RESSALVA Atendendo solicitação do(a) autor(a), o texto completo desta dissertação será disponibilizado somente a partir de 28/02/2022. UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” PRISCILA MANFIO QUEIROZ IMPACTO DA DIETA HIPERCALÓRICA NO TECIDO CARDÍACO E DA SUPLEMENTAÇÃO COM NARINGENINA: PARÂMETROS METABÓLICOS E ESTRESSE OXIDATIVO Dissertação apresentada à Faculdade de Medicina, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Botucatu, para obtenção do título de Mestre em Fisiopatologia em Clínica Médica. Orientadora: Profa. Dra. Ana Angélica Henrique Fernandes BOTUCATU 2018 PRISCILA MANFIO QUEIROZ Impacto da dieta hipercalórica no tecido cardíaco e da suplementação com naringenina: parâmetros metabólicos e estresse oxidativo Dissertação apresentada à Faculdade de Medicina, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Botucatu, para obtenção do título de Mestre em Fisiopatologia em Clínica Médica. Orientadora: Profa. Dra. Ana Angélica Henrique Fernandes Botucatu 2018 “Quando tudo tiver parecendo ir contra você, lembre-se que o avião decola contra o vento, e não a favor dele”. Henry Ford DEDICATÓRIA Dedico este trabalho aos meus pais Luiz Carlos Queiroz e Silvia Raquel Manfio Queiroz, sem a paciência, compreensão, e o total apoio durante toda a minha jornada de estudos nada seria possível. AGRADECIMENTOS À minha orientadora Ana Angélica Henrique Fernandes sempre muito atenciosa, presente e paciente. Obrigado pelos ensinamentos e pela confiança em me dar essa oportunidade. Ao técnico do biotério do Departamento de Bioquímica Fábio pelo auxílio no manejo dos animais. À equipe do laboratório Lucas, Anderson, Pedro, Barbara, Mariana e Nagilla, por toda colaboração quando precisei e troca de conhecimento. Aos meus amigos pelo companheirismo, dividir momentos bons e ruins, conselhos, auxílio e dedicação em me ajudar em momentos com dificuldade. Aos funcionários da Unidade de Pesquisa Experimental pelo auxílio nas atividades do dietário. RESUMO Introdução: A dieta ocidental rica em carboidrato e lipídio promove o desenvolvimento da síndrome metabólica. Alterações do metabolismo energético provocadas por um desbalanço redox em virtude de dieta hipercalórica, gera danos oxidativos e deficiência no sistema enzimático antioxidante, intensificando fatores de risco e eventos que levam à doença cardiovascular. Os flavonoides são compostos de origem vegetal com propriedades antioxidante e antiaterogênico. O objetivo do estudo foi avaliar as alterações metabólicas séricas e cardíacas em ratos submetidos a dieta hipercalórica e tratados com naringenina. Material e Métodos: Foram utilizados 32 ratos Wistar machos, distribuídos em 4 grupos: (C) Controle, (N) naringenina, (H) hipercalórico, (HN) hipercalórico tratado com naringenina. Os grupos (C e N, n=16) receberam dieta padrão enquanto que os grupos (H e HN, n=16) receberam dieta hipercalórica durante 30 dias. Após este período iniciou-se o tratamento com naringenina 50mg/kg (grupos N e HN) durante 43 dias à intervalos de 7 dias via intra gástrica. Ao final do experimento, os animais foram anestesiados para eutanásia. Foram coletadas duas porções de tecido cardíaco e amostra sérica para análise de perfil lipídico, glicemia, metabolismo energético, estresse oxidativo e glicogênio cardíaco. Resultados: O grupo (HN) tiveram uma diminuição na ingestão hídrica e ingestão alimentar, peso final, ganho de peso e glicemia. Não houve diferença significativa no peso inicial entre os grupos. Houve uma melhora no grupo (HN) no perfil lipídico, metabolismo energético e estresse oxidativo com exceção do glicogênio, proteínas totais, e atividade da catalase que não apresentaram diferença significante. Conclusão: O consumo de dieta hipercalórica causou dislipidemia, hiperglicemia, prejudicou o metabolismo energético e provocou consequentemente o estresse oxidativo no miocárdio. A análise da glicemia e perfil lipídico demonstrou que a suplementação de naringenina foi eficiente em atenuar esses parâmetros em animais submetidos à dieta hipercalórica. A oxidação exacerbada de ácidos graxos e o estresse oxidativo no tecido cardíaco, provocados pela dieta hipercalórica, foram controlados pela administração de naringenina. Palavras-chave: Naringenina, Dieta hipercalórica, Metabolismo energético, Estresse oxidativo ABSTRACT Introduction: Western diet rich in carbohydrates and lipids is an important role in metabolic syndrome development. Energy metabolism alterations caused by redox unbalance due to high fat diet, generated oxidative damage and deficiency in the antioxidant enzyme system, increasing risk factors and events that lead to cardiovascular disease. Flavonoids are natural compounds with antioxidant and antiatherogenic properties. This study assessed serum and cardiac metabolic alterations in rats fed with high fat diet and treated with naringenin. Material and Methods: We used 32 male Wistar rats, divided into 4 groups: (C) control, (N) naringenin, (H) high fat diet, (HN) high fat diet treated with naringenin. Groups (C and N, n=16) received standard diet whereas the groups (H and HN, n=16) received high fat diet during 30 days. After this period, the rats were treated with naringenin 50mg/kg (groups N and HN) during 43 days and at 7 days interval by gavage. Animals were anesthetized and led to euthanasia. Two cardiac tissue portions were collected as well as blood serum to evaluate lipid profile, glycemia, energy metabolism, oxidative stress and cardiac glycogen. Results: Group (HN) showed a decreased in water and food intake, final body weight, body weight gain and glycemia. There wasn’t significant difference in initial body weight between the groups. There was an improvement in group (HN) on lipid profile, energy metabolism and oxidative stress. There wasn’t significant difference on catalase activity, cardiac glycogen and total protein. Conclusion: It was concluded that high fat diet ingestion lead to dyslipidemia, hiperglycemia, empaired energy metabolism and caused oxidative stress in myocadium. Glycemic analysis and lipid profile showed that the supplementation of naringenin was effective to reduce these parameters in animals induced to high fat diet. The exacerbated oxidation of fatty acids and the oxidative stress in the cardiac tissue induced by high fat diet were controlled by naringenin administration. Keywords: Naringenin, High fat diet, Energy metabolism, Oxidative stress LISTA DE TABELAS Tabela 1 – Resultados médios obtidos para ingestão hídrica (ml/dia), ingestão alimentar (g/dia), peso inicial (g), peso final (g), ganho de peso (g) e glicemia nos diferentes grupos experimentais................................................................... 31 Tabela 2 - Resultados médios obtidos para a concentração sérica de colesterol total (CT), LDL-colesterol (LDL-c), triacilgliceróis (TG), VLDL-colesterol (VLDL- c) e HDL-colesterol (HDL-c) para os diferentes grupos experimentais....................................................................................................... 32 Tabela 3– Resultados médios obtidos para a atividade da lactato desidrogenase (LDH), citrato sintase (CS) e β-hidroxi acil CoA-desidrogenase (OHADH) no tecido cardíaco para os diferentes grupos experimentais....................................................................................................... 34 Tabela 4– Resultados médios obtidos para concentração de glicogênio e proteínas totais no tecido cardíaco para os diferentes grupos experimentais..... 36 Tabela 5 – Resultados médios obtidos para concentração de hidroperóxido de lipídio (HP), atividade da catalase (CAT), superóxido dismutase (SOD) e da glutationa peroxidase (GSH-Px) no tecido cardíaco para os diferentes grupos experimentais....................................................................................................... 37 LISTA DE FIGURAS Figura 1 – Geração e degradação de espécies reativas .................................... 15 Figura 2 – Desbalanço energético na insuficiência cardíaca ............................. 17 Figura 3 – Estrutura química dos flavonoides .................................................... 19 Figura 4 – Resumo do efeito do flavonoide cítrico no metabolismo do modelo animal .................................................................................................................. 22 Figura 5 – Delineamento experimental ............................................................... 25 Figura 6 – Resultados médios obtidos para a concentração da glicemia sérica nos diferentes grupos experimentais .................................................................. 31 Figura 7 – Resultados médios obtidos para a concentração sérica de CT (A), LDL-colesterol (B), TG (C), VLDL-colesterol (D) e HDL-colesterol (E) para os diferentes grupos experimentais ......................................................................... 33 Figura 8 – Resultados médios obtidos para a atividade de LDH (A), CS (B) e OHADH (C) para os diferentes grupos experimentais ........................................ 35 Figura 9 – Resultados médios obtidos para a concentração de glicogênio (A) e Pt (B) no tecido cardíaco para os diferentes grupos experimentais ................. 36 Figura 10 – Resultados médios obtidos para a concentração de HP (A), atividade da CAT (B), SOD (C) e da GSH-Px (C) para os diferentes grupos experimentais ...................................................................................................... 38 Sumário RESUMO ABSTRACT LISTA DE TABELAS LISTA DE FIGURAS INTRODUÇÃO .......................................................................................................... 11 HIPÓTESE ................................................................................................................ 23 OBJETIVO GERAL ................................................................................................... 23 OBJETIVOS ESPECÍFICOS ..................................................................................... 23 MATERIAIS E MÉTODOS ......................................................................................... 24 RESULTADOS .......................................................................................................... 31 DISCUSSÃO ............................................................................................................. 40 CONCLUSÕES ......................................................................................................... 56 REFERÊNCIAS BIBLIOGRÁFICAS .......................................................................... 57 56 CONCLUSÕES Conclui-se que o consumo de dieta hipercalórica causou dislipidemia, hiperglicemia, prejudicou o metabolismo energético e provocou consequentemente estresse oxidativo no miocárdio. A análise da glicemia e perfil lipídico demonstrou que a suplementação de naringenina foi eficiente em atenuar esses parâmetros em animais submetidos à dieta hipercalórica. A oxidação exacerbada de ácidos graxos e o estresse oxidativo no tecido cardíaco, provocados pela dieta hipercalórica, foram controlados pela administração de naringenina. 57 REFERÊNCIAS BIBLIOGRÁFICAS Aebi H. Catalase. In: Bergmeyer, H.U, editor. Methods of enzymatic analysis. Academic. New York: Academic Press; 1974. p.673-677. Adegbola P, Aderibigde I, Hammed W, Omotayo T. Antioxidant and anti-inflammatory medicinal plants have potential role in the treatment of cardiovascular disease: a review. Am J Cardiovasc Dis. 2017;7(2):19-32. Ahmed RG. The physiological and biochemical effects of diabetes on the balance between oxidative stress and antioxidant defense system. Med J Islamic World Acad Sci. 2005;15:31-42. Alam MA, Subhan N, Rahman MM, Uddin SJ, Reza HM, Sarker SD. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr. 2014;5(4):404-17. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetina intake and plasma LDL cholesterol concentration. J. Nutr. 2000; (130): 2243-50. Assini JM, Mulvihill EE, Huff MW. Citrus flavonoids and lipid metabolism. Curr Opin Lipidol. 2013;24(1):34-40. Bass A., Brdiczka D, Eyer P, Hofer S, Pette, D. Metabolic differentiation of distinct muscle at the level of enzymatic organization. Eur J Biochem. 1969; (10): 198-206. Beckman K, Ames B. Free radical theory of aging natures. Physiol Rev. 1998; (8): 547-81. Belguith-Hadriche O, Bouaziz M, Jamoussi K, Feki AE, Sayadi S, Makni-Ayedi F. Lipid-Lowering and Antioxidant Effects of an Ethyl Acetate Extract of Fenugreek Seeds in High-Cholesterol-Fed Rats. J Agric Food Chem. 2010;58:2116-22. Belhin G, Sendão MC, Francescato HDC, Antunes L.M.G, Bianchi MLP. Flavonóide quercetina: aspectos gerais e ações biológicas. Alim. Nutr. 2004; (15): 285-92. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 2017;135(10):e146-e603. Biesalkski HK. The role of antioxidants in nutritional support. Nutrition. 2000; (16): 593-96. Bonnefont-Rousselot D. The role of antioxidant micronutrients in the prevention of diabetic complications. Treat in Endocronol. 2004; (3): 41-52. Boren J, Taskinen M-R, Olofsson S-O, Levin M. Ectopic lipid storage and insulin resistance: a harmful relationship. J Intern Med. 2013; 274:25-40. Bruce-Chertow, JC. Advances in Diabetes for the millennium: vitamins and oxidant stress in Diabetes and its complications. Medscape Gen. Med. 2004; (6): 124-30. http://www.ncbi.nlm.nih.gov/pubmed/?term=Watanabe%20S%5BAuthor%5D&cauthor=true&cauthor_uid=10958819 http://www.ncbi.nlm.nih.gov/pubmed/?term=Kimira%20M%5BAuthor%5D&cauthor=true&cauthor_uid=10958819 http://www.ncbi.nlm.nih.gov/pubmed/?term=Shimoi%20K%5BAuthor%5D&cauthor=true&cauthor_uid=10958819 http://www.ncbi.nlm.nih.gov/pubmed/?term=Mochizuki%20R%5BAuthor%5D&cauthor=true&cauthor_uid=10958819 http://www.ncbi.nlm.nih.gov/pubmed/?term=Kinae%20N%5BAuthor%5D&cauthor=true&cauthor_uid=10958819 58 Brunzell JD, Davidson M, Furberg CD, Ronald R, Goldberg BG, Howard BV, et al. Lipoprotein management in patients with cardiometabolic risk. Consensus statement from the American Diabetes Association and the American College of Cardiology Foundation Diabetes Care. 2008; (31): 811-22. Bryan S, Baregzay B, Spicer D, Singal PK, Khaper N. Redox-inflammatory synergy in the metabolic syndrome. Can J Physiol Pharmacol. 2013;91(1):22-30. Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am. 2004;33(2):351-75, table of contents. Carmona MC, Lefebvre P, Galinier A, Benani A, Jeanson Y, Louche K, et al. Coadministration of coenzyme Q prevents rosiglitazone-induced adipogenesis in ob/ob mice. Int J Obesity. 2009; (33): 204-11. Cao K, Xu J, Pu W, Dong Z, Sun L, Zang W et al. Punicalagin, an active component in pomegranate, ameliorates cardiac mitochondrial impairment in obese rats via AMPK activation. Sci Rep. 2015;5:14014. Chen C, Jiang X, Hu Y, Zahng ZZ. The protective role of resveratrol in the sodium arsenite- induced oxidative damage via modulation of intracellular GSH homeostasis. Biol Trace Elem Res. 2013;27:124-36. Chong MF, Felding BA, Frayn KN. Mechanisms for the acute effect of fructose on postprandial lipemia. Am J Clin Nutr. 2007; (85): 1511-20. Chtourou Y, Slima AB, Makni M, Gdoura R, Fetoui H. Naringenin protects cardiac hypercholesterolemia-induced oxidative stress and subsequent necroptosis in rats. Pharmacological Reports. 2015;67:1090-97. Cohn RM, Roth KS. Lipid and lipoprotein metabolism. In: __. Biochemistry and disease. Baltimore: Williams and Wilkins Publishers; 1996. p.280. Costa NMB, Aalker AF, Low AG. The effect of graded inclusion of baked beans (Phaseolus vulgaris) on plasma and liver lipids in hypecholesterolaemic pigs given a Westen – type diet. Br J Nutr. 1993; (70): 515-24. Crouch RK, Gandy SC, KIsey G. The inhibition of islet superoxide dismutase by diabetogenic drugs. Diabetes. 1981; (30): 235-41. Csonka C, Sarkozy M, Pipicz M, Dux L, Csont T. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart. Oxidative Medicine and Cellular Longevity. 2016;1-23. Dervisevik M, Dinevska-Kovkarovska S, Dimitrovska M, Cipanovska N, Miova B. High dose of aspirin moderates diabetes-induced changes of heart glycogen/glucose metabolism in rats. J Physiol Sci. 2014;64:411-20. Di Carlo G, Mascolo N, Izzo AA, Capasso F. Flavonoids: Old and new aspects of a class of natural therapeutic drug. Life Sciences. 1999; (65): 337-53. 59 Diniz YS, Burneiko RC, Seiva FRF, Almeida FQ, Galhardi CM, Novelli Filho JLVB, et al. Diet compounds, glycemic index and obesity-related cardiac effects. Int J Cardiol. 2008; (124):592-9. Diniz YS, Santos PP, Assalin HB, Souza GA, Rocha KKHR, Ebaid GMX, et al. Conjugated linoleic acid and cardiac health: Oxidative stress and energetic metabolism in standard and sucrose-rich diets. European Journal of Pharamacology. 2008; (579): 318-25. Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013;113(6):709-24. Dorna, WC et al. Flavonóides: potencial terapêutico no estresse oxidativo. Rev. Ciênc. Farm. Básica Apl. 2007; (28):.214-9. Duffey KJ, Pereira RA, Popkin BM. Prevalence and energy intake from snacking in Brazil: analysis of the first nationwide individual survey. European Journal of Clinical Nutrition. 2013; (40): 1–7. Ferreira MA, Silva DM, Morais AC, Mota JF, Botelho PB. Therapeutic potential of green tea on risk factors for type 2 diabetes in obese adults – a review. Obes Rev. 2016; 17(12):1316-28. Fernandes AAH, Novelli ELB, Okoshi K, Okoshi MP, Dimuzio BP, Guimarães JFC, et al. Influence of rutin treatment on biochemical alterations in experimental diabetes. Biomedicine & Pharmacotherapy. 2010; (64): 214-9. Fillmore N, Mori J, Lopaschuk GD. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol. 2014;171(8):2080-90. Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A. A critical role for PPARα- mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: Modulation by dietary fat content Proceedings of the National Academy of Sciences of the United States of America. 2003; (100):226-31. Forbes-Hernandez TY, Giampieri F, Gasparrini M, Mazzoni L, Quiles JL, Alvarez-Suarez JM, et al. The effects of bioactive compounds from plant foods on mitochondrial function: A focus on apoptotic mechanisms. Food Chemi Toxicol. 2014;68:154-82. Fridovich I. Oxygen toxicity: a radical explanation. J Experim Biology. 1998; 201: 1203-9. Friedman MI. Fuel partitioning and food intake. Am J Clin Nutr. 1998; (67): 513-8. Galati, G. Sabzevari O, Wilson JX, O'Brien PJ. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology. 2002; (177): 91-104. Gami AS, Witt BJ, Howard DE, Erwin PJ, Gami LA, Somers VK, et al: Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol. 2007; (49): 403-14. Greenberg CC, Jurczak MJ, Danos AM, Brady MJ. Glycogen branches out: new perspectives on the role of glycogen metabolism in the integration of metabolic pathways. Am J Physiol Endocrinol Metab. 2006;291:E1-E8. http://lattes.cnpq.br/0077247086732148 http://lattes.cnpq.br/7224353379298415 http://lattes.cnpq.br/7553071298622133 http://www.ncbi.nlm.nih.gov/pubmed/?term=Sabzevari%20O%5BAuthor%5D&cauthor=true&cauthor_uid=12126798 http://www.ncbi.nlm.nih.gov/pubmed/?term=Wilson%20JX%5BAuthor%5D&cauthor=true&cauthor_uid=12126798 http://www.ncbi.nlm.nih.gov/pubmed/?term=O%27Brien%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=12126798 60 Gregory S, Kelly ND Quercetin. Altern. Med. Rev. 2011; (16): 172-94. Grundy SM. Obesity, Metabolic Syndrome, and Cardiovascular Disease. J Clin Endocrinol Metab. 2004; 89(6):2595-2600. Grundy SM. Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J Am Coll Cardiol. 2006; (47): 1093–1100. Hill JO. Understanding and addressing the epidemic of obesity: na energy balance prespective. Endocr Rev. 2006; (27): 750-61. Hruby A, Hu FB. The epidemiology of obesity: A Big Picture. Pharmacoeconomics. 2015; 33(7):673-89. Iglesia R, Loria-Kohen V, Zulet MA, Martinez JA, Reglero G, Molina AR. Dietary Strategies Implicated in the Prevention and Treatment of Metabolic Syndrome. Int J Mol Sci. 2016; 17(11):1877. Ilkun O, Boudina S. Cardiac Dysfunction and Oxidative Stress in the Metabolic Syndrome: an Update on Antioxidant Therapies. Curr Pharm Des. 2013; 19:4806-4817. Jayaraman J, Veerappan M, Namasivayam N. Potential beneficial effect of naringenin on lipid peroxidation and antioxidant status in rats with ethanol-induced hepatotoxicity. J Pharm Pharmacol. 2009;61(10):1383-90. Jeney V, Ithoh S, Wendt M, Gradek Q, Fukai MU, Harrison D, et al. Role of antioxidant in extracellular superoxide dismutase function and expression. Am Heart Assoc. 2005;96:723-26. Jiang ZY, Woolard ACS, Wolf SP. Lipid hydroperoxides measurement by oxidation of Fe2+ in the of xylenol orange. Lipids.1991; (24): 861-9. Jurdak N, Kanarek RB. Sucrose-induced obesity impairs novel recognition learning in Young rats. Physiol Behav. 2009;96:1-5. Kahraman, A. Erkasap N, Köken T, Serteser M, Aktepe F, Erkasap S. The antioxidative and antihistaminic proprieties of quercetin in ethanol-indced gastric lesion. Toxicology. 2003; (183): 133-42. Kannappan S, Anuradha CV. Naringenin enhances insulin-stimulated tyrosine phospholylation and improves the cellular actions of insulin in a dietary model of metabolic syndrome. Eur J Nutr. 2010;49:101-09. Kelley DE, Goodpaster B, Wing RR, Simoneau JA. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol. 1999; (277): 1130–41. Khatua TN, Padiya R, Karnewar S, Kuncha M, Agawane SB, Kotamraju S, et al. Garlic provides protection to mice heart against isoproterenol-induced oxidative damage: Role of nitric oxide. Nitric Oxide. 2012; 27:9-17. http://www.ncbi.nlm.nih.gov/pubmed/?term=Erkasap%20N%5BAuthor%5D&cauthor=true&cauthor_uid=12504347 http://www.ncbi.nlm.nih.gov/pubmed/?term=K%C3%B6ken%20T%5BAuthor%5D&cauthor=true&cauthor_uid=12504347 http://www.ncbi.nlm.nih.gov/pubmed/?term=Serteser%20M%5BAuthor%5D&cauthor=true&cauthor_uid=12504347 http://www.ncbi.nlm.nih.gov/pubmed/?term=Aktepe%20F%5BAuthor%5D&cauthor=true&cauthor_uid=12504347 http://www.ncbi.nlm.nih.gov/pubmed/?term=Erkasap%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12504347 61 Klepac N, Rudes Z, Klepac R. Effects of melatonin on plasma oxidative stress in rats with streptozotocin induced diabetes. Biom Pharmacoth. 2006;69:32-5. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal. 2013;2013:162750 Lacroix S, Rosiers CD, Tardif JC, Nigam A. The role of oxidative stress in postprandial endothelial dysfunction. Nutr Res Rev. 2012;25(2):288-301. Lewin TM, Coleman RA. Regulation of myocardial triacylglycerol synthesis and metabolism. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. 2003; (1634): 63-75. Leopoldo AS, Sugizaki MM, Lima-Leopoldo AP, Do Nascimento AF, Luvizotto RAM, Campos DHS, et al. Cardiac remodeling in a rat model of diet-induced obesity. Can J Cardiol. 2010;26(8):423-29. Leverve XM. Mitochondrial function and substrate availability. Crit Care Med. 2007;35:S454-S- 60. Liu J, Lloyd S. G. High fat, low-carbohydrate diet alters myocardial oxidative stress and impairs recovery of cardiac function following ischemia and reperfusion in obese rats. Nutr Res. 2013;33(4):311-21. Lopaschuk GD, Folmes CDL, Stanley WC. Cadiac enrgy metabolism in obesity. Cir Res. 2007; (101): 335-47. Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 2010; (90): 207-58. Lopes MJ, Perez MP, Marin C. Postprandial lipoprotein metabolism, genes and risk of cardiovascular disease. Curr Opin Lipid. 2008; (17): 132-8. Lopes-Virella MF, Stone P, Ellis S. Cholesterol determination in high-debsity lipoproteins separated by different mehods. Clin. Chem. 1977; (13): 882-4. Lopez-Revuelta A, Sánchez-Gallego JI, Hernández-Hernández A, Sánchez-Yagüe J, Llanillo M. Membrane cholesterol contents influence the protective effects of quercetin and rutin in erythrocytes damaged by oxidative stress. Chem. Biol. Interact. 2006; (161): 79-91. Mahjoub S, Masrour-Roudsari J. Role of oxidative stress in pathogenesis of metabolic syndrome. Caspian J Intern Med. 2012;3(1):386-96. Majithiya JB, Balaraman R. Time-dependent changes in antioxidant enzymes and vascular reactivity of aorta in streptozotocin-induced diabetic rats treated with curcumin. J Cardiovas Pharmacol. 2005;46:697-705. Mallet RT, Sun J, Knott EM, Sharma AB, Yurvati AHO. Metabolic cardioprotection by pyruvate: recent progress. Exp Biol Med. 2005; (230): 435-43. 62 Martins F, Campos DHS, Pagan LU, Martinez PF, Okoshi K, Okoshi MP, Padovani CR, et al. High-fat Diet Promotes Cardiac Remodeling in an Experimental Model of Obesity. Arq Bras Cardiol. 2015;105(5):479-86. Manach C, Morand C, Demigné C, Texier O, Régérat F, Rémésy C. Bioavailability of rutin and quercetin in rats. FEBS Lett. 1997;409(1):12-6. Mann, J. Secondary metabolism. Oxford: Clarendon Press, 1987. 374p. Mansor LS, Gonzalez ER, Cole MA, Tyler DJ, Beeson JH, Clarke K, et al. Cardiac metabolism in a new rat model of type 2 diabetes using high-fat diet with low dose streptozotocin. Cardiovascular Diabetology. 2013;12:136. Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, et al. Oxidative stress in Obesity: A Critical Component in Human Diseases. Int J MoL Sci. 2015;16:378-400. Martim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: are views. Journal of Biochemistry and Molecular Toxicology. 2003; (17): 24-38. Matheus ASM, Cobas RA, Gomes MB. Dislipidemias no Diabetes melito tipo 1: abordagem atual. Arq. Bras. Endocrinol. Metab. 2008; (52): 334-426. Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism. 2008; (57): 1071–7. Milutinovic A, Zorc-Pleskovic R. Glycogen accumulation in cardiomyocytes and cardiotoxic effects after 3NPA treatment. Bosn J Basic Med Sci. 2012;12(1):15-19. Moura RA. Técnicas de laboratório. 2.ed. São Paulo: Atheneu, 1982. Mulvihill EE, Huff MW. Protection from Metabolic Dysregulation, Obesity, and Atherosclerosis by Citrus Flavonoids: Activation of Hepatic PGC1α-Mediated Fatty Acid Oxidation. PPAR Res. 2012;2012:857142. Mulvihill EE, Burke AC, Huff MW. Citrus Flavonoids as Regulators of Lipoprotein Metabolism and Atherosclerosis. Annu Rev Nutr. 2016;36:275-99. Nakamura M, Hojoda S, Hayashi K. Purification and properties of rats liver glutathione peroxidase. Biochim. Biophys. Acta. 1974; (358): 251-61. Nelly JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol. 1974; (36): 413-61. Nishiyama Y, Haramaki n, Yoshida N, Imaizumi T. Oxidative stress is related to exercise intolerance in patients with heart failure. Am Heart J. 1998; (135): 115-20. Novelli ELB, Diniz YS, Galhardi CM, Ebaid GMX, Rodrigues HG, Mani F. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007; (41): 111-9. 63 Novelli ELB, Souza, GA, Ebaid GMX, Rocha KKHR, Seiva FRF, Mani F. Energy expenditure and oxygen consumption as novel biomarkers of obesity-induced cardiac disease. Obesity. 2010; (18): 1754-61. Novelli ELB. Nutrição e vida saudável – estresse oxidativo e metabolismo energético. Ribeirão Preto: Tecmed; 2005. Novelli ELB, Santos PP, Assalin HB, Souza G, Rocha K, Ebaid GX, et al. N-acetylcysteine in high-sucrose diet-induced obesity: Energy expenditure and metabolic shifting for cardiac health. Pharmacol Res. 2009;59(1):74-9. Oliveira MWS, Minotto JB, Zanotto-Filho A, Behr GA, Rocha RF, Moreira JC, et al. Scavenging and antioxidant potential of physiological taurine concentrations against different reactive oxygen/nitrogen species. Pharmacol. Rep. 2010; (62): 185-93. Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF. Quercetin and the mitochondria: A mechanistic view. Biotech Adv. 2016;34(5):532-49. Orhan IE, Nabavi SF, Daglia M, Tenore GC, Mansouri K, Nabavi SM. Naringenin and Atherosclerosis: A Review of Literature. Current Pharmaceutical Biotechnology. 2015;16 (3):245- 51. Paniagua JA. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome. World J Diabetes. 2016;7(19):483-514. Pan H, Gao Y, Tu Y. Mechanisms of Body Weight Reduction by Black Tea Polyphenols. Molecules. 2016;21(12):1659. Panchal SK, Poudyal H, Nazer B, Kauter K, Brown L. High-carbohydrate, high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiov Pharmacol, 2011; (57): 611-24. Parihar P, Parihar MS. Metabolic enzymes dysregulation in the heart failure: the prospective therapy. Heart Fail Rev. 2016;22(1):109-21. Peltonen M, Lindroos AK, Torgerson JS. Musculoskeletal pain in the obese: a comparison with a general population and long-term changes after conventional and surgical obesity treatment. Pain. 2003; (104): 549–57. Pereira B, Costa-Rosa LFBP, Bechara EJH, Newsholme P. Changes in the TBARs content and superoxide dismutase, catalase and gluatathione peroxidase activities in the lymphoid organs and skeletal muscles adrenomeduliated rats. Brazilian Journal of Medical and Biological Research. 1998; (31): 827-33. Perseghin G, Cobelli FD, Esposito A, Belloni E, Lattuada G, Canu T, et al. Left ventricular function and energy metabolism in middle-aged men undergoing long-lasting sustained aerobic oxidative training. Heart. 2009; (95): 630-5. http://www.ncbi.nlm.nih.gov/pubmed/?term=Minotto%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=20360629 http://www.ncbi.nlm.nih.gov/pubmed/?term=Zanotto-Filho%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20360629 http://www.ncbi.nlm.nih.gov/pubmed/?term=Behr%20GA%5BAuthor%5D&cauthor=true&cauthor_uid=20360629 http://www.ncbi.nlm.nih.gov/pubmed/?term=Rocha%20RF%5BAuthor%5D&cauthor=true&cauthor_uid=20360629 http://www.ncbi.nlm.nih.gov/pubmed/?term=Moreira%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=20360629 64 Pietilainen KH, Korkeila M, Bol LH, Westerterp KR, Ykijarvinen H, Kaprio J. Inaccuracies in food and physical activity diaries of obese subjects: complementary evidence from doubly labed water and co-twin assessments. Int J Obes. 2010; (34): 437-45. Pietta, G. Flavonoids as antioxidants. J. Nat. Prod. 2000; (63): 1035-42. Pohjoismäki JL, Goffart S. The role of mitochondria in cardiac development and protection. Free Radic Biol Med. 2017;106:345-54. Popkin BM. The nutrition transition and obesity in the developing world. J Nutr. 2001; (131): 871- 3. Pu P, Gao DM, Mohamed S, Chen J, Zhang J, Zhou XY, et al. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet. Arch Biochem Biophys. 2012;518:61-70. Ramesh B, Pugalendi KV. Impact of umbelliferone on erythrocyte redox status in STZ-diabetic rats. Yale J Biol Med. 2005;78:131-38. Rupasinghe HPV, Loodu-Sekhon S, Mantso T, Panayiotidis MI. Phytochemicals in regulating fatty acid β-oxidation: Potencial underlying mechanisms and their involvement in obesity and weight loss. Pharmacology and Therapeutics. 2016;165:153-63. Quiles JL, Ochoa JJ, Huertas JR, Mataix J. Coenzymes Q suplementation protects from age- related DNA double-strand breaks and increases lifespan in rats in a PUPA-rich diet. Exp Gerontol. 2004; (39): 189-94. Reeves PG. Components of the AIN-93 diets. J Nutr. 1997; (127): 838S-41S. Roberts CK, Barnard RJ, Liang KH, Vaziri ND. Effect of diet on adipose tissue and skeletal muscle VLDL repector and LPL: implications for obesity and hyperlipidemia. Atherosclerosis. 2002; 161:133-41. Reis JP, Allen N, Gibbs BB, Gidding SS, Lee JM, Lewis CE, et al. Association of the Degree of Adiposity and Duration of Obesity with Measures of Cardiac Structure and Function: The CARDIA Study. Obesity (Silver Spring). 2014;22(11):2434-40. Roehrig K, Allred JB. Direct enzymatic for the determination of liver glycogen. Analytical and flavonoids after oral and intravenous administration. Free Radic Biol Med. 1974; (27): 278-86. Ross SA, Ziska DS, Zhao K, ElSohly MA. Variance of common flavonoids by brand of grapefruit juice. Fitoterapia. 2000;71(2):154-61. Roslan J, Giribabu N, Karim K, Salleh N. Quercetin ameliorates oxidative stress, inflammation and apoptosis in the heart of streptozotocin-nicotinamide-induced adult male diabetic rats. Biomed Pharmacother. 2017; 86:570-82. Rutledge AC, Adeli K. Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms. Nutr Rev. 2007; (65): 13-23. 65 Sandoval-Acuna C, Ferreira J, Speisky H. Polyphenols and mitochondria: An update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys. 2014; 559:75-90. Sato A, Kawano H, Notsu T, Ohta M, Nakakuki M, Mizuguchi K, et al. Antiobesity effect of eicosapentaenoic acid in high-fat/high-sucrose diet-induced obesity: importance of hepatic lipogenesis. Diabetes. 2010;59(10):2495-504. Seiva FRF, Amauchi JF, Fujihara J, Rocha KKHR, Souza GA, Ebaid GM, et al. Effects of N- acetylcysteine on alcohol abstinence and alcohol induced adverse effects in rats. Alcohol. 2009; (43): 127-35. Silva, M. Efeito da estreptozotocina sobre os perfis glicêmico e lipídico e o estresse oxidativo em hamsters. Arq. Bras. Endocrinol. Metab. 2011; (55): 56-63. Soloni, F.G. Simplified manual michromethod for determination of serum triglycerides. Clin. Chem. 1971; (17): 531-4. Souza GA, Ebaid GX, Seiva FRF, Rocha KHR, Galhardi CM, Mani F, et al. N-acetylcysteinein Allium plant compound improves high-sucrose diet-induced obesity and related effects. CAM Adv Acess. 2008;11:1-7. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005; (10): 1093-29. Stanley WC, Sabbah HN. Metabolic therapy for ischemic disease. Heart Fail Rev. 2005; (10): 275-9. Stanhope KL, Havel PJ. Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol. 2008;19 (1):16-24. Stranahan AM, Cutler RG, Button C, Telljohann R, Mattson MP. Diet-induced elevations in serum cholesterol are associated with alterations in hippocampus lipid metabolism and increased oxidative stress. Journal of Neurochemistry, 2011; (118): 611-5. Strohl KP, Thomas AG, Jean PST, Achlenker EH, Koletsky RJ, Schork NJ. Ventilation and metabolism among rats strains. J Appl Physiol. 1997; (82): 317-23. Taskinem M-R, Boren J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis. 2015; 239:483-95. Testai L, Calderone V. Nutraceutical Value of Citrus Flavanones and Their Implications in Cardiovascular Disease. Nutrients. 2017;9 (5). Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301(6):H2181-90. 66 Valdecantos MP, Matute-Pérez P, González-Muniesa P, Prieto-Hontoria PL, Moreno-Aliaga MJ, Martínez JA. Lipoic acid administration prevents nonalcoholic steatosis linked to long-term high- fat feeding by modulating mitochondrial function. J Nutr Biochem. 2012; 23:1676-84. Varbo A, Benn M, Nordestgaard BG. Remnant cholesterol as a cause of ischemic heart disease: Evidence, definition, measurement, atherogenicity, high risk patients, and present and future treatment. Pharmacology and Therapeutics. 2014; 141:358-67. Ventura-Clapier R, Garnier A, Veksler V, Joubert F. Bioenergetics of the failing heart. Biochim Biophys Acta. 2011;1813(7):1360-72. Wan R, Camandola S, Mattson MP. Intermitent food deprivation improves cardiovascular and neuroendocrine responses to stress in rats. Nutr Neurosc. 2003; (55): 1921-9. Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, et al. Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014;25(1):1-18. Washington TA, Healey JM, Thompson RW, Lowe LL, Carson JA. Lactate dehydrogenase regulation in aged skeletal muscle: Regulation by anabolic steroids and functional overload. Exp Gerontol. 2014;57:66-74. Whitney, N.E. Nutrition and of the blood vessels, heart, and lungs. In: ROLFES, S.R.; PINNA, K.; Whitney, E.N. Understanding normal & clinical nutrition. Minneapolis: West Publishing Company. 1997; (4): 879-909. Wilkinson, J.H. Introducción al diagnostic enzimático. 3.ed. Buenos Aires: Ediciones Toray, 1965. 310p. World Health Organization. Diet, nutrition and the prevention of chronic diseases. Report of a joint FAO/WHO expert Consultation. Genebra: WHO/FAO; 2003. World Health Organization (WHO). Global Database on Body Mass Index; WHO: Geneva, Switzerland, 2011. Wu L, Parhofer KG. Diabetic dyslipidemia. Metabolism Clinical and Experimental. 2014; 63:1469-79. Yan S-L, Yang H-T, Lee Y-J, Lin C-C, Chang M-H, Yin M-C. Asiatic Acid Ameliorates Hepatic Lipid Accumulation and Insulin Resistence in Mice Consuming a High-Fat Diet. J Agric Food Chem. 2014; 62:4625-31. Yeum KJ, Russel RM, Krinsky NI, Aldini G. Biomarkers of antioxidant capacity in the hydrophilic and lipophilic compartments of human plasma. Arch Biochem Biophys. 2004; (430): 97-103. Yoshida M, Kimura H, Kyuki K, Ito M. Effect of combined vitamin E and insulin administration on renal damage in diabetic rats fed a high cholesterol diet. Biol. Pharm. Bull., 2005; (28):.2080-6. Zar, J.H. Bioestatistical analysis. 4.ed. New Jersey: Prentice Hall, 1996. 929p.