RESSALVA Atendendo solicitação do(a) autor(a), o texto completo desta tese será disponibilizado somente a partir de 02/04/2027. DINÂMICA ESPAÇO-TEMPORAL DE MANGUEZAIS E SUAS RELAÇÕES COM VARIÁVEIS CLIMÁTICAS PRYSCILLA RESAFFE CAMARGO SÃO VICENTE 2025 UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” Instituto de Biociências Câmpus do Litoral Paulista UNIVERSIDADE ESTADUAL PAULISTA “Júlio de Mesquita Filho” INSTITUTO DE BIOCIÊNCIAS CÂMPUS DO LITORAL PAULISTA DINÂMICA ESPAÇO-TEMPORAL DE MANGUEZAIS E SUAS RELAÇÕES COM VARIÁVEIS CLIMÁTICAS PRYSCILLA RESAFFE CAMARGO MILENE FORNARI Dissertação apresentada ao Instituto de Biociências, Campus do Litoral Paulista, UNESP, para obtenção do título de Mestra no Programa de Pós-Graduação em Biodiversidade de Ambientes Costeiros. SÃO VICENTE 2025 UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” Instituto de Biociências Câmpus do Litoral Paulista Sistema de geração automática de fichas catalográficas da Unesp. Dados fornecidos pelo autor(a). C172d Camargo, Pryscilla Resaffe Dinâmica espaço-temporal de manguezais e suas relações com variáveis climáticas / Pryscilla Resaffe Camargo. -- São Vicente, 2025 88 f. Dissertação (mestrado) - Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Vicente Orientadora: Milene Fornari 1. MapBiomas. 2. Precipitação. 3. Temperatura. 4. Modelos aditivos generalizados. 5. Google Earth Engine. I. Título. AGRADECIMENTOS Agradeço primeiramente à professora Milene Fornari pela orientação dedicada e pelo apoio técnico e intelectual durante todo o desenvolvimento desta pesquisa. Agradeço também as professoras Natália de Moraes Rudorff, Rafaela Lisboa Costa e aos professores Gustavo Maruyama Mori, Yoannis Dominguez pelas valiosas contribuições que enriqueceram este trabalho. As colegas do DELAB, Ana, Bié, Isabela, Nicolle e aos colegas do ECOMOL Gabriel e Pietra pelo compartilhamento de ideias e pelo incentivo nos momentos desafiadores. À UNESP e à CAPES pelos recursos e financiamento que possibilitaram este estudo. A todas as amigas que, direta ou indiretamente, contribuíram para esta conquista. Obrigada Patrícia, Geni, Nathali, Laís, Letícia Stela, Ingrid e Letícia Scalco. E claro, à minha família: Alice, Marcos, Rosana e em especial ao Kilder (o famoso fofinho, rs) pelo amor incondicional e pela compreensão durante esta jornada. O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001. RESUMO Manguezais são vitais para a resiliência costeira, sequestro de carbono e biodiversidade, mas enfrentam ameaças crescentes frente as mudanças climáticas e pressões antropogênicas. Nas últimas décadas com o sensoriamento remoto a compreensão da dinâmica espaço-temporal dos manguezais tem avançado, porém pouca atenção tem sido dada para reconhecer a relação dessas mudanças com os fatores climáticos. Neste estudo utilizamos dois conjuntos de dados para investigar mudanças espaço-temporais das florestas de mangue: i) área anual (km2) das florestas de mangue entre 1985 e 2022 de áreas protegidas da Mata Atlântica; ii) dados climáticos (precipitação, temperatura do ar) obtidos de 30 estações meteorológicas. Para integrar o conjunto de dados, capturar padrões e interações complexas entre a dinâmica das áreas de manguezais e os fatores climáticos empregamos modelos aditivos generalizados (GAM). As principais descobertas são: i) A tendência é de crescimento dessas áreas, porém a variação espaço-temporal das florestas de mangue difere conforme as regiões e o tempo. Entre 1985 e 2022 os manguezais em Peruíbe e Iguape registraram crescimento moderado (+11%), por sua vez, os manguezais em Cananéia exibiram maior expansão (+28%), enquanto os manguezais de Antonina, Guaraqueçaba, Paranaguá e Guaratuba tiveram os menores ganhos (+5%). Os principais preditores das mudanças de áreas de florestas de mangue foram: a precipitação acumulada (Pacum) que impactou negativamente os manguezais em Peruíbe e Iguape. Porém o aumento das temperaturas máximas (Tmax) pode ter favorecido a expansão das florestas de mangues em Cananéia enquanto o aumento das temperaturas mínimas (Tmin) foi fator positivo em Antonina, Guaraqueçaba, Paranaguá e Guaratuba. Em conjunto, essas descobertas demonstram que a dinâmica dos manguezais é influenciada de maneiras distinta por fatores climáticos. Isso sugere que estratégias de conservação genéricas podem ser insuficientes para proteger esses ecossistemas, destacando a necessidade de abordagens específicas que considerem as particularidades de impacto de cada fator climático nas áreas de floresta de mangue. Palavras-chave: precipitação, temperatura, modelos aditivos generalizados, MapBiomas, Google Earth Engine. ABSTRACT Mangroves are vital for coastal resilience, carbon sequestration and biodiversity, but are facing increasing threats from climate change and anthropogenic pressures. In recent decades, remote sensing has advanced studies of the spatiotemporal dynamics of mangroves, but little attention has been paid to recognizing the relationship between these changes and climatic factors. In this study we used two sets of data to investigate spatio-temporal changes in mangrove forests: i) annual area (km2) of mangrove forests between 1985 and 2022 in protected areas of the Atlantic Forest; ii) climate data (precipitation, air temperature) obtained from 30 weather stations. To integrate the data set and capture complex patterns and interactions between the dynamics of mangrove areas and climatic factors, we used generalized additive models (GAM). The main findings are: i) The spatio-temporal variation of mangrove forests differs according to region and time. Between 1985 and 2022, mangroves in Peruíbe and Iguape registered moderate growth (+11%), mangroves in Cananéia exhibited the greatest expansion (+28%), while mangroves in Antonina, Guaraqueçaba, Paranaguá and Guaratuba had the smallest gains (+5%). The main predictors of mangrove area changes were: cumulative precipitation (Pacum), which negatively impacted mangroves in Peruíbe and Iguape. However, increasing maximum temperatures (Tmax) may have favored mangrove expansion in Cananéia, while rising minimum temperatures (Tmin) had a positive effect in Antonina, Guaraqueçaba, Paranaguá, and Guaratuba. Together, these findings demonstrate that mangrove dynamics are distinctly influenced by climatic factors. This suggests that generic conservation strategies may be insufficient to protect these ecosystems, highlighting the need for tailored approaches that consider the specific impacts of each climatic factor on mangrove forest areas. Keywords: precipitation, temperature, generalized additive models, MapBiomas, Google Earth Engine. SUMÁRIO 1. PROBLEMÁTICA .......................................................................................... 1 2. INTRODUCTION ........................................................................................... 2 3. MATERIAL AND METHODS ...................................................................... 3 2.1 Study area .................................................................................................... 3 2.2 Quantification of mangrove area ................................................................. 7 2.3 Climatic and dataset .................................................................................... 8 2.4 Data analysis and statistics ........................................................................ 12 4. RESULTS ....................................................................................................... 14 3.1 Trends of mangrove area across 37 years ................................................. 14 3.2 Spearman’s correlation analysis ................................................................ 18 3.3 Trends in precipitation and temperature .................................................... 21 3.4 Trends in SST ............................................................................................ 24 3.4 Generalized additive model to mangroves ................................................ 27 5. DISCUSSION ................................................................................................ 33 4.1 Spatial-temporal change of mangrove forest ............................................ 33 4.2 The impact of climatic dynamics on mangrove forests ............................ 35 6. CONCLUSION .............................................................................................. 39 References ........................................................................................................... 41 Suplementary data ............................................................................................... 64 1. PROBLEMÁTICA Os manguezais são ecossistemas com relevância ecológica e socioeconômica, funcionando como berçários marinhos, barreiras naturais contra a erosão e sumidouros de carbono essenciais na mitigação das mudanças climáticas (Nagelkerken et al., 2008; Donato et al., 2011; Friess et al., 2020; Adame et al., 2021). Entretanto, esses ecossistemas únicos estão cada vez mais vulneráveis às pressões climáticas, oceanográficas e antropogênicas (Sippo et al., 2018; Fan et al., 2024). O aumento do nível do mar, mudanças de precipitação e temperatura do ar e do mar, além da intensificação das oscilações climáticas globais induzem mudanças na estrutura das florestas de mangue afetando sua capacidade de expansão, regeneração e armazenamento de carbono (Ward et al., 2016; Hickey et al., 2021; Friess et al., 2022). Apesar disso são escassos os estudos sobre dinâmica das florestas de mangue que investigam os efeitos integrados que múltiplos fatores climáticos exercem sobre as áreas de floresta de mangue ao longo do tempo em diferentes regiões. Nesta perspectiva, este estudo discute a dinâmica espaço-temporal das florestas de mangue em áreas protegidas da Mata Atlântica nos estados de São Paulo e Paraná frente aos fatores climáticos. O conjunto de resultados obtidos neste estudo poderá auxiliar em planejamentos de conservação e o manejo sustentável dos manguezais o que garante sua funcionalidade ecológica e os serviços ecossistêmicos. 2. INTRODUCTION Mangroves are characterized by halophytic trees and shrubs typical of tropical and subtropical intertidal zones and constitute complex ecosystem influenced by the dynamics between marine and terrestrial environmental factors (Schaeffer-Novelli et al., 1990; Krauss et al., 2008; Lovelock et al., 2016). Recognized for their unique species composition, rich biological and socio-economic relevance, they provide multiple ecosystem services: (i) natural protection of the coastline against erosion, (ii) nursery and habitat for various species,(iii) water filtration and nutrient cycling, (iv) sequestration of carbon dioxide (CO2), methane (CH4) and (v) sediment retention (Kristensen et al., 2008; Taillardat et al., 2018; Sasmito et al., 2019; Hespen et al., 2022; Yan et al., 2024). Moreover, the collective economic valuation of mangroves has been estimated at $194,000 per hectare ($2.7 trillion per year), contributing to thirteen Sustainable Development Goals (SDGs), particularly SDG 12 (Responsible Consumption and Production), SDG 13 (Climate Action), SDG 14 (Life Below Water), and SDG 15 (Life on Land) (Barbier et al., 2011; Costanza et al., 2014; Eyzaguirre et al., 2023). Despite their ecological and socio-economic importance, mangroves face significant threats from climate change and human activities, with global losses exceeding with 20%–35% of global mangrove extent lost over the last 55 years (Polidoro et al., 2010; Hamilton & Casey, 2016; Goldberg et al., 2020). Remote sensing technology has shown success in monitoring of spatial-temporal change in the mangrove forests in Brazil (Freitas et al., 2017; Pereira et al., 2016; Bosquilia & Muller-Karger, 2021; Diniz et al., 2019; Moschetto et al., 2021; Lassalle et al., 2022; de Lima Freires et al., 2023; Lopes et al., 2023; Lima Miranda et al., 2024; Vanin et al.,2024) and worldwide (Giri, 2011; Bunting, 2018; Halder et al., 2021; Bunting et al., 2022; S. Hamilton & Presotto, 2024). Although these studies are valuable for identifying changes in mangrove areas, they are inconclusive or absent in relation to factors that drive their spatial dynamics over time. Nonetheless, most of the literature focuses mainly on the role of climatic variables, as for example: temperature (Cavanaugh et al., 2019; Kang et al., 2024a; Osland et al., 2016; Saintilan et al., 2014; Ward et al., 2016b) or precipitation (Chapman, 1976; G. B. de Lima & Galvani, 2010; Jennerjahn et al., 2017). But the interaction between these different variables and the impact of each one on the mangrove forest area is often neglected. In this context, our study has the following objectives: • To quantify and analyze the variation of mangrove forest areas between Peruíbe-Guaratuba in the period from 1985 to 2022. • To analyze the historical series of climate data (precipitation and air temperature) from 30 meteorological stations to identify the patterns of climate dynamics between 1985 and 2022. • To integrate the set of results to evaluate possible relationships between the spatio-temporal changes of mangrove forest areas and climate data. The results obtained in this study will provide essential information for the conservation and sustainable management of mangroves, ensuring their ecological functionality and the ecosystem services they offer to society. 3. CONCLUSION Our study shows that during the period from 1985 to 2022 mangrove forest areas expanded, however, this growth did not occur in a continuous and uniform manner. Among the regions, the mangrove in Peruíbe and Iguape showed moderate gross gain (+11%), the mangrove in Cananéia showed the most stable growth pattern, with the highest gross gain (28%). In contrast, the mangrove in Antonina, Guaraqueçaba, Paranaguá and Guaratuba showed the lowest gross gain (5%) between 1985 and 2022. The spatial and temporal patterns with mangrove gains and losses among the regions characterize two main trends. The spatiotemporal variability revealed that between 1985 and 1999 was characterized by the lowest growth, with losses and gains. We identified a turning point in the year 2000, with a notable spread of mangrove areas across all regions. During the entire 2000–2022 period, mangrove areas were predominantly larger than in the first period, with the Cananéia mangrove showing the largest growth (+28%), followed by the Peruíbe and Iguape mangroves (+11%) and Antonina, Guaraqueçaba, Paranaguá and Guaratuba (+5%). The factors that explain this dynamic of mangrove forests were the combination of increased accumulated precipitation (negative effect) and increased air temperature (positive effect). While some areas showed greater growth, others had more limited responses. These findings reinforce the importance of considering the impact of each climate variable in understanding the response of mangroves to environmental changes and in guiding adaptive and region-specific conservation strategies. References Adame, M. F., Connolly, R. M., Turschwell, M. P., Lovelock, C. E., Fatoyinbo, T., Lagomasino, D., Goldberg, L. A., Holdorf, J., Friess, D. A., Sasmito, S. D., Sanderman, J., Sievers, M., Buelow, C., Kauffman, J. B., Bryan-Brown, D., & Brown, C. J. (2021). Future carbon emissions from global mangrove forest loss. Global Change Biology, February, 2856–2866. https://doi.org/10.1111/gcb.15571 Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18(3), 91–93. https://doi.org/10.1016/j.tjem.2018.08.001 Albers, S. (2023). CRAN - Package rsoi. https://cran.r- project.org/web/packages/rsoi/index.html Alongi, D. M. (2015). The Impact of Climate Change on Mangrove Forests. Current Climate Change Reports, 1(1), 30–39. https://doi.org/10.1007/S40641-015-0002- X/FIGURES/3 Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), Article 6. https://doi.org/10.1127/0941-2948/2013/0507 Armitage, A. R., Highfield, W. E., Brody, S. D., & Louchouarn, P. (2015). The Contribution of Mangrove Expansion to Salt Marsh Loss on the Texas Gulf Coast. PLOS ONE, 10(5), e0125404. https://doi.org/10.1371/journal.pone.0125404 Baratto, J., de Bodas Terassi, P. M., de Beserra de Lima, N. G., & Galvani, E. (2024). Precipitation Anomalies and Trends Estimated via Satellite Rainfall Products in the Cananéia–Iguape Coastal System, Southeast Region of Brazil. Climate, 12(2), Article 2. https://doi.org/10.3390/cli12020022 Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), Article 2. https://doi.org/10.1890/10-1510.1 Bardou, R., Friess, D. A., Gillespie, T. W., & Cavanaugh, K. C. (2024). Assessing mangrove cover change in Madagascar (1972–2019): Widespread mangrove deforestation is slowing down. Global Ecology and Conservation, 53, e03022. https://doi.org/10.1016/j.gecco.2024.e03022 Bosquilia, R. W. D., & Muller-Karger, F. E. (2021). Analysis of the wetland classification using optical satellite imagery in the environmental protection area of Guaraqueçaba, PR, Brazil. Journal of South American Earth Sciences, 112, 103615. https://doi.org/10.1016/j.jsames.2021.103615 Braga, E. S., Azevedo, J. S., Harari, J., & Castro, C. G. (2023). Research in a RAMSAR site: The Cananéia-Iguape-Peruíbe estuarine-lagoon complex, Brazil. Ocean and Coastal Research, 71(Suppl. 1), Article Suppl. 1. https://www.revistas.usp.br/ocr/article/view/222814 Bunting, P. (2018). The Global Mangrove Watch—A new 2010 global baseline of mangrove extent. Remote Sens., 10, 1669. Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono, T., Worthington, T. A., Spalding, M., Murray, N. J., & Rebelo, L.-M. (2022). Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sensing, 14(15), Article 15. https://doi.org/10.3390/rs14153657 Cattani, P. E., & Lamour, M. R. (2016). Considerations Regarding Sedimentation Rates along the E-W Axis of the Paranaguá Estuarine Complex, Brazil: A Bathymetric Approach. Journal of Coastal Research, 32(3), 619–628. https://doi.org/10.2112/JCOASTRES-D-14-00099.1 Cavanaugh, K. C., Dangremond, E. M., Doughty, C. L., Park Williams, A., Parker, J. D., Hayes, M. A., Rodriguez, W., & Feller, I. C. (2019). Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years. Undefined, 116(43), 21602–21608. https://doi.org/10.1073/PNAS.1902181116 Chapman, V. J. (Valentine J. (1976). Coastal vegetation. 292. Cheng, Q., Jin, H., & Ren, Y. (2023). Persistent and nonpersistent regional extreme total, daytime, and night-time precipitation events over southwest China (1961–2019). International Journal of Climatology, 43(5), 2150–2174. https://doi.org/10.1002/joc.7968 Cintrón-Molero, G., Schaeffer-Novelli, Y., Rovai, A. S., Coelho-Jr., C., Menghini, R. P., de Almeida, R., do Vale, C. C., Bernini, E., Moraes de Oliveira Abuchahla, G., & Cunha-Lignon, M. (2023). Variability of Mangroves Along the Brazilian Coast: Revisiting. In Y. Schaeffer-Novelli, G. M. de O. Abuchahla, & G. Cintrón-Molero (Eds.), Brazilian Mangroves and Salt Marshes (pp. 43–65). Springer International Publishing. https://doi.org/10.1007/978-3-031-13486-9_3 Clough. (1982). Physiological processes in mangroves. Pages 193–210 in B. F. Clough, editor. Mangrove ecosystems in Australia: Structure, function and management. Australian National University Press, Canberra, Australia. Coldren, G. A., Langley, J. A., Feller, I. C., & Chapman, S. K. (2019). Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland. Journal of Ecology, 107(1), 79–90. https://doi.org/10.1111/1365- 2745.13049 Cortina, H. (2020). hockeystick: Download and Visualize Essential Climate Change Data. https://cortinah.github.io/hockeystick/ Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., & Turner, R. K. (2014). Changes in the global value of ecosystem services. Global Environmental Change, 26(1), Article 1. https://doi.org/10.1016/J.GLOENVCHA.2014.04.002 Cunha-Lignon, M., Coelho, C., Almeida, R., Menghini, R. P., Schaeffer-Novelli, Y., Cintrón, G., & Dahdouh-Guebas, F. (2011). Characterisation of mangrove forest types in view of conservation and management: A review of mangals at the Cananéia region, São Paulo State, Brazil. Journal of Coastal Research, 349–353. de Lima Freires, J., Lage-Pinto, F., & Bernini, E. (2023). Spatial–temporal distribution of mangrove species in the estuary of the Mamanguape river in the state of Paraíba, Brazil. Regional Studies in Marine Science, 66, 103166. https://doi.org/10.1016/j.rsma.2023.103166 De Mello, Y. R., Lopes, F. C. A., & Roseghini, W. F. F. (2017). CARACTERÍSTICAS CLIMÁTICAS E ANÁLISE RÍTMICA APLICADA A EPISÓDIOS EXTREMOS DE PRECIPITAÇÃO E TEMPERATURA NO MUNICÍPIO DE PARANAGUÁ, PR. Revista Brasileira de Climatologia, 20. https://doi.org/10.5380/abclima.v20i0.48594 Diniz, C., Cortinhas, L., Nerino, G., Rodrigues, J., Sadeck, L., Adami, M., & Souza-Filho, P. W. M. (2019a). Brazilian mangrove status: Three decades of satellite data analysis. Remote Sensing, 11(7), Article 7. https://doi.org/10.3390/rs11070808 Diniz, C., Cortinhas, L., Nerino, G., Rodrigues, J., Sadeck, L., Adami, M., & Souza-Filho, P. W. M. (2019b). Brazilian mangrove status: Three decades of satellite data analysis. Remote Sensing, 11(7), Article 7. https://doi.org/10.3390/rs11070808 Diniz, C., Cortinhas, L., Nerino, G., Rodrigues, J., Sadeck, L., Adami, M., & Souza-Filho, P. W. M. (2019c). Brazilian mangrove status: Three decades of satellite data analysis. Remote Sensing, 11(7), Article 7. https://doi.org/10.3390/rs11070808 Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 2011 4:5, 4(5), Article 5. https://doi.org/10.1038/ngeo1123 Doughty, C. L., Gu, H., Ambrose, R. F., Stein, E. D., Sloane, E. B., Martinez, M., & Cavanaugh, K. C. (2024). Climate drivers and human impacts shape 35-year trends of coastal wetland health and composition in an urban region. Ecosphere, 15(4), e4832. https://doi.org/10.1002/ecs2.4832 Du, C., Khan, S., Ke, Y., & Zhou, D. (2023). Assessment of Spatiotemporal Dynamics of Mangrove in Five Typical Mangrove Reserve Wetlands in Asia, Africa and Oceania. Diversity 2023, Vol. 15, Page 148, 15(2), Article 2. https://doi.org/10.3390/D15020148 Duke, N. C., Ball, M. C., & Ellison, J. C. (1998). Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett., 7(1), 27–47. https://doi.org/10.2307/2997695 Duke, N. C., Mackenzie, J. R., Canning, A. D., Hutley, L. B., Bourke, A. J., Kovacs, J. M., Cormier, R., Staben, G., Lymburner, L., & Ai, E. (2022). ENSO-driven extreme oscillations in mean sea level destabilise critical shoreline mangroves— An emerging threat. PLOS Climate, 1(8), Article 8. https://doi.org/10.1371/journal.pclm.0000037 Durack, P. J., & Wijffels, S. E. (2010). Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim., 23(16), 4342–4362. https://doi.org/10.1175/2010jcli3377.1 Ellison, J. C. (2015). Vulnerability assessment of mangroves to climate change and sea- level rise impacts. Wetl. Ecol. Manag., 23(2), 115–137. https://doi.org/10.1007/s11273-014-9397-8 Eyzaguirre, I. A. L., Iwama, A. Y., & Fernandes, M. E. B. (2023). Integrating a conceptual framework for the sustainable development goals in the mangrove ecosystem: A systematic review. Environmental Development, 47, 100895. https://doi.org/10.1016/j.envdev.2023.100895 Fan, B., Li, Y., Zhang, Z., Yang, Y., & Li, Y. (2024). Exploring Cumulative Vulnerability of Mangrove Forests to Intensive Coastal Anthropogenic Threats. Ecosystem Health and Sustainability, 10, 0153. https://doi.org/10.34133/ehs.0153 FAO. 2023. The world’s mangroves 2000–2020. Rome. https://doi.org/10.4060/cc7044en Freitas, D. M. de, Ramos, A. L. de A., Edson Eyji Sano, Resende, K. B., Fumi, M., Oliveira, F. F. G. de, & Quaresma, V. B. (2017). Mapeamento de manguezais e carcinicultura do Brasil com base em imagens dos satélites Landsat-8 OLI e RapidEye (ano-base: 2013). Friess, D. A., Adame, M. F., Adams, J. B., & Lovelock, C. E. (2022). Mangrove forests under climate change in a 2°C world. WIREs Climate Change, 13(4), e792. https://doi.org/10.1002/wcc.792 Friess, D. A., Yando, E. S., Abuchahla, G. M. O., Adams, J. B., Cannicci, S., Canty, S. W. J., Cavanaugh, K. C., Connolly, R. M., Cormier, N., Dahdouh-Guebas, F., Diele, K., Feller, I. C., Fratini, S., Jennerjahn, T. C., Lee, S. Y., Ogurcak, D. E., Ouyang, X., Rogers, K., Rowntree, J. K., … Wee, A. K. S. (2020). Mangroves give cause for conservation optimism, for now. Current Biology, 30(4), R153–R154. https://doi.org/10.1016/j.cub.2019.12.054 G. B. de Lima, N., & Galvani, E. (2010). INFLUÊNCIA DA PRECIPITAÇÃO NOS MANGUEZAIS DA BARRA DO RIBEIRA – IGUAPE/SP. Revista Brasileira de Climatologia, 7. https://doi.org/10.5380/ABCLIMA.V7I0.25641 Gadedjisso-Tossou, A., Adjegan, K. I., & Kablan, A. K. M. (2021). Rainfall and Temperature Trend Analysis by Mann–Kendall Test and Significance for Rainfed Cereal Yields in Northern Togo. Sci, 3(1), Article 1. https://doi.org/10.3390/sci3010017 Ghanbarzad Dashti, S., Farzingohar, M., & Souri, A. (2021). Temperature and Salinity Effects in Sensitive Area of Qeshm Island: Mangrove Forests. International Journal Of Coastal, Offshore And Environmental Engineering(Ijcoe), 6(4), 13– 18. https://doi.org/10.22034/ijcoe.2021.150792 Giangarelli, D. C., Aguiar, W. M. de, & Sofia, S. H. (2015). Orchid bee (Hymenoptera: Apidae: Euglossini) assemblages from three different threatened phytophysiognomies of the subtropical Brazilian Atlantic Forest. Apidologie, 46(1), Article 1. https://doi.org/10.1007/s13592-014-0303-4 Giri, C. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr., 20, 154–159. Giri, C., Long, J., & Poudel, P. (2023). Mangrove Forest Cover Change in the Conterminous United States from 1980–2020. Remote Sensing, 15(20), Article 20. https://doi.org/10.3390/rs15205018 Godoy, M. D. P., & De Lacerda, L. D. (2015). Mangroves Response to Climate Change: A Review of Recent Findings on Mangrove Extension and Distribution. An Acad Bras Cienc, 87(2), Article 2. https://doi.org/10.1590/0001-3765201520150055 Goldberg, L., Lagomasino, D., Thomas, N., & Fatoyinbo, T. (2020). Global declines in human-driven mangrove loss. Global Change Biology, 26(10), Article 10. https://doi.org/10.1111/GCB.15275 GUEDES. (2009). Evolução sedimentar quaternária da ilha comprida, Estado de São Paulo. 147. Halder, S., Samanta, K., Das, S., & Pathak, D. (2021). Monitoring the inter-decade spatial–temporal dynamics of the Sundarban mangrove forest of India from 1990 to 2019. Regional Studies in Marine Science, 44, 101718. https://doi.org/10.1016/j.rsma.2021.101718 Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3), 350–363. https://doi.org/10.1016/j.jhydrol.2007.11.009 Hamer, E., Oyedotun, T. D. T., Charles, E., & Moonsammy, S. (2024). Spatio-Temporal Analysis of Mangrove Ecosystems and Hydrological Regimes in Coastal Guyana Using Remote Sensing. Journal of Coastal Research, 113(sp1), 544–548. https://doi.org/10.2112/JCR-SI113-107.1 Hamilton, S. E., & Casey, D. (2016). Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography, 25(6), Article 6. https://doi.org/10.1111/GEB.12449 Hamilton, S., & Presotto, A. (2024). A Global Database to Monitor Annual Mangrove Forest Change, 2000-2020 (GMC-21). Research Square. https://doi.org/10.21203/rs.3.rs-4262946/v1 Hastie, T. J. (1992). Generalized Additive Models. In Statistical Models in S. Routledge. Hespen, R., Hu, Z., Borsje, B., De Dominicis, M., Friess, D. A., Jevrejeva, S., Kleinhans, M. G., Maza, M., van Bijsterveldt, C. E. J., Van der Stocken, T., van Wesenbeeck, B., Xie, D., & Bouma, T. J. (2022). Mangrove forests as a nature-based solution for coastal flood protection: Biophysical and ecological considerations. Water Science and Engineering. https://doi.org/10.1016/J.WSE.2022.10.004 Hickey, S. M., Radford, B., Callow, J. N., Phinn, S. R., Duarte, C. M., & Lovelock, C. E. (2021). ENSO feedback drives variations in dieback at a marginal mangrove site. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/S41598-021-87341-5 Holbrook, N. J., Claar, D. C., Hobday, A. J., McInnes, K. L., Oliver, E. C. J., Gupta, A. S., Widlansky, M. J., & Zhang, X. (2020). ENSO‐Driven Ocean Extremes and Their Ecosystem Impacts. In M. J. McPhaden, A. Santoso, & W. Cai (Eds.), Geophysical Monograph Series (1st ed., pp. 409–428). Wiley. https://doi.org/10.1002/9781119548164.ch18 Hussain, A., Cao, J., Ali, S., Ullah, W., Muhammad, S., Hussain, I., Rezaei, A., Hamal, K., Akhtar, M., Abbas, H., Wu, X., & Zhou, J. (2022). Variability in runoff and responses to land and oceanic parameters in the source region of the Indus River. Ecological Indicators, 140, 109014. https://doi.org/10.1016/j.ecolind.2022.109014 IAPAR. (2016). https://www.idrparana.pr.gov.br/ INPE. (2021, September 8). http://www.dsr.inpe.br/DSR/areas-de-atuacao/sensores- plataformas/drones Jennerjahn, T. C., Gilman, E., Krauss, K. W., Lacerda, L. D., Nordhaus, I., & Wolanski, E. (2017). Mangrove ecosystems under climate change. Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services, 211–244. https://doi.org/10.1007/978-3-319-62206-4_7 Jia, M., Wang, Z., Zhang, Y., Mao, D., & Wang, C. (2018). Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. International Journal of Applied Earth Observation and Geoinformation, 73, 535–545. https://doi.org/10.1016/j.jag.2018.07.025 Kang, Y., Kaplan, D. A., & Osland, M. J. (2024a). Linking temperature sensitivity of mangrove communities, populations and individuals across a tropical-temperate transitional zone. Journal of Ecology, 112(6), Article 6. https://doi.org/10.1111/1365-2745.14296 Kang, Y., Kaplan, D. A., & Osland, M. J. (2024b). Linking temperature sensitivity of mangrove communities, populations and individuals across a tropical-temperate transitional zone. Journal of Ecology, 112(6), 1256–1274. https://doi.org/10.1111/1365-2745.14296 Kietzell, A. von, Schurer, A., & Hegerl, G. C. (2022). Marine heatwaves in global sea surface temperature records since 1850. Environmental Research Letters, 17(8), Article 8. https://doi.org/10.1088/1748-9326/ac81db Krauss, K. W., Lovelock, C. E., McKee, K. L., López-Hoffman, L., Ewe, S. M. L., & Sousa, W. P. (2008). Environmental drivers in mangrove establishment and early development: A review. Aquatic Botany, 89(2), 105–127. https://doi.org/10.1016/j.aquabot.2007.12.014 Krauss, K. W., McKee, K. L., Lovelock, C. E., Cahoon, D. R., Saintilan, N., Reef, R., & Chen, L. (2014). How mangrove forests adjust to rising sea level. New Phytologist, 202(1), 19–34. https://doi.org/10.1111/nph.12605 Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany, 89(2), Article 2. https://doi.org/10.1016/J.AQUABOT.2007.12.005 Kumara, M. P., Jayatissa, L. P., Krauss, K. W., Phillips, D. H., & Huxham, M. (2010). High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia, 164(2), 545– 553. https://doi.org/10.1007/s00442-010-1705-2 Lana, P. C., Marone, E., Lopes, R. M., & Machado, E. C. (2001). The Subtropical Estuarine Complex of Paranaguá Bay, Brazil. In U. Seeliger & B. Kjerfve (Eds.), Coastal Marine Ecosystems of Latin America (pp. 131–145). Springer. https://doi.org/10.1007/978-3-662-04482-7_11 Lassalle, G., Ferreira, M. P., La Rosa, L. E. C., & de Souza Filho, C. R. (2022). Deep learning-based individual tree crown delineation in mangrove forests using very- high-resolution satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 189, 220–235. https://doi.org/10.1016/j.isprsjprs.2022.05.002 Laurino, I. R. A., Serafini, T. Z., Costa, T. M., & Christofoletti, R. A. (2021). The role of estuarine macrofaunal patterns for the management of marine protected areas in a changing world. Journal for Nature Conservation, 63, 126042. https://doi.org/10.1016/J.JNC.2021.126042 Lima, N. G. B. de, Cunha-Lignon, M., & Galvani, E. (2021). Microclimatic analysis of mangroves in two distinct categories of Protected Areas and conserved status. Sociedade & Natureza, 33, e57483. https://doi.org/10.14393/SN-V33-2021- 57483 Lima Miranda, D. C. de, França, M. C., Ortiz-Whittingham, L., & Polidori, L. (2024). Evaluating decadal space-temporal mangrove dynamics using geographic object- based image analysis (GEOBIA) on the Doce River delta-ES, southeastern Brazilian coast. Quaternary Science Advances, 13, 100149. https://doi.org/10.1016/j.qsa.2023.100149 Lima, N., Cunha-Lignon, M., Martins, A., Armani, G., & Galvani, E. (2023). Impacts of Extreme Weather Event in Southeast Brazilian Mangrove Forest. Atmosphere, 14(8), Article 8. https://doi.org/10.3390/atmos14081195 Lopes, J. P. N., Nascimento Jr, W. R., Diniz, C. G., & Souza-Filho, P. W. M. (2023). Mangrove changes over the past decade in South and Southeast Brazil using spaceborne optical and SAR imagery. Anais Da Academia Brasileira de Ciências, 95, e20201533. https://doi.org/10.1590/0001-3765202320201533 Lovelock, C. (2015). The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526, 559–563. Lovelock, C. E., Krauss, K. W., Osland, M. J., Reef, R., & Ball, M. C. (2016). The Physiology of Mangrove Trees with Changing Climate. In G. Goldstein & L. S. Santiago (Eds.), Tropical Tree Physiology: Adaptations and Responses in a Changing Environment (pp. 149–179). Springer International Publishing. https://doi.org/10.1007/978-3-319-27422-5_7 Luo, S., & Chui, T. F. M. (2020). Annual variations in regional mangrove cover in southern China and potential macro- climatic and hydrological indicators. Ecological Indicators, 110, 105927. https://doi.org/10.1016/j.ecolind.2019.105927 Lymburner, L., Bunting, P., Lucas, R., Scarth, P., Alam, I., Phillips, C., Ticehurst, C., & Held, A. (2020). Mapping the multi-decadal mangrove dynamics of the Australian coastline. Remote Sensing of Environment, 238, 111185. https://doi.org/10.1016/J.RSE.2019.05.004 Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Marone, E., & Jamiyanaa, D. (2022). Tidal characteristics and a numerical model for the M2 tide at the Estuarine Complex of the Bay of Paranaguá, Paraná, Brazil. Revista Nerítica, 11(1–2), 95–107. Marques, M. C. M., Trindade, W., Bohn, A., & Grelle, C. E. V. (2021). The Atlantic Forest: An Introduction to the Megadiverse Forest of South America. In M. C. M. Marques & C. E. V. Grelle (Eds.), The Atlantic Forest: History, Biodiversity, Threats and Opportunities of the Mega-diverse Forest (pp. 3–23). Springer International Publishing. https://doi.org/10.1007/978-3-030-55322-7_1 Mesquita, A. R. (1995). Variacao do nivel medio do mar nas escalas decadal e interdecadal na+costa sudeste do brasil. Resumos. https://repositorio.usp.br/item/000900970 Mondal, B., Saha, A. K., & Roy, A. (2021). Spatio-temporal pattern of change in mangrove populations along the coastal West Bengal, India. Environmental Challenges, 5, 100306. https://doi.org/10.1016/j.envc.2021.100306 Montgomery, Elizabeth A. Peck, & G. Geoffrey Vining. (2021). Introduction to Linear Regression Analysis, 6th Edition | Wiley. Moschetto, F. A., Ribeiro, R. B., & De Freitas, D. M. (2021). Urban expansion, regeneration and socioenvironmental vulnerability in a mangrove ecosystem at the southeast coastal of São Paulo, Brazil. Ocean & Coastal Management, 200, 105418. https://doi.org/10.1016/J.OCECOAMAN.2020.105418 Murillo-Sandoval, P. J., Fatoyinbo, L., & Simard, M. (2022). Mangroves Cover Change Trajectories 1984-2020: The Gradual Decrease of Mangroves in Colombia. Frontiers in Marine Science, 9, 1277. https://doi.org/10.3389/FMARS.2022.892946/BIBTEX Nagelkerken, I., Blaber, S. J. M., Bouillon, S., Green, P., Haywood, M., Kirton, L. G., Meynecke, J.-O., Pawlik, J., Penrose, H. M., Sasekumar, A., & Somerfield, P. J. (2008). The habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany, 89(2), 155–185. https://doi.org/10.1016/j.aquabot.2007.12.007 Naidoo, G. (2023). The mangroves of Africa: A review. Marine Pollution Bulletin, 190, 114859. https://doi.org/10.1016/j.marpolbul.2023.114859 Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., Hanson, S. E., Merkens, J.-L., & Fang, J. (2021). A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change, 11(4), 338– 342. https://doi.org/10.1038/s41558-021-00993-z Nielsen, D. M., Cataldi, M., Belém, A. L., & Albuquerque, A. L. S. (2016). Local indices for the South American monsoon system and its impacts on Southeast Brazilian precipitation patterns. Natural Hazards, 83(2), 909–928. https://doi.org/10.1007/s11069-016-2355-4 Odériz, I., Silva, R., Mortlock, T. R., & Mori, N. (2020). El Niño-Southern Oscillation Impacts on Global Wave Climate and Potential Coastal Hazards. Journal of Geophysical Research: Oceans, 125(12), Article 12. https://doi.org/10.1029/2020JC016464 Oliver, T. S. N., Rogers, K., Chafer, C. J., & Woodroffe, C. D. (2012). Measuring, mapping and modelling: An integrated approach to the management of mangrove and saltmarsh in the Minnamurra River estuary, southeast Australia. Wetlands Ecology and Management, 20(4), 353–371. https://doi.org/10.1007/s11273-012- 9258-2 Osland, M. J., Chivoiu, B., Enwright, N. M., Thorne, K. M., Guntenspergen, G. R., Grace, J. B., Dale, L. L., Brooks, W., Herold, N., Day, J. W., Sklar, F. H., & Swarzenzki, C. M. (2022). Migration and transformation of coastal wetlands in response to rising seas. Science Advances, 8(26), eabo5174. https://doi.org/10.1126/sciadv.abo5174 Osland, M. J., Enwright, N. M., Day, R. H., Gabler, C. A., Stagg, C. L., & Grace, J. B. (2016). Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Global Change Biology, 22(1), Article 1. https://doi.org/10.1111/gcb.13084 Osland, M. J., Feher, L. C., López-Portillo, J., Day, R. H., Suman, D. O., Guzmán Menéndez, J. M., & Rivera-Monroy, V. H. (2018). Mangrove forests in a rapidly changing world: Global change impacts and conservation opportunities along the Gulf of Mexico coast. Estuar. Coast. Shelf Sci., 214, 120–140. https://doi.org/10.1016/j.ecss.2018.09.006 Parida, B. R., & Kumar, P. (2020). Mapping and dynamic analysis of mangrove forest during 2009–2019 using landsat–5 and sentinel–2 satellite data along Odisha Coast. Tropical Ecology, 61(4), 538–549. https://doi.org/10.1007/s42965-020- 00112-7 Pedersen, E. J., Miller, D. L., Simpson, G. L., & Ross, N. (2019). Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ, 7, e6876. https://doi.org/10.7717/peerj.6876 Pereira, F. R. de S., Kampel, M., & Cunha-Lignon, M. (2016). Mangrove vegetation structure in Southeast Brazil from phased array L-band synthetic aperture radar data. Journal of Applied Remote Sensing, 10(3), 036021. https://doi.org/10.1117/1.JRS.10.036021 Polidoro, B. A., Carpenter, K. E., Collins, L., Duke, N. C., Ellison, A. M., Ellison, J. C., Farnsworth, E. J., Fernando, E. S., Kathiresan, K., Koedam, N. E., Livingstone, S. R., Miyagi, T., Moore, G. E., Nam, V. N., Ong, J. E., Primavera, J. H., Salmo, S. G., Sanciangco, J. C., Sukardjo, S., … Yong, J. W. H. (2010). The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE, 5(4), Article 4. https://doi.org/10.1371/JOURNAL.PONE.0010095 Raw, J. L., Van der Stocken, T., Carroll, D., Harris, L. R., Rajkaran, A., Van Niekerk, L., & Adams, J. B. (2023). Dispersal and coastal geomorphology limit potential for mangrove range expansion under climate change. Journal of Ecology, 111(1), 139–155. https://doi.org/10.1111/1365-2745.14020 Reboita, M. S., Ambrizzi, T., Silva, B. A., Pinheiro, R. F., & da Rocha, R. P. (2019). The South Atlantic Subtropical Anticyclone: Present and Future Climate. Frontiers in Earth Science, 7. https://doi.org/10.3389/feart.2019.00008 Reynolds, R. W., Banzon, V. F., & NOAA CDR Program. (2008). NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) Analysis, Version 2 [Dataset]. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5SQ8XB5 Rovai, A. S., Coelho-Jr, C., de Almeida, R., Cunha-Lignon, M., Menghini, R. P., Twilley, R. R., Cintrón-Molero, G., & Schaeffer-Novelli, Y. (2021). Ecosystem-level carbon stocks and sequestration rates in mangroves in the Cananéia-Iguape lagoon estuarine system, southeastern Brazil. Forest Ecology and Management, 479, 118553. https://doi.org/10.1016/J.FORECO.2020.118553 Rovai, A. S., Twilley, R. R., Worthington, T. A., & Riul, P. (2022). Brazilian Mangroves: Blue Carbon Hotspots of National and Global Relevance to Natural Climate Solutions. Frontiers in Forests and Global Change, 4, 217. https://doi.org/10.3389/FFGC.2021.787533/BIBTEX Saintilan, N., Khan, N. S., Ashe, E., Kelleway, J. J., Rogers, K., Woodroffe, C. D., & Horton, B. P. (2020). Thresholds of mangrove survival under rapid sea level rise. Science, 368(6495), 1118–1121. https://doi.org/10.1126/SCIENCE.ABA2656/SUPPL_FILE/ABA2656_SAINTI LAN_SM.PDF Saintilan, N., Wilson, N. C., Rogers, K., Rajkaran, A., & Krauss, K. W. (2014). Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology, 20(1), 147–157. https://doi.org/10.1111/GCB.12341 Sasmito, S. D., Taillardat, P., Clendenning, J. N., Cameron, C., Friess, D. A., Murdiyarso, D., & Hutley, L. B. (2019). Effect of land-use and land-cover change on mangrove blue carbon: A systematic review. Global Change Biology, 25(12), 4291–4302. https://doi.org/10.1111/GCB.14774 Schaeffer-Novelli, Y., Cintron-Molero, G., Adaime, R. R., & Camargo, T. M. (1990). Variability of mangrove ecosystems along the brazilian coast. Estuaries, 13(2), 204–218. Sippo, J. Z., Lovelock, C. E., Santos, I. R., Sanders, C. J., & Maher, D. T. (2018). Mangrove mortality in a changing climate: An overview. Estuarine, Coastal and Shelf Science, 215, 241–249. https://doi.org/10.1016/J.ECSS.2018.10.011 Souza, C. M., Shimbo, J. Z., Rosa, M. R., Parente, L. L., Alencar, A. A., Rudorff, B. F. T., Hasenack, H., Matsumoto, M., Ferreira, L. G., Souza-Filho, P. W. M., de Oliveira, S. W., Rocha, W. F., Fonseca, A. V., Marques, C. B., Diniz, C. G., Costa, D., Monteiro, D., Rosa, E. R., Vélez-Martin, E., … Azevedo, T. (2020). Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sensing 2020, Vol. 12, Page 2735, 12(17), 2735. https://doi.org/10.3390/RS12172735 Taillardat, P., Friess, D. A., & Lupascu, M. (2018). Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biology Letters, 14(10), Article 10. https://doi.org/10.1098/rsbl.2018.0251 Twilley, R., & Rivera-Monroy, V. (2009). Ecogeomorphic models of nutrient biogeochemistry for mangrove wetlands (pp. 641–684). Elsevier. Van der Stocken, T., & Menemenlis, D. (2017). Modelling mangrove propagule dispersal trajectories using high-resolution estimates of ocean surface winds and currents. Biotropica, 49(4), Article 4. https://doi.org/10.1111/btp.12440 Van der Stocken, T., Vanschoenwinkel, B., Carroll, D., Cavanaugh, K. C., & Koedam, N. (2022). Mangrove dispersal disrupted by projected changes in global seawater density. Nature Climate Change 2022 12:7, 12(7), 685–691. https://doi.org/10.1038/s41558-022-01391-9 Vancine, M. H., Muylaert, R. L., Niebuhr, B. B., Oshima, J. E. de F., Tonetti, V., Bernardo, R., De Angelo, C., Rosa, M. R., Grohmann, C. H., & Ribeiro, M. C. (2024). The Atlantic Forest of South America: Spatiotemporal dynamics of the vegetation and implications for conservation. Biological Conservation, 291, 110499. https://doi.org/10.1016/j.biocon.2024.110499 Vanin, G. T., Lacerda, E. R., & Mori, G. M. (2024). Drivers of mangrove area change and suppression in Brazil from 2000 to 2020. Conservation Biology: The Journal of the Society for Conservation Biology, e14426. https://doi.org/10.1111/cobi.14426 Villate Daza, D. A., Moreno, H. S., Portz, L., Manzolli, R. P., Bolívar-Anillo, H. J., & Anfuso, G. (2020). Mangrove Forests Evolution and Threats in the Caribbean Sea of Colombia. Water 2020, Vol. 12, Page 1113, 12(4), 1113. https://doi.org/10.3390/W12041113 Visschers, L. L. B., Santos, C. D., & Franco, A. M. A. (2022). Accelerated migration of mangroves indicate large-scale saltwater intrusion in Amazon coastal wetlands. Science of The Total Environment, 836, 155679. https://doi.org/10.1016/j.scitotenv.2022.155679 Wang, P., Cheng, Q., & Jin, H. (2023). Divergent vegetation variation and the response to extreme climate events in the National Nature Reserves in Southwest China, 1961–2019. Ecological Indicators, 150, 110247. https://doi.org/10.1016/j.ecolind.2023.110247 Ward, R. D., & de Lacerda, L. D. (2021). Responses of mangrove ecosystems to sea level change. Dynamic Sedimentary Environments of Mangrove Coasts, 235–253. https://doi.org/10.1016/B978-0-12-816437-2.00002-1 Ward, R. D., Friess, D. A., Day, R. H., & MacKenzie, R. A. (2016a). Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosystem Health and Sustainability, 2(4), e01211. https://doi.org/10.1002/ehs2.1211 Ward, R. D., Friess, D. A., Day, R. H., & MacKenzie, R. A. (2016b). Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosystem Health and Sustainability, 2(4), Article 4. https://doi.org/10.1002/ehs2.1211 Wen, C., Kumar, A., & Xue, Y. (2014). Factors contributing to uncertainty in Pacific Decadal Oscillation index. Geophysical Research Letters, 41(22), 7980–7986. https://doi.org/10.1002/2014GL061992 Whitt, A. A., Coleman, R., Lovelock, C. E., Gillies, C., Ierodiaconou, D., Liyanapathirana, M., & Macreadie, P. I. (2020). March of the mangroves: Drivers of encroachment into southern temperate saltmarsh. Estuarine, Coastal and Shelf Science, 240, 106776. https://doi.org/10.1016/j.ecss.2020.106776 Wolter, K., & Timlin, M. S. (2011). El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). International Journal of Climatology, 31(7), 1074–1087. https://doi.org/10.1002/joc.2336 Wood, S. N. (2017). Generalized Additive Models: An Introduction with R, Second Edition (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315370279 Woodroffe, C. (1992). Mangrove sediments and geomorphology (pp. 7–41). American Geophysical Union. Woodroffe, C. D., Rogers, K., McKee, K. L., Lovelock, C. E., Mendelssohn, I. A., & Saintilan, N. (2016). Mangrove Sedimentation and Response to Relative Sea- Level Rise. Annual Review of Marine Science, 8(1), 243–266. https://doi.org/10.1146/annurev-marine-122414-034025 Worthington, T. A., zu Ermgassen, P. S. E., Friess, D. A., Krauss, K. W., Lovelock, C. E., Thorley, J., Tingey, R., Woodroffe, C. D., Bunting, P., Cormier, N., Lagomasino, D., Lucas, R., Murray, N. J., Sutherland, W. J., & Spalding, M. (2020). A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Scientific Reports 2020 10:1, 10(1), 1–11. https://doi.org/10.1038/s41598-020-71194-5 Ximenes, A. C., Ponsoni, L., Lira, C. F., Koedam, N., & Dahdouh-Guebas, F. (2018). Does Sea Surface Temperature Contribute to Determining Range Limits and Expansion of Mangroves in Eastern South America (Brazil)? Remote Sensing, 10(11), Article 11. https://doi.org/10.3390/rs10111787 Xu, M., Wang, Z., Liang, Y., Mo, Z., & Zhang, Q. (2024). Analysis of spatiotemporal evolution characteristics and recovery patterns of mangrove forests in China since 1978. Ecological Indicators, 169, 112882. https://doi.org/10.1016/j.ecolind.2024.112882 Yan, R., Feng, J., Fu, T., Chen, Q., Wang, Z., Kang, F., Fang, J., Huang, G., & Yang, Q. (2024). Spatial variation of organic carbon storage and aggregate sizes in the sediment of the Zhangjiang mangrove ecosystem. CATENA, 234, 107545. https://doi.org/10.1016/j.catena.2023.107545 Yao, Q., Cohen, M., Liu, K. biu, Fan, D., Rodrigues, E., Maiti, K., Vivan de Souza, A., Antonio Aragón-Moreno, A., Rohli, R., Yin, D., & Carlos Ruiz Pessenda, L. (2022). Mangrove expansion at poleward range limits in North and South America: Late-Holocene climate variability or anthropocene global warming? CATENA, 216, 106413. https://doi.org/10.1016/J.CATENA.2022.106413 Zhang, Y., Wallace, J. M., & Battisti, D. S. (1997). ENSO-like Interdecadal Variability: 1900–93. https://journals.ametsoc.org/view/journals/clim/10/5/1520- 0442_1997_010_1004_eliv_2.0.co_2.xml