1 UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” FACULDADE DE MEDICINA Adriely Bittencourt Morgenstern Magyori Espessura do reto abdominal como fator preditivo da incontinência urinária específica da gestação: estudo ultrassonográfico Rectus abdominis muscles’ thickness as predictive factor of pregnancy specific urinary incontinence: ultrasound study Dissertação apresentada à Faculdade de Medicina, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Botucatu, para obtenção do título de Mestre em Tocoginecologia. Orientadora: Prof.a Dra. Angélica Mércia Pascon Barbosa Coorientadora: Profaª Dra. Natália Miguel Martinho Fogaça Botucatu 2022 2 Adriely Bittencourt Morgenstern Magyori Espessura do reto abdominal como fator preditivo da incontinência urinária específica da gestação: estudo ultrassonográfico Dissertação apresentada à Faculdade de Medicina, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Botucatu, para obtenção do título de Mestre em Tocoginecologia. Orientadora: Prof.a Dra. Angélica Mércia Pascon Barbosa Coorientadora: Prof.ª Dra. Natália Miguel Martinho Fogaça Botucatu 2022 3 Adriely Bittencourt Morgenstern Magyori Espessura do reto abdominal como fator preditivo da incontinência urinária específica da gestação: estudo ultrassonográfico Dissertação apresentada à Faculdade de Medicina, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Botucatu, para obtenção do título de Mestre em Tocoginecologia Orientadora: Prof.a Dra. Angélica Mércia Pascon Barbosa Coorientadora: Profaª Dra. Natália Miguel Martinho Fogaça Comissão Examinadora: Prof.ª Dra. Angélica Mércia Pascon Barbosa Faculdade de Medicina de Botucatu – UNESP Prof.ª Dra. Flávia Ignácio Antônio University of Ottawa – uOttawa Prof.ª Dra. Simone Botelho Pereira Universidade Federal de Alfenas – UNIFAL-MG Botucatu, 30 de março de 2022 4 Dedicatórias 5 À Deus, por sempre me trazer fé, força e esperança em todos os momentos de minha vida. Por sempre me fazer lembrar o quanto sou agraciada e abençoada por tudo que me cerca e por todas as oportunidades concedidas. Ao meu marido, Alberto, que me apoia e incentiva em todas as áreas. Obrigada por ser minha rocha, minha fortaleza, minha paz e o grande amor da minha vida. À minha mãe, Vânia, por todo sacrifício feito em sua vida para que eu pudesse chegar onde cheguei e ser quem eu sou. Desejo ser ao menos parte da grande mulher que você é e da força que você tem. Amo você. Aos meus avós, Nabucodonosor (in memoriam) e Elza, por serem meus exemplos de amor. Obrigada pelo apoio e pela mais bela expressão de carinho e cuidado comigo, com minhas irmãs e mamãe. Vovô, saudade eterna do melhor homem que tive a oportunidade de conhecer. Obrigada por ser exemplo. Às minhas irmãs, Náthaly e Thayara, que são minhas melhores amigas, conselheiras e confidentes. Obrigada pela linda união que temos. À toda minha família, sogro, sogra, cunhadas e cunhados por fazerem parte de minha trajetória. 6 Agradecimentos 7 À Prof.a Dra. Angélica Mércia Pascon Barbosa, que se tornou para mim mais do que uma professora e orientadora. Obrigada por todo incentivo, conhecimento, ensinamentos (de vida), por todo carinho e dedicação. Meu desejo é tornar-me uma profissional como você, não apenas em capacidade e experiência, mas também em humanidade. À Prof.a Titular Marilza Vieira Cunha Rudge, pela sua sabedoria e profissionalismo ao colaborar com desenvolvimento deste mestrado. À Profa. Dra. Natália Martinho, por compartilhar toda sua experiência e tempo para que eu pudesse realizar este trabalho. Sem sua paciência, ensinamentos e atenção, nada disso seria possível. Às amigas e colaboradoras do Diamater Sthefanie, Michele e Carol Baldini que foram incondicionais na coleta de dados. Obrigada por toda dedicação e qualidade no trabalho. Aos funcionários do Programa de Pós-Graduação da Faculdade de Medicina de Botucatu, e ao Departamento de Tocoginecologia, por toda atenção. Ao Escritório de Apoio à Pesquisa, nominalmente ao Prof. Dr. Hélio, Cinthia e Cássia. Às participantes do estudo pela colaboração e realização dos exames. À CAPES. O presente trabalho foi realizado com o apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de financiamento 001. À Fapesp – Fundação de Amparo à Pesquisa do Estado de São Paulo (Processe nº 2016/01743-5) pelo apoio financeiro essencial para a realização dessa pesquisa. A todos do Diamater Study Group, que fazem a diferença nessa trajetória. Obrigada por todos os ensinamentos e pelo trabalho em equipe. 8 . Epígrafe 9 “E ainda que tivesse o dom de profecia, e conhecesse todos os mistérios e toda a ciência, e ainda que tivesse toda a fé, de maneira tal que transportasse os montes, e não tivesse amor, nada seria.” 1 Coríntios 13:2 10 Lista de Figuras 11 Contextualização Figura 1 Potenciais confundidores,mediadores e moderadores do Diamater. 26 Figura 2 Imagem de US-2D do MRA............................................................... 27 Artigo Figure 1 Figure 1 – Ultrasound images of RAM. Archive of researchers, 2018……………………………………………………………………… 39 Figure 2 Flowchart for cohort derivation showing the number of participants and the reasons for loss to follow-up…………………………………... 40 12 Lista de Tabelas 13 Artigo Table 1 Baseline characteristics of the study population…………………... 41 Table 2 Rectus abdominis muscle (RAM) thickness during task, Thickness Variation Index and Pelvic floor function………………. 42 Table 3 Bivariate linear regression of predictors for a PS-UI...................... 43 14 Lista de abreviações Português e Inglês 15 Lista de abreviações em Português AP assoalho pélvico CAAE Certificado de Apresentação de Apreciação Ética CEP Comitê de Ética em Pesquisa DMG diabetes mellitus gestacional Dra. doutora FAMEMA Faculdade de Medicina de Marília FAPESP Fundação de Amparo à Pesquisa do Estado de São Paulo FEMA Fundação Educacional do Município de Assis FMRP Faculdade de Medicina de Ribeirão Preto IU incontinência urinária IU-EG incontinência urinária específica da gestação MAP músculos do assoalho pélvico MRA músculos reto abdominais PPG Programa de Pós-graduação Prof.a professora QV qualidade de vida TT3 treinamento técnico 3 UNESP Universidade Estadual Paulista US-2D ultrassonografia bidimensional USC Universidade do Sagrado Coração USP Universidade de São Paulo 16 Lista de abreviações em Inglês % percentage 3D-US three-dimension ultrasound BMI body mass index CI confidence interval Cm centimeter GDM Gestational Diabetes Mellitus ICI-Q International Consultation on Incontinence Questionnaire ISI Incontinence Severity Index Kg kilogram LAM Levator ani muscle PDRC Perinatal Diabetes Research Center PFM pelvic floor muscles PFMD pelvic floor muscle dysfunction PS-UI pregnancy specific-urinary incontinence QOL quality of life R rest RAM Rectus abdominus muscle RR Relative risk T task UI urinary incontinence 17 Sumário 18 Seção 1 Trajetória acadêmica ............................................................. 19 Seção 2 Contextualização .................................................................. 22 Músculos abdominais e do assoalho pélvico e sua relação com a Incontinência Urinária Específica da gestação 23 Referências ................................................................. 28 Seção 3 Artigo ....................................................................................... 31 Funcionalidade do músculo Reto Abdominal avaliada pela ultrassonografia bidimensional como preditora da incontinência urinária específica da gestação 32 Abstract ............................................................. 33 Introduction .......................................................... 34 Method .............................................................. 36 Results .............................................................. 40 Discussion .......................................................... 43 Conclusion .......................................................... 46 References .......................................................... 48 Seção 4 Perspectivas Acadêmicas e Científicas ............................... 53 Seção 5 Diamater Study Group ............................................................ 55 Seção 6 Anexos ..................................................................................... 58 19 Seção 1 Trajetória Acadêmica 20 No ano de 2011 dei início à minha formação acadêmica, ingressando no curso de Fisioterapia pela Faculdade de medicina de Ribeirão Preto / Universidade de São Paulo (FMRP / USP). Foram 5 anos de dedicação intensa, estudos, aprendizados, amizades, amadurecimento e a certeza de que ser Fisioterapeuta foi uma escolha certa. Durante a graduação, sempre fui apaixonada pela área da Saúde da Mulher, me envolvendo nos minicursos e palestras, chegando a participar da gestão da Liga de Fisioterapia na Saúde da Mulher no ano de 2013 em que auxiliei como secretária na organização de eventos voltados para a área. Logo no primeiro ano de formada, realizei pós graduação pela Universidade do Sagrado Coração (USC – Bauru) em Fisioterapia em Dermatofuncional e Saúde da Mulher, em que tive a oportunidade de me aprofundar nos estudos. Após alguns anos, me mudei para Marília e de imediato entrei em contato com a Profa Angélica demonstrando meu interesse na área e meu desejo em continuar estudando, aprendendo e me formando para a área acadêmica, uma vez que após experiência profissional ministrando cursos na área de Dermatofuncional para laboratório, me encontrei na área da comunicação aflorando meu desejo de lecionar. Por um ano, antes de entrar oficialmente no PPG em Tocoginecologia como mestranda, fiz parte do grupo participando ativamente das reuniões, treinamentos e coletas o que permitiu a realização deste mestrado em um período de 12 meses. Assim, em 2021 iniciei o mestrado pelo Projeto Temático Fapesp DIAMATER, “The Diamater Study Group”, sob a orientação da Profª Drª Angélica Mércia Pascon Barbosa e coorientação da Profa. Dra. Natália Miguel Martinho Fogaça. Ao longo desse ano, além de dar seguimento ao meu projeto, tive a oportunidade de participar de eventos internacionais (Anexo 1) como “Diabetes, Obesity and Pregnancy Outcomes”, “Obesity Inflammasome as a Risk for Developing Gestational Diabetes” e “Placental Adaptation in Gestational Diabetes and Obesity” e de ser contemplada com uma bolsa Treinamento Técnico 3 (TT3) da 21 FAPESP (Anexo 2), tendo como título do projeto “Treinamento para avaliar pela ultrassonografia bidimensional a diástase do músculo reto abdominal de mulheres com incontinência urinária específica da gestação” sob orientação da Profª Drª Angélica Mércia Pascon Barbosa. Foi possível ainda colaborar em 5 artigos, sendo um publicado e demais em fase de submissão para revistas de alto impacto, que não compõe o corpo dessa dissertação, intitulados: 1. Effectiveness of the pelvic floor muscle training on muscular dysfunction and pregnant specific urinary incontinence in pregnant women with gestational diabetes mellitus: A systematic review protocol (Anexo 3) 2. “Pelvic floor muscle dysfunction in third trimester of pregnancy and long-term postpartum is related with Gestational Diabetes Mellitus: Levator hiatal area 3D-US assessment.” 3. “Dynamic Model for Pelvic Floor Muscles Assessment by Transperineal Ultrasonographic: A New Approach of the Diamater Study Group”. 4. “The Role of Gestational Diabetes Mellitus and Pelvic Floor 3D-ultrassound Markers at the Second and Third Trimester of Pregnancy Predicting 6-18 months postpartum Urinary Incontinence: A Risk Model Constructed by Multivariate Logistic Regression Analysis”. 5. “Incidence and risk factors for long-term Urinary Incontinence in a cohort of early and late- onset Gestational Diabetes compared to non-Gestational Diabetes: a nested case-control study” Meu propósito após a conclusão do mestrado é continuar me aprimorando e adquirindo conhecimento constante em prol da saúde das nossas mulheres, fazendo a diferença no cenário acadêmico e científico e, por isso, o desejo de dar continuidade aos estudos por meio do Doutorado. 22 Seção 2 Contextualização 23 Músculos abdominais e do assoalho pélvico e sua relação com a Incontinência Urinária Específica da Gestação A cavidade abdominopélvica é formada por músculos, ossos e estrutura aponeurótica que circunda os órgãos pélvicos e abdominais. Dentre os músculos que compõe esta região, encontram- se os músculos Reto Abdominais (MRA) que inserem-se em estruturas ósseas da pelve, onde se encontram os músculos do Assoalho Pélvico (MAP), que estão predominantemente envolvidos na estabilização lombo-pélvica e continência urinária (1-7). Para que a função de continência urinária ocorra de maneira satisfatória, a musculatura envolvida precisa apresentar uma performance adequada por meio de uma dinâmica abdomino- pélvica equilibrada que é dependente da posição anatômica, a qualidade das fibras musculares e a integridade das fáscias. A relação funcional entre os MAP e músculos abdominais (transverso do abdômen, oblíquos interno e externo e reto abdominal) foi primeiramente descrita por Sapsford e colaboradores (3, 8).Portanto, para que estes músculos desempenhem suas funções de continência e sustentação, parece haver a necessidade de que durante as contrações de MAP ocorra também a contração dos músculos abdominais (5) e vice-versa, atuação esta denominada cocontração sinérgica (9). Alguns estudos mostram ainda que a contração simultânea do abdômen parece potencializar a atividade motora do MAP (4, 5 e 7), mostrando importância deste grupo muscular na função de continência urinária (10). De forma semelhante, durante situações de aumento da pressão intra-abdominal, faz-se necessário que ocorra interação entre os músculos abdominais e os MAP, dissipando a pressão dentro do recinto abdominal. Os MAP, por sua vez, também devem contrair sinergicamente com a musculatura do tronco. Com a incoordenação destes músculos, 24 ocorre aumento da atividade muscular dos músculos da parede abdominal superior, o que faz com que as vísceras sejam empurradas contra o assoalho pélvico. Ou seja, o aumento da pressão intra-abdominal mais a insuficiência dos MAP, predispõe às disfunções pélvicas (2). A cocontração sinérgica entre MAP e musculatura abdominal é observada em mulheres assintomáticas (11 e 12), porém não há consenso na literatura a respeito das mulheres com Incontinência Urinária (IU) (12, 13 e 14). O que tem sido sugerido entre alguns autores (14 – 18) é que os sintomas miccionais estejam possivelmente relacionados a um desequilíbrio na ação destes dois grupos musculares, seja através de uma resposta muscular dos MAP inferior à musculatura abdominal e/ou seja através de uma lentidão no tempo de ativação dos MAP em relação à ativação abdominal (6, 19 – 21). Evidências de revisão sistemática demonstraram que a interação dos MAP com os músculos abdominais ocorre tanto na contração voluntária do assoalho pélvico quanto nas manobras abdominais e que o MRA deve participar dos mecanismos de continência urinária (22). Durante a gravidez, o corpo da gestante passa por diversas adaptações fisiológicas. Como consequência ao permitir o crescimento uterino, há estiramento do músculo abdominal, ocorrendo uma separação dos feixes dos MRA em relação a linha Alba, podendo dar origem à diástase do músculo reto abdominal, considerado patológico quando o afastamento é superior a três centímetros (23,24). Sua modificação de comprimento pode resultar em alteração em sua capacidade de produzir o torque, interferindo no vetor de força muscular (25) e repercutindo negativamente no pós-parto (23). O assoalho pélvico (AP) também passa por adaptações no período gestacional. Na fáscia endopélvica, responsável pela sustentação dos órgãos acima do assoalho pélvico, ocorrem modificações em seu componente principal, o colágeno (26). A fraqueza nas estruturas do AP é comumente encontrada na gravidez levando à predisposição de disfunção e seus sintomas consequentes (27). A massa corporal materna e o peso uterino 25 geram sobrecarga na musculatura do assoalho pélvico (28). Como forma de compensação a esse aumento na carga, foi observado tônus muscular maior para manter as funções de suporte e continência (29). Além disso, o sobrepeso excessivo pode resultar em aumento na tensão excedente enfraquecendo as estruturas musculares e suscitando disfunções pélvicas (30-32). A presença de IU com primeira ocorrência durante gravidez, denominada IU específica da gravidez (IU-EG) (33), tem impacto negativo na qualidade de vida (QV) ao longo do tempo (33, 34), com prevalência média de 41% em mulheres grávidas. Mesmo que ainda não inteiramente compreendida a fisiopatologia da IU-EG, a literatura traz como causa as alterações mecânicas e hormonais ocorridas neste período (33). Além disso, IU-EG é fator de risco para a IU 2 anos após o parto em que foi observado menor contração dos músculos do assoalho pélvico (MAP) (35) nesse período o que nos remete às suas consequências a longo prazo. Pesquisas com associação entre Diabetes Mellitus Gestacional (DMG) e alteração muscular iniciaram-se a partir de investigações clínicas sobre IU gestacional em mulheres com histórico de DMG. A literatura científica tem mostrado o impacto negativo da hiperglicemia no músculo: atrofia e desorganização muscular, diminuição da proporção de fibras rápidas, aumento da deposição de colágeno e fibrose severa foram observados em um estudo realizado em ratas grávidas diabéticas (36,37), evidenciando que o DMG altera o músculo esquelético pelo efeito direto da hiperglicemia (38). Sendo assim, surgiu a tríade DMG, miopatia diabética e IU e seus biomarcadores, que é investigada pelo Diamater Study Group desde 2006, caracterizando o Projeto Temático (2016/01743-5). O Conceptual Model (36), estabelecido da integração entre DMG, IU- EG e miopatia hiperglicêmica tem a funcionalidade dos MAP e MRA como variáveis moderadoras e precisa ser investigado (Figura 1). 26 Figura 1: Potenciais confundidores, mediadores e moderadores do Diamater. Fonte: Rudge et al., 2020 (36). Com o objetivo de subsidiar os estudos futuros da relação DMG, IU-EG e co- contração MAP e MRA e comparar achados, faz-se necessário como base o conhecimento das possíveis alterações na sinergia muscular em gestantes normoglicêmicas com IU-EG. Com base nesses fatos, a avaliação da funcionalidade do MRA pode ser realizada através da ultrassonografia bidimensional (US-2D), uma vez que esta técnica tem sido relatada como método simples, não invasivo, de fácil execução e amplamente utilizado na clínica obstétrica (39). A técnica está prontamente disponível, não tem radiação ionizante, apresenta desconforto mínimo (40), tem boa confiabilidade interobservador e interdisciplinar e permite avaliação dinâmica dos músculos (41). Sendo assim, é possível obter imagens de maneira rápida e de fácil aprendizado pelos pesquisadores clínicos (42-46). Ajustes nas zonas focais para a área de interesse (profundidade de 2 a 5 cm) e no software para melhorar a qualidade das imagens são necessários (46-48). As imagens da US-2D permitem análise anatômica do MRA em qualquer região de sua extensão durante repouso e análises funcionais durante sua ativação por meio de tarefas solicitadas ao compararmos 27 a espessura anteroposterior entre os momentos da mesma participante e sua relação entre os grupos de interesse na pesquisa (Figura 2). Figura 2- Imagem de US-2D do MRA. Arquivo do DIAMATER, 2018. A presente Dissertação se propõe responder perguntas previstas nos objetivos do “Projeto Temático Diamater”. Tem aprovação do Comitê de Ética em Pesquisa (CEP) para seu desenvolvimento no projeto “mãe” CAAE: 82225617.0.0000.5411 (Anexo 4). O objetivo geral a saber, é: Identificar a espessura/funcionalidade do músculo reto abdominal avaliada por ultrassonografia 2D durante exercícios voluntários e a cocontração associada dos músculos do assoalho pélvico como preditor da incontinência urinária específica da gravidez. Os resultados obtidos estão apresentados no artigo de acordo o respectivo objetivo: - Rectus abdominis muscles functionality assessed by two-dimensional ultrasound as a predictor of the pregnancy-specific urinary incontinence. Sendo assim, não apenas para responder às perguntas do Projeto Temático Diamater, o trabalho também se justifica por ter sido aplicado metodologias de análise inéditas na área, complementando a abordagem de problemática de interesse médico/social e pelo conhecimento da incontinência urinária específica da gestação ser um problema de saúde pública que afeta a qualidade de vida da mulher com impactos maternos a longo prazo. 28 Referências: 1. Bergmark A. Stability of the lumbar spine: a study in mechanical engineering. Acta Orthop Scand Suppl. 1989;230:1–54. 2. Sapsford R. Rehabilitation of pelvic floor muscles utilizing trunk stabilization. Manual Therapy. 2004;9(1):3–12. 3. Sapsford R, Hodges PW, Richardson CA, Cooper HD, Markwell SJ, Jull GA. Co-activation of the abdominal and pelvic floor muscles during voluntary exercises. Neurourol Urodyn 2001;20(1):31-42. 4. Sapsford RR, Hodges PW. Contraction of the pelvic floor muscles during abdominal maneuvers. Arch Phys Med Rehabil 2001;82(8):1081-8. 5. Neumann P, Gill V. Pelvic floor and abdominal muscle interaction: EMG activity and intra- abdominal pressure. Int Urogynecol J 2002;13:125-32. 6. Junginger B, Baessler K, Sapsford R, Hodges PW. Effect of abdominal and pelvic floor tasks on muscle activity, abdominal pressure and bladder neck. Int Urogynecol J 2010;21(1):69– 77. 7. Pereira LC, Botelho S, Marques J, Amorim CF, Lanza AH, Palma P, Riccetto C. Are transversus abdominis/oblique internal and pelvic floor muscles coactivated during pregnancy and postpartum? Neurourol Urodyn 2013;32(5):416-419. 8. Santos AA. Biomecânica do movimento. 2ªed. São Paulo Editora: Sammus, 2002. 9. Bo K, Frawley HC, Haylen BT, Abramov Y, Almeida FG, Berghmans B, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for the conservative and nonpharmacological management of female pelvic floor dysfunction. Neurourol Urodyn 2017;36(2):221-44. 10. Ptaszkowski K, Paprocka-Borowicz M, Slupska L, Bartnicki J, Dymarek R, Rosinczuk J,et al.Assessment of bioelectrical activity of synergistic muscles during pelvic floor muscles activation in postmenopausal women with and without stress urinary incontinence: a preliminary observational study. Clin Interv Aging [Internet]. 2015 Sep;1521. 11. Vesentini G, El Dib R, Righesso LAR, Piculo F, Marini G, Ferraz GAR et al. Pelvic floor and abdominal muscle cocontraction in women with and without pelvic floor dysfunction: a systematic review and meta-analysis. Clinics 2019;25(74):e1319. 12. Ferla L, Darski C, Paiva LL, Sbruzzi G, Vieira A. Synergism between abdominal and pelvic floor muscles in healthy women: a systematic review of observational studies. Fisioter Mov 2016;29(2):399- 410. 13. Madill SJ, Harvey MA, McLean L. Women with stress urinary incontinence demonstrate motor control differences during coughing. Journal of Electromyography and Kinesiology 2010;20(5):804–812. 14. Arab AM, Chehrehrazi M. The response of the abdominal muscles to pelvic floor muscle contraction in women with and without stress urinary incontinence using ultrasound imaging. Neurourol Urodyn 2011;30(1):117-20. 15. Barbic M, Kralj B, Andrej C. Compliance of the bladder neck supporting structures: importance of activity pattern of levator ani muscle and content of elastic fibers of endopelvic fascia. Neurourol Urodyn 2003;22:269-76. 29 16. Thompson JA, O’Sullivan PB, Briffa NK, Neumann P. Altered muscle activation patterns in symptomatic women during pelvic floor muscle contraction and Valsalva manouevre. Neurourol Urodyn 2006;25(3):268-76. 17. Bø K, Braekken IH, Majida M, Engh ME. Constriction of the levator hiatus during instruction of pelvic floor or transversus abdominis contraction: a 4D ultrasound study. Int Urogynecol J Pelvic Floor Dysfunct 2009;20(1):27-32. 18. Devreese A, Staes F, DeWeerdt W, Feys H, Van Assche A, Penninckx F, et al. Clinical evaluation of pelvic floor muscle function in continent and incontinent women. Neurourol Urodyn 2004;23(3):190-7. 19. Junginger B, Seibt E, Baessler K. Bladder-neck effective, integrative pelvic floor rehabilitation program: follow-up investigation. Eur J Obstet Gynecol Reprod Biol 2014;174:150-3. 20. Smith MD, Coppieters MW, Hodges PW. Postural activity of the pelvic floor muscles is delayed during rapid arm movements in women with stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct. 2007;18(8):901-911. DOI: 10.1007/s00192-006-0259-7; 21. Baessler K, Junginger B. Why do women leak urine? Which continence mechanism(s) fail(s)? Int Urogynecol J 2013; 24: S90-S91. 22. Vesentini G, El Dib R, Righesso LAR, Piculo F, Marini G, Ferraz GAR, et al. Pelvic floor and abdominal muscle cocontraction in women with and without pelvic floor dysfunction: a systematic review and meta-analysis. Clinics. 2019;74:e1319. 23. Boissonnault JS, Blaschak MJ. Incidence of diastasis recti abdominis during the childbearing year. Phys Ther [Internet].1988 Jul [cited 2019 Aug 6];68(7):1082–6. 24. Mesquita LA, Machado AV, Andrade AV. Fisioterapia para redução da diástase dos músculos retos abdominais no pós-parto. Rev Bras Ginecol e Obs [Internet]. 1999 Jun;21(5):267–72. 25. Bursch SG. Interrater reliability of diastasis recti abdominis measurement. Phys Ther [Internet].1987 Jul [cited 2019 Aug 6];67(7):1077–9. 26. Landon CR, Crofts CE, Smith ARB, Trowbridge EA. Mechanical properties of fascia during pregnancy: a possible factor in the development of stress incontinence of urine. Contemp Rev Obstet Gynaecol. 1990;2:40–6. 27. Van Geelen H, Ostergard D, Sand P. A review of the impact of pregnancy and childbirth on pelvic floor function as assessed by objective measurement techniques. Int Urogynecol J [Internet]. 2018 Mar 13;29(3):327–38. 28. Herbert J. Pregnancy and childbirth: the effects on pelvic floor muscles. Nurs Times [Internet]. 105(7):38–41. 29. Moccellin AS, Rett MT, Driusso P. Existe alteração na função dos músculos do assoalho pélvico e abdominais de primigestas no segundo e terceiro trimestre gestacional? Fisioter e Pesqui [Internet].2016Jun;23(2):136–4 30. Kudish BI, Iglesia CB, Sokol RJ, Cochrane B, Richter HE, Larson J, et al. Effect of Weight Change on Natural History of Pelvic Organ Prolapse. Obstet Gynecol [Internet]. 2009 Jan;113(1):818. 31. Greer WJ, Richter HE, Bartolucci AA, Burgio KL. Obesity and Pelvic Floor Disorders. Obstet Gynecol [Internet]. 2008 Aug;112(2, Part 1):341–9. 32. Stothers L, Friedman B. Risk Factors for the Development of Stress Urinary Incontinence in Women. Curr Urol Rep [Internet]. 2011 Oct 22;12(5):363–9. 33. Hvidman L, Foldspang A, Mommsen S, Bugge Nielsen J. Correlates of urinary incontinence in pregnancy. Int Urogynecol J Pelvic Floor Dysfunct. 2002;13(5):278-83. 34. Viktrup L, Lose G. Lower urinary tract symptoms 5 years after the first delivery. Int Urogynecol J Pelvic Floor Dysfunct. 2000 Dec;11(6):336-40. 30 35. Barbosa AM, Dias A, Marini G, Calderon IM, Witkin S, Rudge MV. Urinary incontinence and vaginal squeeze pressure two years post-cesarean delivery in primiparous women with previous gestational diabetes mellitus. Clinics (Sao Paulo). 2011;66(8):1341-6. 36. Rudge MVC, Souza FP, Abbade JF, Hallur RLS, Marcondes JPC, Piculo F, et al. Study protocol to investigate biomolecular muscle profile as predictors of long-term urinary incontinence in women with gestational diabetes mellitus. BMC Pregnancy Childbirth [Internet].2020 Dec 19;20(1):117. 37. Piculo F, Marini G, Barbosa AMP, Damasceno DC, Matheus SM, Felisbino SL, et al. Urethral striated muscle and extracellular matrix morphological characteristics among mildly diabetic pregnant rats: translational approach. Int Urogynecol J Pelvic Floor Dysfunct. 2014;25:403–415. doi: 10.1007/s00192-013-2218-4. 38. Lambertucci AC, Lambertucci RH, Hirabara SM, Curi R, Moriscot AS, Alba-LoureiroTC, et al. Glutamine supplementation stimulates protein-synthetic and inhibits protein- degradative signaling pathways in skeletal muscle of diabetic rats. PLoS One [Internet]. 2012 Jan [cited 2019 Aug6];7(12):e50390. 39. Messelink B, Benson T, Berghmans B, Bø K, Corcos J, Fowler C, et al. Standardization of terminology of pelvic floor muscle function and dysfunction: Report from the pelvic floor clinical assessment group of the International Continence Society. Neurourol Urodyn. 2005 40. Shek Ka, Dietz Hans. Pelvic floor ultrasonography: An update. Minerva ginecologica. 2013 Feb 01. Vol 65 41. Brækken IH, Majida M, Ellstrøm-Engh M, Dietz HP, Umek W, Bø K.Test–retest and intra- observer repeatability of two-,three-and four-dimensional perineal ultrasound of pelvic floor muscle anatomy and function. Int Urogynecol J [Internet]. 2008 Feb 29 [cited 2016 Dec 4];19(2):227– 35. 42. DeLancey JOL, Kearney R, Chou Q, Speights S, Binno S. The appearance of levator ani muscle abnormalities in magnetic resonance images after vaginal delivery. Obstet Gynecol [Internet]. 2003 Jan [cited 2019 Aug 6];101(1):46–53. 43. Dietz HP, Haylen BT, Broome J. Ultrasound in the quantification of female pelvic organ prolapse. Ultrasound Obstet Gynecol [Internet]. 2001 Nov [cited 2019 Aug 6];18(5):511–4. 44. Dietz HP. Levator function before and after childbirth. Aust N Z J Obstet Gynaecol [Internet]. 2004 Feb [cited 2019 Aug 6];44(1):19–23. 45. Fielding JR. Practical MR imaging of female pelvic floor weakness .Radiographics [Internet]. [cited 2019Aug 6];22(2):295–304. 46. Margulies RU, Hsu Y, Kearney R, Stein T, Umek WH, DeLancey JOL. Appearance of the levator ani muscle subdivisions in magnetic resonance images. Obstet Gynecol [Internet]. 2006 May [cited 2019Aug 6];107(5):1064–9. 47. Singh K, Reid WMN, Berger LA. Magnetic resonance imaging of normal levator ani anatomy and function. Obstet Gynecol [Internet]. 2002 Mar [cited 2019 Aug 6];99(3):433–8. 48. Aukee P, Usenius J-P, Kirkinen P. An evaluation of pelvic floor anatomy and function by MRI. Eur J Obstet Gynecol Reprod Biol [Internet]. 2004 Jan 15 [cited 2019 Aug 6];112(1):84–8. 31 Seção 3 Artigo Artigo Original redigido de acordo com as normas de publicação da revista Archives of Physical Medicine and Rehabilitation para a qual será submetido. Qualis A2 MED III – FI: 3,098 https://www.journals.elsevier.com/archives-of-physical-medicine-and- rehabilitation. https://www.journals.elsevier.com/archives-of-physical-medicine-and-rehabilitation https://www.journals.elsevier.com/archives-of-physical-medicine-and-rehabilitation 32 Rectus abdominis muscles functionality assessed by two-dimensional ultrasound as a predictive factor of the pregnancy-specific urinary incontinence Adriely B. M. Magyori a‡, Natalia Martinho,b‡, Fabiane A. Pinheiro, MSa*, MSa,* Sthefanie K. Nunes, MSa* Luis Takano, MDa,c*, Caroline B. Prudencio, MSa*, Luana F. Iamundoa*, Raissa S Avramidisa*, Marilza V. C. Rudge, PhDa●, Angélica M. P. Barbosa, PhDa,c● Diamater Study Groupa# ‡ ABMM and NM are first authors on this work. ● MVCR and AMPB are last authors on this work. * These authors contributed equally to this work. #Diamater Study Group - Rudge MVC, Barbosa, AMP, Calderon IMP, Souza FP, Berghmans B, Thabane L, Junginger B, Graeff CFO, Magalhães CG, Costa RA, Lima SAM, Kron-Rodrigues MR, Felisbino S, Barbosa W, Campos FJ, Bossolan G, Corrente JE, Nunes HRC Abbade J, Rossignoli PS, Pedroni CR, Atallah AN, Di Bella ZIKJ, Uchoa SMM, Hungaro MA, Mareco EA, Sakalem ME, Martinho N, Hallur LSR, Reyes DRA, Alves FCB, Marcondes JPC, Prudencio CB, Pinheiro FA, Sartorão Filho CI, Quiroz SBCV, Pascon T, Nunes SK, Catinelli BB, Reis FVDS, Oliveira RG, Barneze S, Enriquez EMA, Takano L, Carr AM, Magyori ABM, Iamundo LF, Carvalho CNF, Jacomin M, Avramidis RE, Silva AJB, Orlandi MIG, Dangió TD, Bassin HCM, Melo JVF, Takemoto MLS, Menezes MD, Caldeirão TD, Santos NJ, Lourenço IO, Marostica de Sá J, Caruso IP, Rasmussen LT, Garcia GA, Nava GTA, Pascon C, Bussaneli DG, Nogueira VKC, Rudge CVC, Piculo F, Prata GM, Barbosa VP. From aSão Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil, Department of Gynecology and Obstetrics, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Brazil; b Regional Universitary Center of Espírito Santo do Pinhal (UniPinhal), Espírito Santo do Pinhal, SP, Brazil and University Center of the Associated Faculties of Education (UNIFAE), São João da Boa Vista, SP, Brazil; and cSão Paulo State University (UNESP), School of Philosophy and Sciences, Marilia, SP, Brazil, Department of Physiotherapy and Occupational Therapy, Universidade Estadual Paulista (UNESP), Brasil. Supported by Sao Paulo Research Foundation protocol number 2016/01743-5 and scholarship for technical training number 2021/04296-8. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Disclosures: none. 33 Abstract Objective: to identify the change in the rectus abdominis muscle thickness during both isolated and simultaneous abdominal and pelvic floor muscles’ contractions; as well as to compare the rectus abdominis muscle thickness between pregnant women with and without pregnancy-specific urinary incontinence (PS-UI). Design: A cross-sectional study. Setting: Research Center of Botucatu Medical School. Participants: Pregnant women from 19 weeks of gestation with and without PS-UI were recruited. Main Outcome Measures: Rectus abdominis muscle (RAM) thickness measured at rest and during RAM contraction, pelvic floor muscle (PFM) contraction and simultaneous RAM and PFM contraction. Results: One hundred twenty-seven pregnant women with PS-UI and 62 pregnant women without PS-UI were included. Pre-gestational BMI and gestational BMI were higher on PS-UI group, while educational level was lower in this group. RAM thickness was greater in the PS-UI group when measured at rest and during isolated voluntary contractions of both RAM and PFM. Thickening of the RAM from rest and during an isolated RAM voluntary contraction was greater in the PS-UI group. Control group presented greater strength and longer duration of contraction maintenance (endurance) of Pelvic Floor Muscles (PFM). Conclusion: Higher education levels and physical activity during pregnancy were shown to be protective factors. Higher pre-pregnancy BMI, higher gestational BMI, and higher RAM thicknesses at rest, during isolated RAM voluntary contraction, during PFM isolated voluntary contraction and its greater variation values were shown to be risk factors for PS-UI. 34 Introduction Muscles that compose the pelvic floor surrounds urethra, vagina and anus, connecting the pelvic ring. They are collectively referred to as the levator ani and coccygeus muscles. Their two major functions are providing support for pelvic organs and maintaining the continence mechanism. When healthy, these muscles are symmetrical and able to contract and relax voluntarily and involuntarily; as well as contracting in response to the intra-abdominal pressure increasing. On the other hand, if there is a disorder affecting their ability to contract, relax and/or distend, affecting also their muscle control and coordination will predispose to Pelvic Floor Muscle Dysfunctions (PFMD) (1-4). PFMD present negative impact on quality of life (5-7) and are associated with symptoms of stress urinary incontinence, overactive bladder syndrome, pelvic organ, anal incontinence, pelvic pain, sexual dysfunction and constipation (8-11). When healthy, they are symmetric, can contract voluntarily or involuntarily, can relax and it must response to the increases of intra- abdominal pressure. When there is a disorder that affects ability to contract, distend, relax, control and coordinate pelvic floor muscles, it is called Pelvic Floor Muscle Dysfunction (PFMD) (1-4), it results negative impact on quality of life (5-7) and is associated with symptoms urinary incontinence, stress urinary incontinence, overactive bladder syndrome, pelvic organ, anal incontinence, pelvic pain, sexual dysfunction and constipation (8-11). Pelvic floor and abdominal muscle cocontraction have been functionally justified due to the positioning of the fibers (12). It appears to be necessary the action of these muscles to occur in a coordinated manner to maintain urinary continence since their simultaneous contraction seems to potentiate the motor activity of both. In other words, the contraction of abdominal muscles improves the functionality of the pelvic floor (13- 15) showing its importance in the role of the urinary continence function (16). 35 Urinary incontinence (UI) is defined by the International Continence Society as any involuntary leakage of urine (17). There is still no consensus in the literature whether women with UI have or not a synchronous pelvic floor and abdominal muscles response (16,18,19). Some authors (19-23) suggest that the presence of voiding symptoms is related to the uncoordinated action between these muscles. Evidence from a systematic review has shown the interaction of pelvic floor muscles with the abdominal muscles during the isolated voluntary contraction of both and that the rectus abdominis muscle must participate in the mechanisms of urinary continence (24). The presence of urinary incontinence with first occurrence during pregnancy is known as Pregnancy Specific-Urinary Incontinence (25) and it has a negative impact on quality of life (25, 26) with an average prevalence of 41% in pregnant women. The pathophysiology is not entirely known, but literature has brought the mechanical and hormonal adaptations as cause (25). During pregnancy, as a consequence of allowing uterine growth, there is a stretching of the abdominal muscle and this length modification may interfere in the muscle strength vector (27). Collagen modifications, maternal body mass, uterine weight and the commonly weakness on pelvic floor found on pregnant women may lead to pelvic floor dysfunctions (3,28,29). Therefore, the maintenance of urinary continence mechanisms seems to depend on the adequate performance of all the muscles involved, their anatomical position, the quality of their fibers (active support) and the integrity of the fascia (passive support). Ultrasonographic has been reported as a simple and safety way to assess thickness of rectus abdominus muscle on pregnant women, in any region of its extension during rest or dynamic activities and it has good interobserver and interdisciplinary reliability (30,31). 36 The aim of the present study was to identify the change in the rectus abdominis muscle thickness during both isolated and simultaneous abdominal and pelvic floor muscles’ contractions; as well as to compare the rectus abdominis muscle thickness between pregnant women with and without pregnancy-specific urinary incontinence (PS-UI). Methods A cross-sectional study was conducted at the Perinatal Diabetes Research Center (PDRC), São Paulo State University (UNESP), Botucatu Medical School, Brazil, by the Diamater Study Group. The STROBE statement was used as a guide to report this study. Pregnant women from 19 weeks of gestation were recruited from November 2018 to February 2020. This study was approved by the Institutional Ethical Committee of Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil (CAAE: 82225617.0.0000.5411). Women were invited to participate during the waiting room at PDRC. All participants provided written informed consent according to the ethical guidelines (Resolution 466/2012) of the Brazilian Health Council, prior data collection. Participants The inclusion criteria were pregnant women from 19 weeks of gestation, at least 18 years of age and singleton pregnancy. Participants who had urinary incontinence before pregnancy, previous known to have diabetes or diagnosis of gestational diabetes, neurological disorders, prolapse, inability to perform the correct Pelvic Floor Muscles (PFM) contraction, limitations that prevented full or partial completion in any time of this study, preterm birth and intrauterine fetal death, were excluded. 37 Sample size calculation We considered the observational, cross-sectional study and data from previous studies, specific to the research group, which showed PS-UI in 31.6% in normoglycemic pregnant women. With a significance level of 95% and statistical sample power of 80% (1-beta, probability of detection), at least 40 participants were included in each of the groups. The study was composed of two groups: PS-UI group and Control group. Data collection In a private office at PDRC, were collected the following demographic information: maternal age, ethnicity, education level, smoking in pregnancy, physical activity, pre- pregnancy and body mass index (BMI) at collect. PS-UI diagnosis and classification Participants were asked whether during pregnancy they had leaked or lost control of even a small amount of urine with activity such as coughing, lifting, or exercise or if they experienced an urge to urinate and could not go to the toilet fast enough (urge UI). Pregnant women who reported Pregnancy-specific urinary incontinence (PS-UI) were asked to complete the Brazilian version of the International Consultation on Incontinence Questionnaire-Urinary Incontinence- Short Form (ICIQ- SF) (32) The participants were also asked about the frequency and quantity of urinary leakage to assess the validated Incontinence Severity Index (ISI). The severity was graded depending on the frequency of leakage (grade I: once a week at most; grade II: two or more episodes per week, but not daily and grade III: one or more episodes of leakage per day) according to ISI questionnaire (33). 38 RAM’s thickness and PFM cocontraction The participant was requested to stand in dorsal decubitus with lower limbs in extension. The ultrasound used was a GE® brand portable equipment with 2D image acquisition. The transducer used was Linear with a frequency of 8 to 12 Mhz . All participants were instructed about how to perform the following sequence: rest, RAM contration and PFM contraction.The technique of PFM contraction was explained by this verbal prompt: “Please squeeze your pelvic muscle, as though you were trying to hold in gas and as hard as you can, maintaining it as long as possible" (34). A PFM contraction was considered correct when the examiner observed the best cranial shift of the levator ani muscle (LAM) and when felt inward pressure or upward traction on the finger inserted in the vagina (35).RAM contraction was requested through trunk elevation. The 2D-US was performed by an experienced investigator on 2D- US. Anatomical and functional images of the lower right portion of the RAM were collected to measure its anteroposterior thickness where the transducer was positioned transversely 2 cm above and to the right of the upper edge of the pubic symphysis. The images were collected in four steps and then saved anonymously in the following sequence (Figure 1): 1. One image of RAM at rest to compare with the functional images (Figure 1a). 2. One image of RAM during a voluntary contraction with trunk elevation (Figure 1b). 3. One image of RAM while the participant voluntary contracts PFM to verify the RAM response to this demand (Figure 1c). 4. One image of RAM during voluntary contractions of PFM and RAM (Figure 39 1d). Figure 1 – Ultrasound images of RAM. Researchers’ archive, 2018. All of the images were coded by, keeping the patient's identification anonymous and stored for further offline analysis, which guarantees the analysis in a single-blind way. The thickness were measured by the distance between the deep and superficial fascias of the RAM, assessed 3 cm from the medial edge of the rectus abdominis muscle. The index considering resting state was calculated for each task (T) separately (RAM, PFM contraction and cocontraction) by subtracting the thickness from the thickness at rest (Index=T–R). The smaller the value obtained for contraction, the lower the capacity to contract RAM during the task in relation to rest. Statistical methods The software IBM SPSS Statistics for Windows, version 20.0 (IBM Corp., Armonk, N.Y., USA) was used to statistical analysis. Categorical variables were expressed as numbers and percentages and continuous variables were expressed by mean and standard deviation. The Chi-square test or Fisher's exact test was applied to compare the nominal data between groups. Comparisons between groups were performed by Mann-Whitney U test. Differences were considered statistically significant at p ˂ 0.05. Poisson regression model was adopted to evaluate the association between the risk factors and pregnancy-specific urinary incontinence considering p < 0,20 statistically 40 significant. Results A total of 217 pregnant women met the inclusion criteria and completed all stages of the research. Among these, 28 participants were excluded from the final analysis: 7 due to missing data and 21 due to technical fail during US analysis. Thus, 189 participants were successfully included in this study, of these, 62 were enrolled for the control group and 127 were enrolled for the PS- UI group (Figure 2). Figure 2 – Flowchart for cohort derivation showing the number of participants and the reasons for loss. The baseline characteristics of 189 participants are summarized on Table 1. The groups were matched for age, gestational age, maternal weight gain and previous C-section. Pre-gestational BMI and gestational BMI were higher on PS-UI. Education level was lower on PS-UI when to compare with Control group (Table 1). 41 Table 1: Baseline characteristics of the study population Variables Control (n=62) PS-UI (n=127) p-value Age (years) 26.56±6.18 25.93±5.57 .548 Pre-pregnancy BMI (kg⁄m²) 25.16±6.22 27.48±7.38 .012 Gestational age (weeks) 28.44±4.67 28.83±4.88 .540 BMI gestational (kg⁄m²) 27.90±4.89 30.00±6.89 .019 Weight gain (kg) 7.11±8.64 6.68±7.53 .699 Primiparous 44 (71.0%) 81 (63.8%) 0.413 Prior cesarean delivery 18 (29%) 46 (36.2%) 0.413 Education level 0.004 Middle school 2 (3.2%) 23 (18.1%) High school 40 (64.5%) 80 (63.0%) Higher education 20 (32.3%) 24 (18.9%) n: sample. The chi-square test or Fisher's exact test; p < 0.05 significant difference between the groups. Table 2 presents muscle’s variables in the PS-UI compared to Control group. The thickness of the RAM at rest, in the isolated voluntary contraction of the RAM and in the isolated voluntary contraction of the PFM was greater in the PS-UI group when compared to the Control group. The variation of RAM thickness in cm, considering rest as baseline, was greater in the PS-UI group during isolated RAM voluntary contraction. 42 Table 2 – Rectus abdominis muscle (RAM) thickness during different tasks. Variables Control (n=62) PS-UI (n=127) p- value RAM thickness At Rest (cm) 0.57±0.14 0.61±0.13 .035 During RAM contraction (cm) 0.73±0.24 0.83±0.23 .007 During PFM contraction (cm) 0.60±0.16 0.65±0.14 .019 During Cocontraction (RAM+PFM) (cm) 0.78±0.24 0.81±.023 .507 Thickness Variation Index (cm) - considering the rest status RAM contraction (cm) 0.16±0.15 0.22±0.18 .043 PFM contraction (cm) 0.02±0.05 0.03±0.09 .655 Cocontraction (RAM+PFM) (cm) 0.20±0.15 0.19±0.18 .482 ThicknessVariation Index (%) - considering the rest status RAM contraction (%) 26.53±23.62 37.15±34.43 .059 PFM contraction (%) 4.02±8.46 6.81±19.88 .657 Cocontraction (RAM+PFM) (%) 34.99±26.47 33.05±31.41 .405 n: sample; BMI: body mass index; kg: kilograms; RAM: rectus abdominis muscle; PFM: pelvic floor muscle; cm: centimeter; %: percentage. PS-UI: incontinence urinary group. Index-considering the rest state was calculated by (the task – Rest); Percentage- considering the rest state was calculated by ((the task – rest)/ rest*100). Data are presented in mean ± standard deviation. Mann-Whitney U test; p < 0.05 significant difference between the groups. Table 3 shows the predictors for PS-UI through bivariate linear regression analysis. According to the findings, higher education levels are protective factors: severity index of PS-UI were lower at higher levels when compared to lower levels of education. Physical activity during pregnancy was presented as a protective factor. Higher pre-pregnancy BMI and higher gestational BMI are risk factors for UI-PS. Higher RAM thicknesses at rest, during isolated RAM voluntary contraction and during PFM isolated voluntary contraction, as well as its greater variation in absolute and percentage values were shown to be risk factors for PS-UI. 43 Table 3 – Bivariate linear regression of predictors for PS-UI. Variables RR CI 95% p-value Primiparous 0.932 0.809 .326 Prior cesarean delivery 1.073 0.932 .326 Education level Higher education 0.688 0.550 .001 High school 0.776 0.638 .012 Non-Caucasian 1.014 0.862 .866 Physical activity 0.843 0.688 .099 Smoking 0.874 0.657 .356 Age (years) 0.996 0.984 .475 Gestational age 1.004 0.990 .598 Pre-pregnancy BMI 1.010 1.001 .032 BMI gestational 1.012 1.001 .030 Weight gain (kg) 0.998 0.990 .724 RAM thickness during task Rest (cm) 1.582 0.974 .064 RAM contraction (cm) 1.453 1.102 .008 PFM contraction (cm) 1.603 1.018 .042 Cocontraction (RAM+PFM) (cm) 1.126 0.842 .424 Variation Index (cm)-considering the rest state RAM contraction (cm) 1.515 1.036 .032 PFM contraction (cm) 1.245 0.548 .601 Cocontraction (RAM+PFM) (cm) 0.924 0.626 .691 Variation Index (%) -considering the rest state RAM contraction (%) 1.002 1.000 .028 PFM contraction (%) 1.002 0.998 .287 Cocontraction (RAM+PFM) (%) 1.000 0.997 .672 CI:confidence interval; RR: relative risk; RAM: rectus abdominis muscle; PFM: pelvic floor muscle; cm: centimeter; %: percentage. Index-considering the rest state was calculated by (the task – Rest); Percentage-considering the rest state was calculated by ((the task – rest)/ rest*100). Poisson regression analysis; p < 0,20 Discussion By demonstrating the positive correlation between the thickness of the Rectus Abdominis and the cross-sectional area as a metric measure of muscle size (36), it is possible to correlate the findings of the present study with the functionality of the muscle in the PS-UI compared to control group. 44 Having rest as a baseline for inter- and intra-group comparison, 2D US allows the evaluation of muscle behavior through the variation in thickness that can change according to the requested task, providing clinical information about the muscle contraction capacity (37). In this study, the PS-UI group showed a thicker Rectus Abdominis at rest and a higher BMI. Studies such as Rankin et al (38) and Springer et al (39) showed a positive correlation between BMI and abdominal muscle thickness. Differences in thickness could represent improvement or deterioration in muscle contraction (40). Thicker RAM in the PS-UI group may be related to muscle hypertrophy, or in other words, greater contraction demand when compared to the control group. The abdominal musculature plays an important role in the urinary continence function (41), since its joint action with the PFM (cocontraction) seems to potentiate the motor activity of the PF (42-44). Thicker RAM during PFM isolated voluntary contraction in the PS-UI group, which presented lower strength and endurance, may be a form of compensation or muscle reinforcement when trying to potentiate PFM activity. However, the situation of increased intra-abdominal pressure added to PFM insufficiency predisposes to pelvic dysfunction (45) which would explain the thicker RAM in isolated voluntary contractions of RAM and PFM and its greater variation in these tasks in relation to rest, as a risk factor for PS-UI Coldron (46) in its study associated the reduction in the thickness of the RAM to the decrease in strength. By following this reasoning, inversely, the increase in thickness would be related to the increase in strength and when associating with the results of the present study, the RAM in the PS-UI group would present greater strength compared to the control. However, Baran (47) brings in its study the weakness of the RAM as a potential factor associated with UI during pregnancy. 45 In agreement with the study by Barbosa (48), high BMI proved to be a risk factor for UI during pregnancy, with higher rates when compared to control group. Maternal body mass and uterine weight generate an overload on the PF muscles (49). Excessive overweight can result in an increase in excess tension, weakening muscle structures and triggering pelvic dysfunction (50-52). Luber (53) also shows that the risk increases in proportion to the increase in BMI. The PF muscles have continence as one of the main functions, therefore, good strength and endurance are essential muscle factors for adequate performance. Lower strength and PFM endurance were present in the PS-UI group compared to control. Hilde (54) in its review also brings up such relationship. Thus, PFM insufficiency, in this study, when classified as “weak” or “flicker” in muscle strength, proved to be a risk factor for UI during pregnancy, while greater endurance proved to be a protective factor in maintaining strength. Menezes and (55) Tamanini (56) in their studies with non-pregnant women, also observed an association between schooling and urinary incontinence, being more present in women with less time of study. Little access to information and health centers can justify such a relationship since there are no physiological precedents. Study limitations and strengths We must consider some limitations of this study. Ideally, all pregnant women should have been assessed before pregnancy. Nevertheless, this study is the first report assessments that allowed us to evaluate impacts since the pregnancy. The examiner who analyzed the ultrasonographic data sets and images was blinded and the results were reviewed by a second investigator. 46 Conclusion Higher education levels and physical activity during pregnancy were shown to be protective factors. Higher pre-pregnancy BMI, higher gestational BMI, and higher RAM thicknesses at rest, during isolated RAM voluntary contraction, during PFM isolated voluntary contraction and its greater variation values were shown to be risk factors for PS-UI. Keywords Urinary incontinence; Rectus Abdominis Muscle; Pregnancy; 2D Ultrasonographic; Contraction; Pelvic Floor Muscle Corresponding author Angélica M.P. Barbosa, PT, PhD, Departamento de Fisioterapia e Terapia Ocupacional, Faculdade de Filosofia e Ciências, UNESP, Marília, SP, Brazil, Av. Hygino Muzzi Filho, 737 17.525- 900.Phone: +55 (14) 3402 1350. Email: angelicapascon@gmail.com List of Abbreviations: % percentage 3D-US three-dimension ultrasound BMI body mass index CI confidence interval Cm centimeter GDM Gestational Diabetes Mellitus ICI-Q International Consultation on Incontinence Questionnaire ISI Incontinence Severity Index Kg kilogram LAM Levator ani muscle PDRC Perinatal Diabetes Research Center PFM pelvic floor muscles PFMD pelvic floor muscle dysfunction PS-UI pregnancy specific-urinary incontinence QOL quality of life R rest mailto:marilzarudge@gmail.com 47 RAM Rectus abdominus muscle RR Relative risk T task UI urinary incontinence Acknowledgments Thanks to all volunteers who participated in this study and Hélio Rubens de Carvalho Nunes for all help in statistical analysis of this paper. 48 References 1. Dietz HP. Female pelvic floor dysfunctiong-an imaging perspective [Internet]. Vol. 9, Nature Reviews Gastroenterology and Hepatology. Nat Rev Gastroenterol Hepatol; 2012 [cited 2021 Jan 30]. p. 113–21. Available from: https://pubmed.ncbi.nlm.nih.gov/22183184/ 2. Sung VW, Hampton BS. Epidemiology of Pelvic Floor Dysfunction [Internet]. Vol. 36, Obstetrics and Gynecology Clinics of North America. Elsevier; 2009 [cited 2021 Jan 30]. p. 421–43. Available from: http://www.obgyn.theclinics.com/article/S0889854509000679/fulltext 3. Van Geelen H, Ostergard D, Sand P. A review of the impact of pregnancy and childbirth on pelvic floor function as assessed by objective measurement techniques [Internet]. Vol. 29, International Urogynecology Journal. Springer London; 2018 [cited 2021 Jan 30]. p. 327–38. Available from: http://link.springer.com/10.1007/s00192-017-3540-z 4. Nygaard I, Barber MD, Burgio KL, Kenton K, Meikle S, Schaffer J, et al. Prevalence of symptomatic pelvic floor disorders in US women. JAMA - J Am Med Assoc [Internet]. 2008 Sep 17 [cited 2021 Jan 30];300(11):1311–6. Available from: https://pubmed.ncbi.nlm.nih.gov/18799443/ 5. Zhu Q, Shu H, Dai Z. Effect of pelvic floor dysfunction on sexual function and quality of life in Chinese women of different ages: An observational study. Geriatr Gerontol Int [Internet]. 2019 Apr 1 [cited 2021 Jan 30];19(4):299–304. Available from: https://pubmed.ncbi.nlm.nih.gov/30811813/ 6. Anelli SA, Morganti L, Martinello R, Borghi C, Forini E, Greco P, et al. Combined rectal and gynecologic surgery in complex pelvic floor dysfunction: Clinical outcomes and quality of life of patients treated by a multidisciplinary group. Vol. 73, Minerva Chirurgica. Edizioni Minerva Medica; 2018. p. 345–7. 7. Frota IPR, Rocha ABO, Neto JAV, Vasconcelos CTM, De Magalhaes TF, Karbage SAL, et al. Pelvic floor muscle function and quality of life in postmenopausal women with and without pelvic floor dysfunction. Acta Obstet Gynecol Scand [Internet]. 2018 May 1 [cited 2021 Jan 30];97(5):552– 9. Available from: https://pubmed.ncbi.nlm.nih.gov/29352460/ 8. [Symptom distribution of female pelvic floor dysfunction patients with constipation as chief complaint] - PubMed [Internet]. [cited 2021 Jan 30]. Available from: https://pubmed.ncbi.nlm.nih.gov/30051449/ Ramage L, Georgiou P, Qiu S, McLean P, Khan N, Kontnvounisios C, et al. Can we correlate pelvic floor dysfunction severity on MR defecography with 9. patient-reported symptom severity? Updates Surg [Internet]. 2018 Dec 1 [cited 2021 Jan 30];70(4):467–76. Available from: https://doi.org/10.1007/s13304-017-0506-0 10. Bo K, Frawley HC, Haylen BT, Abramov Y, Almeida FG, Berghmans B, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for the conservative and nonpharmacological management of female pelvic floor dysfunction. Neurourol Urodyn [Internet]. 2017 Feb 1 [cited 2021 Jan 30];36(2):221–44. Available from: https://pubmed.ncbi.nlm.nih.gov/27918122/ https://pubmed.ncbi.nlm.nih.gov/22183184/ http://www.obgyn.theclinics.com/article/S0889854509000679/fulltext http://link.springer.com/10.1007/s00192-017-3540-z https://pubmed.ncbi.nlm.nih.gov/18799443/ https://pubmed.ncbi.nlm.nih.gov/30811813/ https://pubmed.ncbi.nlm.nih.gov/29352460/ https://pubmed.ncbi.nlm.nih.gov/30051449/ https://doi.org/10.1007/s13304-017-0506-0 https://pubmed.ncbi.nlm.nih.gov/27918122/ 49 11. DeLancey JO. The anatomy of the pelvic floor. Curr Opin Obstet Gynecol [Internet]. 1994 Aug [cited 2016 Dec 5];6(4):313–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7742491 12. Piret, Béziers. Fisiologia da Terapia Manual: Summus Editorial, 1989. 13. Sapsford RR, Hodges PW. Contraction of the pelvic floor muscles during abdominal maneuvers. Arch Phys Med Rehabil 2001;82(8):1081-8. 14. Neumann P, Gill V. Pelvic floor and abdominal muscle interaction: EMG activity and intra-abdominal pressure. Int Urogynecol J 2002;13:125-32 15. Pereira LC, Botelho S, Marques J, Amorim CF, Lanza AH, Palma P, Riccetto C. Are transversus abdominis/oblique internal and pelvic floor muscles coactivated during pregnancy and postpartum? Neurourol Urodyn 2013;32(5):416-419 16. Bo K, Frawley HC, Haylen BT, Abramov Y, Almeida FG, Berghmans B, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for the conservative and nonpharmacological management of female pelvic floor dysfunction. Neurourol Urodyn 2017;36(2):221-44 17. Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, et al. The standardisation of terminology in lower urinary tract function: report from the standardisation sub-committee of the international continence society. Urology. 2003;61:37–49. 18. Madill SJ, Harvey MA, McLean L. Women with stress urinary incontinence demonstrate motor control differences during coughing. Journal of Electromyography and Kinesiology 2010;20(5):804–812. 19. Arab AM, Chehrehrazi M. The response of the abdominal muscles to pelvic floor muscle contraction in women with and without stress urinary incontinence using ultrasound imaging. Neurourol Urodyn 2011;30(1):117- 20. 20. Barbic M, Kralj B, Andrej C. Compliance of the bladder neck supporting structures: importance of activity pattern of levator ani muscle and content of elastic fibers of endopelvic fascia. Neurourol Urodyn 2003;22:269- 76. 21. Thompson JA, O’Sullivan PB, Briffa NK, Neumann P. Altered muscle activation patterns in symptomatic women during pelvic floor muscle contraction and Valsalva manouevre. Neurourol Urodyn 2006;25(3):268-76. 22. Bø K, Braekken IH, Majida M, Engh ME. Constriction of the levator hiatus during instruction of pelvic floor or transversus abdominis contraction: a ultrasound study. Int Urogynecol J Pelvic Floor Dysfunct 2009;20(1):27-32. 23. Devreese A, Staes F, DeWeerdt W, Feys H, Van Assche A, Penninckx F, et al. Clinical evaluation of pelvic floor muscle function in continent and incontinent women. Neurourol Urodyn 2004;23(3):190-7 24. Vesentini G, El Dib R, Righesso LAR, Piculo F, Marini G, Ferraz GAR, et al. Pelvic floor and abdominal muscle cocontraction in women with and without pelvic floor dysfunction: a systematic review and meta-analysis. Clinics. 2019;74:e1319. 25. Hvidman L, Foldspang A, Mommsen S, Bugge Nielsen J. Correlates of urinary incontinence in pregnancy. Int Urogynecol J Pelvic Floor Dysfunct. 2002;13(5):278-83. http://www.ncbi.nlm.nih.gov/pubmed/7742491 50 26. Viktrup L, Lose G. Lower urinary tract symptoms 5 years after the first delivery. Int Urogynecol J Pelvic Floor Dysfunct. 2000 Dec;11(6):336-40. 27. Bursch SG. Interrater reliability of diastasis recti abdominis measurement. Phys Ther [Internet].1987 Jul [cited2019 Aug 6];67(7):1077–9. 28. Landon CR, Crofts CE, Smith ARB, Trowbridge EA. Mechanical properties of fascia during pregnancy: a possible factor in the development of stress incontinence of urine. Contemp Rev Obstet Gynaecol. 1990;2:406. 29. Herbert J. Pregnancy and childbirth: the effects on pelvic floor muscles. Nurs Times [Internet]. 105(7):38–41. 30. Messelink B, Benson T, Berghmans B, Bø K, Corcos J, Fowler C, et al. Standardization of terminology of pelvic floor muscle function and dysfunction: Report from the pelvic floor clinical assessment group of the International Continence Society. Neurourol Urodyn. 2005 31. Brækken IH, Majida M, Ellstrøm-Engh M, Dietz HP, Umek W, Bø K.Test– retest and intra-observer repeatability of two-,three-and four-dimensional perineal ultrasound of pelvic floor muscle anatomy and function. Int Urogynecol J [Internet]. 2008 Feb 29 [cited 2016 Dec 4];19(2):227–35. 32. Tamanini JT, Dambros M, D'Ancona CA, Palma PC, Rodrigues Netto N Jr. Validation of the “International Consultation on Incontinence Questionnaire -- Short Form” (ICIQ-SF) for Portuguese. Rev Saude Publica. 2004;38(3):438–44. 33. Pereira VS, Santos JY, Correia GN, Driusso P. Translation and validation into Portuguese of a questionnaire to evaluate the severity of urinary incontinence. Rev Bras Ginecol Obstet. 2011;33(4):182–7. 34. Friedman S, Blomquist JL, Nugent JM, McDermott KC, Muñoz A, Handa VL. Pelvic muscle strength after childbirth. Obstet Gynecol [Internet]. 2012 Nov [cited 2017 Jan 16];120(5):1021–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23090518 35. Bø K, Kvarstein B, Hagen RR, Larsen S. Pelvic floor muscle exercise for the treatment of female stress urinary incontinence: II. Validity of vaginal pressure measurements of pelvic floor muscle strength and the necessity of supplementary methods for control of correct contraction. Neurourol Urodyn [Internet]. 1990 [cited 2021 Jan 28];9(5):479–87. Available from: http://doi.wiley.com/10.1002/nau.1930090504 36. Kelly, C. R., Mourtzakis, M., Furberg, H., Tandon, P., & Paris, M. T. (2021). Rectus Abdominis Muscle Thickness is a Valid Measure of Cross- Sectional Area: Implications for Ultrasound. AcademicRadiology. doi:10.1016/j.acra.2021.06.005 37. Teyhen, D. S., Gill, N. W., Whittaker, J. L., Henry, S. M., Hides, J. A., & Hodges, P. (2007). Rehabilitative Ultrasound Imaging of the Abdominal Muscles. Journal of Orthopaedic & Sports Physical Therapy, 37(8), 450– 466. doi:10.2519/jospt.2007.2558 38. Rankin G, Stokes M, Newham DJ. Abdominal muscle size and symmetry in normal subjects. Muscle Nerve. 2006;34:320-326. 39. Springer BA, Mielcarek BJ, Nesfield TK, Teyhen DS. Relationships among lateral abdominal muscles, gender, body mass index, and hand dominance. J Orthop Sports Phys Ther. 2006;36:289-297. http://www.ncbi.nlm.nih.gov/pubmed/23090518 http://doi.wiley.com/10.1002/nau.1930090504 51 40. Costa, L. O. P., Maher, C. G., Latimer, J., & Smeets, R. J. E. M. (2009). Reproducibility of Rehabilitative Ultrasound Imaging for the Measurement of Abdominal Muscle Activity: A Systematic Review. Physical Therapy, 89(8), 756–769. doi:10.2522/ptj.20080331 41. Ptaszkowski K, Paprocka-Borowicz M, Slupska L, Bartnicki J, Dymarek R, Rosinczuk J,et al.Assessment of bioelectrical activity of synergistic muscles during pelvic floor muscles activation in postmenopausal women with and without stress urinary incontinence: a preliminary observational study. Clin Interv Aging [Internet]. 2015 Sep;1521. 42. Sapsford RR, Hodges PW. Contraction of the pelvic floor muscles during abdominal maneuvers. Arch Phys Med Rehabil 2001;82(8):1081-8. 43. Neumann P, Gill V. Pelvic floor and abdominal muscle interaction: EMG activity and intra-abdominal pressure. Int Urogynecol J 2002;13:125-32. 44. Pereira LC, Botelho S, Marques J, Amorim CF, Lanza AH, Palma P, Riccetto C. Are transversus abdominis/oblique internal and pelvic floor muscles coactivated during pregnancy and postpartum? Neurourol Urodyn 2013;32(5):416-419. 45. Sapsford R, Hodges PW, Richardson CA, Cooper HD, Markwell SJ, Jull GA. Co-activation of the abdominal and pelvic floor muscles during voluntary exercises. Neurourol Urodyn 2001;20(1):31-42. 46. Coldron, Y., Stokes, M. J., Newham, D. J., & Cook, K. (2008). Postpartum characteristics of rectus abdominis on ultrasound imaging. Manual Therapy, 13(2), 112–121. Doi:10.1016/j.math.2006.10.001 47. Baran, E., Akbayrak, T., Özgül, S., Nakip, G., Çinar, G. N., Üzelpasacı, E., … Beksaç, M. S. (2021). Musculoskeletal and anthropometric factors associated with urinary incontinence in pregnancy. Physiotherapy Theory and Practice, 1– 10. Doi:10.1080/09593985.2021.1878568 48. Barbosa, L., Boaviagem, A., Moretti, E., & Lemos, A. (2018). Multiparity, age and overweight/obesity as risk factors for urinary incontinence in pregnancy: a systematic review and meta-analysis. International Urogynecology Journal. Doi:10.1007/s00192-018-3656-9 49. Herbert J. Pregnancy and childbirth: the effects on pelvic floor muscles. Nurs Times [Internet].105(7):38–41. 50. Kudish BI, Iglesia CB, Sokol RJ, Cochrane B, Richter HE, Larson J, et al. Effect of Weight Change on Natural History of Pelvic Organ Prolapse. Obstet Gynecol [Internet]. 2009 Jan;113(1):818. 51. Greer WJ, Richter HE, Bartolucci AA, Burgio KL. Obesity and Pelvic Floor Disorders. Obstet Gynecol [Internet]. 2008 Aug;112(2, Part 1):341–9 52. Stothers L, Friedman B. Risk Factors for the Development of Stress Urinary Incontinence in Women. Curr Urol Rep [Internet]. 2011 Oct 22;12(5):363–9 53. Luber KM. The definition, prevalence, and risk factors for stress urinary Incontinence. Rev Urol 2004; 6 Suppl 3: S3-9 54. Hilde, G., & Bo, K. (2015). The Pelvic Floor During Pregnancy and after Childbirth, and the Effect of Pelvic Floor Muscle Training on Urinary Incontinence - A Literature Review. Current Women s Health Reviews, 11(1), 19–30. doi:10.2174/157340481101150914201 55. Menezes GMD, Pinto FJM, Silva FAA, Castro ME, Medeiros CRB. Queixa de perda urinária: um problema silente pelas mulheres. Rev Gaúcha Enferm., Porto Alegre (RS) 2012 mar;33(1):100-8. 52 56. Tamanini JTN, Tamanini MMM, Maud LMQ, Auler, AMBAP. Incontinência urinária: prevalência e fatores de risco em mulheres atendidas no programa de prevenção do câncer ginecológico. Bol Epidemiol Paul. 2006;3(34):17-23. 53 Seção 4 Perspectivas Acadêmicas e Científicas 54 Pensar nas perspectivas nesta fase final do mestrado, me fez rever todo o processo vivido até aqui e me estimulou ainda mais a cumprir esta etapa que é tão tensa e que exige dedicação, às vezes, até além da nossa capacidade. A formação no mestrado até o momento, fortaleceu e ampliou a perspectiva de iniciar a carreira docente e de pesquisadora. Para a continuidade da busca do conhecimento e na colaboração para melhorar a assistência a mulher, a proposta é permanecer como aluna de Doutorado, com início em março de 2022, na mesma linha de pesquisa desta trajetória e continuar colaborando na composição dos biomarcadores funcionais da miopatia diabética e da IU-EG como preditoras da IU pós-parto de gestantes com DMG. Sinto-me honrada em continuar fazendo parte do Diamater Study Group! Espero poder levar o conhecimento e principalmente beneficiar as mulheres, ao longo desta nova etapa da minha vida. 55 Seção 5 Diamater Study Group Abaixo segue nominalmente o grupo Diamater 56 Pesquisadores Nacionais Profa. Emérita Marilza Vieira Cunha Rudge Profa. Titular Iracema de Mattos Paranhos Calderon Profa. Dra. Angélica Mérica Pascon Barbosa Profa. Dra. Fátima Pereira de Souza Prof. Titular Carlos Frederico de Oliveira Graeff Prof. Titular Manoel João Batista Castello Girão Profa. Dra. Cláudia Garcia Magalhães Prof. Dr. Roberto Antonio de Araujo Costa Profa. Adjunto Silvana Andréa Molina Lima Profa. Dra. Meline Rossetto Kron Rodrigues Prof. Adjunto Sérgio Luis Felisbino Prof. Dr. Walnei Fernandes Barbosa Profa. Dra. Grasiela Bossolan Prof. Dr. José Eduardo Corrente Prof. Dr. Hélio Rubens de Carvalho Nunes Prof. Dr. Joelcio Francisco Abbade Profa. Dra Patrícia de Souza Rossignoli Profa. Dra. Cristiane Rodrigues Pedroni Prof. Titular Álvaro Nagib Atallah Profa. Dra. Zsuzsanna Ilona K. de Jarmy Di Bella Profa. Silvana Maria de Macêdo Uchôa Prof. Titular Marco Antonio Hungaro Duarte Prof. Dr. Edson Assunção Mareco Profa. Adjunta Marna Eliana Sakalem Profa. Dra. Natalia Miguel Martinho Fogaça Prof. Dr. Diego Girotto Bussaneli Profa. Titular Maeli Dal Pai Profa. Dra. Selma Maria Michelin Matheus Profa. Dra. Ana Karina Cristiuma De Luca Profa. Dra. Daisy Maria Fávero Salvadori Prof. Dr. Rondinelli Donizetti Herculano Prof. Dr. Spencer Luiz Marques Payao Pesquisadores Internacionais PhD Adonis Hijas PhD Luis Sobrevia Luarte PhD Bary Berghmans PhD Rob de Bie PhD Costanza Emanueli PhD Baerbel Junginger PhD Antonio Musàro PhD Lehana Thabane Pesquisadores Associados PhD Raghavendra Hallur Lakshmana Shetty PhD David Rafael Abreu Reyes Dra Fernanda Cristina Bérgamo Alves Dr João Paulo de Castro Marcondes Dra Maíra Libertad Soligo Takemoto Dra Juliana Ferreira Floriano Dra. Fernanda Piculo Dra. Gabriela Marini Prata Dra Cibele Vieria Cunha Rudge Dr. Fabio Joly Campos Dr. Ícaro Putinhon Caruso Dr. Lucas Trevizani Rasmussen Dr Vinícius Krieger Costa Nogueira Ms. Caroline Baldini Prudencio Ms. Fabiane Affonso Pinheiro Ms. Carlos Izaias Sartorão Filho Ms. Sofia Beatriz Carolina Vega Quiroz Ms. Tawana Pascon Ms. Sthefanie Kenickel Nunes Ms. Bruna Bologna Catinelli Ms. Fabiana Vieira Duarte de Souza Reis Ms. Rafael Guilen de Oliveira Ms. Sarah Maria Barneze Costa Ms. Mariane de Oliveira Menezes Ms. Nilton José dos Santo Ms. Isabella Otenio de Lourenço Ms. Jéssica Maróstica de Sá Ms. Raissa Escandiusi Avramidis Ms Guilherme Thomaz de Aquino Nava Ms Talita Costa Domingues Eusebio Mario Amador Enriquez Jose Vitor Freitas Melo (in memoriam) Luiz Takano Aline Medolago Carr Gabriela Azevedo Garcia Adriely Bittencourt Morgenstern Magyori Carolina Neiva Frota de Carvalho Luana Fávaro Iamundo Henrique Caetano Mingoranci Bassin Carolina Neiva Frota de Carvalho Carolina Pascon Marques Michele Jacomin Ana Julia Bimbatti Silva Maiara Isabele Gonçalves Orlandi Tatiana Daniele Dangió Apoio à Pesquisa Rita de Cássia Athanázio Cinthia Scolastico Cecilio 57 58 Seção 6 Anexos 59 Anexo 1 – Participação em eventos internacionais 60 Anexo 2 – Concessão Bolsa Treinamento Técnico 61 Anexo 3 – Artigo publicado em periódico 62 Anexo 4 - Aprovação Comitê de Ética em Pesquisa 63