UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” FACULDADE DE MEDICINA Rafaianne Queiroz de Moraes Souza Repercussões bioquímicas e reprodutivas de mães e descendentes após o consumo materno de dieta hiperlipídica em roedores: Revisão Sistemática Tese apresentada à Faculdade de Medicina, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Botucatu, para obtenção do título de Doutora em Ginecologia, Obstetrícia e Mastologia. Orientadora: Profa. Dra. Débora Cristina Damasceno Coorientador: Prof. Dr. Gustavo Tadeu Volpato Botucatu 2019 Botucatu 2019 Rafaianne Queiroz de Moraes Souza Repercussões bioquímicas e reprodutivas de mães e descendentes após o consumo materno de dieta hiperlipídica em roedores: Revisão Sistemática Tese apresentada à Faculdade de Medicina, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Botucatu, para obtenção do título de Doutor(a) em Ginecologia, Obstetrícia e Mastologia (Área de Concentração: Ciências da Saúde). Orientadora: Profa. Dra. Débora Cristina Damasceno Coorientador: Prof. Dr. Gustavo Tadeu Volpato Botucatu 2019 “Sou feita de retalhos. Pedacinhos coloridos de cada vida que passa pela minha e que vou costurando na alma. Nem sempre bonitos, nem sempre felizes, mas me acrescentam e me fazem ser quem eu sou. Em cada encontro, em cada contato, vou ficando maior... Em cada retalho, uma vida, uma lição, um carinho, uma saudade... Que me tornam mais pessoa, mais humana, mais completa. E penso que é assim mesmo que a vida se faz: de pedaços de outras gentes que vão se tornando parte da gente também. E a melhor parte é que nunca estaremos prontos, finalizados... Haverá sempre um retalho novo para adicionar à alma. Portanto, obrigada a cada um de vocês, que fazem parte da minha vida e que me permitem engrandecer minha história com os retalhos deixados em mim. Que eu também possa deixar pedacinhos de mim pelos caminhos e que eles possam ser parte das suas histórias. E que assim, de retalho em retalho, possamos nos tornar, um dia, um imenso bordado de nós”. Cris Pizzimenti Dedicatórias A Deus por toda graça e misericórdia infinita, pelo amor e cuidado de cada segundo. “Porque dEle e por Ele, e para Ele, são todas as coisas; glória, pois, a Ele eternamente” (Romanos 11:36) À minha família, por todo apoio, carinho e ensinamentos, tudo que sou devo a vocês. Especialmente ao meu filho, Miguel Queiroz M. Souza, que chegou a este mundo me ensinando que sempre é preciso lutar! “A família é o amor de Deus nos oferecendo um pouquinho do céu aqui na Terra.” (Autor desconhecido) Agradecimentos Ao meu esposo, Bruno Andrade de Souza, que escolheu sonhar este sonho comigo, sempre esteve ao meu lado. Por todo incentivo, amparo e carinho, muito obrigada! Ao meu filho amado, Miguel Q. M Souza, pelo amor, carinho e hoje ser a maior alegria da minha vida. À minha mãe, Maria Joana Queiroz, por ser meu maior exemplo e me ensinar que devemos lutar por nossos sonhos. À minha sogra, Maria das Graças Andrade de Souza, por ser solicita e viajar 800 Km para cuidar do meu filho sempre que necessário, permitindo que eu pudesse estudar tranquilamente, nunca poderei retribuir tudo o que a senhora fez por nós! Ao meu Coorientador, Prof. Dr. Gustavo Tadeu Volpato, por ser mais que um professor em minha vida, um “pai científico”, um amigo querido. Sempre serei grata pelos anos de convivência e me lembrarei que só cheguei até aqui pela primeira oportunidade que recebi. À minha orientadora, Profa. Dra. Débora C. Damasceno, obrigada por se preocupar não só pelo meu aprendizado, mas também por questões pessoais. Nunca esquecerei das perguntas: Vocês estão com frio? Fome? Onde irão dormir? Serei eternamente grata, por ter este sentimento maternal e por sempre desejar o melhor para nós. Todos os ensinamentos me tornaram uma profissional e ser humano melhor. À minha amiga e parceira de longa data, Thaigra de Sousa Soares, por estar ao meu lado nesta jornada, obrigada por tudo. À Vêronyca de Paula Gonçalves, por ter mudado seus planos e decido a nos ajudar, não encontro palavras suficientes para expressar minha gratidão. À Giovana Vesentini, por todo tempo, ensinamento e paciência. Este trabalho se tornou possível por meio das suas contribuições. À profa. Dra. Yuri Karen Sinzato, por compartilhar conhecimentos, pela amizade e por ser um exemplo para mim. À minha família FISIOTOX (professores Gustavo Tadeu Volpato, Kleber Eduardo de Campos e Madileine F. Américo e todos os alunos), não poderei citar todos os nomes, porque durante quase 10 anos muitos passaram por lá e marcaram a minha vida, obrigada não só pelas discussões e reuniões científicas, mas pelos cafés e conversas do dia-a-dia. Aos meus colegas e amigos do LAPGO, aos que já saíram e os que ainda permanecem, obrigada por me acolherem e permitir que eu fizesse parte também desta família. Aos meus amigos Eduardo Kloppel, Carolina A. Miranda, Verônyca P. Gonçalves, Rosa Jacinto Volpato, Nágilla Orleane, por me abrigar, pela amizade e carinho para comigo. À Mariana Pirani e Larissa Lopes, por compartilhar conhecimentos, pela amizade e cada palavra de incentivo. Aos animais Pizza, Dristy, Lex, Madona e Brotinho, que me acolheram em seus lares e sempre me recepcionaram com carinho. À Carolina Saullo, por compartilhar conhecimento sobre constituição dietética. Aos assistentes de suporte acadêmico (ASA) da Unidade de Pesquisa Experimental (UNIPEX) da Faculdade de Medicina de Botucatu, especialmente aos Srs. Danilo Chaguri, Carlos Roberto Gonçalves de Lima, José Márcio Cândido e Jurandir Antônio, pela manutenção dos biotérios, limpeza e cuidados com os animais. Apesar deste trabalho não ser uma pesquisa original, participo de outros projetos. Então, agradeço por todo auxilio. Muito obrigada! À Faculdade de Medicina de Botucatu – Unesp, em especial ao Laboratório de Pesquisa Experimental de Ginecologia e Obstetrícia (LAPGO), por todos os recursos dispensados a mim. Aos funcionários da Seção de Pós-graduação da Faculdade de Medicina de Botucatu, em particular à secretária do Programa de Pós-graduação em Ginecologia, Obstetrícia e Mastologia, Sra. Solange Sako Cagliari, obrigada por ser sempre solicita e pelos auxílios prestados. Ao Escritório de Apoio à Pesquisa (EAP) da Faculdade de Medicina de Botucatu, Unesp, pelo serviço prestado. Em especial ao Prof. Dr. José Eduardo Corrente, pelos cálculos e análises estatísticas para os projetos que correram em paralelo a esta revisão sistemática. À equipe da biblioteca da Unesp de Botucatu pela confecção da ficha catalográfica e outros auxílios realizados. À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela concessão da bolsa, permitindo total dedicação a execução desse estudo. A todos aqueles que contribuíram direta ou indiretamente para a realização deste trabalho. Obrigada por todos os gestos singelos ou grandiosos. É necessário ser grato, porque ninguém caminha sozinho! Sumário Capítulo 1 ................................................................................................ 13 1. Considerações iniciais ................................................................... 14 2. Atividades desenvolvidas durante o doutorado ............................. 15 2.1 Artigos publicados ................................................................... 15 2.2 Apresentação de pôsteres em congressos .................... ......... 22 2.3 Participações em bancas ......................................................... 22 2.4 Coorientações concluídas de alunos ....................................... 23 2.5 Atividades de ensino ................................................................ 23 Capítulo 2 ................................................................................................ 24 Abstract .......................................................................................... 26 I. Introduction .................................................................................... 27 II. Methods ......................................................................................... 28 (1) Literature search ........................................................................ 28 (2) Inclusion and exclusion criteria .................................................. 29 (3) Data extration............................................................................. 30 (4) Qualitative assessment .............................................................. 31 III. Results ........................................................................................... 31 (1) Description of the data set ......................................................... 31 (2) Study characteristics .................................................................. 32 (3) Analysis of bias .......................................................................... 35 IV. Discussion ..................................................................................... 36 V. Conclusion ..................................................................................... 46 VI. References .................................................................................... 47 VII. Appendix S1. Supplementary methods .......................................... 74 Anexo1........................................................................................... 76 Anexo2........................................................................................... 77 Anexo3........................................................................................... 78 Capítulo 3 ................................................................................................ 79 Submissão da parte 1 do trabalho - PROSPERO ................................ 80 PROSPERO registration mensagem ................................................... 89 13 Capítulo 1 14 1. CONSIDERAÇÕES INICIAIS Este estudo faz parte de um projeto mais amplo intitulado “Avaliação de descendentes expostas ao diabetes moderado intrauterino, submetidas à dieta hiperlipídica no período pós-natal e tratadas com mistura de cálcio e vitamina D durante a prenhez” (Protocolo CEUA 1218/2017). Obteve financiamento da FAPESP (Processo número 2016/25207-5, vigência de 01/07/2018 a 30/06/2020). No primeiro projeto elaborado como sendo o doutorado de Rafaianne Queiroz Moares Souza, a metodologia contemplava os estudos sobre o útero materno e parâmetros fetais referente os animais do projeto completo descrito acima. Para obtenção de filhas de diabéticas (FDmod) com idade adulta, são necessários pelo menos 180 dias (meio ano). Ao longo deste experimento, foi observado que as ratas FDmod apresentaram dificuldades para acasalamento, o que retardou o tratamento desses animais, bem como o experimento como um todo. Após o segundo ano de tentativas frustradas para obtenção de ratas prenhes, advindas de ambiente intrauterina hiperglicêmico e alimentadas com dieta hiperlipídica, a aluna obteve uma pequena amostragem de animais prenhes. Estes animais foram tratados, mas durante o experimento, todos os animais prenhes e não-prenhes foram a óbito em virtude de uma contaminação bacteriana, confirmada por exames específicos realizados no Laboratório Clínico do Hospital Veterinário da FMVZ – Unesp. Desta forma, a aluna precisou reiniciar todo o experimento para obtenção de todos os grupos experimentais. No entanto, como a aluna ainda está coletando os dados novamente 15 para apresentação desta tese foi realizada uma revisão sistemática a respeito deste assunto. Os resultados sobre prenhez e tratamento com vitamina D e/ou cálcio continuam em andamento e estarão sob a responsabilidade desta aluna e de outras estudantes envolvidas no projeto completo para que sejam tabulados, analisados, discutidos e, posteriormente, publicados em revista de âmbito internacional. 2. ATIVIDADES EXECUTADAS DURANTE O DOUTORADO A aluna iniciou o Doutorado em março de 2015, durante todo esse período participou das atividades desenvolvidas no Laboratório de Fisiologia de Sistemas e Toxicologia Reprodutiva (FISIOTOX) da Universidade Federal do Mato Grosso (UFMT) e no Laboratório de Pesquisa Experimental em Ginecologia e Obstetrícia (LAPGO), pertencente ao Programa de Pós-graduação em Ginecologia, Obstetrícia e Mastologia da Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP). 2.1 Artigos Publicados 2.1.1. Soares TS, Andreolla AP, Miranda CA, Klöppel E, Rodrigues LS, Moraes-Souza RQ, Damasceno DC, Volpato GT, Campos KE. Effect of the induction of transgenerational obesity on maternal-fetal parameters. Syst Biol Reprod Med. 2018; 64(1):51-59. 16 17 2.1.2. Afiune LAF, Leal-Silva T, Sinzato YK, Moraes-Souza RQ, Soares TS, Campos KE, Fujiwara RT, Herrera E, Damasceno DC, Volpato GT. Beneficial effects of Hibiscus rosa-sinensis L. flower aqueous extract in pregnant rats with diabetes. PLoS One. 2017; 12(6):e0179785. 18 2.1.3. Moraes-Souza RQ, Reinaque AP, Soares TS, Silva AL, Giunchetti RC, Takano MA, Akamatsu MA, Kubrusly FS, Lúcio- Macarini F, Raw I, Iourtov D, Ho PL, Bueno LL, Fujiwara RT, Volpato GT. Safety evaluation of a vaccine: Effect in maternal reproductive outcome and fetal anomaly frequency in rats using a leishmanial vaccine as a model. PLoS One. 2017; 12(3):e0172525 (Publicação referente à Dissertação de Mestrado). 19 2.1.4. Pinheiro MS, Rodrigues LS, S L Neto, Moraes-Souza RQ, Soares TS, Américo MF, Campos KE, Damasceno DC, Volpato GT. Effect of Bauhinia holophylla treatment in streptozotocin- induced diabetic rats. An Acad Bras Cienc. 2017; 89(1):263- 272. 20 2.1.5. Moraes-Souza RQ, Soares TS, Carmo NO, Damasceno DC, Campos KE, Volpato GT. Adverse effects of Croton urucurana B. exposure during rat pregnancy. J Ethnopharmacol. 2017;199:328-333 (Publicação referente à Monografia). 21 2.1.6. Damasceno DC, Leal-Silva T, Soares TS, Moraes-Souza RQ, Volpato GT. Medicinal plants for diabetes treatment during pregnancy. Curr Med Chem. 2017; 24(4):404-410. 22 2.2 Apresentação de pôsteres em congressos nacionais e internacionais 2.2.1. MORAES-SOUZA, R. Q.; CRUZ, L. L.; SOARES, T.S.; PAULA, V. G.; SINZATO, Y. K.; DAMASCENO, D. C.; VOLPATO, G. T “Effects of Curatella americana treatment on complications of diabetic pregnancy”. In: 6th International Symposium on Metabolic Programming and Microbiome and 3rd Meeting of Ibero-American DOHaD chapter, 2018, Cancun. Book of abstracts, 2018. v. 1. p. B60008. 2.2.2. MORAES-SOUZA, R.Q.; REINAQUE, A. P. B.; SOARES, T.S.; BUENO, L. L.; FUJIWARA, R. T.; VOLPATO, G. T. “Repercussões maternas de ratas vacinadas com proteína peroxidoxina recombinante de Leishmania braziliensis durante a prenhez”. In: I Workshop do Programa de Imunologia e Parasitologia Básicas e Aplicadas, 2015, Barra do Garças. Livro de Resumos, 2015. v. 1. p. 11-11. 2.2.3. MORAES-SOUZA, R.Q.; NETO, L.S.; ALVES, D. G.; SOARES, T.S.; CAMPOS, K. E.; AMERICO, M.F.; DAMASCENO, D. C.; VOLPATO, G. T. “Effect of Hancornia speciosa aqueous extract treatment on biochemical parameters in diabetic pregnant rats”. In: XX Congresso da Sociedade Brasileira de Diabetes, 2015, Porto Alegre. Diabetology & Metabolic Syndrome, 2015. v. 7. p. A76. Além das apresentações e participações em congresso, a aluna foi coautora de outros 36 resumos publicados em anais. 2.3 Participações em bancas de trabalhos de conclusão de curso 2.3.1. Participação em banca de Thalita Bohnen Carneiro. Efeitos materno-placentário-fetais em diferentes intensidades glicêmicas no início da prenhez dentro do modelo experimental 23 de diabete moderado, 2016 (Enfermagem) Universidade Federal de Mato Grosso. 2.3.2. Participação em banca de Bruno Stephano Ferreira da Silva. Repercussões fetais do tratamento com Curatella americana em ratas prenhes com diabete de intensidade moderada, 2018 (Enfermagem) Universidade Federal de Mato Grosso. 2.4 Coorientações concluídas de alunos 2.4.1. Vanessa Caruline Araujo da Silva.Repercussões maternas e fetais de ratas tratadas com Micofenolato de Sódio antes da prenhez. 2016. Orientador: prof. Dr. Gustavo Tadeu Volapto. Nível: iniciação científica. 2.4.2. Cristielly Maria Barros Barbosa. Efeitos adversos do tratamento com Ciclosporina antes e durante a prenhez. 2016. Orientador: prof. Dr. Gustavo Tadeu Volapto. Nível: Iniciação Científica. 2.4.3. Mário Cezar Fiuza Carlos. Repercussões maternas e fetais de ratas tratadas com Tacrolimo antes da prenhez. 2015. Orientador: prof. Dr. Gustavo Tadeu Volapto. Nível: Iniciação Científica. 2.5 Atividades de ensino Atuação como professora convidada para ministrar o tema “Placentação e Anexos embrionários”. Disciplina de Histologia e Embriologia, cursos de Graduação Enfermagem e Biomedicina. Carga horária: 4 horas. Período: 2016, 2018 e 2019. 24 Capítulo 2 25 REPERCUSSÕES BIOQUÍMICAS E REPRODUTIVAS DE MÃES E DESCENDENTES APÓS O CONSUMO MATERNO DE DIETA HIPERLIPÍDICA EM ROEDORES: REVISÃO SISTEMÁTICA BIOCHEMICAL AND REPRODUCTIVE REPERCUSSIONS OF MOTHERS AND THEIR OFFSPRING AFTER MATERNAL CONSUMPTION OF HIGH-FAT DIET IN RODENTS: A SYSTEMATIC REVIEW Rafaianne Queiroz Moraes Souza 1,2, Giovana Vesentini 1*, Verônyca Gonçalves Paula 1, Yuri Karen Sinzato 1, Thaigra de Sousa Soares 1,2, Rafael Bottaro Gelaleti 1, Gustavo Tadeu Volpato 2, Débora Cristina Damasceno 1 1 Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Obstetrics and Mastology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil 2 Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil. *Correspondence to: Giovana Vesentini Departamento de Ginecologia e Obstetrícia Faculdade de Medicina de Botucatu, UNESP Distrito de Rubião Júnior, s/n Telefone: 55 14 38801631 CEP: 18.618-970 Botucatu, Estado de São Paulo, Brasil Email: gi.vesentini@hotmail.com Este artigo foi redigido de acordo com as normas de publicação da revista Biological Reviews (Fator de Impacto = 11,7), para a qual será submetido. 26 ABSTRACT Maternal exposure to the high-fat diet (HFD) during gestation or lactation can be harmful to both mother and offspring. The objective of this systematic review was to synthesize the available data on the effects of maternal HFD on the reproductive parameter and biochemical profile in rodents. The electronic search was performed in the PUBMED (Public/Publisher MEDLINE), EMBASE (Ovid) and Web of Science databases. Data from 76 studies showed that change in biochemical and reproductive parameters is dependent on the experimental design. Furthermore, the heterogeneity found in the studies makes it impossible to comparisons. In addition, studies often omit or neglect important information, such as a description of the diet or methodological details. These factors make it difficult to affirm the true effect of maternal HFD consumption for both mother and offspring. Keywords: high-fat diet, pregnancy, triglycerides, cholesterol, oxidative stress, descendants. 27 I. INTRODUCTION During gestation, the developing fetus is totally dependent on the maternal environment for nutrition (Barker, 1998). The intrauterine environment is a crucial determinant in the fetal programming of chronic diseases in adulthood. This concept is called Fetal Origin of Adult Diseases - FOAD (Barker, 2007). However, after several studies, this term has been extended to DOHaD (Developmental Origins of Health and Disease) (Gillman et al., 2007), which refers to a larger critical period of development, ranging from the original fetal period of Barker's proposal to the pre-gestational, embryofetal and postnatal periods. The range of life periods that the DOHaD hypothesis covers is still controversial. There is evidence that the critical period of development occurs from the phase encompassing meiosis and gametogenesis to the entire period of postnatal development and maturation from childhood to adolescence (Suzuki et al., 2018). There is also other evidence about periods the DOHaD covers, disseminated worldwide through the “First 1000 Days” campaign, that affirms the importance of the nutritional status of infants and nursing mothers in the fetal and neonatal period until two years after birth comprising between 280 days before birth and approximately 730 infantile days after birth (Organization 1,000 Days). Although there is no single consensus, research-involving DOHaD thematic purposes to raise awareness about nutrition and health have been investigated (Suzuki et al., 2018). According to the World Health Organization (WHO), malnutrition refers to deficiencies, excesses or imbalances in a person’s intake of energy and/or nutrients (WHO, 2016), leading to undernutrition or overnutrition (Academy of Nutrition and Dietetics, 2018). The 28 population is abandoning traditional diets that are rich in fibers and grain for diets that include increased levels of sugars, oils, and animal fats (WHO, 2002). There are five times more obese than malnourished adult people worldwide (WHO, 2016). Maternal consumption of high- fat diet (HFD) is an important factor that causes harm to both mother and her offspring (Yu et al., 2013a; Kim et al., 2016). In the last decades, epidemiological evidence has shown that intrauterine life conditions influence growth, body composition and the risk of developing chronic diseases (Langley‐Evans, 2015). Animal studies also indicates that overnutrition during pregnancy induces phenotypic changes can enhance susceptibility to diseases in adult offspring (Parlee et al., 2013; Williams et al., 2014), such as hyperglycemia (Li et al.,2015), obesity (White et al., 2009; Franco et al., 2012; Desai et al., 2014) and metabolic syndrome (Desai et al., 2014). Epidemiological studies in humans are limited in their ability to assess the diet influence during pregnancy to offspring phenotype, as it is difficult to separate the effects of intrauterine and post-natal maternal exposure and genetic factors (Friedman, 2018). Therefore, research involving adequate experimental models is relevant, not only for ethical reasons but also due to uncontrollable variables, such as lifestyle, socioeconomic, nutritional and genetic factors. Hence, the objective of this systematic review was to identify and evaluate the studies with animal models (rodents) that were exposed to the HFD content in the pregnancy and/or lactation period to investigate biochemical and reproductive repercussions of mothers and offspring. II. METHODS (1) Literature search This systematic review was undertaken in accordance with the 29 PRISMA (Liberati et al., 2009) and registered on PROSPERO - International Prospective Register of Systematic Reviews (Protocol number CRD42019120418). The literature search was performed from inception to December 13th, 2018, on titles, abstracts, and keywords, in PUBMED (Public/Publisher MEDLINE), EMBASE (Ovid) and Web of Science databases. The following Medical Subject Headings (MeSH) and their synonyms were used in different combinations and variations with the Boolean operators "OR" and "AND" to yield a sensitive and comprehensive, yet relevant collection of possible articles “high-fat diet”, “oxidative stress", "triglyceride", "cholesterol", "low-density lipoprotein", "high density lipoprotein", "Alanine transaminase", "alanine aminotransferase" and "rodent" (See Appendix Supplementary S1 for complete search strategy). Besides the electronic search, other sources were used, such as hand searching and screening of reference lists. Additional records were included from review articles and author- based searches. The searches were restricted to original studies that were published in the English language in scientific journals that were submitted to the peer-review process, without year restriction. After screening of titles and abstracts, three reviewers (RQMS, VPG, and DCD) independently examined full-text articles. Disagreements were resolved in consensus discussions. (2) Inclusion and exclusion criteria Studies were included in the data set only if they fulfilled the following criteria: (i) All rodent models. Non-rodents, spontaneously obese, genetically modified animals; ex vivo and in vitro studies involving human subjects were excluded; (ii) Studies on rodents being dams were subjected to an HFD around gestation (before and/or 30 during the whole or any part of pregnancy), or lactation. HFD was considered as chow-based HFD from any fat type (e. g., lard and vegetable oils). Custom-made diet (i.e. cafeteria), high-fiber diet, high- calorie diet, high-glucose diet, low-fat diet in short, and any other diet than non-high-fat diet were excluded. (iii) For comparison, animals that were fed a standard diet were included. The evaluation of articles that used to nutritional manipulation (i. e., surgery, drugs, stress, and exercise) was not considered. (iv) The primary outcomes were included lipid profile, oxidative stress of the dams and offspring and maternal reproductive outcomes. • Lipid profile: Triglyceride (TG), Total Cholesterol (TC), High- density lipoprotein (HDL), Low-density lipoprotein (LDL) concentrations, • Alanine aminotransferase (ALT) and Aspartate aminotransferase (AST) activities. • Oxidative stress status: Malondialdehyde / Thiobarbituric acid reactive substances (MDA/TBARS) (lipid oxidation), Superoxide dismutase (SOD), Catalase (CAT) and Glutathione peroxidase (GPx) activities, 8-hydroxy-2' - deoxyguanosine (8-OHdG - DNA oxidation), quantification and scavenging reactive oxygen species (ROS). • Reproductive outcomes: Litter size, maternal and offspring weight. (3) Data extraction For studies presenting eligibility criteria, relevant data were extracted such as publication year, animal strain, study design, and intervention, maternal and offspring outcomes were all collected. 31 (4) Qualitative assessment Risk of bias for animal studies was assessed using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE’s tool), which was evaluated in ten steps: three of selection (random group allocation, group similar at baseline and blinded group allocation), two of them on performance (random housing and blinded intervention), two of detection (random and blinded outcome assessment), one of attrition bias (reporting of drop-outs), one reporting (selective outcomes), one to other potential bias (Hooijmans et al., 2014). Included studies were assessed independently by two reviewers (RQMS and GV) and any discrepancies were solved by discussion. The items were classified as low, unclear or high risk of bias. The score of all the articles was defined as the percentage of 0 to 100% and each category (Hooijmans et al., 2014). We did not exclude studies based on high risk of bias. III. RESULTS (1) Description of the data set Initial electronic searching across three databases yielded a number of 2007 citations. In addition, 32 articles were added from other sources. The removal of 676 duplicates resulted in 1363 individual articles to be subjected to inclusion and exclusion criteria. Firstly, the inclusion and exclusion criteria were imposed on title and abstract (removal of 1229), and secondly on study design and methods (removal of 58). Finally, 76 citations were selected for review (Figure 1). 32 (2) Study characteristics Figure 2A shows the year of publication of the studies. Only eight (11%) articles had more than ten years of publication, and 33 (43%) have been published from 2009 to 2014, 35 (46%) were published in the last five years. Among of the rodent strains, 26 (34%) were C57Bl/6 (mice), two (3%) Swiss (mice), four (5%) were Institute of Cancer Research- ICR (mice), 26 (34%) Sprague-Dawley (rats) and 18 (24%) Wistar (rats) (Figure 2B). Figure 2C shows the characteristics of the maternal diets, which were shown as chow fat content ranged from 16 to 64.5% calories. Twelve studies, (approximately 15%) use of less than 39%Kcal. 46 studies, (approximately 59%) use of 40 – 49% Kcal and 20 (26%) employ more than 50% Kcal. Furthermore, from the 76 articles included in this review, 49 used the as source the animal-derived fats (mainly lard) and eight used vegetal oils, two articles used mixed (one used lard and corn oil and other used vegetable shortening, milk fat, soybean oil ) and 17 did not identify the source of fat (Figure 2D). After analyzing the included papers, 12 studies assessed litter size, of these 10 papers (83.34%) presented no change, one study (8.33%) showed greater litter size and one study (8.33%) with decreased litter size (Figure 3A). Furthermore, 12 studies (52%) presented higher maternal body weight and other 11 studies (48%) showed no abnormal weight (Figure 3B). There were 33 assessment the offspring's weight, 22(67%) presented no offspring weight changes, six (18%) evaluations had greater offspring weight and five (15%) showed lower weights (Figure 3C). Table 1 shows the period of maternal exposure to diet and the biochemical biomarker assessments of mothers. The HFD exposure 33 ranges from 19 to 141 days. The biochemical parameters were TG, TC, HDL, LDL, ALT, and measurements of oxidative stress status. In the 21 studies that investigate the maternal TG level, 16 (76%) presented higher levels, four (19%) no change and one (5%) of them showed a decrease. The maternal TC had ten evaluations, eight (80%) of which increased, one (10%) did not change and another (10%) decreased. There were four maternal HDL evaluations [two (50%) increased and others two (50%) did not change]. The two articles (100%) about maternal LDL assessments showed higher levels of this biomarker. The only maternal analysis of ALT did not change. Regarding the oxidative stress status in this systematic review, the results of the studies were included according to the quantification of pro-oxidants (MDA, 8-OHdG, and ROS) and antioxidant enzymes (SOD, CAT, and GPx). In four (100%) maternal evaluations, the MDA levels increased, there was only one maternal analysis of ROS and was increased. The maternal SOD antioxidant enzyme was evaluated in only one study and this was increased. Maternal GPx was also observed higher in only one study. The maternal scavenging capacity on reactive oxygen species was verified to be decreased in two assessments. Table 2 shows the period of maternal exposure to diet, characteristics of offspring (sexes and death age) and biochemical measurements of the biomarker of the offspring. The HFD exposure ranges from 19 to 154 days. In relation to sex, thirty-one articles verified both sexes; thirty studies analyzed males, fourteen evaluated females and another reported no explanation. The age that the offspring killed ranged between one day after birth up to 650 days old. The observed biochemical parameters were TG, TC, HDL, LDL, ALT, AST and oxidative stress status. Of the 139 articles about TG, 65 34 (47%) verified higher levels, others 69 (50%) showed no change and five (3%) presented lower levels. Of all 84 articles about TC, 22 (26%) showed an increased level, 54 (64%) verified no change and eight (10%) observed lower concentrations. There were 30 HDL assessments in the offspring, of these four (13%) were increased, 21 (70%) presented no abnormal HDL levels and five (17%) showed decreased concentrations. Furthermore, in 20 papers with LDL analysis in offspring, seven (35%) verified higher levels, 12 (60%) of them showed no change and one (5%) observed low level. The activity of the liver AST enzyme in the offspring was increased in one article (12.5%) and in other seven (87.5%) there was no change. In 11 studies about ALT measurements, in four (36%) was showed higher activity, in six of them (55%) no change and in one paper (9%) a decrease was verified. In relation to oxidative stress status in offspring, there were 21 studies on MDA analysis, of these 14 (67%) confirmed high concentrations and seven (33%) showed no change. There were three ROS evaluations, two of them (66.67%) verified high values and one (33.33%) no change. The studies showed determinations of oxidative DNA damage, such as 8-OHdG, which three papers (75%) observed high levels and one (25%) no change. There were 18 articles about fetal SOD activity, three (16.67%) of which were increased, one (5.56%) presented no change and 14 (77.77%) articles showed low SOD activity. There were 11 investigations measured CAT activity, one (10%) paper presented no change and ten (91%) of them observed a decreased activity. The offspring GPx activity was evaluated in 17 papers, 3 (18%) of which had high activity, 4 (23%) no change and 10 (59%) showed a decrease. In the two studies using thiol measurements, one (50%) showed no change and another (50%) 35 verified a decreased level. (Table 2). The most commonly used sample was blood with approximately 65% (34 analyses used the serum and 31 contained plasma samples). Other samples were also used, 21 (20%) used liver, three (3%) sampled mesentery, two (2%) used kidneys, one (1%) reported milk, one (1%) placenta, one (1%) used sperm, one (1%) testis, one (1%) studied femoral artery, two (2%) used muscles, one (1%) sampled cardiomyocytes, and another (1%) reported islet (Figure 4). (3) Analysis of bias The assessment of the SYRCLE risk of bias tool to assess the quality of animal studies indicated a high or unknown risk of bias for the studies in the majority of categories (Figure 5). Although the majority of included studies reported the baseline characteristics (64 studies - 84% were low risk), and 12 studies omitted this information (16% were high risk), there was unclear information about the methods used to generate allocation sequence in 32 studies (42% were unclear risk and 44 studies no description. 58% were at high risk. No description about concealment of the allocation sequence (76 studies - 100%). Information about performance bias, such as animals randomly housed (21 studies - 28% were high risk), care and blinded investigation of intervention/exposure of each animal was deficient (75 studies - 99% of them were high risk). Furthermore, detection bias was assessed as high risk due to no description of random selection for outcome assessment (74 studies - 97%) and blinded assessor about outcomes was 100%. While more than 53% (40 studies) of the included studies reported high attrition bias, the remaining two categories were classified as low risk of bias, which were reporting bias (75 studies - 99%) and other potential bias (76 studies - 100%). 36 IV. DISCUSSION The objective of this study is to perform a systematic review on animal models submitted to a maternal high-fat feeding compared to standard diet to identify the experimental design and the most suitable biomarkers of the dams and offspring that were influenced by inadequate diet. After analyzing several full-text (paper), it was demonstrated that there was a lack of uniformity in the methodologies and diet composition. This led to the difficulty of comparing the studies, especially with regard to biomarkers for the definition of risks and injury for both mother and offspring after the maternal consumption of an HFD. Systematic reviews are commonly used for human studies (Tajali et al., 2010; Santos et al., 2017). However, reviews using an animal model predominantly rodents have been highlighted (Ainge et al., 2011; Lagisz et al., 2015; Besson et al., 2016; Ribaroff et al., 2017). Rodents (mice and rats) are ideal models to induce metabolic alterations (Ramalho et al., 2017) and suitable for investigating the mechanisms related to DOHaD (Chavatte-Palmer et al., 2016). Considering these and other advantages, rodents were employed in this review. To establish a complete search, there was no year limitation of the included studies. In this context, the majority of the articles are related to the last five years and this might be explained because the investigations on developmental plasticity and fetal programming have been started in these last years (Barker et al., 1993; Gillman et al., 2007). In this review, only articles that used diets with a higher fat content than the control group were evaluated. The major source was 37 lard, which mainly consists of non-essential fatty acids (Tellechea et al., 2017). Some studies have used plant-originated fat, which contains essential fatty acids (polyunsaturated) (Sasidharan et al., 2013, Jurgoński et al., 2014). According to Tellechea et al. (2017), maternal exposure to the diet rich in lard is directly related to metabolic syndrome-related phenotypes in offspring rats. Besides that, essential fatty acids contain fundamental nutrients to fetal and postnatal development and normal cell function (Mennitti et al., 2015). However, an excess may harm and have adverse consequences for offspring (Mennitti et al., 2015). The different sources, concentrations and exposure periods of HFD can be responsible for the heterogeneity of results on reproductive and biochemical parameters (Lagisz et al., 2015). Several authors presented the energy from fat (% Kcal) and others in centesimal composition. To facilitate such comparisons, the values were standardized in % Kcal in this review. Considering that carbohydrate provides four calories/gram, protein provides four calories/gram and fat provides nine calories/gram, these values were used in our review (United States Department of Agriculture - USDA, 2019). The HFD model in animals has shown to be effective in producing maternal obesity by increasing body weight (Tellechea et al., 2017). Some studies present greater maternal body weight (Khan et al., 2005; Férézou-Viala et al., 2007; Jungheim et al., 2010; Yamaguchi et al., 2010; Krasnow et al., 2011; Masuyama & Hiramatsu, 2012; Cheong et al., 2014; Masuyama & Hiramatsu, 2014; Masuyama et al., 2015; Kim et al., 2016; Lecoutre et al., 2016; Mdaki et al., 2016). However, this parameter presents no change depending on the experimental design (Koukkou et al., 1998; Ghosh et al., 2001; Zambrano et al., 2010; Cerf et al., 2011; Lin et al., 2011; Yang et al., 38 2012; Yu et al., 2013b, Desai et al., 2014; Brenseke et al., 2015; Umekawa et al., 2015; Albert et al., 2017). While one study showed that the HFD maternal consumption during pregnancy can interfere with reproductive parameters such as lower litter size (Cheong et al., 2014), other study verified greater litter size (Krasnow et al., 2011). The result found about decreased litter size might be due to increased FoXO3a levels and, consequently, a reduction in the number of primordial follicles in the ovaries and oocyte apoptosis (Liu et al., 2009; Cheong et al., 2014). Such differences might be justified by the short period of diet exposure (28 days), despite the high-fat concentration (60% Kcal) (Krasnow et al., 2011). After analysis of the full-text, we observed that most of the experimental models related to the included studies caused no change in litter size (Guo & Jen., 1995; Férézou-Viala et al., 2007; Nasu et al., 2007; Cerf et al., 2011; Lin et al., 2011; Masuyama & Hiramatsu, 2012; Ornellas et al., 2013; Brenseke et al., 2015; Masuyama et al., 2015 Mdaki et al., 2016; Albert et al., 2017). Maternal overnutrition is a risk factor for fetal growth, which might be increased or decreased (Christians et al., 2019). This complex process depends on the fetal genotype and epigenetics, such as intrauterine insults and a variety of growth factors and proteins. The fetal growth depends not only on the maternal organism but also on fetuses and placenta, as well as the availability of oxygen and nutrients to the fetus (Bequer et al., 2018). Although, most rodent studies report that offspring exposed to HFD during pregnancy and/or lactation present no abnormal body weight (Koukkou et al., 1998; Ghosh et al., 2001; Khan et al., 2005; Zambrano et al., 2010; Franco et al., 2012; Yang et al., 2012; Hou et al., 2015; Umekawa et al., 2015; Zhou et al., 2015; Lecoutre et al., 2016; Albert et al., 2017; Sheen et al., 2018), 39 some studies show that maternal HFD consumption results in lighter offspring (Melo et al., 2014; Zheng et al., 2014; Reynold et al., 2015; Mdaki et al., 2016; Huang et al., 2017; Kunle-Alabi et al., 2018). Other studies demonstrated heavier fetuses (Masuyama & Hiramatsu, 2012; 2014; Masuyama et al., 2015). The phenotypes of offspring body weight are unclear and it seems to be due to differences in the HFD consumption period, fat source, and animal strain (Sullivan et al., 2010). The consumption of a high-fat diet with animal or plant-derived fats leads to increased TG (triglyceride) levels (Buettner et al., 2007), as observed in most studies included in this review, in which the majority of TG measurements has been increased in the mother (Lin et al., 2011; Franco et al., 2012; Masuyama & Hiramatsu, 2012; Ornellas et al., 2013; Masuyama & Hiramatsu, 2014; MacPherson et al., 2015; Masuyama et al., 2015; Kim et al., 2016; Mdaki et al., 2016; Albert et al., 2017; Rahman et al., 2017). Although these findings are similar in several studies, the results using diet vary in different laboratories due to animal strain and diet variety (Buettner et al., 2007). It is important to emphasize that even though maternal TG does not change; the maternal consumption HFD may cause metabolic alterations in offspring (Desai et al., 2014). The TG determinations analyzed in offspring showed an increase (approximately 47% of included studies), (Guo & Jen., 1995; Ghosh et al., 2001; khan et al., 2003; Chechi et al., 2009; Tokuza et al., 2009; Yamaguchi et al., 2010; Zambrano et al., 2010; Dong et al., 2011; Emiliano et al., 2011; Ashino et al., 2012; Chen et al., 2012; Li et al., 2012; Masuyama & Hiramatsu, 2012; Yang et al., 2012; Ornellas et al., 2013; Resende et al., 2013; Chen et al., 2014b; Desai et al., 2014; Masuyama & Hiramatsu, 2014; Melo et al., 2014; Yokomizo et al., 40 2014; Bringhenti et al., 2015; MacPherson et al., 2015; Masuyama et al., 2015; Reynold et al., 2015; Seet et al., 2015; Umekawa et al., 2015; Vega et al., 2015; Zhou et al., 2015; Bringhenti et al., 2016; Ito et al., 2016; Mazzucco et al., 2016; Tsuduki et al., 2016; Zambrano et al., 2016; Albert et al., 2017; Huang et al., 2017; Moussa et al., 2017; Nguyen et al., 2017; Lomas-Soria et al., 2018; Miranda et al., 2018) as expected since the HFD-induced nutrient overload is necessary for the development of metabolic alterations (Hariri & Thibault, 2010; James et al., 2012). Consequently, there are increased serum TG levels (Gheibi et al., 2017). A possible mechanism involved is the AcsI3 gene (acyl-CoA synthetase long-chain family member 3), which is lower after HFD exposure (Huang et al., 2017). Moreover, suppression of this gene is related to the reduced lipid synthesis and TG storage due to the lower cellular uptake of fatty acids (Bu et al., 2009; Poppelreuther et al., 2012). However, other authors observed no change in serum TG levels (approximately 50% of included studies) (Guo & Jen., 1995; Kokkou et al., 1998; khan et al., 2003; khan et al., 2004; khan et al., 2005; Férézou-Viala et al., 2007; Chechi et al., 2009; Tokuza et al., 2009; Yamaguchi et al., 2010; Cerf et al., 2011; Zhang et al., 2011; Ashino et al., 2012; Chen et al., 2012; Yang et al., 2012; Rajja et al., 2013; Ornellas et al., 2013; Chen et al., 2014a; Chen et al., 2014b; Desai et al., 2014; Yokomizo et al., 2014; Zheng et al., 2014; Brenseke et al., 2015; Gray et al., 2015b; Hou et al., 2015; Umekawa et al., 2015; Vega et al., 2015; Ito et al., 2016; Kim et al., 2016; Lecoutre et al., 2016; Mazzucco et al., 2016; Mdaki et al., 2016; Tsuduki et al., 2016; Zambrano et al., 2016; Moussa et al., 2017; Glastras et al., 2017; Moussa et al., 2017; Sheen et al., 2018; Tanaka et al., 2018; Zhao et al., 2018; Kunle-Alabi et al., 2018; Miranda et al., 2018; Zhao et al., 2018). Approximately 3% of included studies 41 observed decreased TG concentrations (Seet et al., 2015; Tsuduki et al., 2016; Mousavi et al., 2017). The most analyses that showed no change or all decrease in TG concentration were performed in the blood samples. This fact may have contributed to the results presented in this review. A higher TG transfer to the liver due to the HFD consumption may have occurred and contributed to the development of non-alcoholic fatty liver diseases, leading to changes in the TG synthesis and transport. (Bugianesi et al., 2005; Fabbrini et al., 2010). The HFD exposure is associated with dyslipidemia, which involves higher total cholesterol and LDL levels, as well as a reduction in HDL-cholesterol levels (Adiels et al., 2008; Klop et al., 2013). The results found in this review show that few articles evaluated these biomarkers in the mother and were divergent in offspring analyses. This suggests that such biomarkers are not efficient to reveal the injury induced by high-fat consumption, which depends on the experimental model employed. The excess of common nutrients in HFD may exceed the adipose tissue capacity to process excessive energy and this excessive fat might be deposited in the liver (Despres & Lemieux, 2006). Overload in the liver results in increased ALT and AST activities (Sultan, 2008; Fraulob et al., 2010). Despite the diet influence on the liver, few studies evaluated ALT and AST levels. The studies included in this review showed unchanged maternal ALT levels, but there were higher ALT and AST activities in the offspring (Tsuduki et al., 2016; Kunle-Alabi et al., 2018; Tanaka et al., 2018). The redox status, nutritional and environmental factors play an important role in the susceptibility to oxidative stress and other metabolic alterations (Luo et al., 2006). Oxidative stress occurs due to increased production of reactive oxygen species (ROS) and/or failure 42 of the antioxidant system (Bringhenti et al., 2015). This imbalance was observed in the full papers evaluated in this review both for mother (Lin et al., 2011; Vega et al., 2015; Kim et al., 2016) and offspring (Tokuza et al., 2009; Emiliano et al., 2011; Lin et al., 2011; Zhang et al., 2011; Torrens et al., 2012; Resende et al., 2013; Yokomizo et al., 2014; Bringhenti et al., 2015; Rodriguez-Gonzalez et al., 2015; Glastras et al., 2016; Ito et al., 2016; Kim et al., 2016; Mdaki et al., 2016; Glastras et al., 2017; Miranda et al., 2018; Tanaka et al., 2018 ), most of which show changes in pro or antioxidant biomarkers. Malondialdehyde (MDA) and 8-hydroxy-2 '-deoxyguanosine (8-OHdG) were the pro- oxidants or lipid peroxidation products included in this review. MDA is a final product of lipid peroxidation measured by the quantification of thiobarbituric acid reactive substances (TBARS) (Lee et al., 2012). 8- OHdG is one of the major products of DNA oxidation and may be modified (Hasan, et al., 2017). These biomarkers represent a detrimental environment for both mothers and their offspring (Eriksson et al., 2003; Hjort et al., 2018; Reece et al., 2004). The association of HFD and increased pro-oxidants can be explained by endothelial dysfunction (Mdaki et al., 2016) and increased inflammatory process (Zhang et al., 2011, Glastras et al., 2017). The enzymatic antioxidant system composed of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), the three main endogenous antioxidants, is triggered according to the organism requirement to protect itself against the oxidative insult caused by maternal HFD exposure (Emiliano et al., 2011). The lower antioxidant profile observed in several studies (Emiliano et al., 2011; Lin et al., 2011; Resende et al., 2013; Rodriguez-Gonzalez et al., 2015; Bringhenti et al., 2015; Miranda et al., 2018) may be due to the enzymatic rapid consumption and depletion (Noeman et al., 2011). 43 The higher antioxidant defenses verified in two of the studies are related to the compensation against the increase of oxidants (Rodriguez-Gonzalez et al., 2015; Vega et al., 2015). Both the increase and reduction of antioxidants represent an attempt to stabilize ROS (Birben et al., 2012). It is important to note that several papers tested blood samples for biochemical analysis (plasma or serum) (Guo & Jen., 1995; Kokkou et al., 1998; Ghosh et al., 2001; Khan et al., 2003; Khan et al., 2004; Khan et al., 2005; Férézou-Viala et al., 2007; Nasu et al., 2007; Chechi et al., 2009; Elahi et al., 2009; Tokuza et al., 2009; Jungheim et al., 2010; Yamaguchi et al., 2010; Zambrano et al., 2010; Cerf et al., 2011; Dong et al., 2011; Emiliano et al., 2011; Lin et al., 2011; Zhang et al., 2011; Ashino et al., 2012; Chen et al., 2012; Li et al., 2012; Masuyama & Hiramatsu, 2012; Yang et al., 2012; Yu et al., 2013a; b; Ornellas et al., 2013; Rajja et al., 2013; Resende et al., 2013; Yu et al., 2013a , Chen et al., 2014a; Chen et al., 2014b; Desai et al., 2014; Hou et al., 2015; Masuyama & Hiramatsu, 2014; Zheng et al., 2014; Brenseke et al., 2015; Gray et al., 2015b; Masuyama et al., 2015; Reynold et al., 2015; Seet et al., 2015; Umekawa et al., 2015; Vega et al., 2015; Bringhenti et al., 2016; Ito et al., 2016; Kim et al., 2016; Lecoutre et al., 2016; Mazzucco et al., 2016; Mdaki et al., 2016; Tsuduki et al., 2016; Zambrano et al., 2010; Albert et al., 2017; Elahi & Matata, 2017; Glastras et al., 2017; Huang et al., 2017; Mousavi et al., 2017; Moussa et al., 2017; Nguyen et al., 2017; Rahman et al., 2017; Kunle-Alabi et al., 2018; Lomas-Soria et al., 2018; Miranda et al., 2018; Sheen et al., 2018; Tanaka et al., 2018; Zhao et al., 2018). Blood is an effective material for the evaluation of biochemical profile because it informs the health state at the collection time (Liu et al., 2010). The second type of sample most used was the liver (Lin et al., 2011; Zhang et al., 2011; 44 Ashino et al., 2012; Chen et al., 2012; Ornellas et al., 2013; Yokomizo et al., 2014; Chen et al., 2014a;b; Melo et al., 2014; Bringhenti et al., 2015; Zhou et al., 2015; Vega et al., 2015; Ito et al., 2016; Kim et al., 2016; Tsuduki et al., 2016; Huang et al., 2017; Lomas-Soria et al., 2018; Miranda et al., 2018; Tanaka et al., 2018; Zhao et al., 2018). The hepatic tissue undergoes maturation stages during late gestation and early postnatal life. Hence, the liver is highly susceptible to inadequate nutrition maternal (Bruce et al., 2016). There were also few determinations in other samples, such as mesentery (Emiliano et al., 2011; Gray et al., 2015a; Resende et al., 2013), kidney (Glastras et al., 2016; 2017), muscle (MacPherson et al., 2015), placenta (Lin et al., 2011), milk (Franco et al., 2012), islet (Yokomizo et al., 2014), sperm and testis (Rodriguez-Gonzalez et al., 2015), cardiomyocytes (Mdaki et al., 2016), and femoral artery (Torrens et al., 20112). The non- uniformity of the samples is related to the objectives of each research. The difference in sample type also caused variation in the results, as for example in TG measurements that even with the same methodology was found increased in liver or muscle and without alterations in blood samples (Ashino et al., 2012; Yang et al., 2012; Ornellas et al., 2013; Chen et al., 2014b). An inadequate feeding during the prenatal period likely increases the risk of chronic diseases, such as diabetes and metabolic changes during adult offspring (Ganu et al., 2012; Ross & Desai, 2013). The overnutrition during pregnancy is a risk factor for the mother and their offspring, corroborating the DOHaD theory (Gillman et al., 2007). The selected articles were evaluated with an appropriate bias risk assessment instrument applied to experimental models (Hooijmans et al., 2014). A good design describes the process of randomization, such as bias origin and their influence in the results (Festing, 2014). Most 45 articles only cite randomization of animals; however, they do not correctly describe the process. The blindness of researchers and data analysis are also an argument for bias, which was neglected in the studies. This probably occurs because of the difficulty for blinding during management with animals and with diet. From the implementation of more appropriate methodologies could reduce the bias, contributing to improving the reliability and interpretation of results (Ribaroff et al., 2017). In this review, there are methodological limitations of the included studies that culminated in the lack of consensus of results. Firstly, the description of diet composition, both in the control and HFD groups, sometimes is ignored by the authors or not clearly reported. However, by neglecting this information, the investigators hinder the interpretations and make the impractical reproducibility of these studies (Kilkenny et al., 2010). Secondly, the articles selected present a variability of the standard diet (control group) characteristics, which causes difficulty for comparison among the experimental groups and control groups from different studies, showing that there is no consensus in the researches involving high-fat diet. The American Institute of Nutrition (AIN) published the formula use to standard chow for experimental rodents, AIN-93G, which shows all the necessary nutrients to be used during the early growth phase and during reproduction (Reeves, 1997). Thirdly, the fact that we have not restricted the strains, fat concentration, and source, offspring sex, period and number of days of maternal consumption of the HFD, age at which pups were analyzed are factors that contribute to the heterogeneity of the found results. Despite limitations, this review presents strengths, such as an extensive view of the literature. We used different databases with a large number of terms and keywords 46 to increase the number of searches. In addition, we showed the consequences for both mothers and their offspring. V. CONCLUSION In conclusion, this systematic review shows that maternal HFD consumption can change the material parameters and cause damages to their descendants depending on the experimental design. The heterogeneity found in the studies makes the comparisons impossible. In addition, studies often omit or neglect important information, such as a description of the diet or methodological details. These factors make it difficult to affirm the true effect of maternal HFD consumption for both mother and offspring. 47 VI. REFERENCES 1,000 Days. We are the leading nonprofit organization working to ensure a healthy first 1,000 days for mothers and children everywhere. https://thousanddays.org/about/our-story/ (accessed 18 dez 2018). Academy of Nutrition and Dietetics. (2018). What is Malnutrition. https://www.eatright.org/food/nutrition/healthy-eating/what-is- malnutrition (accessed 07 apr 2019). Adiels, M., Olofsson, S.-O., Taskinen, M.-R., & Boren, J. (2008). Overproduction of Very Low-Density Lipoproteins Is the Hallmark of the Dyslipidemia in the Metabolic Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology 28, 1225 –1236. Ainge, H., Thompson, C., Ozanne, S.E. & Rooney, K.B. (2011). A systematic review on animal models of maternal high fat feeding and offspring glycaemic control. International Journal of Obesity 35, 325 – 335. Albert, B. B., Vickers, M. H., Gray, C., Reynolds, C. M., Segovia, S. A., Derraik, J., Garg, M. L., Cameron-Smith, D., Hofman, P. L., & Cutfield, W. S. (2017). Fish oil supplementation to rats fed high-fat diet during pregnancy prevents development of impaired insulin sensitivity in male adult offspring. Scientific Reports 7, 5595. Armitage, J.A., Taylor, P.D. & Poston, L. (2005). Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. The Journal of Physiology 565, 3 – 8. Ashino, N.G., Saito, K.N., Souza, F.D., Nakutz, F.S., Roman, E.A., Velloso, L.A., Torsoni, A.S. & Torsoni, M.A. (2012). Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. The Journal of Nutritional Biochemistry 23, 341 –348. Barker, D.J., Godfrey, K.M., Gluckman, P.D., HArding, J. E., Owens, J. A., & Robinson, J. S. (1993). Fetal nutrition and cardiovascular disease in adult life. Lancet. 341, 938 – 941. Barker, D.J.P. (1998). In utero programming of chronic disease. Clinical Science 95, 115 – 128. Barker, D.J.P. (2007). The origins of the developmental origins theory. Journal of Internal Medicine 5, 412 – 417. Bequer, L., Gómez, T., Molina, J. L., Álvarez, A., Chaviano, C., & Clapés, S. (2018). Experimental diabetes impairs maternal reproductive performance in pregnant Wistar rats and their offspring. Systems biology in reproductive medicine 64, 60 – 70. Besson, A.A., Lagisz, M., Senior, A.M. Hector, K.L. & Nakagawa, S. (2016). Effect of maternal diet on offspring coping styles in rodents: a systematic review and meta-analysis. Biological Reviews 91, 1065 –1080. Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S. & Kalayci, O. (2012). Oxidative stress and antioxidant defense. The World Allergy Organization journal 5, 9 –19. Brenseke, B., Bahamonde, J., Talanian, M., Kornfeind, E., Daly, J., Cobb, G., 48 Zhang, J., Prater, M.R., Davis, G.C. & Good, D.J. (2015). Endocrinology 156, 182 – 192. Bringhenti, I., Ornellas, F., Mandarim-de-Lacerda, C.A. & Aguila, M.B. (2016). The insulin-signaling pathway of the pancreatic islet is impaired in adult mice offspring of mothers fed a high-fat diet. Nutrition 32, 1138 – 43. Bringhenti, I., Ornellas, F., Martins, M.A., Mandarim-de-Lacerda, C.A. & Aguila, M.B. (2015). Early hepatic insult in the offspring of obese maternal mice. Nutrition Research 35, 136 –145. Bruce, K. D., Szczepankiewicz, D., Sihota, K. K., Ravindraanandan, M., Thomas, H., Lillycrop, K. A., Burdge, G.C., Hanson, M.A., Byrne, C.D., & Cagampang, F. R. (2016). Altered cellular redox status, sirtuin abundance and clock gene expression in a mouse model of developmentally primed NASH. Biochimica et biophysica acta, 1861, 584–593. Bu, S. Y., Mashek, M. T. & Mashek, D. G. (2009). Suppression of long chain acyl-CoA synthetase 3 (ACSL3) decreases hepatic de novo fatty acid synthesis through decreased transcriptional activity. Journal of Biological Chemistry 284, 30474 – 30483. Buettner, R., Schölmerich, J.& Bollheimer, L.C. (2007). High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity 15, 797 – 808. Bugianesi, E., McCullough, A. J. & Marchesini, G. (2005). Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology 42, 987–1000. Cerf, M.E., Williams, K., Muller, C.J. & Louw, J. (2011). Maternal Gestational Dietary Fat has Minimal Effects on Serum Lipid Profiles and Hepatic Glucose Transporter 2 and No Effect on Glucokinase Expression in Neonatal Wistar Rat Offspring. Journal of Biomedical Science 7, 209 – 2017. Chavatte-Palmer, P., Tarrade, A. & Rousseau-Ralliard, D. (2016). Diet before and during Pregnancy and Offspring Health: The Importance of Animal Models and What Can Be Learned from Them. International Journal of Environmental Research and Public Health 13, 1– 14. Chechi, K., McGuire, J.J. & Cheema, S.K. (2009). Developmental programming of lipid metabolism and aortic vascular function in C57BL/6 mice: a novel study suggesting an involvement of LDL-receptor. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 296, R1029 – R1040. Chen, H., Simar, D. & Morris, M.J. (2014a) Maternal obesity impairs brain glucose metabolism and neural response to hyperglycemia in male rat offspring. Journal of Neurochemistry 129, 297 – 303. Chen, H., Simar, D., Pegg, K., Saad, S., Palmer, C. & Morris, M.J. (2014b). Exendin-4 is effective against metabolic disorders induced by intrauterine and postnatal overnutrition in rodents. Diabetologia 57, 614 – 622. Chen, H., Simar, D., Ting, J.H., Erkelens, J.R. & Morris, M.J. (2012). Leucine improves glucose and lipid status in offspring from obese dams, dependent on diet type, but not caloric intake. Journal of 49 Neuroendocrinology 24, 1356 –1364. Cheong, Y., Sadek, K.H., Bruce, K.D., Macklon, N. & Cagampang, F.R. (2014). Diet-induced maternal obesity alters ovarian morphology and gene expression in the adult mouse offspring. Fertility and Sterility 102, 899 – 907. Christians, J. K., Lennie, K. I., Wild, L. K., & Garcha, R. (2019). Effects of high-fat diets on fetal growth in rodents: a systematic review. Reproductive biology and endocrinology: RB&E, 17, 1 – 12. Desai, M., Jellyman, J. K., Han, G., Beall, M., Lane, R. H., & Ross, M. G. (2014). Maternal obesity and high-fat diet program offspring metabolic syndrome. American journal of obstetrics and gynecology, 211, 237.e1– 237.e13. Dong, Y.M., Li, Y. Ning, H. Wang, C., Liu, J.R. & Sun, C.H. (2011). High dietary intake of medium-chain fatty acids during pregnancy in rats prevents later-life obesity in their offspring. The Journal of Nutritional Biochemistry 22, 791–797. Elahi, M.M. & Matata, B.M. (2017). Effects of maternal high-fat diet and statin treatment on bone marrow endothelial progenitor cells and cardiovascular risk factors in female mice offspring fed a similar diet. Nutrition 35, 6 –13. Elahi, M.M., Cagampang, F.R., Mukhtar, D., Anthony, F.W., Ohri, S.K. & Hanson, M.A. (2009). Long-term maternal high-fat feeding from weaning through pregnancy and lactation predisposes offspring to hypertension, raised plasma lipids and fatty liver in mice. British Journal of Nutrition 102, 514 –519. Emiliano, A.F., de Cavalho, L.C., da Silva, V.C. C., da Costa, C.A., de Oliveira, P.B, Queiroz, E.F., Col Moreira, D.D., Boaventura, G.T., de Moura, R.S. & Resende, A.C. (2011). Metabolic disorders and oxidative stress programming in offspring of rats fed a high-fat diet during lactation: effects of a vinifera grape skin (ACH09) extract. Journal of Cardiovascular Pharmacology 58, 319 – 328. Eriksson, U.J., Cederberg, J. & Wentzel, P. (2003). Congenital malformations in offspring of diabetic mothers--animal and human studies. Reviews in Endocrine and Metabolic Disorders 4, 79 – 93. Fabbrini, E., Sullivan, S. & Klein, S. (2010). Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology, 51, 679 –689. Férézou-Viala, J., Roy, A.F., Sérougne, C., Gripois, D., Parquet, M., Bailleux, V., Gertler, A., Delplanque, B., Djiane, J., Riottot, M. &Taouis, M. (2007). Long-term consequences of maternal high-fat feeding on hypothalamic leptin sensitivity and diet-induced obesity in the offspring. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 293, 1056 –1062. Festing, M. F. W. (2014). Randomized Block Experimental Designs Can Increase the Power and Reproducibility of Laboratory Animal Experiments. ILAR Journal, 55, 472 – 476. Franco, J. G., Fernandes, T. P., Rocha, C. P., Calviño, C., Pazos-Moura, C. C., Lisboa, P. C., & Trevenzoli, I. H. (2012). Maternal high-fat diet 50 induces obesity and adrenal and thyroid dysfunction in male rat offspring at weaning. The Journal of physiology, 21, 5503 – 5518. Fraulob, J. C., Ogg-Diamantino, R., Fernandes-Santos, C., Aguila, M. B. & Mandarim-de-Lacerda, C. A. (2010). A Mouse Model of Metabolic Syndrome: Insulin Resistance, Fatty Liver and Non-Alcoholic Fatty Pancreas Disease (NAFPD) in C57BL/6 Mice Fed a High Fat Diet. Journal of Clinical Biochemistry and Nutrition 46, 212 – 223. Friedman, J.E. (2018). Developmental Programming of Obesity and Diabetes in Mouse, Monkey, and Man in 2018: Where Are We Headed? Diabetes 67, 2137 – 2151. Ganu, R. S., Harris, R. A., Collins, K. & Aagaard, K. M. (2012). Early origins of adult disease: approaches for investigating the programmable epigenome in humans, nonhuman primates, and rodents. ILAR journal 53, 306 – 321. Gheibi, S., Kashfi, K. & Ghasemi, A. (2017). A practical guide for induction of type-2 diabetes in rat: incorporating a high-fat diet and streptozotocin. Biomedicine & Pharmacotherapy, 95, 605 – 613. Ghosh, P., Bitsanis, D., Ghebremeskel, K., Crawford, M. A., & Poston, L. (2001). Abnormal aortic fatty acid composition and small artery function in offspring of rats fed a high fat diet in pregnancy. The Journal of physiology 533, 815 –822. Gillman, M.W., Barker, D., Bier, D., Cagampang, F., Challis, J., Fall, C., Godfrey, K., Gluckman, P., Hanson, M., Kuh, D., Nathanielsz, P., Nestel, P. & Thornburg, K.L. (2007) Meeting report on the 3rd International Congress on Developmental Origins of Health and Disease (DOHaD). Pediatric Research 61, 625 – 629. Glastras, S. J., Chen, H., Tsang, M., Teh, R., McGrath, R. T., Zaky, A., Chen, J., Wong, M. G., Pollock, C. A. & Saad, S. (2017). The renal consequences of maternal obesity in offspring are overwhelmed by postnatal high fat diet. PloS one 12, e0172644. Glastras, S. J., Tsang, M., Teh, R., Chen, H., McGrath, R. T., Zaky, A. A., Pollock, C. A. & Saad, S. (2016). Maternal Obesity Promotes Diabetic Nephropathy in Rodent Offspring. Scientific Reports 6, 27769. Gray, C., Harrison, C. J., Segovia, S. A., Reynolds, C. M., & Vickers, M. H. (2015b). Maternal salt and fat intake causes hypertension and sustained endothelial dysfunction in fetal, weanling and adult male resistance vessels. Scientific Reports 5, 9753. Gray, C., Vickers, M. H., Segovia, S. A., Zhang, X. D., & Reynolds, C. M. (2015a). A maternal high fat diet programmes endothelial function and cardiovascular status in adult male offspring independent of body weight, which is reversed by maternal conjugated linoleic acid (CLA) supplementation. PloS one 10, e0115994. Guo, F. & Jen, K.L. (1995). High-fat feeding during pregnancy and lactation affects offspring metabolism in rats. Physiology & Behavior 57, 681 – 686. Hariri, N. & Thibault, L. (2010). High-fat diet-induced obesity in animal models. Nutrition Research Reviews 23, 270 – 299. Hasan, M., Mohieldein, A. H. & Almutairi, F. R. (2017). Comparative study of 51 serum 8-hydroxydeoxy-guanosine levels among healthy offspring of diabetic and non-diabetic parents. International Journal of Health Sciences 11, 33 – 37. Hjort, L., Martino, D., Grunnet, L. G., Naeem, H., Maksimovic, J., Olsson, A. H., Zhang, C., Ling, C., Olsen, S. F., Saffery, R. & Vaag, A. A. (2018). Gestational diabetes and maternal obesity are associated with epigenome-wide methylation changes in children. JCI insight, 3, 1 –14. Hooijmans, C. R., Rovers, M. M., de Vries, R. B., Leenaars, M., Ritskes- Hoitinga, M., & Langendam, M. W. (2014). SYRCLE's risk of bias tool for animal studies. BMC Medical Research Methodology 14, 14 – 43. Hou, M., Chu, Z., Liu, T., Lv, H., Sun, L., Wang, B., Huang, J. & Yan, W. (2015). A high-fat maternal diet decreases adiponectin receptor-1 expression in offspring. The Journal of Maternal-Fetal & Neonatal Medicine 28, 216 – 221. Huang, Y., Ye, T., Liu, C., Fang, F., Chen, Y. & Dong, Y. (2017). Maternal high-fat diet during pregnancy and lactation affects hepatic lipid metabolism in early life of offspring rat. Journal of Biosciences 42, 311 – 319. Ito, J., Nakagawa, K., Kato, S., Miyazawa, T., Kimura, F. & Miyazawa, T. (2016). The combination of maternal and offspring high-fat diets causes marked oxidative stress and development of metabolic syndrome in mouse offspring. Life Sciences 151, 70 – 76. James, A. M., Collins, Y., Logan, A. & Murphy, M. P. (2012). Mitochondrial oxidative stress and the metabolic syndrome. Trends in endocrinology & metabolism, 23, 429 – 434. Jungheim, E.S., Schoeller, E.L., Marquard, K.L., Louden, E.D., Schaffer, J.E. & Moley, K.H. (2010). Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology 151, 4039 –4046. Jurgoński, A., Fotschki, B., & Juśkiewicz, J. (2014). Disparate metabolic effects of blackcurrant seed oil in rats fed a basal and obesogenic diet. European journal of nutrition 54, 991– 999. Khan, I., Dekou, V., Hanson, M., Poston, L. & Taylor, P. (2004). Predictive adaptive responses to maternal high-fat diet prevent endothelial dysfunction but not hypertension in adult rat offspring. Circulation 110, 1097 –1102. Khan, I.Y., Dekou, V., Douglas, G., Jensen, R., Hanson, M.A., Poston, L. & Taylor, P.D. (2005). A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 288, 127 – 133. Khan, I.Y., Taylor, P.D., Dekou, V., Seed, P.T., Lakasing, L., Graham, D., Dominiczak, A.F., Hanson, M.A. & Poston, L. (2003). Gender-linked hypertension in offspring of lard-fed pregnant rats. Hypertension 41, 168 – 175. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. Journal of pharmacology & 52 pharmacotherapeutics, 1, 94 –99. Kim, J., Kim, J. & Kwon, Y.H. (2016). Effects of disturbed liver growth and oxidative stress of high-fat diet-fed dams on cholesterol metabolism in offspring mice. Nutrition Research and Practice Journal 10, 386 – 392. Klop, B., Elte, J. & Cabezas, M. (2013). Dyslipidemia in Obesity: Mechanisms and Potential Targets. Nutrients, 5, 1218 –1240. Koukkou, E., Ghosh, P., Lowy, C. & Poston L. (1998). Offspring of normal and diabetic rats fed saturated fat in pregnancy demonstrate vascular dysfunction. Circulation 98, 2899 – 2904. Krasnow, S.M., Nguyen, M.L. & Marks, D.L. (2011). Increased maternal fat consumption during pregnancy alters body composition in neonatal mice. American Journal of Physiology-Endocrinology and Metabolism 301, E1243 – E1253. Kunle-Alabi, O.T., Akindele, O.O. & Raji, Y. (2018). Cocos nucifera water improves metabolic functions in offspring of high fat diet fed Wistar rats. Journal of Basic and Clinical Physiology and Pharmacology 29, 185 – 194. Lagisz, M., Blair, H., Kenyon, P., Uller, T., Raubenheimer, D. & Nakagawa, S. (2015). Little appetite for obesity: meta-analysis of the effects of maternal obesogenic diets on offspring food intake and body mass in rodents. International journal of obesity 39, 1669 – 78. Langley-Evans, S.C. (2015). Nutrition in early life and the programming of adult disease: a review. Journal of Human Nutrition and Dietetics 28, 1 – 14. Lecoutre, S., Deracinois, B., Laborie, C., Eberlé, D., Guinez, C., Panchenko, P., Lesage, J., Vieau, D., Junien, C., Gabory, A., & Breton, C. (2016). Depot- and sex-specific effects of maternal obesity in offspring’s adipose tissue. Journal of Endocrinology 230, 39 – 53. Lee, R., Margaritis, M., M. Channon, K. & Antoniades, C. (2012). Evaluating Oxidative Stress in Human Cardiovascular Disease: Methodological Aspects and Considerations. Current Medicinal Chemistry 19, 2504 – 2520. Li, J., Huang, J., Li, J.S., Chen, H., Huang, K. & Zheng, L. (2012). Accumulation of endoplasmic reticulum stress and lipogenesis in the liver through generational effects of high fat diets. Journal of Hepatology 56, 900 – 907. Li, L., Xue, J., Li, H., Ding, J., Wang, Y., & Wang, X. (2015). Over-nutrient environment during both prenatal and postnatal development increases severity of islet injury, hyperglycemia, and metabolic disorders in the offspring. Journal of Physiology and Biochemistry 71, 391 – 403. Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J. & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS medicine 6, e1000100. Lin, Y., Han, X.F., Fang, Z.F., Che, L.Q., Nelson, J., Yan, T.H. & Wu, D. (2011). Beneficial effects of dietary fibre supplementation of a high-fat diet on fetal development in rats. British Journal of Nutrition 106, 510 – 53 518. Liu, L., Aa, J., Wang, G., Yan, B., Zhang, Y., Wang, X., Zhao, C., Cao, B., Shi, J., Li, M., Zheng, T., Zheng, Y., Hao, G., Zhou, F., Sun, J., Wu, Z. (2010). Differences in metabolite profile between blood plasma and serum. Analytical Biochemistry, 406, 105 – 112. Liu, H., Luo, L.L., Qian, Y.S., Fu, Y.C., Sui, X.X., Geng, Y.J., Huang, D.N., Gao, S.T., & Zhang RL. (2009). FOXO3a is involved in the apoptosis of naked oocytes and oocytes of primordial follicles from neonatal rat ovaries. Biochemical and Biophysical Research Communications 381,722 – 7. Lomas-Soria, C., Reyes-Castro, L.A., Rodríguez-González, G.L., Ibáñez, C.A., Bautista, C.J., Cox, L., Nathanielsz, P.W. & Zambrano, E. (2018). Maternal obesity has sex-dependent effects on insulin, glucose and lipid metabolism and the liver transcriptome in young adult rat offspring. The Journal of Physiology 596, 4611 – 4628. MacPherson, R.E., Castelli, L.M., Miotto, P.M., Frendo-Cumbo, S., Milburn, A., Roy, B.D., LeBlanc, P.J., Ward, W.E. & Peters, S.J. (2015). A maternal high fat diet has long-lasting effects on skeletal muscle lipid and PLIN protein content in rat offspring at young adulthood. Lipids 50, 205 – 217. Masuyama, H. & Hiramatsu, Y. (2012). Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression. Endocrinology 153, 2823 – 2830. Masuyama, H. & Hiramatsu, Y. (2014). Additive effects of maternal high fat diet during lactation on mouse offspring. PLoS One 9, e92805. Masuyama, H., Mitsui, T., Nobumoto, E. & Hiramatsu, Y. (2015). The Effects of High-Fat Diet Exposure In Utero on the Obesogenic and Diabetogenic Traits Through Epigenetic Changes in Adiponectin and Leptin Gene Expression for Multiple Generations in Female Mice. Endocrinology 156, 2482 – 2491. Mazzucco, M.B., Fornes, D., Capobianco, E., Higa, R., Jawerbaum, A. & White, V. (2016). Maternal saturated-fat-rich diet promotes leptin resistance in fetal liver lipid catabolism and programs lipid homeostasis impairments in the liver of rat offspring. The Journal of Nutritional Biochemistry 27, 61 – 69. Mdaki, K. S., Larsen, T. D., Wachal, A. L., Schimelpfenig, M. D., Weaver, L. J., Dooyema, S. D., Louwagie, E. J. & Baack, M. L. (2016). Maternal high-fat diet impairs cardiac function in offspring of diabetic pregnancy through metabolic stress and mitochondrial dysfunction. American journal of physiology. Heart and circulatory physiology. 310, H681 – H692. Melo, A.M., Benatti, R.O., Ignacio-Souza, L.M., Okino, C., Torsoni, A.S., Milanski, M., Velloso, L.A. & Torsoni, M.A. (2014). Hypothalamic endoplasmic reticulum stress and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy and lactation. Metabolism 63, 682 – 692. Mennitti, L.V., Oliveira, J.L., Morais, C.A., Estadella, D., Oyama, L.M., Oller 54 do Nascimento, C., & Pisani LP. (2015). Type of fatty acids in maternal diets during pregnancy and/or lactation and metabolic consequences of the offspring. The Journal of Nutritional Biochemistry 26, 99 – 111. Miranda, R.A., De Almeida, M.M., Rocha, C.P.D.D., de Brito Fassarella, L., De Souza, L.L., Souza, A.F.P., Andrade, C.B.V., Fortunato, R.S., Pazos- Moura, C.C. & Trevenzoli, I.H. (2018). Maternal high-fat diet consumption induces sex-dependent alterations of the endocannabinoid system and redox homeostasis in liver of adult rat offspring. Scientific Reports 8, 1 – 12. Mousavi, S.N., Koohdani, F., Shidfar, F., Eslaminejad, M.B., Izadi, P., Eshraghian, M., Shafieineek, L. & Tohidinik, H. (2017). Effects of Maternal Isocaloric Diet Containing Different Amounts of Soy Oil and Extra Virgin Olive Oil on Weight, Serum Glucose, and Lipid Profile of Female Mice Offspring. Iranian Journal of Medical Sciences 42, 161 – 169. Moussa, Y.Y., Tawfik, S.H., Haiba, M.M., Saad, M.I., Hanafi, M.Y., Abdelkhalek, T.M., Oriquat, G.A. & Kamel, M.A. (2017). Disturbed nitric oxide and homocysteine production are involved in the increased risk of cardiovascular diseases in the F1 offspring of maternal obesity and malnutrition. Journal of Endocrinological Investigation 40, 611 – 620. Nasu R., Seki K., Nara M., Murakami M. & Kohama T. (2007). Effect of a High-fat Diet on Diabetic Mother Rats and Their Offspring through Three Generations. Endocrine Journal 54, 563 – 569. Nguyen, L.T., Saad, S., Tan, Y., Pollock, C. & Chen, H. (2017). Maternal high-fat diet induces metabolic stress response disorders in offspring hypothalamus. Journal of Molecular Endocrinology 59, 81 – 92. Noeman, S. A., Hamooda, H. E. & Baalash, A. A. (2011). Biochemical Study of Oxidative Stress Markers in the Liver, Kidney and Heart of High Fat Diet Induced Obesity in Rats. Diabetology & Metabolic Syndrome 3, 1 – 8. Ornellas, F., Souza, M. V., Mandarim-de-Lacerda A.C. & Aguila, M.B. (2013). Sexual dimorphism in fat distribution and metabolic profile in mice offspring from diet-induced obese mothers. Life Sciences 6, 454 – 463. Parlee, S. D., & MacDougald, O. A. (2013). Maternal nutrition and risk of obesity in offspring: the Trojan horse of developmental plasticity. Biochimica et biophysica acta, 1842, 495 – 506. Poppelreuther, M., Rudolph, B., Du, C., Großmann, R., Becker, M., Thiele, C., Ehehalt, R. & Füllekrug, J. (2012). The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake. Journal of lipid research 53, 888 – 900. Rahman, T.U., Ullah, K., Ke, Z.H., Guo, M.X., Jin, L.Y., Ren, J., Zhou, Y.Z., Cheng, Y., Dong, X.Y, Pang, H.Y., Wang, T.T., Sheng, J.Z. & Huang HF. (2017). Hypertriglyceridemia in female rats during pregnancy induces obesity in male offspring via altering hypothalamic leptin signaling. Oncotarget 16, 53450 – 53464. Rajia, S., Chen, H. & Morris, M.J. (2013). Voluntary post weaning exercise restores metabolic homeostasis in offspring of obese rats. Nutrition, Metabolism and Cardiovascular Diseases 23, 574 – 81. 55 Ramalho, L., da Jornada, M. N., Antunes, L.C. & Hidalgo, M.P.L. (2017). Metabolic disturbances due to a high-fat diet in a non-insulin-resistant animal model. Nutrition & Diabetes 7, e245. Reece, E.A., Coustan, D.R., Gabbe, S.G. Diabetes in women: Adolescence, pregnancy and menopause. 1st ed. New York, NY: Lippincott Williams & Wilkins, 2004. Reeves, P.G., Nielsen, F.H., & Fahey, G.C. Jr. (1997). Components of the AIN-93 diets as improvements in the AIN-76A diet. The Journal of Nutrition 127, 838S – 841S. Resende, A.C., Emiliano, A.F., Cordeiro, V.S., de Bem, G.F., de Cavalho, L.C., de Oliveira, P.R., Neto, M.L., Costa, C.A., Boaventura, G.T. & de Moura RS. (2013). Grape skin extract protects against programmed changes in the adult rat offspring caused by maternal high-fat diet during lactation. The Journal of Nutritional Biochemistry 24, 2119 – 2126. Reynolds, C. M., Segovia, S. A., Zhang, X. D., Mark, C. G. & Vickers H. (2015). Conjugated Linoleic Acid Supplementation During Pregnancy and Lactation Reduces Maternal High-Fat-Diet-Induced Programming of Early-Onset Puberty and Hyperlipidemia in Female Rat Offspring. Biology of Reproduction 92, 1 – 10. Ribaroff, G.A., Wastnedge, E., Drake, A.J., Sharpe, R. M. & Chambers, T. J. G. (2017). Animal models of maternal high fat diet exposure and effects on metabolism in offspring: a meta-regression analysis. Obesity Reviews 18, 673 – 686. Rodríguez-González, G.L, Vega, C.C., Boeck, L., Vázquez, M., Bautista, C.J., Reyes-Castro, L.A., Saldaña, O., Lovera, D., Nathanielsz, P.W. & Zambrano, E. (2015). Maternal obesity and overnutrition increase oxidative stress in male rat offspring reproductive system and decrease fertility. International Journal of Obesity 39, 549 – 556. Ross, M. G. & Desai, M. (2013). Developmental programming of offspring obesity, adipogenesis, and appetite. Clinical obstetrics and gynecology 56, 529 – 536. Santos, S. A., Serra, A. J., Stancker, T. G., Simões, M., Dos Santos Vieira, M. A., Leal-Junior, E. C., Prokic, M., Vasconsuelo, A., Santos, S. S. & de Carvalho, P. (2017). Effects of Photobiomodulation Therapy on Oxidative Stress in Muscle Injury Animal Models: A Systematic Review. Oxidative medicine and cellular longevity 2017, 1 – 8. Sasidharan, S. R., Joseph, J. A., Anandakumar, S., Venkatesan, V., Ariyattu Madhavan, C. N., & Agarwal, A. (2013). An Experimental Approach for Selecting Appropriate Rodent Diets for Research Studies on Metabolic Disorders. BioMed Research International 2013, 1– 9. Seet, E. L., Yee, J. K., Jellyman, J. K., Han, G., Ross, M. G. & Desai, M. (2015). Maternal high-fat-diet programs rat offspring liver fatty acid metabolism. Lipids 50, 565 – 573. Sheen, J.M., Yu H. R, Tain, Y.L., Tsai, W.L., Tiao, M. M., Lin, I.C., Tsai, C.C., Lin, Y.J., & Huang, L.T. (2018). Combined maternal and postnatal high- fat diet leads to metabolic syndrome and is effectively reversed by resveratrol: a multiple-organ study. Scientific Reports 8, 1– 12. Sullivan, E. L., Smith, M. S. & Grove, K. L. (2010). Perinatal Exposure to 56 High-Fat Diet Programs Energy Balance, Metabolism and Behavior in Adulthood. Neuroendocrinology 93, 1– 8. Sultan A. I. A. (2008). Assessment of the relationship of hepatic enzymes with obesity and insulin resistance in adults in Saudi Arabia. Sultan Qaboos University medical journal, 8, 185-92. Suzuki, K. (2018). The developing world of DOHaD. Journal of Developmental Origins of Health and Disease 9, 266 – 269. Tajali, S. B., MacDermid,J. C., Houghton, P. & R. Grewal. (2010). Effects of low power laser irradiation on bone healing in animals: a meta-analysis. Journal of Orthopaedic Surgery and Research 5, 2–10. Tanaka, Y., Ikeda, T., Yamamoto, K., Masuda, S., Ogawa, H. & Kamisako, T. (2018). Gender-divergent expression of lipid and bile acid metabolism related genes in adult mice offspring of dams fed a high-fat diet. Journal of Biosciences 43, 329 – 337. Tellechea, M. L., Mensegue, M. F. & Pirola, C. J. (2017). The Association between High Fat Diet around Gestation and Metabolic Syndrome- related Phenotypes in Rats: A Systematic Review and Meta-Analysis. Scientific Reports 7, 1 – 18. Torrens, C., Ethirajan, P., Bruce, K. D., Cagampang, F. R., Siow, R. C., Hanson, M. A., Byrne, C. D., Mann, G. E. & Clough, G. F. (2012). Interaction between maternal and offspring diet to impair vascular function and oxidative balance in high fat fed male mice. PloS one 7, e50671. Tokuka, Y., Wada, E. & Wada, K. (2009). Diet-induced obesity in female mice leads to peroxidized lipid accumulations and impairment of hippocampal neurogenesis during the early life of their offspring. The FASEB Journal 23, 1920 – 1923. Tsuduki, T., Yamamoto, K., Hatakeyama, Y. & Sakamoto. Y. (2016). High dietary cholesterol intake during lactation promotes development of fatty liver in offspring of mice. Molecular Nutrition & Food Research 60, 1110 –1117. Umekawa, T., Sugiyama, T., Du, Q., Murabayashi, N., Zhang, L., Kamimoto, Y., Yoshida, T., Sagawa, N. & Ikeda, T. (2015). A maternal mouse diet with moderately high-fat levels does not lead to maternal obesity but causes mesenteric adipose tissue dysfunction in male offspring. The Journal of Nutritional Biochemistry 26, 259 – 266. USDA - United States Department of Agriculture. (2019). How many calories are in one gram of fat, carbohydrate, or protein? National Agricultural Library https://www.nal.usda.gov/fnic/how-many-calories-are-one-gram-fat- carbohydrate-or-protein (accessed 15 dez 2018). Vega, C. C., Reyes-Castro, L. A., Bautista, C. J., Larrea, F., Nathanielsz, P. W. & Zambrano, E. (2015). Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. International journal of obesity 39, 712 – 719. White, C. L., Pistell, P. J., Purpera, M. N., Gupta, S., Fernandez-Kim, S. O., Hise, T. L., & Bruce-Keller, A. J. (2009). Effects of high fat diet on Morris maze performance, oxidative stress, and inflammation in rats: contributions of maternal diet. Neurobiology of disease, 35, 3 –13. 57 Williams, L., Seki, Y., Vuguin, P. M., & Charron, M. J. (2013). Animal models of in utero exposure to a high fat diet: a review. Biochimica et biophysica acta, 1842, 507– 519. World Health Organization -WHO. (2002). A global response to a global problem: the epidemic of overnutrition. Bulletin of the World Health Organization 80, 952 – 958. World Health Organization -WHO. (2016). What is malnutrition? https://www.who.int/features/qa/malnutrition/en/ (accessed 15 mar 2019). Yamaguchi, R., Nakagawa, Y., Liu, Y.J., Fujisawa, Y., Sai, S., Nagata, E., Sano, S., Satake, E., Matsushita, R., Nakanishi, T., Chapman, K.E., Seckl, J.R. & Ohzeki, T. (2010). Effects of maternal high-fat diet on serum lipid concentration and expression of peroxisomal proliferator- activated receptors in the early life of rat offspring. Hormone and Metabolic Research 42, 821– 825. Yang, K.-F., Shen, X.-H. & Cai, W. (2012). Prenatal and early postnatal exposure to high-saturated-fat diet represses Wnt signaling and myogenic genes in offspring rats. Experimental Biology and Medicine 237, 912 – 918. Yokomizo, H., Inoguchi, T., Sonoda, N., Sakaki, Y., Maeda, Y., Inoue, T., Hirata, E., Takei, R., Ikeda, N., Fujii, M., Fukuda, K., Sasaki, H. & Takayanagi, R, (2014). Maternal high-fat diet induces insulin resistance and deterioration of pancreatic β-cell function in adult offspring with sex differences in mice. American Journal of Physiology-Endocrinology and Metabolism 306, E1163 – 1175. Yu, H. L., Miao, H. T., Gao, L. F., Li, L., Xi, Y. D., Nie, S. P., & Xiao, R. (2013b). Adaptive responses by mouse fetus to a maternal HLE diet by downregulating SREBP1: a microarray- and bio-analytic-based study. Journal of lipid research 54, 3269 – 80. Yu, H.L., Gao, L.F., Ma, W.W., Xie, F., Bi, Y.X., Yuan, L.H., Xi, Y.D., Xiao, Y.X., Li, L. & Xiao, R. (2013a). The effects of phytosterol supplementation on serum LDL-C levels and learning ability in mice fed a high-fat, high-energy diet from gestation onward. International Journal of Food Sciences and Nutrition 64, 724 – 729. Zambrano, E., Martínez-Samayoa, P. M., Rodríguez-González, G. L., & Nathanielsz, P. W. (2010). Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats. The Journal of physiology 588, 1791 – 1799. Zambrano, E., Sosa-Larios, T., Calzada, L., Ibáñez, C., Mendoza-Rodríguez, C., Morales, A. & Morimoto, S. (2016). Decreased basal insulin secretion from pancreatic islets of pups in a rat model of maternal obesity. Journal of Endocrinology 231, 49 – 57. Zhang, X., Strakovsky, R., Zhou, D., Zhang, Y. & Pan, Y.X. (2011). A Maternal High-Fat Diet Represses the Expression of Antioxidant Defense Genes and Induces the Cellular Senescence Pathway in the Liver of Male Offspring Rats. The Journal of Nutrition 141, 1254 –1259. Zhao, M., Li, Y., Yao, H., Dou, L., Zhang, S., Zhao, Q. & Li, L. (2018). Sex‐ specific Alterations in Serology and the Expression of Liver FATP4 58 Protein in Offspring Exposed to High‐Fat Diet during Pregnancy and/or Lactation. Lipids 3, 301– 311. Zheng, J., Xiao, X., Zhang, Q., Yu, M., Xu, J. & Wang, Z. (2014). Maternal high-fat diet modulates hepatic glucose, lipid homeostasis and gene expression in the PPAR pathway in the early life of offspring. International journal of molecular sciences 15, 14967–14983. Zhou, D., Wang, H., Cui, H., Chen, H. & Pan, Y.X. (2015). Early-life exposure to high-fat diet may predispose rats to gender-specific hepatic fat accumulation by programming Pepck expression. The Journal of Nutritional Biochemistry 26, 433 – 4. 59 Figure 1. Flow diagram of selection of articles based on PRISM guidelines (http://www.prisma-statement.org). Records identified through database searching (n = 2007) S c re e n in g In c lu d e d E lig ib ili ty Id e n ti fi c a ti o n Additional records identified through other sources (n = 32) Records after duplicates removed (n = 1363) Records screened (n = 1363) Records excluded (n = 1229) Full-text articles assessed for eligibility (n = 134) Full-text articles excluded, with reasons (n =58) No adhering to intervention criteria (31); Conference abstracts (19); No comparison established (6); Other population (1) Other outcomes reported (1) Studies included in qualitative synthesis (n = 76) http://www.prisma-statement.org/ 60 Figure 2. Characteristics of the studies. A: Publication dates; B: Strain of rodents; C: Energy value in% kilocalories; D: Main Source of fat. 61 Figure 3. Reproductive repercussions. A: Litter size; B: Maternal body weight; C: Offspring body weight. 62 Table1. Biochemical repercussions of dams. References Animal Kcal of fat Maternal HFD consumption (days) Outcomes of dams TG TC HDL LDL ALT MDA ROS SOD GPX Scavenging capacity of reactive oxygen species Lin et al., 2011a Rats 40% 19 ↑ NM ↔ NM NM ↑ NM NM NM ↓ Lin et al., 2011b Rats 40% 19 NM NM NM NM NM ↑ NM NM NM ↓ Rahman et al., 2017 Rats 57,50% 35 ↑ NM NM NM NM NM NM NM NM NM Nasu et al., 2007 Rats 56.7 % 42 ↔ NM NM NM NM NM NM NM NM NM Guo & Jen., 1995a Rats 64% 49 ↓ NM NM NM NM NM NM NM NM NM Mdaki et al., 2016a Rats 40%/ 49 ↑ NM NM NM NM NM NM NM NM NM Albert et al., 2017 Rats 45% 52 ↑ NM NM NM NM NM NM NM NM NM Yamaguchi et al., 2010a Rats 33% 84 ↑ NM NM NM NM NM NM NM NM NM Franco et al., 2012a Rats 29% 98 ↑ ↓ NM NM NM NM NM NM NM NM Franco et al., 2012b Rats 29% 98 ↑ ↑ NM NM NM NM NM NM NM NM Desai et al., 2014a Rats 60% 98 ↔ ↑ NM NM NM NM NM NM NM NM Seet et al., 2015a Rats 60% 98 ↔ NM NM NM NM NM NM NM NM NM MacPherson et al., 2015 Rats 41% 110 ↑ NM NM NM NM NM NM NM NM NM Kim et al., 2016 a Mice 45% 63 ↑ ↑ ↔ NM ↔ ↑ NM NM NM NM Kim et al., 2016b Mice 45% 63 ↑ NM NM NM NM NM NM NM NM NM Umekawa et al., 2015a Mice 45% 63 ↔ ↔ NM NM NM NM NM NM NM NM Yu et al., 2013a Mice 32% 63 NM ↑ ↑ ↑ NM NM NM NM NM NM Yu et al., 2013b Mice 32% 63 NM ↑ ↑ ↑ NM NM NM NM NM NM Masuyama & Hiramatsu, 2012a Mice 62% 70 ↑ NM NM NM NM NM NM NM NM NM 63 Masuyama & Hiramatsu, 2014a Mice 62% 70 ↑ NM NM NM NM NM NM NM NM NM Masuyama et al., 2015a Mice 62% 70 ↑ NM NM NM NM NM NM NM NM Tokuza et al., 2009a Mice 57.50% 79 ↑ ↑ NM NM NM NM NM NM NM NM Ornellas et al., 2013a Mice 49% 105 ↑ ↑ NM NM NM NM NM NM NM NM Vega et al., 2015a Mice 46% 141 NM NM NM NM NM ↑ ↑ ↑ ↑ NM Vega et al., 2015b Mice 46% 141 ↑ ↑ NM NM NM NM NM NM NM NM Abbreviations: TG – Triglycerides; TC – Total cholesterol; HDL – High density lipoprotein cholesterol; LDL – Low density lipoprotein cholesterol; ALT – Alanine transaminase; AST – Aspartate transaminase; MDA – Malondialdehyde; ROS – Reactive oxygen species; SOD – Superoxide dismutase; CAT – Catalase; GPx – Glutathione peroxidase; ROS - Scavenging capacity of reactive oxygen species; NM - not measured. 64 Table2. Biochemical repercussions of offspring. References Animal Kcal of fat Maternal HFD consumption (days) Sex offspring Death age (days) Outcomes of offspring TG TC HDL LDL ALT AST MDA 8- OHdG ROS SOD CAT GPX Thiols Lin et al., 2011c rats 40% 19 M/F 1 NM NM NM NM NM NM NM NM NM NM NM NM NM Cerf et al., 2011a rats 20% 21 M/F 1 ↔ NM NM NM NM NM NM NM NM NM NM NM NM Cerf et al., 2011b rats 30% 21 M/F 1 ↔ NM NM NM NM NM NM NM NM NM NM NM NM Cerf et al., 2011c rats 40% 21 M/F 1 ↔ NM NM NM NM NM NM NM NM NM NM NM NM Dong et al., 2011 rats 35% 21 M 98 ↑ NM ↓ ↑ NM NM NM NM NM NM NM NM NM Emiliano et al., 2011a rats 47% 21 F 90 ↑ ↔ NM NM NM NM NM NM NM NM NM NM NM Emiliano et al., 2011b rats 47% 21 F 180 ↑ ↔ NM NM NM NM NM NM NM NM NM NM NM Emiliano et al., 2011c rats 47% 21 F 90 NM NM NM NM NM NM NM NM NM NM NM NM NM Emiliano et al., 2011d rats 47% 21 F 180 NM NM NM NM NM NM NM NM NM NM NM NM NM Kunle-Alabi et al., 2018a rats 30% 21 M 120 ↔ ↓ ↑ ↓ ↑ ↔ NM NM NM NM NM NM NM Kunle-Alabi et al., 2018b rats 30% 21 F 120 ↔ ↓ ↔ ↔ ↑ ↔ NM NM NM NM NM NM NM Resende et al., 2013a rats 47.40% 21 M 90 ↑ ↔ NM NM NM NM ↑ NM NM NM NM NM NM Resende et al., 2013b rats 47.40% 21 M 90 NM NM NM NM NM NM NM NM NM NM NM NM NM Resende et al., 2013c rats 47.40% 21 M 180 ↑ ↔ NM NM NM NM ↑ NM NM NM NM NM NM Resende et al., 2013d rats 47.40% 21 M 180 NM NM NM NM NM NM NM NM NM NM NM NM NM khan et al., 2005a rats 48% 31 M 180 ↔ ↔ ↔ NM NM NM NM NM NM ↓ ↓ ↓ NM khan et al., 2005b rats 48% 31 F 180 ↔ ↔ ↔ NM NM NM NM NM ↓ ↓ ↓ NM Rahman et al., 2017 rats 57.50% 35 M 28 NM ↔ ↔ ↔ NM NM NM NM NM ↓ ↓ ↓ NM 65 Moussa et al., 2017a rats 44% 42 M 70 ↔ ↔ ↔ ↔ NM NM NM NM NM ↓ ↓ ↔ NM Moussa et al., 2017b rats 44% 42 F 70 ↔ ↔ ↔ ↔ NM NM NM NM NM NM NM NM NM Moussa et al., 2017c rats 44% 42 M 140 ↑ ↔ ↔ ↔ NM NM NM NM NM NM NM NM NM Moussa et al., 2017d rats 44% 42 F 140 ↔ ↔ ↔ ↔ NM NM NM NM NM NM NM NM NM Moussa et al., 2017e rats 44% 42 M 210 ↑ ↔ ↔ ↔ NM NM NM NM ↔ NM NM NM NM Moussa et al., 2017f rats 44% 42 F 210 ↔ ↑ ↓ ↔ NM NM NM NM NM NM NM NM NM Yang et al., 2012a rats 45% 42 F 84 ↑ NM NM NM NM NM NM NM NM NM NM NM Yang et al., 2012b rats 45% 42 F 84 ↔ ↔ NM NM NM NM NM NM NM NM NM NM NM Zhang et al., 2011a rats 45% 42 M 84 ↑ NM NM NM NM NM ↔ NM NM NM NM NM NM Zhang et al., 2011b rats 45% 42 M 84 ↔ NM NM NM NM NM ↑ NM NM NM NM NM NM Zhou et al., 2015 rats 45% 42 M/F 84 ↑ NM NM NM NM NM NM NM NM NM NM NM NM Kokkou et al., 1998 rats 54% 47 ? 15 ↔ ↓ NM NM NM NM NM NM NM NM NM NM NM Guo & Jen., 1995a rats 64% 49 M/F 1 ↔ NM NM NM NM NM NM NM NM NM NM NM NM Guo & Jen., 1995b rats 64% 49 M/F 22 ↑ NM NM NM NM NM NM NM NM NM NM NM NM Mdaki et al., 2016a rats 40%/ 49 M/F 1 ↔ NM NM NM NM NM NM NM NM NM NM NM NM Mdaki et al., 2016b rats 40% 49 M/F 1 NM NM NM NM NM NM ↑ NM NM NM NM NM NM Albert et al., 2017 rats 45% 52 M 110 ↑ ↔ ↔ ↔ ↔ ↔ NM NM NM NM NM NM NM Ashino et al., 2012a rats 45% 52 M 28 ↑ NM NM NM NM NM NM NM NM NM NM NM NM Ashino et al., 2012b rats 45% 52 M 82 ↑ NM NM NM NM NM NM NM NM NM NM NM NM Ghosh et al., 2001 rats 43% 52 F 160 ↑ ↔ ↓ NM NM NM NM NM NM NM NM NM NM Gray et al., 2015a rats 45% 52 M 140 NM NM NM NM NM NM NM NM NM NM NM NM NM khan et al., 2003a rats 48% 52 M 80 ↔ ↔ ↔ NM NM NM NM NM NM NM NM NM NM khan et al., 2003b rats 48% 52 M 180 ↔ ↔ ↔ NM NM NM NM NM NM NM NM NM NM khan et al., 2003c rats 48% 52 M 360 ↔ ↓ ↓ NM NM NM NM NM NM NM NM NM NM 66 khan et al., 2003d rats 48% 52 F 80 ↔ ↔ ↔ NM NM NM NM NM NM NM NM NM NM khan et al., 2003e rats 48% 52 F 180 ↔ ↔ ↔ NM NM NM NM NM NM NM NM NM NM khan et al., 2003f rats 48% 52 F 360 ↑ ↑ ↓ NM NM NM NM NM NM NM NM NM NM khan et al., 2004a rats 48% 52 M 180 ↔ ↔ ↔ NM NM NM NM NM NM NM NM NM NM khan et al., 2004b rats 48% 52 F 180 ↔ ↔ ↔ NM NM NM NM NM NM NM NM NM NM khan et al., 2005c rats 48% 52 M 180 ↔ ↔ ↔ NM NM NM NM NM NM NM NM NM NM khan et al., 2005d rats 48% 52 F 180 ↔ ↔ ↔ NM NM NM NM NM NM ↓ NM NM NM Reynold et al., 2015a rats 45% 52 F 24 ↑ ↑ NM NM NM NM NM NM NM NM NM Reynold et al., 2015b rats 45% 52 F 150 ↑ ↑ ↔ ↑ NM NM NM NM NM NM NM NM NM Hou et al., 2015a rats 31% 56 M 1 ↔ ↔ NM NM NM NM NM NM NM NM NM Hou et al., 2015b rats 31% 56 M 56 ↔ ↔ NM NM NM NM NM NM NM NM NM Gray et al., 2015b rats 45% 63 M 150 ↔ ↑ ↔ NM NM NM NM NM NM NM NM NM Chen et al., 2012a rats 43% 76 M 91 ↑ NM NM NM NM NM NM NM NM NM NM NM Chen et al., 2012b rats 43% 76 M 91 ↔ NM NM NM NM NM NM NM NM NM NM NM Rajja et al., 2013 rats 43% 76 F 98 ↔ NM NM NM NM NM NM NM NM NM NM NM Sheen et al., 2018 rats 58% 77 M 120 ↔ ↔ NM NM ↔ ↔ NM NM NM NM NM NM NM Chen et a