosum) with rhizobia and mycorrhizal fungi in south- eastern Brazil. Agroforestry Systems, v. 52, p. 107-117, 2001. MENDONÇA, E. H. M.; SCHIAVINATO, M. A. Effect of different sources and concentrations of mineral nitrogen on growth and nodulation of two angico species. Arquivos de Biologia e Tecnologia, Curitiba, v.39, n. 3, p. 607-611, 1996. MICHELSEN, A. Mycorrhiza and root nodulation in tree seedlings from five nurseries in Ethiopia and Somalia. Forest Ecology and Management, v.48, p. 335-344, 1992. MORTON, J. B. & REDECKER, D. Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia,v.93, p.181-195, 2001. MOSSE, B.; POWELL, C. L. & HAYMAN, D. S. Plant growth responses to vesicular- arbuscular mtcorrhiza. IX. Interactions between VA mycorrhiza, rock phosphate and symbiotic nitrogen fixation. New Phytologist, v. 76, p. 331-342, 1976. MUNRO, R.C.; WILSON, J.; JEFWA, J. & MBUTHIA, R.W. A low-cost method of mycorrhiza inoculation improves growth of Acacia tortilis seedlings in the nursery. Forest Ecology and Management, v.113, n. 1, p.51-56, 1999. POLHILL, R. M.; RAVEN, P. H.; STIRTON, C. H. Evolution and systematics of the Leguminosae. In: POLHILL, R. M.; RAVEN, P. H. Advances in legume sistematics. England: Royal Botanic Gardens, 1981. p. 1-34. PROVOROV, N. A.; BORISOV, A.Y. & TIKHONOVICH, I. A. Developmental Genetics and Evolution of Symbiotic Structures in Nitrogen-fixing Nodules and Arbuscular Mycorrhiza. Journal of Theoretical Biology, v. 214, p. 215-232, 2002. 15 REDENTE, E. F.& REEVES, F. B. Interactions between vesicular-arbuscular mycorrhiza and Rhizobium and their effect on sweetvetch growth. Soil Science, v.132, n. 6, 410-415, 1981. ROCHA, R.C. Desenvolvimento de espécies arbóreas com e sem micorrização transplantadas para solo degradado contendo doses crescentes de fósforo. 1995. 176f. Dissertação (Mestrado em Solos e Nutrição de Plantas) - Universidade Federal de Lavras,Minas Gerais). RODRIGUES, R. R. & NAVE, A. G. Heterogeneidade florística das matas ciliares. In: Rodrigues, R. R.; Leitão Filho, H. F. Matas Ciliares: Conservação e Recuperação. São Paulo: EDUSP, 2000. cap. 4, p. 45-72. ROGGY, J.C. & PRÉVOST, M.F. Nitrogen-fixing legumes and silvigenesis in a rain forest in French Guiana: a taxonomic and ecological approach. New Phytologist, v.144, p.283- 294, 1999. ROSS, J. P. & HARPER, J. A. Effect of Endogene mycorrhizaeon soybean yields. Photopathology, v. 60, p. 1552-1556, 1970. SANTIAGO, G. M., GARCIA, Q. & SCOTTI, M. R. Effect of post-planting inoculation with Bradyrhizobium sp and mycorrhizal fungi on the growth of Brazilian rosewood, Dalbergia nigra Allem. ex Benth., in two tropical soils. New Forests, v.24, p. 15-25, 2002. SIQUEIRA, J. O., CARNEIRO, M. A. C., CURI, N., ROSADO, S. C. S. & DAVIDE, A. C. Mycorrhizal colonization and mycotrophic growth of native woody species as related to successional groups in Southeastern Brazil. Forest Ecology and Management, v. 107, p. 241-252, 1998. SMITH , S. E. & READ, D. J. Mycorrhizal Symbiosis. Academic Press, London, 1997, 605p. SPRENT, J.I. Nodulation in legumes. Royal Botanic Gardens, Kew, 2001,146p. 16 TRESEDER, K. K. & ALLEN, M. F. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytologist, v. 155, p. 507-515, 2002. VEJSADOVÁ, H., SIBLÍKOVÁ, D., HRSELOVÁ, H. & VANCURA, V. Effect of the AMF fungus Glomus sp. on the growth and yield of soybean inoculated with Bradyrhizobium japonicum. Plant and Soil, v. 140, p. 121-125, 1992. ZHAO, B.; TROUVELOT, A., GIANINAZZI,S. & GIANINAZZI-PEARSON, V. Influence of two legume species on hyphal production and activity of two arbuscular mycorrhizal fungi. Mycorrhiza, v. 7, p. 179-185, 1997. ZHU, Y. G.; LAIDLAW, A. S.; CHRISTIE, P. & HAMMOND, M. E. R. The specifity of arbuscular mycorrhizal fungi in perennial ryegrass-white clover pasture. Agriculture, Ecosystems and Environment, v.77, p. 211-218, 2000. 17 CAPÍTULO 1 Nitrogen-fixing and vesicular-arbuscular mycorrhizal symbioses in tropical tree of tribe Mimoseae (Leguminosae-Mimosoideae) (Trabalho a ser enviado para a revista Plant and Soil) 18 Symbioses in tropical tree of Mimoseae Nitrogen-fixing and vesicular-arbuscular mycorrhizal symbioses in tropical tree of tribe Mimoseae (Leguminosae-Mimosoideae) Camila Maistro Patreze1,2 & Lázara Cordeiro1 1Instituto de Biociências, Departamento de Botânica, P.O.Box 199, Universidade Estadual Paulista, SE-13506 900 Rio Claro, SP, Brazil. 2Corresponding author* * Fax No.: (19) 3534 0009 E-mail: cpatreze@rc.unesp.br 19 Abstract Response to mineral fertilization and dual inoculation with rhizobia and arbuscular mycorrhiza fungi (AMF) were studied in nursery conditions in Anadenanthera colubrina, Mimosa bimucronata and Parapiptadenia rigida legume native trees from Brazilian riparian forests. Each species was submitted to seven treatments, being fertilization with N and P added, with P without N and with N without P and inoculated or not with rhizobia (r), mycorrhiza (m) or both (rm), respectively: NP, P, P+r, P+rm, N, N+m and N+rm. Results showed that P uptake by symbionts was not sufficient to sustain good growth plants of three species. Native fungi infected these three hosts and AMF inoculations not enhanced the mycorrhizal colonization. Also, the P treatments affected negatively the AMF colonization in A. colubrina and M. bimucronata, but not in P. rigida. The absence of mineral N in A. colubrina and P. rigida plants not fertilized with this element limited the growth them. This probably mineral nitrogen deficiency in M. bimucronata was supplied by biological nitrogen fixation. Spontaneous nodulation occurred in A. colubrina and M. bimucronata. In N treatments, this element inhibited the nodulation. A. colubrina and M. bimucronata plants of P+r treatment and P+r and P+rm treatments, respectively, had increased in nodules number, nitrogenase activity and leghemoglobin content, being that the growth and development of M. bimucronata seedlings were positively influenced by nodulation. Thus, extents of rhizobial and mycorrhizal symbiosis in this specie upon nursery conditions can amend post-planting success. Key words 20 Biological nitrogen fixation, Mimoseae, mycorrhiza, rhizobia, riparian forest, symbiosis. Introduction The Mimoseae tribe (Leguminosae- Mimosoideae) comprises several genera as Anadenanthera, Mimosa and Parapiptadenia which are common in lowland tropical rainforests, especially near rivers and lakes (Polhill et al., 1981). Anadenanthera colubrina (Vell.) Brenam, Mimosa bimucronata (DC) O. Kuntze and Parapiptadenia rigida (Benth) Brenan are legume trees which have been sampled in various floristic surveys of riparian forests in Brazil. A. colubrina was sampled by Nilsson (1989), Silva et al. (1992), Vilela et al. (1995), Santarelli (1996); Bernacci et al. (1998), Dias et al. (1998) and Sampaio et al. (2000). M. bimucronata was founded in floristic studies of Santarelli (1996) and Metzger el al. (1998) and P. rigida was sampled by Nilsson (1989) and Dias et al. (1998). The most of Mimoseae plants, including the species cited above, are capable of fixing dinitrogen in association with root nodule bacteria (rhizobia) and increases phosphorus contents and others nutrients by association with arbuscular mycorrhizal fungi (AMF). Nodulation is very frequent in the subfamily Mimosoideae (90% of studied species) (Sprent, 1995; according to the taxonomy of Polhill et al., 1981) and the AMF are of widespread occurrence (Gerdemann, 1968; Trufem, 1990) beyond to represent the natural status of most plant species (Siqueira et al., 1998). Also, AMF symbiosis may improve defense herbivores, enhance the acquisition of water (Herrera et al., 1993) and increase a plant resistance to pathogens (Moora and Zobel, 1998). Many previous studies, mainly on cultivated plants, have shown that dual inoculation of legumes with rhizobia and AMF increases plant growth (Ross and Harper, 1970; Mosse et al., 1976; Redente and Reeves, 1981; Abd-Alla, 2000). In West Africa 21 were found dual infections involving AMF and bacterial nodules in seven forest and plantation of tropical legume trees of Mimosoideae (Bakarr et al., 1996). In Brazil, Franco and Faria (1997) have leaded studies of nodulated and mycorrhizal legume trees to revegetate poor or depleted soils with the goal to restarte their fertility. Little information is available about symbiotic relationships of dual inoculation in Brazilian legume native tree whereas we require ecophysiological knowing of these species in nursery conditions. Burity et al. (2000) recorded that the plants growth and nodulation of M. caesalphiniifolia were improved by mycorrhiza. Information on nodulation or only reporting the capacity of nodulation in A. colubrina (Mendonça and Schiavinato, 1996), M. bimucronata (Campello, 1996) and P. rigida (Lechtova-Trnka, 1931; Rothschild, 1970; Corby, 1988) contributes to studies of both rhizobia and AMF inoculations, which were not reported for these species yet. In addition, they contribute with important information about the use of these species as revegetation on drastically disturbed lands. The aim of our study was to investigate nitrogen-fixing and arbuscular mycorrhizal symbioses of three Mimoseae species that occur in Brazilian riparian forest. We submitted A. colubrina, M. bimucronata and P. rigida to treatments of mineral fertilization and inoculation with rhizobia and AMF in nursery conditions in order to aid the choice of species to recover riparian forests. Materials and methods Rhizobia inoculum Rhizobia isolates were obtained from root nodules collected from Anadenanthera peregrina (L.) Speg and Mimosa bimucronata plants growing in the field of Unesp 22 (Universidade Estadual Paulista “Júlio de Mesquita Filho”)- Rio Claro, SP, Brazil (22º44’S and 47º33’W, 610 m a.s.l.) and riparian forest of Corumbataí, SP, Brazil (22º 20’S and 47º40’W, 604 m a.s.l.), respectively. The isolates were grown on yeast extract mannitol (YEM) agar at 28ºC and stored in the Rhizobial Bank of Unesp Rio Claro, SP Brazil with numbers IBRC 199 and 200 for A. peregrina and IBRC 201 and 204 for M. bimucronata isolates. Aerial parts of these plants were pressed and catalogued in the Bioscience Institute Herbarium –UNESP as a number HRCB-34330 and 34501, respectively. Source and germination of seeds Seeds of A. colubrina were supplied by IPEF (Instituto de Pesquisas e Estudos Florestais) da Esalq/USP (Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo) and seeds of P. rigida, supplied by IF (Instituto Florestal de São Paulo). Seeds of M. bimucronata and the soil used as substrate were collected in the riparian forest of Corumbataí, SP, Brazil (22º 20’S and 47º40’W, 604 m a.s.l.). All seeds had their surface sterilized and were germinated in 4L plastic pots containing a non-sterilized mixture (2:1) of soil (Table 1) and vermiculite. M. bimucronata required dormancy break treatment with imbibitions in boiling water for 30 seconds. Table 1 Chemical analysis of substrate used in the experiment before the applications of mineral nutrients and inoculations. N P Resina M.O. pH K Ca Mg H+Al Al SB CTC V B Cu Fe Mn Zn S ppm mg.dm-3 g.dm3 CaCl2 mmolc.dm-3 % mg.dm-3 1000 7 6 5.5 1 12 4 10 7 17 27 63 0.01 0.7 23 8.7 0.4 9 Plant growth All pots received the following basal nutrients prior to sowing (in mg. Kg-1 substrate): K (60), CaCO3 (80), MgCO3 (40), S (30), B (1), Zn (2), Cu (2), Fe (4), Mn (20), 23 Mo (4) and three fertilizations treatments: a full mineral fertilization contained N (40) and P2O5 (80) (NP); fertilization with P2O5 (80) without N (P) and fertilization with N (40) without P (N). These treatments varied in relation to inoculation of microsymbionts: inoculated or not with rhizobia (r), mycorrhiza (m) or both (rm). In this way, the experiment comprised seven treatments with ten replicates: NP, P, P+r, P+rm, N, N+m and N+rm. For plants from P treatments, we added a start dose of 3.8 mM of N. All plants were grown in a greenhouse under natural daylight in randomized blocks. Additional nutrients (10 mL of solution) were added to the surface of each pot every 30 days, according to fertilization treatments above cited. For rhizobial treatments, seeds were left to soak in a turbid suspension (100 mL) of mixture of isolates IBRC 199 and 200 to inoculate A. colubrina and P. rigida and IBRC 201 and 204 to M. bimucronata during 1 hour. Reinoculation (10 mL of the same mixture) was made near the roots of seedlings 30 days later. For the AMF inoculation, pieces of A. peregrina var. falcata roots with ±1cm of length collected from Corumbataí cerrado reserve (22º15’S and 47º00’W, 810 m a.s.l.) were mixed on each pot (0.4g) surface nearly seedlings at twenty-eight days of sowing. Measurements Height growth of plants was recorded each fifteen days, starting at 30 days of sowing, being measured ten plants per treatment until 120 days and five plants per treatment from 120 days until the end of the experiment, at 255 days of sowing. Five plants per treatment were harvested at 120 and 255 days of sowing. Leaf area was measured by CI-202 Area Meter (CID, Inc). Roots, stems and leaves were separated, dried to constant weight at 70ºC, weighed and analyzed the nutrient content of the shoot and substrate. Root nodules were weighted, counted and sieved with sieves of mesh to 24 separate: larger than 4mm, between 2-4mm and smaller than 2mm of diameter size. Nitrogenase activity of root nodules of two plants per treatment was assayed by acetylene reduction activity (ARA) according to Hardy et al. (1968) and nodules were stored in the refrigerator at 10ºC to leghemoglobin content analysis, following Becana et al. (1986). The nodules morphology was classified according to Corby (1981). Standard methods were followed for staining of roots (Philips and Hayman 1970), and the quantification of AMF infection in roots was estimated using the gridline intersect method (Giovannetti and Mosse, 1980) under a stereomicroscope (40x). Statistical analysis Data were analyzed separately using ANOVA. Dunn’s test was applied to compare means at P ≤ 0.05 using the program BioEstat 2.0 (Ayres et al., 2000). Principal component analysis (PCA) was performed for all data by PCOrd program, version 4.0 for Windows. Variables were log transformed or arc square root transformed in order to equalize variance. Coefficients correlation r < 0,05 in the first axis were eliminated of analysis. Results Growth of plants and AMF colonization Although seedlings were grown under similar nursery conditions, their growth indicated specific responses. M. bimucronata presented the best growth, as measured by height, dry biomass and leaf area (Table 2), mainly at 255 days of sowing. The growth parameters were positively affected by full mineral fertilization (NP) in the three species (Table 2). Plants not fertilized with P and N had their growth limited, except M. 25 bimucronata in the P treatments, which mineral nitrogen deficiency was probably supplied by biological fixation with rhizobia. 27 25 Table 2: Response of A. colubrina, M. bimucronata and P. rigida to mineral fertilization and inoculation treatments at 120 and 255 days of sowing. Mean of five plants per treatment. N and P content were measured in the shoot (leaf plus stem). a Mean of ten plants per treatment. b Mean of two plants per treatment. Means followed by the same letter are not significantly different by ANOVA, test Dunn at P<0.05 level of significance. Lower case letters compare treatments within of the one species and upper case letters compare species for the same treatments. No such analyses were indicated for AMF, N and P of shoots. c not determined Treatments Area leaf Height Biomass AMF N P Area leaf Height Biomass AMF N P (cm2) (cm) a (g) (%) b (mg.g-1) (mg.g-1) (cm2) (cm) (g) (%) b (mg.g-1) (mg.g-1) NP 208.4 aA 54.9 aA 7.4 aA 1.7 23.0 2 259.2 aA 94 aB 35.3 aA 0.0 19 2.9 P 41.9 bcA 41.9 abA 4.1 abA 1.3 14.0 2.8 25.3 bcB 51.6 cB 5.7 bB 1.5 17.5 5.6 P+r 33.4 bcA 26.7 bcA 1.5 bcA 2.8 20.0 3.8 59.5 bcB 54.8 bcB 7.1 bB 4.5 15.5 4.2 P+rm 25.1 cAB 15.2 dB 0.5 cB 3.6 20.0 5.4 18.8 cB 55.8 bcB 5.4 bB 2.0 14.5 3.8 N 38.5 bcA 20.2 cdA 0.8 cB 8.1 25.0 1.2 192.1 aA 71.4 abB 11.2 abA 13.5 18 0.8 N+m 28.7 bcB 24.3 cB 0.8 cB 1.4 26.5 0.9 128.4 abA 71 abcB 5.6 bB 14.0 22 0.7 N+rm 66.3 abA 27.8 bA 1.3 bcA 12.4 29.0 1 195.2 aA 76.2 abB 7.2 bB 10.8 18.5 0.7 NP 195.3 aA 64.6 aA 11.8 aA 32.2 39.5 1.9 530.9 aA 138.2 abA 46.7 aA 46.6 15.5 1.9 P 139.7 aA 53.5 abA 6.8 abA 22.9 11.5 2.1 295.4 abA 161.8 aA 40.8 aA 23.2 10.5 1.6 P+r 78.6 aA 33.6 cdA 2.5 bcA 46.3 21.0 2.8 452.1 aA 143.2 abA 55.6 aA 12.8 17 1.6 P+rm 70.7 aA 28.8 dA 2.4 bcA 43.8 22.0 2.7 225.2 abA 127.4 abcA 38.2 abA 17.3 16.5 1.5 N 74 aA 29.1 dA 2.9 bcA 50.5 14.5 1.0 158.7 abcA 100.8 cA 15.1 cA 70.3 17 0.5 N+m 102.9 aA 39.5 bcA 2.8 bcA 1.9 22.0 0.7 131.3 bA 127.4 abcA 17.4 bcA 68.4 15 0.4 N+rm 67.3 aA 31.5 cdA 1.6 cA 9.6 27.5 1.1 61 cB 114.8 bcA 15.0 cA 70.3 16.5 0.4 NP 94.8 aA 12.6 abB 1.6 aB 21.6 22.5 1.8 197.1 aA 40.6 aC 18.02 aB 25.4 23 2.6 P 32.9 bcA 14.3 abB 0.5 aB 12.1 22.5 3.6 53.5 aB 28.4 abB 3.7 cdB 47.0 19 6 P+r 18.6 bcA 8.8 cdB 0.5 aA 13.1 14.5 3.7 53.2 aB 24.2 bcC 2.1 dC 45.6 19.5 4.4 P+rm 16.2 cB 7.2 dC 0.3 aB 35.0 c 4.6 29.8 aB 24 bcC 2.5 dB 58.6 22 6.5 N 55.7 abA 11.7 bcB 0.6 aB 10.7 28.0 1.8 142.6 aA 37.2 abC 8.5 bA 20.9 23.5 0.9 N+m 120.8 aA 16 aC 1.8 aAB 21.2 25.5 1.1 71.8 aA 23.2 bcC 4.3 cdB 22.4 27 0.8 N+rm 31.2 bcA 11.2 bcB 0.6 aA 5.0 26.5 0.7 72.9 bA 34.8 abC 6.1 bcB 32.0 23.5 0.8 Parapiptadenia rigida At 120 days At 255 days Anadenanthera colubrina Mimosa bimucronata 27 M. bimucronata exhibited the highest values for root colonization by AMF (Table 2), which ranged 70.3% of infected roots. A. colubrina and P. rigida had percentages ranging 14% and 58.6%, respectively. Typical hyphae and vesicles were observed in the preparations of all species. Native-born fungi were capable to infect these three host plants. When we compare the results in the same fertilization treatments, AMF inoculated treatments promoted similar values of infection of roots than those uninoculated. These results indicate that the AMF inoculation not enhanced the mycorrhizal colonization. Treatments with P added in A. colubrina and M. bimucronata, regardless of fungi inoculation, presented smaller AMF percents than N treatments, without P added. In P. rigida occurred the inverse situation. Biomass allocation A variation in resource allocation patterns was observed among species, as well as within species through time, but the treatments did not influence the biomass allocation in the three species studied. A. colubrina and M. bimuconata plants had more biomass of stem and leaves (Figure 1) while P. rigida produced more roots at 120 days of sowing. At 255 days, A. colubrina and P. rigida increased biomass allocation to roots and M. bimucronata remained allocating stem and leaves biomass. Nodulation Morphological characteristics of the A. colubrina, M. bimucronata and P. rigida nodules result in its being classified as indeterminate and astragaloid, similarly to observations of Corby (1981) and Sprent (2001). Spontaneous nodulation from native soil born rhizobia occurred in A. colubrina and M. bimucronata but not in P. rigida (Table 3). In A. colubrina and P. rigida plants from all 28 Figure 1: Biomass production average (%) of roots, stems and leaves in A. colubrina (A), M. bimucronata (B) and P. rigida (C) plants cultiveted upon treatments of fertilization (NP, P and N) and inoculation of rhizobia (r), mycorrhiza (m) and the both (rm) at 120 and at 255 days of sowing. 0% 50% 100% leaves stem root 0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100% NP P P+r P+rm N N+mN+rm 0% 50% 100% NP P P+r P+rm N N+mN+rm A B C B io m as s (% ) Treatments At 120 days At 255 days 29 Table 3: Nodule number per diameter size larger than 4, between 2 and 4 and smaller than 2 milimeters at 120 and 255 days of sowing and nodule dry weight at 255 days of A. colubrina, M. bimucronata and P. rigida. Mean of five replicates, followed by the same letter in the colunn are not significantly different by ANOVA, test Dunn at p<0.05 level of significance. treatments with mineral N added, regardless of rhizobia inoculation, did not produced nodules. For M. bimucronata there were nodules in these treatments, but the nodules occurred in lower number (Table 3). Dual inoculation (rm) and single inoculation of rhizobia (r), associated with low N and P available in the P treatments improved the nodules number in M. bimucronata, P+r and P+rm treatments were statistically differ to the others, at 255 days of sowing (Table 3). The nitrogenase activity (ARA) and leghemoglobin contents in M. bimucronata nodules also were higher in these inoculated treatments (Figure 2). Nevertheless, dual inoculation (rm) did not increase nodules number (Table 3) in A. colubrina and P. rigida. Furthermore, A. colubrina roots presented significantly higher nodules number in the P+r than P+rm treatment. For this species, ARA presented similar response and leghemoglobin contents was similar between P treatments. Treatment >4 2 a 4 <2 Total >4 2 a 4 <2 Total >4 2 a 4 <2 Total NP 0.8 3.6 1 5.4 b 3 7.2 9.6 19.8 b 0.08 0.04 0.01 0.13 a P 2.2 3.4 0.6 6.2 b 5.6 9.2 25.2 40 b 0.16 0.03 0.01 0.20 a P+r 2.6 42.8 63.6 109 a 12.8 36 75.8 124.8 a 0.19 0.18 0.05 0.42 a P+rm 0.8 4 7.4 12.2 b 8.8 12 9 29.6 b 0.23 0.09 0 0.32 a NP 33 118 99.4 250.6 a 99.2 311 279 688.4 b 0.92 0.90 0.25 2.07 b P 73.4 117 64.4 254.8 a 149 246 155 550.2 b 2.95 1.07 0.18 4.20 a P+r 17.2 66.8 47 131 ab 146 473 836 1455.4 a 2.35 1.94 0.76 5.05 a P+rm 18 41.4 12.6 72 abc 41 367 1844 2252.2 a 1.06 1.35 1.61 4.02 a N 1 7.2 18.4 26.6 bcd 2 30 161 193 bc 0 0.05 0.11 0.15 c N+m 0 0.8 2 2.8 d 0.2 7.8 133 141.4 c 0 0.02 0.03 0.04 c N+rm 0 0 7.8 7.8 cd 0 0.8 37 37.8 c 0 0 0.01 0.01 c P+r 0.8 2.2 5.6 8.6 a 0 0.6 5.2 5.8 a 0 0 0 0a P+rm 0 0.6 1.4 2 b 1 2.2 10 13.2 a 0.01 0.00 0.01 0.02 a P. rigida At 120 days At 255 days Mean number of nodule Dry weight of nodule (g) A. colubrina M. bimucronata 30 Figure 2: Acetylene reduction activity (ARA) and leghemoglobin content averages of A colubrina (A) and M. bimucronata (B) nodules upon fertilization treatments (NP, P and N) with inoculation of rhizobia (r), mycorrhiza (m) and the both (rm) at 120 and 255 days of sowing. Bar graph corresponds to ARA (in µmol C2H4 h-1 g-1 nodule fresh), line graph corresponds to leghemoglobin content (in mg Hb g-1 nodule fresh). Treatments 0 0.02 0.04 0.06 0.08 0.1 A R A 0 0.45 0.9 Leghem oglobin 0 700 1400 2100 A R A 0.3 0.45 0.6 Leghem oglobin A At 120 days At 255 days 0 4 8 12 N P P P + r P+ rm N N + m N +r m A R A 0 0.45 0.9 Leghem oglobin 0 30000 60000 90000 N P P P + r P+ rm N N + m N +r m A R A 0 0.6 1.2 L e g h e m o g lo b in B 31 The nodule dry weight of A. colubrina plants did not differ between the treatments. This probably occurred in spite of dry weight of nodules higher than 4mm (Table 3). For M. bimucronata nodules dry weight, had not difference between those formed with native rhizobia (P treatment) and inoculated treatments (P+r and P+rm). The ARA was relatively low in P. rigida, being measured at 255 days of sowing 128,58 and 292,23 (µmol of ethylene per g of fresh nodule per hour) at P+r and P+rm treatments, respectively. Leghemoglobin contents were not assessed of this specie because there were insufficient samples of nodule. Results from P contents in shoot (Table 2) and chemical analysis of the substrate at the last harvest (Table 4) showed low values of P in N treatments, which not had P added. There was apparent difference between the treatments on the N contents in leaves and in the substrate of the pots. Table 4: Chemical analysis of substrate of pots in relation to nitrogen (%), phosphorous (mg.dm-3) and K (mmolc.dm-3) of A. colubrina, M. bimucronata and P. rigida at 255 days of sowing, cultived upon treatments of fertilization (NP, P and N) and inoculation of rhizobia (r), mycorrhiza (m) and the both (rm). Nutrient contents and PCA analysis We performed the PCA analysis of treatments and all data studied in order to see roughly, if the treatments would form groups and which factor(s) might explain the grouping. The PCA analysis simplifies the interpretation of complex results. Results of A colubrina M. bimucronata P. rigida Treatments N P K N P K N P K NP 0.05 56 1.9 0.07 51 2.5 0.05 34 1.5 P 0.07 108 1.4 0.05 85 2.2 0.05 64 1.6 P+r 0.05 84 0.9 0.07 54 1.3 0.05 73 1.4 P+rm 0.07 88 1.3 0.07 60 1 0.05 97 2.5 N 0.05 4 1.2 0.07 3 2.1 0.07 4 2.4 N+m 0.07 2 1.6 0.07 1 2.4 0.05 1 2.8 N+rm 0.07 3 2.1 0.07 1 2.2 0.07 1 2.9 32 nutrient contents of shoots and substrate were included in this analysis and each species was treated separately. The PCA plots showed that PC1 + PC2 axis explained 77,59; 88,47 and 77,79 percent of total for A. colubrina, M. bimucronata and P. rigida, respectively (Figure 3). Mineral fertilization and nodulation influenced grouping in the three species. P treatments were grouping in the left and N treatments formed a group of the right of the axis. PC 1 can be seen as representing the nitrogen fixation capacity of A. colubrina and M. bimucronata. In P. rigida the axis PC 1 can be attributed to mineral fertilization, since that the nodulation was negligent. Because the vectors representing data nodulation pointed to the left of orig., the treatments on the left responded more positively to rhizobial inoculation. Vectors representing AMF colonization and K level pointed to the right of orig. for A. colubrina and M. bimucronata plants. This fact indicates that these features were increased in plants growth in N treatment (without P). In contrast, AMF percents pointed to P treatment (left) in P. rigida. Mn and B were positively correlated with mycorrhizal treatments in A. colubrina; Zn in M. bimucronata and S, Cu and Fe in P. rigida (Figure 3). Discussion The results showed that M. bimucronata plants grew better than A. colubrina and P. rigida and also exhibited the highest values for root colonization by AMF. Also, M. bimucronata was very nodulated, with rhizobia inoculation increasing the rhizobial efficiency. Native rhizobia were capable to promote high levels of infection in this plant 33 Figure 3: Principal component analysis (PCA) to mineral fertilization treatments (NP, P and N) with inoculation of rhizobia (r), mycorrhiza (m) or the both (rm). Leaf area (la), height, biomass, nodule number (nn), dry weight nodules (dwn), acetylene reduction activity (ARA), leghemoglobin content (LegHb) and mycorrhization percentage (AMF) were performed for (A) A. colubrina, (B) M. bimucronata and (C) P. rigida. s: substrate; l: leaf, macroelements: N, P, K, Ca, S and microelemnts: B, Mn, Zn, Cu and Fe. NP P P+r P+rm N N+m N+rm N l P l K l MglBl Fel Mnl Ps pHs Ks Cas Mgs Bs Mns la nn dwn ARA Axis 1 A xi s 2 N P P P+r P+rm N N+m N+rm P l K l Znl A M F height biomass la nn dwn ARA LegHb Axis 1 A xi s 2 N P P P + r P+rm N N + m N+rm P l C a l S l Cul Fe l Mnl Ps C a s Cus Mns Ss A M F al nn A R A Axis 1 A xi s 2 A B C 34 probably because the soil used in the experiment was collected nearly to M. bimucronata nodulated plants population on the riparian forest of Corumbatai. This species is typically pioneer and produce small seeds, about 105.000 seeds Kg-1 (Lorenzi, 1998). Some authors reports that small-seeded species are seedlings that had high relative growth rate (Gross and Smith, 1991, Siqueira et al., 1998). These former authors recorded that under nutrient stress conditions, mycorrhizal effects on initial seedling growth are greater in small seeded species. The small seeds and therefore the low cotyledon reserves can have influenced the initial biomass allocation of seedlings to leaves and stems than roots in this species. A. colubrina and P. rigida present larger seeds in comparison to M. bimucronata, about 15.600 and 38.600 seeds.kg-1 (Lorenzi, 1992), respectively. In this experiment we did not observe effect of inoculation of AMF in the root colonization and P uptake. Probably the fertilization treatments influenced both inoculated and native fungi. Both A. colubrina and M. bimucronata plants presented low AMF colonization in P treatments. This result is according to currently accepted literature that nutritionally adequade or high P supply tends to reduce colonization (Smith and Read 1997, Siqueira et al., 1998), with the magnitude of the effect varying between plant species and also sensitive to change in environmental parameters (Smith and Read 1997). In opposition, Paron et al. 1997 observed benefic growth responses in Trema micrantha (L.) Blume inoculated by AMF and with 100 mg.kg-1 of P added. Similar response seems to have occurred in P. rigida in our experiment, whereas that higher percentage of mycorrhizal colonization in P treatments was noted. The substrate P level, in P treatments, for this species resulted in about 64 to 97 mg.dm-3 (see Table 4). Burity et al. (2000) noted that addition of P level enhanced AMF root colonization in M. caesalpiniifolia in both 20 and 40 Kg.ha-1 of P2O5. Also, P addition (50 to 200 mg.dm-3) did not affect the colonization of Dalbergia nigra (Chaves et al., 1995). P level of 20 mg.kg-1 in the substrate 35 was not inhibitory in 26 tree species studied by Carneiro et al. (1996). These variable responses to P level in different species leads to requirements of more experiments on legume trees to recognize the optimal P level to fungi colonization for each species of fungi and host plant. In A. colubrina, the AMF colonization was relatively low (0-14%). Carneiro et al., (1998) founded 20-49% for A. falcata and 1-19% for A. peregrina in nursery conditions. A part of nutritional factors, this low infection can be associated to specificity between host plant and fungi. In the other hand, our values of mycorrizal colonization of M. bimucronata (12.8 to70.3 %) and P. rigida (20.9 to 58.6 %) were similar to reported by Siqueira (1998), who founded AMF colonization in 8 pioneer species being generally high (mean of 60%), and by Frioni et al. (1999) in roots segments of Mimosa spp. (60%) and P. rigida (50%) in the field. However, the uptake of P by AMF in N treatments (without P added) was not sufficient to sustain a good growth plants. Information on the association of host plant with specific AMF is ambiguous: while some species of AMF have a wide distribution among host plants, others have been founded in rhizospheres of a single host plant (Carrenho et al., 2002). In P. rigida, for instance, Trufem (1990) observed the occurrence of only two Glomus species. Nutrient contents by PCA analysis showed positive correlation between K, Mn, B, S, Zn, Cu and Fe and AMF percentage. Carneiro et al. (1996) observed higher contents of S and Mn in Cassia rosa plants mycorrhized. According to Redente and Reeves (1981), plants colonized by mycorrhiza can have higher concentrations of Zn and Cu. A. colubrina and P. rigida were inoculated with rhizobia isolated from A. peregrina. This can have limited the infection or the satisfactory development of this symbiosis, mainly in P. rigida, which nodulation was negligent. Poor nodulation in the nursery condition due host specificity was reported in P. rigida by Frioni et al. (1998). 36 The high capacity of nodulation in A. colubrina and M. bimucronata plants of P treatments can be related to absence of N, once that its presence has a negative influence on the nodulation and nitrogen fixation, or P nutrition enough, an essential element to enhance biological nitrogen fixation. The increasing of mineral nitrogen contents diminished the nodule number and inhibited the nitrogenase, as measured by ARA, in Sesbania rostrata, but the start of 30 Kg (N).ha-1 affected positively the biological nitrogen fixation (Becker et al. 1991). Mendonça and Schiavinato (1996) founded higher dry mass of Anadenanthera colubrina e A. peregrina in soil with 20 mg of (NH4)2SO4 than treatments without N. To found the adequate N dose to encourage the nodulation without stimulating its inhibition are others findings that we need to research in ours legume tree. Uliassi and Ruess (2002) observed that P fertilization increased total nodule dry biomass in Alnus teniufolia. Also, P and K contents increased the biological nitrogen fixation and nitrogenase activity (ARA) in Sesbania rostrata (Becker et al. 1991). Frioni et al. (1998) reported that environmental constrains, such as P deficiency could explain the failure in nodulation of P. rigida. Nitrogenase activity (ARA) for this species was 24.200 µmol of ethylene h-1 g-1 fresh nodule h-1 by Frioni et al. (1998), who considered low activity compared with those of crop legumes, as already recorded by many authors. In opposition, M. bimucronata presented here about 8.0.104 µmol of ethylene h-1 g-1 fresh nodule h-1 at 255 days of sowing. Although low values of ARA that we founded to P. rigida and A. colubrina can be due to many factors, such as P deficiency, ineffective rhizobia, we believe that high rates of N2 fixation are less essential for perennial than annual species, according to Sprent (1994). We also need consider the size and morphology of nodules when are discussing the activity and potential efficiency of them. In spite of have been founded some nodules higher than 4 mm of size, with elevate values of dry weight in uninoculated treatments of A. colubrina and M. bimucronata, these 37 treatments not presented high ARA or leghemoglobin content in the occasion of measurement. When trees are being grown in nurseries, the methods of cultivation and extent of rhizobial and mycorrhizal symbiosis can affect post-planting success, particularly when the trees are destined for disturbed lands or regeneration of riparian forest. In this way, we suggest that M. bimucronata may be more adapted to N-limited environments, mainly when dual inoculation (rhizobia and mycorrhiza) are performed in nursery. Although physiological aspects of seedling growth requirements still remain as a great gap in our knowledge and inoculation of rhizobia and mycorrhiza technique still not have been a practice commom, we can indicate the dual inoculation in this species in nursery and its use to reforestation and to recover riparian forests. Acknowledgements This study was funded by CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and partly funded by Fundunesp (Fundação para o Desenvolvimento da UNESP). We thank to Siu Mui Tsai from CENA-USP for assistance in nitrogenase analysis. We are also grateful to Eduardo Gross who provided critical comments of this manuscript. References Abd-Alla M H, Omar S A and Karanxha S 2000 The impact of pesticides on arbuscular mycorrhizal and nitrogen-fixing symbioses in legumes. Appl. Soil Ecol. 14, 191-200. 38 Ayres M Ayres Jr M Ayres D L and Santos A S 2000 Aplicações estatísticas na áreas das Ciências Biológicas e Médicas. Sociedade Civil Mamirauá, Belém. 272p. Bakarr M I and Janos D P 1996 Mycorrhizal associations of tropical legume trees in Sierra Leone, West Africa. For. Ecol. Manage. 89, 89-92. Becana M, Gogorcena Y, Aparicio-Tejo P M and Sánchez-Díaz M 1986 Nitrogen fixation and leghemoglobin content during vegetative growth of alfafa. J. Plant. Physiol. 123, 117- 125. Becker M, Diekmann K H, Ladha J K, Datta S K and Ottow J C G 1991 Effect of NPK on growth and nitrogen fixation of Sesbania rostrata as a green manure for lowland rice (Oryza sativa L.). Plant Soil. 132, 149-158. Bernacci L C, Goldenberg R and Metzger J P 1998 Estrutura florística de 15 fragmentos florestais ripários da Bacia do Jacaré- Pepira (SP). Naturalia. 23, 23-54. Burity H A, Lyra M C C P, Souza E S, Mergulhão A C E S and Silva M L R B 2000 Efetividade da inoculação com rizóbio e fungos micorrízicos arbusculares em mudas de sabiá submetidas a diferentes níveis de fósforo. Pesq. agropec. bras. 35 (4), 801-807. Campello E F C 1996 O papel das leguminosas arbóreas noduladas e micorrizadas na recuperação de áreas degradadas. In Recuperação de Áreas Degradadas. Vol.3. pp. 9-13. Curso de Atualização, 12-16 Fevereiro 1996. Curitiba-Paraná. 39 Carneiro M A C, Siqueira J O, Davide A C, Curi, L J G N and Vale, F R 1996 Mycorrhizal fungi and superphosphate on growth of tropical woody species. Sci. Forestalis. 50, 21-36. Carneiro M A C, Siqueira J O, Moreira F M S, Carvalho D, Botelho S A and Junior, O J S 1998 Micorriza arbuscular em espécies arbóreas e arbustivas nativas de ocorrência no sudeste do Brasil. Cerne, 4 (1), 129-145. Carrenho R, Trufem S F B and Bononi V L R 2002 Effects of using different host plants on the detected biodiversity of arbuscular mycorrhizal fungi from an agroecosystem. Revista Brasil. Bot. 25(1), 93-101. Chaves L F C, Borges R C G, Neves J C L and Regazzi A J 1995 Crescimento de mudas de jacarandá-da-bahia (Dalbergia nigra (Vell.) Fr. Allem) em resposta a inoculação com fungos micorrízicos vesículo-arbusculares em diferentes níveis de fósforo no solo. Rev. Árv. 19(1), 32-49. Corby H D L 1988 Types of rhizobial nodules and their distribution among the leguminosae. Kirkia, 13(1), 53-123. Corby H D L 1981 The systematics value of Leguminous root nodules. In Advances in legumes systematics. Vol. 2. Eds. R M Polhill and P H Raven. pp 657-669. Press Royal Botanic Graden, England. 40 Dias M C, Vieira A O S, Nakajima J N, Pimenta J A and Lobo P C 1998 Composição florística e fitossociologia do componente arbóreo das florestas ciliares do rio Iapó, na bacia do rio Tibagi, Tibagi, PR. Revista Brasil. Bot. 21(2), 183-195. Franco A A and Faria S M 1997 The contribution of N-2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biol. Biochem. 29(5-6), 897-903. Frioni L, Dodera R, Malatés D and Irigoyen I 1998 An assessment of nitrogen fixation capability of leguminous trees in Uruguay. Appl. Soil Ecol. 7, 271-279. Frioni L, Minasian H and Volfovicz, R 1999 Arbuscular mycorrhizar and ectomycorrhizae in native tree legumes in Uruguay. For. Ecol. Manage. 115, 41-47. Gerdemann J W 1968 Vesicular-arbuscular mycorrhizae and plant growth. Ann. Rev. Phytopathol. 6, 397-418. Giovannetti M and Mosse B 1980 An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84, 489-500. Gross K L and Smith A 1991 Seed mass and emergence time effects on performance of Panicum dichotomiflorum Michx. across environments. Oecologia 87, 270-278. Hardy R W F, Holsten R D, Jackson E K and Burns R C 1968 The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 43, 1185-1207. 41 Herrera M A, Salamanca C P and Barea J M 1993 Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and Rhizobia to recover desertified Mediterranean ecosystems. Appl. Environ. Microbiol. 59(1), 129-133. Lechtova-Trnka M 1981 Étude sur les bactéries des légumineuses et observations sur quelques champignons parasites des nodosités. In The Leguminosae: a source book of characteristics, uses and nodulation. Ed O N Allen and E K Allen. pp.269. The University of Wisconsin Press, Madison. Lorenzi H 1992 Árvores Brasileiras- Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Vol.1. Editora Plantarum, Nova Odessa. 352p. Lorenzi H 1998 Árvores Brasileiras- Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Vol.2. Editora Plantarum, Nova Odessa. 352p. Mendonça E H M, Schiavinato M A 1996 Effect of different sources and concentrations of mineral nitrogen on growth and nodulation of two angico species. Arq. Biol Tecnol. 39(3), 607-611. Metzerger J P, Goldenberg R and Bernacci L C 1998 Diversidade e estrutura de fragmentos de mata de várzea e de mata mesófila semidecídua submontana do rio Jacaré- Pepira (SP). Revista Brasil. Bot. 21(3), 321-330. Moora M and Zobel M 1998 Can arbuscular mycorrhiza change the effect of root competition between conspecific plants of different ages? Can. J. Bot. 76(4), 613-619. 42 Mosse B, Powell C L and Hayman D S 1976 Plant growth responses to vesicular- arbuscular mtcorrhiza. IX. Interactions between VA mycorrhiza, rock phosphate and symbiotic nitrogen fixation. New Phytol. 76, 331-342. Nilsson T T 1989 Levantamento do potencial econômico da mata ciliar e sugestões quanto ao seu aproveitamento racional. In Simpósio Sobre Mata Ciliar. Ed. L.M. Barbosa. pp 112- 155. Fundação Cargill, Campinas. Paron M E, Siqueira, J O and Curi, N 1997 Fungo micorrízico, fósforo e nitrogênio no crescimento inicial da trema e do fedegoso. Rev. bras. Ci. Solo. 21(4), 567-574. Polhill R M, Raven P H and Stirton C H 1981 Evolution and systematics of the Leguminosae. In Advances in legume sistematics. Ed. R. M. Polhill and P H Raven. pp 1- 34. Royal Botanic Gardens, England. Philips J M and Hayman D S 1970 Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assesment of infection. Trans. Br. Mycol. Soc. 55(1), 158-161. Redente E.F.and Reeves F B 1981 Interactions between vesicular-arbuscular mycorrhiza and Rhizobium and their effect on sweetvetch growth. Soil Sci. 132(6), 410-415. Ross J P and Harper JA 1970 Effect of Endogene mycorrhizaeon soybean yields. Phytopathology 60, 1552-1556. 43 Rothschild D I 1970 Nodulación en leguminosas subtropicales de la flora Argentina. In The Leguminosae: a source book of characteristics, uses and nodulation. Ed O N Allen and E K Allen. pp.269. The University of Wisconsin Press, Madison. Sampaio A B, Walter B M T & Felfili J M 2000. Diversidade e distribuição de espécies arbóreas em duas matas de galeria na Micro-Bacia do Riacho Fundo, Distrito Federal. Acta Bot. Bras.14(2), 197-214. Santarelli E G 1996 Recuperação de mata ciliar- seleção de espécies e técnicas de implantação. In Recuperação de Áreas Degradadas. pp 101-106. III Curso de Atualização, February 1996. Editora , Paraná. Silva S M, Silva, F C, Vieira, A O S, Nakajima, J N, Pimenta J A and Colli S 1992 Composição florística e fitossociologia do componente arbóreo das florestas ciliares da Bacia do Rio Tibagi, Paraná: 2. Várzea do Rio Bitumirim, município de Ipiranga, PR. Rev. Inst. Flor. 4, 192-198. Siqueira J O, Carneiro M A C, Curi N, Rosado S C S and Davide A C 1998 Mycorrhizal colonization and mycotrophic growth of native woody species as related to successional groups in Southeastern Brazil. For. Ecol. Manage. 107, 241-252. Smith S E and Read D J 1997 Mycorrhizal symbiosis. Academic Press, London. 44 Sprent J I 1995 Legume trees and shrub in the tropics. N2- fixation in perspective. Soil Biol. Biochem. 27, 401-407. Sprent J I 1994 Evolution and diversity of the legume-rhizobium symbiosis: chaos theory? Plant Soil 161, 1-10. Sprent J I 2001 Nodulation in Legumes. Royal Botanic Gardens, Kew. 146 p. Trufem S F B 1990 Aspectos ecológicos de fungos micorrízicos vesículo-arbusculares da mata tropical úmida da Ilha do Cardoso, SP, Brasil. Acta Bot. Bras. 4(2), 31-45. Uliassi D D and Ruess R W 2002 Limitations to symbiotic nitrogen fixation in primary succession on the tanana river floodplain. Ecology. 83(1), 88-103. Vilela E A, Oliveira-Filho, A T, Carvalho D A and Gavilanes M L 1995 Flora arbustivo- arbórea de um fragmento de mata ciliar no Alto Rio Grande, Itutinga, Minas Gerais. Acta Bot. Bras. 9(1), 87-100. 45 CAPÍTULO 2 Nodulation, mycorrhizal colonization and growth of Enterolobium contortisiliquum and Inga laurina seedlings in the nursery (Trabalho a ser enviado para a revista Forest Ecology and Management) 46 Nodulation, mycorrhizal colonization and growth of Enterolobium contortisiliquum and Inga laurina seedlings in the nursery CAMILA MAISTRO PATREZE1,2 and LÁZARA CORDEIRO1 1 Universidade Estadual Paulista, IB, Departamento de Botânica, Caixa Postal 199, 13506-900 Rio Claro, SP, Brasil. 2 Corresponding author: cpatreze@rc.unesp.br 47 Abstract Effects of dual inoculation with rhizobia and arbuscular mycorrhiza fungi (AMF) on nodulation, mycorrhizal colonization and initial growth of E. contortisiliquum and I. laurina were examined in unsterile soil and fertilized with addition of N, P or both NP, inoculated or not by rhizobia (r), mycorrhiza (m) or dual inoculation (rm), following seven treatments: NP, P, P+r, P+rm, N, N+m and N+rm. Growth and nodulation of E. contortisiliquum and I. laurina plants were affected by P deficiency. On the other hand, P level added not diminished the mycorrhizal colonization. Seedlings of almost all treatments were colonized by mycorrhizal fungus. P deficiency in N treatments influenced the size of nodules, which were in general smaller than 4 mm and nodules activity, measured by acetylene reduction activity (ARA) and leghemoglobin content also were inhibited. Our results showed that dual inoculation increased the nodulation and mycorrhizal colonization of these plants in nursery with extension of the growth of E. contortisiliquum host, when associated to P fertilization. This suggest that the capacity of E. contortisiliquum to associate with two soil microorganisms (rhizobia and mycorrhiza) can be a strategy for their establishment in soils with low nitrogen levels. Keywords – Nodulation; Rhizobia; Mycorrhiza; Enterolobium contortisiliquum; Inga laurina 48 1. Introduction Enterolobium contortisiliquum (Vell.) Morong and Inga laurina (Sw.) Willd are woody leguminous trees with potential for reforestation on drastically disturbed lands, due to their ability to develop symbiotic associations with rhizobia and/or arbuscular mycorrhizal fungus (AMF). These plants differ in relation to the characteristics of succession. E. contortisiliquum, a species with 20-30 m tall at maturity (Engel & Parrota 2001), is classified as pioneer or initial secondary, according to Resolution of SMA- Secretaria do Meio Ambiente nº21, 21/11/2001 and it has been used as enrichment planting, due to the great survival rate and growth height (Montagnini et al. 1997), and in the agroforestry systems for soil improvement (Eibl et al., 2000) and it is a tolerant species in heavy metal contaminated soil (Trannin et al., 2001). This tree species has been sampled in several Brazilian riparian forests (Catharino, 1989; Nilsson, 1989 and Bernacci et al., 1998); its nodulation ability is well known (Stefan, 1906; Lechtova-Trnka, 1931; Rothschild, 1970; Corby, 1988; Oliveira, 1997; Milnitsky et al., 1997; Barberi et al., 1998; Frioni et al., 1998, Eibl et al., 2000) and AMF colonization also was already reported (Frioni et al.1999). I. laurina is classified as latest secondary or climax, according to Resolution of SMA- Secretaria do Meio Ambiente nº21, 21/11/2001. This species is generally founded in riparian forests primarily in seasonally flooded areas (Romagnolo & Souza 2000), but also has long been used as a shade tree and green manure in coffee and cacao plantations with good potential as agroforestry species (Tilki & Fisher, 1998). I. laurina was previously reported to be a N2 fixing tree (Halliday & Nakao, 1982) and I. fagifolia (L.) Benth., currently accepted as nomenclatural synonym, was reported to nodulation by the first time by Faria et al. (1987); however these studies were not on the physiology of nodulation to 49 this species. AMF colonization in I. laurina has not been reported previously, although some Inga species had been studied in this aspect. In this way, our work also aims the capacity of I. laurina plants to develop mycorrhizal association (AMF) in nursery conditions. The importance of associations with rhizobia and mycorrhiza in forests is well recognized, but the effectiveness of these associations change according to plant, rhizobia and fungus species involved and the environmental conditions. Thus, different plant species exhibit varied ability to establish mycorrhizal associations (Siqueira et al., 1998). Relatively few leguminous trees have been tested for their nodulation or nitrogen fixation ability (Sprent, 2001) and few is known about how we can manage symbiotic fungal and rhizobial associations more effectively (Marques et al., 2001). The purpose of the present study was to evaluate the effects of dual inoculation with rhizobia and mycorrhizal fungi on nodulation, mycorrhizal colonization and growth, of E. contortisiliquum and I. laurina under nursery conditions. 2. Materials and methods Seeds of E. contortisiliquum were supplied by IPEF (Instituto de Pesquisas e Estudos Florestais) – Esalq/USP (Escola Superior de Agricultura Luiz de Queiroz/ Universidade de São Paulo). Seeds of I. laurina were collected in the field of Unesp (Universidade Estadual Paulista “Júlio de Mesquita Filho”) - Rio Claro, SP, Brazil (22º44’S and 47º33’W, 610 m a.s.l.). E. contortisiliquum seeds were scarified to dormancy break prior to planting. I. laurina seeds were storage in trays with vermiculite and ABA solution (10-4M) in the proportion 2:1 in volume in the cold chamber with 10±1ºC and 50 85%±5% of relative humidity (Barbedo & Cicero, 2000) during twenty-four days, since the lost viability of Inga species occur rapidly under normal environmental conditions. Two rhizobia strains were previously isolated from nodules of E. contortisiliquum plants, collected from Corumbataí region (22º 08’S and 47º40’W, 684 m a.s.l), and two strains were isolated from nodules of Inga spp., collected in the riparian forest of Corumbataí, SP, Brazil (22º 20’S and 47º40’W, 604 m a.s.l.). The rhizobia cultures were grown on YEM (yeast extract mannitol agar) at 28ºC and were stored in the Rhizobial Bank of Unesp Rio Claro, SP Brazil (IBRC). For rhizobia inoculated treatments, seeds of E. contortisiliquum were left to soak in a turbid suspension (100 mL) of a mixture of two strains, IBRC-206 and 207 from E. contortisiliquum, during 1 h before the planting and pre-germinated seedlings of I. laurina received 10 mL of a mixture of two strains, IBRC- 195 and 197 from Inga spp., directly on the surface of pots, one week after planting. To ensure the rhizobia infection, plants of both species were subsequently re-inoculated 30 days after sowing. For the AMF inoculation, pieces of A. peregrina var. falcata roots with ±1cm of length collected from Corumbataí cerrado reserve (22º15’S and 47º00’W, 810 m a.s.l.) were mixed on each pot (0.4g) surface nearly seedlings at twenty-eight days of sowing. Soil and vermiculite (2:1) not sterilized were performed as substrate of plastic pots of 4 L. The soil from riparian forest of Corumbataí, SP, Brazil (22º 20’S and 47º40’W, 604 m a.s.l.) contained (in mmolc.dm-3): K, 1; Ca, 12; Mg, 4; H+Al, 10; Al, 7; P, 7mg.dm-3 and N, 1000ppm. Micronutrients (in mg.dm-3): B, 0.01; Cu, 0.07; Fe, 23; Mn, 8.7; Zn, 0.4 and S, 9, with pH 5.5 (Centro de Ciências Agrárias, Depto. de Recursos Naturais e Proteção Ambiental, Universidade Federal de São Carlos). Basal nutrients were added in the substrate prior to sowing (in mg. Kg-1 substrate): K (60), CaCO3 (80), MgCO3 (40), S (30), B (1), Zn (2), Cu (2), Fe (4), Mn (20), Mo (4). Beyond of these basal nutrients, were added 51 nitrogen and phosphorus, according to three different lots: NP, fertilization with addition of N (40) and P2O5 (80); P, with phosphorus P2O5 (80) and a start dose of 3.8 mM of N; and N, with nitrogen N (40) but without phosphorus. So, these lots were submitted to inoculations with rhizobia (r), mycorrhiza (m) and both (rm), resulting in seven treatments: NP; P; P+r; P+rm; N; N+m; N+ rm. Ten plants per treatment were grown in a greenhouse under natural daylight in randomised blocks. After 120 days of sowing, plants were fertilized with additional nutrients (10 mL of solution) every 30 days, following initial fertilization treatments. The height of the plants was recorded each two weeks, starting at 30 days of sowing, in an average of ten plants per treatment until 120 days, thereafter they were averages of five plants. Five plants per treatment were harvested at 120 and 255 days, with intact root system for evaluation of nodulation and nitrogenase activity. Leaf area was measured by CI-202 Area Meter (CID, Inc). Roots, stems and leaves were separated, dried to constant weight at 70ºC and weighted. Chemical analyses of shoots (roots plus stems) were performed in both harvests, and chemical analyses of substrate were determined in the beginning and end of experiment (Centro de Ciências Agrárias, Depto. de Recursos Naturais e Proteção Ambiental, Universidade Federal de São Carlos). Nodules were weighted, counted, sieved with sieves mesh and they were classified per size: larger than 4 mm, between 2-4 mm and smaller than 2 mm. The nodules morphology was classified according to Corby (1981). Nitrogenase activity was assayed by acetylene reduction activity (ARA) according to Hardy et al. (1968) in root nodules of two plants per treatment. Nodules of these same pots were stored in the refrigerator at 10ºC to leghemoglobin content analysis, following Becana et al. (1986) with absortion at 540nm. 52 For AMF colonization, roots were stained (Philips & Hayman, 1970) and the percentage of infected roots was estimated using the gridline intersect method (Giovannetti & Mosse, 1980) under a stereomicroscope (40x). Data were analyzed separately by ANOVA and means were compared by Duncan’s test, at P ≤ 0.05, using the Statistica for Windows (StatSoft, Inc. 2000). 3. Results In general, E. contortisiliquum plants fertilized with N, but not with P had the lowest growth parameters in both the harvests (Table 1). Plants of treatment P+r grew similarly to the NP treatment plants and also presented similar values of leaf, stem and root dry mass, but it was significantly differ to the others treatments (Table 1). The highest root/shoot ratios were in the last harvest of the N without P treatments (Table 1). I. laurina plants fertilized with NP were significantly taller than the others (Table 2), which were not statistically differ among them. More differences, although not statistically significant, can be observed between the treatments at 255 days than 120 days of sowing. All nodules were classified as indeterminate (Corby, 1988), being E. contortisiliquum astragaloid and I. laurina muconoid (Sprent, 2001). In general, plants of two species were well nodulated, mainly in the second harvest (Figure 1). For the two species the most part of nodules were smaller than 2 mm after 120 days and between 2 and 4 mm of diameter size 255 days. 53 Table 1 Growth of E. contortisiliquum in response to mineral fertilization (NP, P and N) and inoculation treatments with rhizobia (r), mycorrhiza (m) or both (rm) at 120 and 255 days of sowing. a Mean of five plants per treatment in all parameters, except to height after 120 days (ten replicates). Mean in lines with different letters are significantly different as determined by Duncan test at 5% significance level (P<0.05). Growth of E. contortisiliquum NP P P+r P+rm N N+m N+rm After 120 days Height (cm) 33.6 a 20.3 b 20.9 b 15.0 c 12.5 c 14.6 c 14 c Leaf area (cm2) 261.1 ab 164 bc 284.4 a 141.9 bc 51.1 c 92 c 43.4 c Leaf dry mass (g) 3.30 a 1.68 b 2.34 a 1.72 b 0.49 c 0.64 c 0.33 c Stem dry mass (g) 4 a 1.47 bc 1.71 b 1.18 b 0.3 c 0.41 c 0.28 c Root dry mass (g) 2.85 a 1.56 ab 1.51 ab 1.1 ab 0.37 b 0.51 b 0.34 b Root/shoot ratio 0.39 0.49 0.37 0.38 0.47 0.49 0.56 After 255 days Height (cm) 143.6 a 114.2 ab 146.4 a 87.6 b 36.6 c 35.8 c 32.2 c Leaf area (cm2) 338.6 b 727.1 ab 1397.2 a 1121.7 a 204 b 266.3 b 116.4 b Leaf dry mass (g) 13.78 ab 9.41 b 20.15 a 12.44 b 1.96 c 1.97 c 1.48 c Stem dry mass (g) 33.68 a 15.71 b 34.47 a 18.14 b 3.03 c 2.53 c 1.91 c Root dry mass (g) 16.09 a 12.01 b 24.43 a 16.03 ab 3.81 b 5.01 b 2.71 b Root/shoot ratio (g) 0.34 0.48 0.45 0.52 0.76 1.11 0.80 Treatments of fertilization and rhizobia (r) and mycorrhiza (m) inoculations 54 Table 2. Growth of I. laurina in response to mineral fertilization (NP, P and N) and inoculation treatments with rhizobia (r), mycorrhiza (m) or both (rm) at 120 and 255 days of sowing. a Mean of five plants per treatment in all parameters, except to height after 120 days (ten replicates). Mean in lines with different letters are significantly different as determined by Duncan test at 5% significance level (P<0.05). Growth of I. laurina NP P P+r P+rm N N+m N+rm After 120 days Height (cm) 17.1 a 11.5 b 6.9 c 6.15 c 8.3 c 9.2 bc 8.05 c Leaf area (cm2) 145.9 a 62.3 b 36.2 b 8.9 b 36.5 b 51.5 b 42.7 b Leaf dry mass (g) 1.41a 0.72 b 0.43 b 0.12 b 0.43 b 0.57 b 0.43 b Stem dry mass (g) 0.36 a 0.21 b 0.09 bc 0.03 c 0.11 bc 0.15 bc 0.10 bc Root dry mass (g) 0.70 a 0.53 ab 0.31 ab 0.05 b 0.29 ab 0.3 ab 0.26 ab Root/shoot ratio 0.40 0.58 0.60 0.36 0.54 0.41 0.50 After 255 days Height (cm) 78.2 a 39.6 b 26.4 cd 21 d 31 bcd 35.2 bc 29.6 bcd Leaf area (cm2) 503.4 a 132.6 b 139.9 b 182.9 b 379.4 ab 377.3 ab 280.6 ab Leaf dry mass (g) 15.30 a 5.10 b 2.31 c 2.01 c 4.18 b 4.84 b 4.10 b Stem dry mass (g) 9.81 a 2.16 b 0.85 cd 0.64 d 1.46 bcd 1.85 bc 1.97 b Root dry mass (g) 15.63 a 4.19 b 1.57 bc 0.87 c 4.05 bc 3.91 bc 3.63 bc Root/shoot ratio (g) 0.62 0.58 0.50 0.33 0.72 0.58 0.60 Treatments of fertilization and rhizobia (r) and mycorrhiza (m) inoculations a 55 Fig.1. Nodule number average per diameter size (larger than 4 mm, between 2 to 4 mm and smaller than 2 mm) of A, E. contortisiliquum and B, I. laurina plants in the substrate fertilized with NP, P and N and inoculated by rhizobia (r), mycorrhiza (m) or both (rm), at 120 and 255 days of sowing. Values are means of five plants per treatment. Nodules number total followed by the same letter are not significantly different by ANOVA, test Duncan at P<0,05 level of significance. bc c bc abc ab a a 0 20 40 60 80 100 120 140 bbb a ab ab a 0 100 200 300 400 500 600 <2 2 a 4 >4 b b b a a b b 0 5 10 15 20 25 30 35 NP P P+r P+rm N N+m N+rm bc c b a c c c 0 10 20 30 40 50 60 70 80 90 NP P P+r P+rm N N+m N+rm N od ul es n um be r Treatments A B At 120 days At 255 days 56 Regardless of harvest, the number (Figure 2) and dry weight (Table 3) of nodules from two species were affected by P deficiency in N treatments. Also, the most of the nodules in these treatments were smaller than 2 mm of size (Figure 2) and the nodules activity, as measured by acetylene reduction activity (ARA) and leghemoglobin content (Figure 3) were inhibited. Nodules of E. contortisiliquum of the P+r treatment presented higher ARA at 255 days (Figure 3A). ARA of I. laurina nodules were not detected in the first harvest, despite of nodule presence, and leghemoglobin content were not shown because of not achieving of replicates. In the second harvest, the ARA was higher in uninoculated treatments (NP and P) and leghemoglobin was assayed on the NP, P, P+r and P+rm treatments (Figure 3B). Table 3 Dry weight average of nodules (g) of A , E. contortisiliquum and B, I. laurina plants in the substrate fertilized with NP, P and N and inoculated by rhizobia (r), mycorrhiza (m) or both (rm), at 255 days of sowing. Mean of five plants per treatment, followed by the same letter are not significantly different by ANOVA, test Duncan at p<0.05. >4 mm 2 a 4 mm <2 mm Total Treatments NP 4.407 ab 0.811 ab 0.098 ab 5.317 P 2.207 bc 0.213 b 0.018 b 2.440 P+r 6.807 a 0.730 ab 0.038 ab 7.577 P+rm 3.533 abc 1.562 a 0.215 a 5.311 N 0.011 c 0.007 b 0.019 N+m 0.007 c 0.002 b 0.010 N+rm 0.001 c 0.001 b 0.004 NP 0.102 b 0.034 b 0.001 b 0.139 P 0.350 a 0.021 b 0.373 P+r 0.016 b 0.052 b 0.006 ab 0.075 P+rm 0.085 b 0.100 a 0.010 a 0.197 N 0.004 b 0.005 N+m 0.000 N+rm 0.001 b 0.012 b 0.015 Nodule dry weight (g) E. contortisiliquum Inga laurina 57 Fig. 2. Acethylene reduction activity (µmol C2H4 g-1 nodule fresh h-1) and leghemoglobin content (mg Hb g -1 nodule fresh) averages of A, E. contortisiliquum plants, at 120 and 255 days of sowing and B, I. laurina plants at 255 days, fertilized with NP, P or N and inoculated with rhizobia (r), mycorrhiza (m) and both (rm). Although the plants of the two species had been nodulated with native rhizobia, which were actives, demonstrated by ARA e leghemoglobin content mainly at 255 days (Figure 2), the nodulation of the two hosts were benefited by inoculation of rhizobia strains and mycorrhizal fungi, as can be seen in nodule number of P+rm treatment of Figure 1. Thus, dual inoculation associated with P fertilization increased nodulation in these two species. Despite of the N content of plants not have been tested statistically, we could note that treatments not fertilized with nitrogen (P treatments) presented N content similar those 0 0.5 1 1.5 NP P P+r P+rm N N+mN+rm um ol C 2H 4 g- 1 no du le f re sh h -1 0 0.15 0.3 0.45 m g H b g -1 n o d u le fre sh 0 5000 10000 15000 20000 25000 NP P P+r P+rm N N+m N+rm um ol C 2H 4 g- 1 no du le f re sh h -1 0 0.15 0.3 0.45 0.6 m g H b g -1 n o d u le fre sh 0 500 1000 1500 NP P P+r P+rm N N+mN+rm Treatments um ol C 2H 4 g- 1 no du le f re sh h - 1 0 0.15 0.3 0.45 0.6 m g H b g -1 n o d u le fre sh A B At 120 days At 255 days At 255 days 58 plants of NP treatments, although for E. contortisiliquum these treatments had been lower than those fertilized only with N (Figure 3A). For I. laurina this difference were not apparently observed (Figure 3B). Fig.3. Percentage (%) of colonization by arbuscular mycorrhiza fungi (AMF), N and P contents (%) in shoots of A, E. contortisiliquum and B, I. laurina plants on the fertilization (NP, P and N) and inoculation with rhizobia (r), mycorrhiza (m) and both (rm) treatments, at 120 and 255 days after sowing. Mean of two plants for AMF colonization and a mixture of five plants per treatment for chemical analysis of shoots. I. laurina was colonized either by inoculated as native mycorrhizal fungi, demonstrating its mycorrhizal infection potential, still not reported in the literature. However, in general, mycorrhizal infections were low in both species (Figure 3). 0 5 10 15 20 25 30 A M F 120 days 255 days 0 10 20 30 40 50 NP P P+r P+rm N N+m N+rm A M F 0 1 2