Study of the Mass and Spin-Parity of the Higgs Boson Candidate via Its Decays to Z Boson Pairs S. Chatrchyan et al.* (CMS Collaboration) (Received 29 December 2012; published 21 February 2013) A study is presented of the mass and spin-parity of the new boson recently observed at the LHC at a mass near 125 GeV. An integrated luminosity of 17:3 fb�1, collected by the CMS experiment in proton- proton collisions at center-of-mass energies of 7 and 8 TeV, is used. The measured mass in the ZZ channel, where both Z bosons decay to e or � pairs, is 126:2� 0:6ðstatÞ � 0:2ðsystÞ GeV. The angular distribu- tions of the lepton pairs in this channel are sensitive to the spin-parity of the boson. Under the assumption of spin 0, the present data are consistent with the pure scalar hypothesis, while disfavoring the pure pseudoscalar hypothesis. DOI: 10.1103/PhysRevLett.110.081803 PACS numbers: 14.80.Bn, 12.60.�i, 13.85.Qk, 13.88.+e Recently the ATLAS and CMS Collaborations announced the observation of a narrow resonance with mass near 125 GeV [1,2] and properties consistent with those of the Higgs boson predicted in the standard model (SM) [3–5] of particle physics. This observation may help to elucidate the nature of spontaneous electroweak symmetry breaking [6–11]. The main decay modes by which this resonance is observed include photon pairs (��) and massive vector boson pairs (WW and ZZ), where at least one of the vector bosons is off mass shell. As more proton-proton collision data are recorded at the Large Hadron Collider (LHC), attention is turning to the deter- mination of various properties of this state, including its mass, spin, parity, and couplings to SM particles. The observation of the new boson in the �� channel implies that the resonance must be a boson with spin 0 or 2; spin 1 is excluded by the Landau-Yang theorem [12,13]. The decays of the new boson to ZZ in which both Z bosons decay to charged-lepton pairs (‘þ‘�, where ‘ ¼ e or �) offer the possibility to probe the spin-parity and mass of the resonance. We describe these measurements in this Letter, using a data set recorded by the CMS experi- ment in proton-proton collisions at the LHC, correspond- ing to an integrated luminosity of 17:3 fb�1, with 5:1 fb�1 collected at a center-of-mass energy of 7 TeV and 12:2 fb�1 at 8 TeV. The compact muon solenoid (CMS) detector, described in detail elsewhere [14], is a large general-purpose device based on a silicon pixel and strip tracking system, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, all inside the field volume of a 3.8 T solenoidal magnet. Outside the magnet is a multilayered muon detection system embedded in steel absorber plates, which form the return path for the magnetic flux, as well as forward calorimetry. The detector is particularly well suited for measuring electron and muon transverse momenta (pT) over a wide range. The signal candidates are selected using well-identified and isolated prompt leptons. The event selection and lepton reconstruction are described elsewhere [2]. Events are selected online by triggers requiring the presence of either an ee, e�, or �� pair with asymmetric pT thresholds, or three electrons with reduced thresholds. The reconstructed electrons are required to have pe T > 7 GeV and to bewithin the tracker geometrical acceptance, at pseudorapidities j�ej< 2:5, where � � � ln½tanð�=2Þ� in terms of the polar angle �. The corresponding requirements for reconstructed muons are p� T > 5 GeV and j��j< 2:4. The selection requires the presence of two pairs of leptons. The leptons in a pair must be of opposite charge and same flavor. Photons with p� T > 2 GeV are reconstructed within j��j< 2:4 and considered as possible final-state radiation (FSR) candidates. An FSR photon is retained and associated with the closest lepton in a lepton pair only if the dilepton plus photon mass is closer to the nominal Z boson mass. One lepton pair is required to be loosely consistent with orig- inating from a Z decay by demanding that the invariant mass of the pair be in the range 40–120 GeV. The first pair, denoted Z1, is the one nearest the Z in mass. The second pair, denoted Z2, is required to satisfy 12 20 GeV and another should have pT > 10 GeV. The selected sample is dominated by continuum elec- troweak production of ZZ=Z��, which constitutes irreduc- ible background, estimated from Monte Carlo simulation as in the previous analysis [2]. A small background from reducible sources remains, mainly from Zþ X events, where X consists of two reconstructed leptons, at least one of which is a nonprompt lepton, including misidenti- fied leptons, leptons from heavy-quark decays, or photon *Full author list given at the end of the article. Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri- bution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. PRL 110, 081803 (2013) P HY S I CA L R EV I EW LE T T E R S week ending 22 FEBRUARY 2013 0031-9007=13=110(8)=081803(15) 081803-1 � 2013 CERN, for the CMS Collaboration http://dx.doi.org/10.1103/PhysRevLett.110.081803 http://creativecommons.org/licenses/by/3.0/ conversions. The reducible background is measured from signal-free control regions in experimental data [2]. The performance of the signal selection and background suppression has been improved compared with the pre- vious analysis [2] by using a three-electron trigger, using better muon reconstruction and momentum measurement algorithms, fine-tuning the electron isolation requirement, and by using a regression technique, as previously used for theH ! �� analysis [2], for the contribution of the ECAL to the electron momentum measurement. For similar reducible background rates, the absolute signal detection efficiency is improved by up to 4% in the 4e channel and up to 2% in the 2e2� channel. The resolution of the reconstructed mass of the 4‘ system is improved, rela- tively, by about 10% in the 4e and 2e2� channels. Signal candidate masses are measured with a per-event mass precision varying between 1% and 3%. The detection efficiency for a SM Higgs boson of m ¼ 126 GeV, with leptons within the geometrical acceptance, is 31% in the 4e channel, 42% in the 2e2� channel, and 59% in the 4� channel. Systematic uncertainties are evaluated from the observed data for the trigger efficiency (1.5%) and the combined lepton reconstruction, identification, and isola- tion efficiencies. These range from 1.2% in the 4� channel to about 11% in the 4e channel. Systematic uncertainties on energy-momentum calibration and energy resolution are incorporated through their effects on the reconstructed mass distributions. Uncertainties of 0.2%, 0.2%, and 0.1%, are assigned on the mass scale for the 4e, 2e2�, and 4� channels, respectively. The effect of the energy resolution uncertainties is taken into account by incorporating a 20% uncertainty on the simulated width of the signal mass peak. To validate the level of accuracy with which the absolute mass scale and resolution are known [2,15], we use Z ! ‘‘, � ! ‘‘, and J=c ! ‘‘ events. The limited statistical precision of the control samples is included as a systematic uncertainty on the final results. Since the reducible background is derived from control regions, its prediction is independent of the uncertainties on the integrated luminosity. The integrated luminosity uncertainty (2.2% at 7 TeV [16] and 4.4% at 8 TeV [17]) enters the evaluation of the expected ZZ background and signal rates. Systematic uncertainties on the Higgs boson cross section (about 18%) and branching fraction (2%) are taken from Refs. [18,19]. Figure 1(a) shows the invariant mass distribution of the selected four-lepton events in the mass range 70 0.5 (GeV)Hm 123 124 125 126 127 128 129 0 1 2 3 4 5 6 7 8 9 10 with syst. no syst. CMS -1 = 7 (8) TeV, L = 5.1 (12.2) fbs (b) ZZH FIG. 1 (color online). (a) Distribution of four-lepton invariant mass in the range near the 126 GeV resonance. Points represent the observed data, shaded histograms represent the backgrounds, and the open histograms represent the signal expectation. The inset shows the m4‘ distribution for events with high values of kinematic discriminant KD. (b) Scan of �2� lnL versus mH with and without the effect of systematic uncertainties included. PRL 110, 081803 (2013) P HY S I CA L R EV I EW LE T T E R S week ending 22 FEBRUARY 2013 081803-2 production and decay kinematics. In this analysis, we make use of observables defined for each event in the 4‘ center- of-mass frame; the rapidity and transverse momentum of the 4‘ system depend on the production mechanism and are ignored. We use a matrix element likelihood approach [2,21–23], which combines, for each value of m4‘, the two dilepton masses mZ1 and mZ2 and five angular variables denoted ~�. We introduce a kinematic discriminant KD using the probability density in the dilepton masses and angular variables,P ðmZ1 ; mZ2 ; ~�jm4‘Þ. The discriminant is defined as KD� P sig P sigþP bkg ¼ � 1þP bkgðmZ1 ;mZ2 ; ~�jm4‘Þ P sigðmZ1 ;mZ2 ; ~�jm4‘Þ ��1 : (1) A scalar SM Higgs boson is assumed for the signal. The separation between the signal and background is relatively insensitive to the particular choice of a signal spin-parity hypothesis [22]. The minimum p value [24], which char- acterizes the probability for a background fluctuation to be at least as large as the observed maximum excess around m ’ 126 GeV, is obtained from the measurements of m4‘ and KD. It corresponds to a significance of 4.5 standard deviations, which is to be compared to an expected signifi- cance of 5.0 standard deviations for the SM Higgs boson. We measure the mass of the boson using a maximum- likelihood fit to three-dimensional distributions combining for each event the m4‘, the associated per-event uncertain- ties �m4‘ [15] calculated from the individual lepton momentum errors, and KD. The signal strength � (defined below) is a free parameter in this mass fit. A scalar SM Higgs boson is assumed for the signal line shape. Figure 1(b) shows the value of �2� lnL, where L is the likelihood, as a function ofmH, with and without the effects of systematic uncertainties included. An estimate for the mass of 126:2� 0:6ðstatÞ � 0:2ðsystÞ GeV is obtained. Combined with the result from the �� channel [2], we obtain a mass of 125:8� 0:4ðstatÞ � 0:4ðsystÞ GeV. This value improves upon and supersedes the previous result. We then compare the observations with the expectation for the SM Higgs boson at the mass value fixed to 125.8 GeV, and obtain a measurement of the signal strength � ¼ �=�SM, the production cross section times the branching fraction relative to the SM expectation. This is evaluated from a scan of a profile likelihood ratio. We perform an unbinned maximum-likelihood fit of the two- dimensional distributions P ðm4‘jmHÞ � P ðKDjm4‘Þ for the signal, and P ðm4‘Þ � P ðKDjm4‘Þ for the background. The fit is performed simultaneously in the 4e, 2e2�, and 4� channels. We obtain a signal strength of� ¼ 0:80þ0:35 �0:28, consistent with the expectation for a SM Higgs boson. The kinematics of the production and decay of the new boson in the ZZ ! 4‘ channel are sensitive to its spin and parity [21–23,25–35]. To distinguish any two spin-parity hypotheses, we use discriminants of the form D12 ¼ P 1=ðP 1 þ P 2Þ, where P 1 and P 2 are the proba- bility densities in mZ1 , mZ2 , and ~� corresponding to the two spin-parity hypotheses we wish to discriminate and include parametrizations of the m4‘ distribution for a reso- nance at the mass of the new boson. We define two spin- parity discriminants: DPS for the discrimination between a SM Higgs boson and a pure pseudoscalar state JP ¼ 0�; DGS for discrimination between a SM Higgs boson and a spin-two tensor state JP ¼ 2þ with the minimal graviton- like coupling to gluons in production and to Z bosons in decay. We also define a discriminant DSB ¼ P sig=ðP sig þ P bkgÞ, similar to KD but where the probability densities also include m4‘, for the discrimination between a SM Higgs boson, with JP ¼ 0þ, and the background. We then fit the observed data in a two-dimensional plane of DPS or DGS versus DSB in the mass range 106 0.5SBD GSD Observed Z+X *, ZZZ =126 GeV H , m+0 =126 GeV H , m+2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 E ve n ts / 0. 03 0 1 2 3 4 5 6 CMS s = 7 (8) TeV, L = 5.1 (12.2) fb-1s = 7 (8) TeV, L = 5.1 (12.2) fb-1s = 7 (8) TeV, L = 5.1 (12.2) fb-1 (c) > 0.5SBD FIG. 2 (color online). (a) Observed distribution of the DSB (SM Higgs boson versus background) discriminant compared with the background and signal expectations. (b) Observed distribution of DPS (JP ¼ 0� versus JP ¼ 0þ) compared with expectation, for DSB > 0:5. (c) Observed distribution of DGS (JP ¼ 2þ versus JP ¼ 0þ) compared with expectation, for DSB > 0:5. Points represent the observed data, shaded histograms represent the background, and the open histograms represent the expectation for a 126 GeV boson with the indicated spin-parity, produced at the SM Higgs boson rate. PRL 110, 081803 (2013) P HY S I CA L R EV I EW LE T T E R S week ending 22 FEBRUARY 2013 081803-3 two hypotheses of each signal type plus background. Figure 2(a) shows the observed projections of DSB for events in this mass range, and for a SM Higgs boson signal with m ¼ 126 GeV. Figures 2(b) and 2(c) show the projections of the DPS and DGS discriminants, for events with DSB > 0:5. In these latter two cases, the distributions for the spin-parity states being distinguished are also illus- trated in the plot. More data are needed for significant discrimination of the 0þ from the 2þ hypothesis. Figure 3 shows the distributions of the log-likelihood ratio �2 lnL0�=L0þ from pseudoexperiments under the assumptions of either a pure scalar or a pure pseudoscalar model. The arrow indicates the observed value. Under the assumption of spin 0, the test statistic formed from a profile likelihood ratio � ¼ L0�=L0þ of the 0� and 0þ hypoth- eses yields a p value of 0.072% for 0� and a p value of 0.7 for 0þ, with �2 ln� ¼ 5:5 favoring 0þ. This corresponds to a CLs [36] value of 2.4%, a more conservative value for judging whether the observed data are compatible with 0�. The results presented here have been confirmed with independent methods [37] based on leading-order matrix elements [38]. In summary, we have measured the mass of the new boson to be 126:2� 0:6ðstatÞ � 0:2ðsystÞ GeV in the ZZ channel, where both Z bosons decay to lepton pairs. Combining results from the �� and ZZ channels, we obtain a mass of 125:8� 0:4ðstatÞ � 0:4ðsystÞ GeV, which improves upon previously published results. At this mass the signal strength � ¼ �=�SM is measured to be � ¼ 0:80þ0:35 �0:28. Under the assumption of spin zero, the observed data are consistent with the pure scalar hypothesis, while disfavoring the pure pseudoscalar hypothesis. This is the first study of the spin- parity of the newly discovered boson. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effec- tively the computing infrastructure essential to our analy- ses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.). [1] ATLAS Collaboration, Phys. Lett. B 716, 1 (2012). [2] CMS Collaboration, Phys. Lett. B 716, 30 (2012). [3] S. L. Glashow, Nucl. Phys. 22, 579 (1961). [4] S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967). [5] A. Salam, in Proceedings of the Eighth Nobel Symposium: Elementary Particle Physics: Relativistic Groups and Analyticity, edited by N. Svartholm (Almqvist & Wiskell, Stockholm, 1968), p. 367. [6] P.W. Higgs, Phys. Lett. 12, 132 (1964). [7] P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964). [8] P.W. Higgs, Phys. Rev. 145, 1156 (1966). [9] F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964). [10] G. S. Guralnik, C. R. Hagen, and T.W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964). [11] T.W.B. Kibble, Phys. Rev. 155, 1554 (1967). [12] L. D. Landau, Dokl. Akad. Nauk SSSR 60, 207 (1948). [13] C.-N. Yang, Phys. Rev. 77, 242 (1950). [14] CMS Collaboration, JINST 3, S08004 (2008). [15] CMS Collaboration, Phys. Rev. Lett. 108, 111804 (2012). [16] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-SMP-12-008, 2012 [http://cdsweb .cern.ch/record/1434360]. -2ln( / ) -30 -20 -10 0 10 20 30 P se u d o ex p er im en ts 0 500 1000 1500 2000 2500 3000 0+ 0- Observed CMS +0-0 s = 7 (8) TeV, L = 5.1 (12.2) fb-1 FIG. 3 (color online). Expected distribution of �2 lnL0�=L0þ under the pure pseudoscalar and pure scalar hypotheses (histo- grams). The arrow indicates the value determined from the observed data. PRL 110, 081803 (2013) P HY S I CA L R EV I EW LE T T E R S week ending 22 FEBRUARY 2013 081803-4 http://dx.doi.org/10.1016/j.physletb.2012.08.020 http://dx.doi.org/10.1016/j.physletb.2012.08.021 http://dx.doi.org/10.1016/0029-5582(61)90469-2 http://dx.doi.org/10.1103/PhysRevLett.19.1264 http://dx.doi.org/10.1016/0031-9163(64)91136-9 http://dx.doi.org/10.1103/PhysRevLett.13.508 http://dx.doi.org/10.1103/PhysRev.145.1156 http://dx.doi.org/10.1103/PhysRevLett.13.321 http://dx.doi.org/10.1103/PhysRevLett.13.585 http://dx.doi.org/10.1103/PhysRevLett.13.585 http://dx.doi.org/10.1103/PhysRev.155.1554 http://dx.doi.org/10.1103/PhysRev.77.242 http://dx.doi.org/10.1088/1748-0221/3/08/S08004 http://dx.doi.org/10.1103/PhysRevLett.108.111804 http://cdsweb.cern.ch/record/1434360 http://cdsweb.cern.ch/record/1434360 [17] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-LUM-12-001, 2012 [http:// cdsweb.cern.ch/record/1482193]. [18] LHC Higgs Cross Section Working Group, CERN Report No. CERN-2011-002, 2011 [http://cdsweb.cern.ch/ record/1318996]. [19] A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi, and M. Spira, Eur. Phys. J. C 71, 1753 (2011). [20] CMS Collaboration, J. High Energy Phys. 12 (2012) 034. [21] Y. Gao, A. V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, and N.V. Tran, Phys. Rev. D 81, 075022 (2010). [22] S.Bolognesi,Y.Gao,A.V.Gritsan,K.Melnikov,M.Schulze, N.V. Tran, and A. Whitbeck, Phys. Rev. D 86, 095031 (2012). [23] Y. Chen, N. Tran, and R. Vega-Morales, arXiv:1211.1959. [24] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012). [25] A. Soni and R.M. Xu, Phys. Rev. D 48, 5259 (1993). [26] V. D. Barger, K. Cheung, A. Djouadi, B.A. Kniehl, and P.M. Zerwas, Phys. Rev. D 49, 79 (1994). [27] S. Y. Choi, D. J. Miller, M.M. Muhlleitner, and P.M. Zerwas, Phys. Lett. B 553, 61 (2003). [28] B. C. Allanach, K. Odagiri, M. J. Palmer, M.A. Parker, A. Sabetfakhri, and B. R. Webber, J. High Energy Phys. 12 (2002) 039. [29] C. P. Buszello, I. Fleck, P. Marquard, and J. J. van der Bij, Eur. Phys. J. C 32, 209 (2004). [30] R.M. Godbole, D. J. Miller, and M.M. Muhlleitner, J. High Energy Phys. 12 (2007) 031. [31] W.-Y. Keung, I. Low, and J. Shu, Phys. Rev. Lett. 101, 091802 (2008). [32] O. Antipin and A. Soni, J. High Energy Phys. 10 (2008) 018. [33] K. Hagiwara, Q. Li, and K. Mawatari, J. High Energy Phys. 07 (2009) 101. [34] A. De Rujula, J. Lykken, M. Pierini, C. Rogan, and M. Spiropulu, Phys. Rev. D 82, 013003 (2010). [35] J. S. Gainer, K. Kumar, I. Low, and R. Vega-Morales, J. High Energy Phys. 11 (2011) 027. [36] A. L. Read, J. Phys. G 28, 2693 (2002). [37] P. Avery, D. Bourilkov, M. Chen, T. Cheng, A. Drozdetskiy, J. S. Gainer, A. Korytov, K. T. Matchev, P. Milenovic, G. Mitselmakher, M. Park, and A. Rinkevicius, arXiv:1210.0896. [38] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D. L. Rainwater, and T. Stelzer, J. High Energy Phys. 09 (2007) 028. S. Chatrchyan,1 V. Khachatryan,1 A.M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 E. Aguilo,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,2,b M. Friedl,2 R. Frühwirth,2,b V.M. Ghete,2 N. Hörmann,2 J. Hrubec,2 M. Jeitler,2,b W. Kiesenhofer,2 V. Knünz,2 M. Krammer,2,b I. Krätschmer,2 D. Liko,2 I. Mikulec,2 M. Pernicka,2,a D. Rabady,2,c B. Rahbaran,2 C. Rohringer,2 H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2 A. Taurok,2 W. Waltenberger,2 C.-E. Wulz,2,b V. Mossolov,3 N. Shumeiko,3 J. Suarez Gonzalez,3 S. Alderweireldt,4 M. Bansal,4 S. Bansal,4 T. Cornelis,4 E. A. De Wolf,4 X. Janssen,4 S. Luyckx,4 L. Mucibello,4 S. Ochesanu,4 B. Roland,4 R. Rougny,4 H. Van Haevermaet,4 P. Van Mechelen,4 N. Van Remortel,4 A. Van Spilbeeck,4 F. Blekman,5 S. Blyweert,5 J. D’Hondt,5 R. Gonzalez Suarez,5 A. Kalogeropoulos,5 M. Maes,5 A. Olbrechts,5 S. Tavernier,5 W. Van Doninck,5 P. Van Mulders,5 G. P. Van Onsem,5 I. Villella,5 B. Clerbaux,6 G. De Lentdecker,6 V. Dero,6 A. P. R. Gay,6 T. Hreus,6 A. Léonard,6 P. E. Marage,6 A. Mohammadi,6 T. Reis,6 L. Thomas,6 C. Vander Velde,6 P. Vanlaer,6 J. Wang,6 V. Adler,7 K. Beernaert,7 A. Cimmino,7 S. Costantini,7 G. Garcia,7 M. Grunewald,7 B. Klein,7 J. Lellouch,7 A. Marinov,7 J. Mccartin,7 A.A. Ocampo Rios,7 D. Ryckbosch,7 M. Sigamani,7 N. Strobbe,7 F. Thyssen,7 M. Tytgat,7 S. Walsh,7 E. Yazgan,7 N. Zaganidis,7 S. Basegmez,8 G. Bruno,8 R. Castello,8 L. Ceard,8 C. Delaere,8 T. du Pree,8 D. Favart,8 L. Forthomme,8 A. Giammanco,8,d J. Hollar,8 V. Lemaitre,8 J. Liao,8 O. Militaru,8 C. Nuttens,8 D. Pagano,8 A. Pin,8 K. Piotrzkowski,8 M. Selvaggi,8 J.M. Vizan Garcia,8 N. Beliy,9 T. Caebergs,9 E. Daubie,9 G.H. Hammad,9 G.A. Alves,10 M. Correa Martins Junior,10 T. Martins,10 M. E. Pol,10 M.H.G. Souza,10 W. L. Aldá Júnior,11 W. Carvalho,11 J. Chinellato,11,e A. Custódio,11 E.M. Da Costa,11 D. De Jesus Damiao,11 C. De Oliveira Martins,11 S. Fonseca De Souza,11 H. Malbouisson,11 M. Malek,11 D. Matos Figueiredo,11 L. Mundim,11 H. Nogima,11 W. L. Prado Da Silva,11 A. Santoro,11 L. Soares Jorge,11 A. Sznajder,11 E. J. Tonelli Manganote,11,e A. Vilela Pereira,11 T. S. Anjos,12b C.A. Bernardes,12b F. A. Dias,12a,f T. R. Fernandez Perez Tomei,12a E.M. Gregores,12b C. Lagana,12a F. Marinho,12a P. G. Mercadante,12b S. F. Novaes,12a Sandra S. Padula,12a V. Genchev,13,c P. Iaydjiev,13,c S. Piperov,13 M. Rodozov,13 S. Stoykova,13 G. Sultanov,13 V. Tcholakov,13 R. Trayanov,13 M. Vutova,13 A. Dimitrov,14 R. Hadjiiska,14 V. Kozhuharov,14 L. Litov,14 B. Pavlov,14 P. Petkov,14 J. G. Bian,15 G.M. Chen,15 H. S. Chen,15 C. H. Jiang,15 D. Liang,15 S. Liang,15 X. Meng,15 J. Tao,15 J. Wang,15 X. Wang,15 Z. Wang,15 H. Xiao,15 M. Xu,15 J. Zang,15 Z. Zhang,15 C. Asawatangtrakuldee,16 Y. Ban,16 Y. Guo,16 W. Li,16 S. Liu,16 Y. Mao,16 S. J. Qian,16 H. Teng,16 D. Wang,16 L. Zhang,16 W. Zou,16 C. Avila,17 C.A. Carrillo Montoya,17 J. P. Gomez,17 B. Gomez Moreno,17 A. F. Osorio Oliveros,17 J. C. Sanabria,17 N. Godinovic,18 D. Lelas,18 R. Plestina,18,g D. Polic,18 I. Puljak,18 Z. Antunovic,19 M. Kovac,19 V. Brigljevic,20 S. Duric,20 K. Kadija,20 J. Luetic,20 D. Mekterovic,20 S. Morovic,20 PRL 110, 081803 (2013) P HY S I CA L R EV I EW LE T T E R S week ending 22 FEBRUARY 2013 081803-5 http://cdsweb.cern.ch/record/1482193 http://cdsweb.cern.ch/record/1482193 http://cdsweb.cern.ch/record/1318996 http://cdsweb.cern.ch/record/1318996 http://dx.doi.org/10.1140/epjc/s10052-011-1753-8 http://dx.doi.org/10.1007/JHEP12(2012)034 http://dx.doi.org/10.1007/JHEP12(2012)034 http://dx.doi.org/10.1103/PhysRevD.81.075022 http://dx.doi.org/10.1103/PhysRevD.86.095031 http://dx.doi.org/10.1103/PhysRevD.86.095031 http://arXiv.org/abs/1211.1959 http://dx.doi.org/10.1103/PhysRevD.86.010001 http://dx.doi.org/10.1103/PhysRevD.86.010001 http://dx.doi.org/10.1103/PhysRevD.48.5259 http://dx.doi.org/10.1103/PhysRevD.48.5259 http://dx.doi.org/10.1103/PhysRevD.49.79 http://dx.doi.org/10.1016/S0370-2693(02)03191-X http://dx.doi.org/10.1088/1126-6708/2002/12/039 http://dx.doi.org/10.1088/1126-6708/2002/12/039 http://dx.doi.org/10.1140/epjc/s2003-01392-0 http://dx.doi.org/10.1088/1126-6708/2007/12/031 http://dx.doi.org/10.1103/PhysRevLett.101.091802 http://dx.doi.org/10.1103/PhysRevLett.101.091802 http://dx.doi.org/10.1088/1126-6708/2008/10/018 http://dx.doi.org/10.1088/1126-6708/2009/07/101 http://dx.doi.org/10.1088/1126-6708/2009/07/101 http://dx.doi.org/10.1103/PhysRevD.82.013003 http://dx.doi.org/10.1007/JHEP11(2011)027 http://dx.doi.org/10.1088/0954-3899/28/10/313 http://arXiv.org/abs/1210.0896 http://dx.doi.org/10.1088/1126-6708/2007/09/028 L. Tikvica,20 A. Attikis,21 G. Mavromanolakis,21 J. Mousa,21 C. Nicolaou,21 F. Ptochos,21 P. A. Razis,21 M. Finger,22 M. Finger, Jr.,22 Y. Assran,23,h S. Elgammal,23,i A. Ellithi Kamel,23,j A.M. Kuotb Awad,23,k M.A. Mahmoud,23,k A. Radi,23,l,m M. Kadastik,24 M. Müntel,24 M. Murumaa,24 M. Raidal,24 L. Rebane,24 A. Tiko,24 P. Eerola,25 G. Fedi,25 M. Voutilainen,25 J. Härkönen,26 A. Heikkinen,26 V. Karimäki,26 R. Kinnunen,26 M. J. Kortelainen,26 T. Lampén,26 K. Lassila-Perini,26 S. Lehti,26 T. Lindén,26 P. Luukka,26 T. Mäenpää,26 T. Peltola,26 E. Tuominen,26 J. Tuominiemi,26 E. Tuovinen,26 D. Ungaro,26 L. Wendland,26 A. Korpela,27 T. Tuuva,27 M. Besancon,28 S. Choudhury,28 F. Couderc,28 M. Dejardin,28 D. Denegri,28 B. Fabbro,28 J. L. Faure,28 F. Ferri,28 S. Ganjour,28 A. Givernaud,28 P. Gras,28 G. Hamel de Monchenault,28 P. Jarry,28 E. Locci,28 J. Malcles,28 L. Millischer,28 A. Nayak,28 J. Rander,28 A. Rosowsky,28 M. Titov,28 S. Baffioni,29 F. Beaudette,29 L. Benhabib,29 L. Bianchini,29 M. Bluj,29,n P. Busson,29 C. Charlot,29 N. Daci,29 T. Dahms,29 M. Dalchenko,29 L. Dobrzynski,29 A. Florent,29 R. Granier de Cassagnac,29 M. Haguenauer,29 P. Miné,29 C. Mironov,29 I. N. Naranjo,29 M. Nguyen,29 C. Ochando,29 P. Paganini,29 D. Sabes,29 R. Salerno,29 Y. Sirois,29 C. Veelken,29 A. Zabi,29 J.-L. Agram,30,o J. Andrea,30 D. Bloch,30 D. Bodin,30 J.-M. Brom,30 E. C. Chabert,30 C. Collard,30 E. Conte,30,o F. Drouhin,30,o J.-C. Fontaine,30,o D. Gelé,30 U. Goerlach,30 P. Juillot,30 A.-C. Le Bihan,30 P. Van Hove,30 S. Beauceron,31 N. Beaupere,31 O. Bondu,31 G. Boudoul,31 S. Brochet,31 J. Chasserat,31 R. Chierici,31,c D. Contardo,31 P. Depasse,31 H. El Mamouni,31 J. Fay,31 S. Gascon,31 M. Gouzevitch,31 B. Ille,31 T. Kurca,31 M. Lethuillier,31 L. Mirabito,31 S. Perries,31 L. Sgandurra,31 V. Sordini,31 Y. Tschudi,31 P. Verdier,31 S. Viret,31 Z. Tsamalaidze,32,p C. Autermann,33 S. Beranek,33 B. Calpas,33 M. Edelhoff,33 L. Feld,33 N. Heracleous,33 O. Hindrichs,33 R. Jussen,33 K. Klein,33 J. Merz,33 A. Ostapchuk,33 A. Perieanu,33 F. Raupach,33 J. Sammet,33 S. Schael,33 D. Sprenger,33 H. Weber,33 B. Wittmer,33 V. Zhukov,33,q M. Ata,34 J. Caudron,34 E. Dietz-Laursonn,34 D. Duchardt,34 M. Erdmann,34 R. Fischer,34 A. Güth,34 T. Hebbeker,34 C. Heidemann,34 K. Hoepfner,34 D. Klingebiel,34 P. Kreuzer,34 M. Merschmeyer,34 A. Meyer,34 M. Olschewski,34 K. Padeken,34 P. Papacz,34 H. Pieta,34 H. Reithler,34 S. A. Schmitz,34 L. Sonnenschein,34 J. Steggemann,34 D. Teyssier,34 S. Thüer,34 M.Weber,34 M. Bontenackels,35 V. Cherepanov,35 Y. Erdogan,35 G. Flügge,35 H. Geenen,35 M. Geisler,35 W. Haj Ahmad,35 F. Hoehle,35 B. Kargoll,35 T. Kress,35 Y. Kuessel,35 J. Lingemann,35,c A. Nowack,35 I.M. Nugent,35 L. Perchalla,35 O. Pooth,35 P. Sauerland,35 A. Stahl,35 M. Aldaya Martin,36 I. Asin,36 N. Bartosik,36 J. Behr,36 W. Behrenhoff,36 U. Behrens,36 M. Bergholz,36,r A. Bethani,36 K. Borras,36 A. Burgmeier,36 A. Cakir,36 L. Calligaris,36 A. Campbell,36 E. Castro,36 F. Costanza,36 D. Dammann,36 C. Diez Pardos,36 T. Dorland,36 G. Eckerlin,36 D. Eckstein,36 G. Flucke,36 A. Geiser,36 I. Glushkov,36 P. Gunnellini,36 S. Habib,36 J. Hauk,36 G. Hellwig,36 H. Jung,36 M. Kasemann,36 P. Katsas,36 C. Kleinwort,36 H. Kluge,36 A. Knutsson,36 M. Krämer,36 D. Krücker,36 E. Kuznetsova,36 W. Lange,36 J. Leonard,36 W. Lohmann,36,r B. Lutz,36 R. Mankel,36 I. Marfin,36 M. Marienfeld,36 I.-A. Melzer-Pellmann,36 A. B. Meyer,36 J. Mnich,36 A. Mussgiller,36 S. Naumann-Emme,36 O. Novgorodova,36 F. Nowak,36 J. Olzem,36 H. Perrey,36 A. Petrukhin,36 D. Pitzl,36 A. Raspereza,36 P.M. Ribeiro Cipriano,36 C. Riedl,36 E. Ron,36 M. Rosin,36 J. Salfeld-Nebgen,36 R. Schmidt,36,r T. Schoerner-Sadenius,36 N. Sen,36 A. Spiridonov,36 M. Stein,36 R. Walsh,36 C. Wissing,36 V. Blobel,37 H. Enderle,37 J. Erfle,37 U. Gebbert,37 M. Görner,37 M. Gosselink,37 J. Haller,37 T. Hermanns,37 R. S. Höing,37 K. Kaschube,37 G. Kaussen,37 H. Kirschenmann,37 R. Klanner,37 J. Lange,37 T. Peiffer,37 N. Pietsch,37 D. Rathjens,37 C. Sander,37 H. Schettler,37 P. Schleper,37 E. Schlieckau,37 A. Schmidt,37 M. Schröder,37 T. Schum,37 M. Seidel,37 J. Sibille,37,s V. Sola,37 H. Stadie,37 G. Steinbrück,37 J. Thomsen,37 L. Vanelderen,37 C. Barth,38 C. Baus,38 J. Berger,38 C. Böser,38 T. Chwalek,38 W. De Boer,38 A. Descroix,38 A. Dierlamm,38 M. Feindt,38 M. Guthoff,38,c C. Hackstein,38 F. Hartmann,38,c T. Hauth,38,c M. Heinrich,38 H. Held,38 K.H. Hoffmann,38 U. Husemann,38 I. Katkov,38,q J. R. Komaragiri,38 P. Lobelle Pardo,38 D. Martschei,38 S. Mueller,38 Th. Müller,38 M. Niegel,38 A. Nürnberg,38 O. Oberst,38 A. Oehler,38 J. Ott,38 G. Quast,38 K. Rabbertz,38 F. Ratnikov,38 N. Ratnikova,38 S. Röcker,38 F.-P. Schilling,38 G. Schott,38 H. J. Simonis,38 F.M. Stober,38 D. Troendle,38 R. Ulrich,38 J. Wagner-Kuhr,38 S. Wayand,38 T.Weiler,38 M. Zeise,38 G. Anagnostou,39 G. Daskalakis,39 T. Geralis,39 S. Kesisoglou,39 A. Kyriakis,39 D. Loukas,39 A. Markou,39 C. Markou,39 E. Ntomari,39 L. Gouskos,40 T. J. Mertzimekis,40 A. Panagiotou,40 N. Saoulidou,40 I. Evangelou,41 C. Foudas,41 P. Kokkas,41 N. Manthos,41 I. Papadopoulos,41 G. Bencze,42 C. Hajdu,42 P. Hidas,42 D. Horvath,42,t F. Sikler,42 V. Veszpremi,42 G. Vesztergombi,42,u A. J. Zsigmond,42 N. Beni,43 S. Czellar,43 J. Molnar,43 J. Palinkas,43 Z. Szillasi,43 J. Karancsi,44 P. Raics,44 Z. L. Trocsanyi,44 B. Ujvari,44 S. B. Beri,45 V. Bhatnagar,45 N. Dhingra,45 R. Gupta,45 M. Kaur,45 M. Z. Mehta,45 M. Mittal,45 N. Nishu,45 L. K. Saini,45 A. Sharma,45 J. B. Singh,45 Ashok Kumar,46 Arun Kumar,46 S. Ahuja,46 A. Bhardwaj,46 B. C. Choudhary,46 S. Malhotra,46 M. Naimuddin,46 K. Ranjan,46 P. Saxena,46 V. Sharma,46 R. K. Shivpuri,46 S. Banerjee,47 PRL 110, 081803 (2013) P HY S I CA L R EV I EW LE T T E R S week ending 22 FEBRUARY 2013 081803-6 S. Bhattacharya,47 K. Chatterjee,47 S. Dutta,47 B. Gomber,47 Sa. Jain,47 Sh. Jain,47 R. Khurana,47 A. Modak,47 S. Mukherjee,47 D. Roy,47 S. Sarkar,47 M. Sharan,47 A. Abdulsalam,48 D. Dutta,48 S. Kailas,48 V. Kumar,48 A. K. Mohanty,48,c L.M. Pant,48 P. Shukla,48 T. Aziz,49 R.M. Chatterjee,49 S. Ganguly,49 M. Guchait,49,v A. Gurtu,49,w M. Maity,49,x G. Majumder,49 K. Mazumdar,49 G. B. Mohanty,49 B. Parida,49 K. Sudhakar,49 N. Wickramage,49 S. Banerjee,50 S. Dugad,50 H. Arfaei,51,y H. Bakhshiansohi,51 S.M. Etesami,51,z A. Fahim,51,y M. Hashemi,51,aa H. Hesari,51 A. Jafari,51 M. Khakzad,51 M. Mohammadi Najafabadi,51 S. Paktinat Mehdiabadi,51 B. Safarzadeh,51,bb M. Zeinali,51 M. Abbrescia,52a,52b L. Barbone,52a,52b C. Calabria,52a,52b,c S. S. Chhibra,52a,52b A. Colaleo,52a D. Creanza,52a,52c N. De Filippis,52a,52c,c M. De Palma,52a,52b L. Fiore,52a G. Iaselli,52a,52c G. Maggi,52a,52c M. Maggi,52a B. Marangelli,52a,52b S. My,52a,52c S. Nuzzo,52a,52b N. Pacifico,52a A. Pompili,52a,52b G. Pugliese,52a,52c G. Selvaggi,52a,52b L. Silvestris,52a G. Singh,52a,52b R. Venditti,52a,52b P. Verwilligen,52a G. Zito,52a G. Abbiendi,53a A. C. Benvenuti,53a D. Bonacorsi,53a,53b S. Braibant-Giacomelli,53a,53b L. Brigliadori,53a,53b P. Capiluppi,53a,53b A. Castro,53a,53b F. R. Cavallo,53a M. Cuffiani,53a,53b G.M. Dallavalle,53a F. Fabbri,53a A. Fanfani,53a,53b D. Fasanella,53a,53b P. Giacomelli,53a C. Grandi,53a L. Guiducci,53a,53b S. Marcellini,53a G. Masetti,53a M. Meneghelli,53a,53b,c A. Montanari,53a F. L. Navarria,53a,53b F. Odorici,53a A. Perrotta,53a F. Primavera,53a,53b A.M. Rossi,53a,53b T. Rovelli,53a,53b G. P. Siroli,53a,53b N. Tosi,53a R. Travaglini,53a,53b S. Albergo,54a,54b G. Cappello,54a,54b M. Chiorboli,54a,54b S. Costa,54a,54b R. Potenza,54a,54b A. Tricomi,54a,54b C. Tuve,54a,54b G. Barbagli,55a V. Ciulli,55a,55b C. Civinini,55a R. D’Alessandro,55a,55b E. Focardi,55a,55b S. Frosali,55a,55b E. Gallo,55a S. Gonzi,55a,55b M. Meschini,55a S. Paoletti,55a G. Sguazzoni,55a A. Tropiano,55a,55b L. Benussi,56 S. Bianco,56 S. Colafranceschi,56,cc F. Fabbri,56 D. Piccolo,56 P. Fabbricatore,57a R. Musenich,57a S. Tosi,57a,57b A. Benaglia,58a F. De Guio,58a,58b L. Di Matteo,58a,58b,c S. Fiorendi,58a,58b S. Gennai,58a,c A. Ghezzi,58a,58b M. T. Lucchini,58a,c S. Malvezzi,58a R. A. Manzoni,58a,58b A. Martelli,58a,58b A. Massironi,58a,58b D. Menasce,58a L. Moroni,58a M. Paganoni,58a,58b D. Pedrini,58a S. Ragazzi,58a,58b N. Redaelli,58a T. Tabarelli de Fatis,58a,58b S. Buontempo,59a N. Cavallo,59a,59c A. De Cosa,59a,59b,c O. Dogangun,59a,59b F. Fabozzi,59a,59c A. O.M. Iorio,59a,59b L. Lista,59a S. Meola,59a,59d,c M. Merola,59a P. Paolucci,59a,c P. Azzi,60a N. Bacchetta,60a,c D. Bisello,60a,60b A. Branca,60a,60b,c R. Carlin,60a,60b P. Checchia,60a T. Dorigo,60a M. Galanti,60a,60b F. Gasparini,60a,60b U. Gasparini,60a,60b A. Gozzelino,60a,60b K. Kanishchev,60a,60c S. Lacaprara,60a I. Lazzizzera,60a,60c M. Margoni,60a,60b A. T. Meneguzzo,60a,60b J. Pazzini,60a,60b N. Pozzobon,60a,60b P. Ronchese,60a,60b F. Simonetto,60a,60b E. Torassa,60a M. Tosi,60a,60b S. Vanini,60a,60b P. Zotto,60a,60b A. Zucchetta,60a,60b G. Zumerle,60a,60b M. Gabusi,61a,61b S. P. Ratti,61a,61b C. Riccardi,61a,61b P. Torre,61a,61b P. Vitulo,61a,61b M. Biasini,62a,62b G.M. Bilei,62a L. Fanò,62a,62b P. Lariccia,62a,62b G. Mantovani,62a,62b M. Menichelli,62a A. Nappi,62a,62b,a F. Romeo,62a,62b A. Saha,62a A. Santocchia,62a,62b A. Spiezia,62a,62b S. Taroni,62a,62b P. Azzurri,63a,63c G. Bagliesi,63a J. Bernardini,63a T. Boccali,63a G. Broccolo,63a,63c R. Castaldi,63a R. T. D’Agnolo,63a,63c,c R. Dell’Orso,63a F. Fiori,63a,63b,c L. Foà,63a,63c A. Giassi,63a A. Kraan,63a F. Ligabue,63a,63c T. Lomtadze,63a L. Martini,63a,dd A. Messineo,63a,63b F. Palla,63a A. Rizzi,63a,63b A. T. Serban,63a,ee P. Spagnolo,63a P. Squillacioti,63a,c R. Tenchini,63a G. Tonelli,63a,63b A. Venturi,63a P. G. Verdini,63a L. Barone,64a,64b F. Cavallari,64a D. Del Re,64a,64b M. Diemoz,64a C. Fanelli,64a,64b M. Grassi,64a,64b,c E. Longo,64a,64b P. Meridiani,64a,c F. Micheli,64a,64b S. Nourbakhsh,64a,64b G. Organtini,64a,64b R. Paramatti,64a S. Rahatlou,64a,64b L. Soffi,64a,64b N. Amapane,65a,65b R. Arcidiacono,65a,65c S. Argiro,65a,65b M. Arneodo,65a,65c C. Biino,65a N. Cartiglia,65a S. Casasso,65a,65b M. Costa,65a,65b N. Demaria,65a C. Mariotti,65a,c S. Maselli,65a E. Migliore,65a,65b V. Monaco,65a,65b M. Musich,65a,c M.M. Obertino,65a,65c N. Pastrone,65a M. Pelliccioni,65a A. Potenza,65a,65b A. Romero,65a,65b M. Ruspa,65a,65c R. Sacchi,65a,65b A. Solano,65a,65b A. Staiano,65a S. Belforte,66a V. Candelise,66a,66b M. Casarsa,66a F. Cossutti,66a,c G. Della Ricca,66a,66b B. Gobbo,66a M. Marone,66a,66b,c D. Montanino,66a,66b A. Penzo,66a A. Schizzi,66a,66b T. Y. Kim,67 S. K. Nam,67 S. Chang,68 D.H. Kim,68 G.N. Kim,68 D. J. Kong,68 H. Park,68 D. C. Son,68 J. Y. Kim,69 Zero J. Kim,69 S. Song,69 S. Choi,70 D. Gyun,70 B. Hong,70 M. Jo,70 H. Kim,70 T. J. Kim,70 K. S. Lee,70 D.H. Moon,70 S. K. Park,70 Y. Roh,70 M. Choi,71 J. H. Kim,71 C. Park,71 I. C. Park,71 S. Park,71 G. Ryu,71 Y. Choi,72 Y. K. Choi,72 J. Goh,72 M. S. Kim,72 E. Kwon,72 B. Lee,72 J. Lee,72 S. Lee,72 H. Seo,72 I. Yu,72 M. J. Bilinskas,73 I. Grigelionis,73 M. Janulis,73 A. Juodagalvis,73 H. Castilla-Valdez,74 E. De La Cruz-Burelo,74 I. Heredia-de La Cruz,74 R. Lopez-Fernandez,74 J. Martı́nez-Ortega,74 A. Sanchez-Hernandez,74 L.M. Villasenor-Cendejas,74 S. Carrillo Moreno,75 F. Vazquez Valencia,75 H.A. Salazar Ibarguen,76 E. Casimiro Linares,77 A. Morelos Pineda,77 M.A. Reyes-Santos,77 D. Krofcheck,78 A. J. Bell,79 P. H. Butler,79 R. Doesburg,79 S. Reucroft,79 H. Silverwood,79 M. Ahmad,80 M. I. Asghar,80 J. Butt,80 H. R. Hoorani,80 S. Khalid,80 PRL 110, 081803 (2013) P HY S I CA L R EV I EW LE T T E R S week ending 22 FEBRUARY 2013 081803-7 W.A. Khan,80 T. Khurshid,80 S. Qazi,80 M.A. Shah,80 M. Shoaib,80 H. Bialkowska,81 B. Boimska,81 T. Frueboes,81 M. Górski,81 M. Kazana,81 K. Nawrocki,81 K. Romanowska-Rybinska,81 M. Szleper,81 G. Wrochna,81 P. Zalewski,81 G. Brona,82 K. Bunkowski,82 M. Cwiok,82 W. Dominik,82 K. Doroba,82 A. Kalinowski,82 M. Konecki,82 J. Krolikowski,82 M. Misiura,82 W. Wolszczak,82 N. Almeida,83 P. Bargassa,83 A. David,83 P. Faccioli,83 P. G. Ferreira Parracho,83 M. Gallinaro,83 J. Seixas,83,c J. Varela,83 P. Vischia,83 I. Belotelov,84 P. Bunin,84 M. Gavrilenko,84 I. Golutvin,84 I. Gorbunov,84 A. Kamenev,84 V. Karjavin,84 G. Kozlov,84 A. Lanev,84 A. Malakhov,84 P. Moisenz,84 V. Palichik,84 V. Perelygin,84 S. Shmatov,84 V. Smirnov,84 A. Volodko,84 A. Zarubin,84 S. Evstyukhin,85 V. Golovtsov,85 Y. Ivanov,85 V. Kim,85 P. Levchenko,85 V. Murzin,85 V. Oreshkin,85 I. Smirnov,85 V. Sulimov,85 L. Uvarov,85 S. Vavilov,85 A. Vorobyev,85 An. Vorobyev,85 Yu. Andreev,86 A. Dermenev,86 S. Gninenko,86 N. Golubev,86 M. Kirsanov,86 N. Krasnikov,86 V. Matveev,86 A. Pashenkov,86 D. Tlisov,86 A. Toropin,86 V. Epshteyn,87 M. Erofeeva,87 V. Gavrilov,87 M. Kossov,87 N. Lychkovskaya,87 V. Popov,87 G. Safronov,87 S. Semenov,87 I. Shreyber,87 V. Stolin,87 E. Vlasov,87 A. Zhokin,87 A. Belyaev,88 E. Boos,88 V. Bunichev,88 M. Dubinin,88,f L. Dudko,88 A. Ershov,88 A. Gribushin,88 V. Klyukhin,88 O. Kodolova,88 I. Lokhtin,88 A. Markina,88 S. Obraztsov,88 M. Perfilov,88 S. Petrushanko,88 A. Popov,88 L. Sarycheva,88,a V. Savrin,88 V. Andreev,89 M. Azarkin,89 I. Dremin,89 M. Kirakosyan,89 A. Leonidov,89 G. Mesyats,89 S. V. Rusakov,89 A. Vinogradov,89 I. Azhgirey,90 I. Bayshev,90 S. Bitioukov,90 V. Grishin,90,c V. Kachanov,90 D. Konstantinov,90 V. Krychkine,90 V. Petrov,90 R. Ryutin,90 A. Sobol,90 L. Tourtchanovitch,90 S. Troshin,90 N. Tyurin,90 A. Uzunian,90 A. Volkov,90 P. Adzic,91,ff M. Djordjevic,91 M. Ekmedzic,91 D. Krpic,91,ff J. Milosevic,91 M. Aguilar-Benitez,92 J. Alcaraz Maestre,92 P. Arce,92 C. Battilana,92 E. Calvo,92 M. Cerrada,92 M. Chamizo Llatas,92 N. Colino,92 B. De La Cruz,92 A. Delgado Peris,92 D. Domı́nguez Vázquez,92 C. Fernandez Bedoya,92 J. P. Fernández Ramos,92 A. Ferrando,92 J. Flix,92 M. C. Fouz,92 P. Garcia-Abia,92 O. Gonzalez Lopez,92 S. Goy Lopez,92 J.M. Hernandez,92 M. I. Josa,92 G. Merino,92 J. Puerta Pelayo,92 A. Quintario Olmeda,92 I. Redondo,92 L. Romero,92 J. Santaolalla,92 M. S. Soares,92 C. Willmott,92 C. Albajar,93 G. Codispoti,93 J. F. de Trocóniz,93 H. Brun,94 J. Cuevas,94 J. Fernandez Menendez,94 S. Folgueras,94 I. Gonzalez Caballero,94 L. Lloret Iglesias,94 J. Piedra Gomez,94 J. A. Brochero Cifuentes,95 I. J. Cabrillo,95 A. Calderon,95 S. H. Chuang,95 J. Duarte Campderros,95 M. Felcini,95,gg M. Fernandez,95 G. Gomez,95 J. Gonzalez Sanchez,95 A. Graziano,95 C. Jorda,95 A. Lopez Virto,95 J. Marco,95 R. Marco,95 C. Martinez Rivero,95 F. Matorras,95 F. J. Munoz Sanchez,95 T. Rodrigo,95 A. Y. Rodrı́guez-Marrero,95 A. Ruiz-Jimeno,95 L. Scodellaro,95 I. Vila,95 R. Vilar Cortabitarte,95 D. Abbaneo,96 E. Auffray,96 G. Auzinger,96 M. Bachtis,96 P. Baillon,96 A.H. Ball,96 D. Barney,96 J. Bendavid,96 J. F. Benitez,96 C. Bernet,96,g G. Bianchi,96 P. Bloch,96 A. Bocci,96 A. Bonato,96 C. Botta,96 H. Breuker,96 T. Camporesi,96 G. Cerminara,96 T. Christiansen,96 J. A. Coarasa Perez,96 D. d’Enterria,96 A. Dabrowski,96 A. De Roeck,96 S. De Visscher,96 S. Di Guida,96 M. Dobson,96 N. Dupont-Sagorin,96 A. Elliott-Peisert,96 J. Eugster,96 B. Frisch,96 W. Funk,96 G. Georgiou,96 M. Giffels,96 D. Gigi,96 K. Gill,96 D. Giordano,96 M. Girone,96 M. Giunta,96 F. Glege,96 R. Gomez-Reino Garrido,96 P. Govoni,96 S. Gowdy,96 R. Guida,96 J. Hammer,96 M. Hansen,96 P. Harris,96 C. Hartl,96 J. Harvey,96 B. Hegner,96 A. Hinzmann,96 V. Innocente,96 P. Janot,96 K. Kaadze,96 E. Karavakis,96 K. Kousouris,96 K. Krajczar,96 P. Lecoq,96 Y.-J. Lee,96 P. Lenzi,96 C. Lourenço,96 N. Magini,96 T. Mäki,96 M. Malberti,96 L. Malgeri,96 M. Mannelli,96 L. Masetti,96 F. Meijers,96 S. Mersi,96 E. Meschi,96 R. Moser,96 M.Mulders,96 P. Musella,96 E. Nesvold,96 L. Orsini,96 E. Palencia Cortezon,96 E. Perez,96 L. Perrozzi,96 A. Petrilli,96 A. Pfeiffer,96 M. Pierini,96 M. Pimiä,96 D. Piparo,96 G. Polese,96 L. Quertenmont,96 A. Racz,96 W. Reece,96 J. Rodrigues Antunes,96 G. Rolandi,96,hh C. Rovelli,96,ii M. Rovere,96 H. Sakulin,96 F. Santanastasio,96 C. Schäfer,96 C. Schwick,96 I. Segoni,96 S. Sekmen,96 A. Sharma,96 P. Siegrist,96 P. Silva,96 M. Simon,96 P. Sphicas,96,jj D. Spiga,96 A. Tsirou,96 G. I. Veres,96,u J. R. Vlimant,96 H. K. Wöhri,96 S. D. Worm,96,kk W.D. Zeuner,96 W. Bertl,97 K. Deiters,97 W. Erdmann,97 K. Gabathuler,97 R. Horisberger,97 Q. Ingram,97 H. C. Kaestli,97 S. König,97 D. Kotlinski,97 U. Langenegger,97 F. Meier,97 D. Renker,97 T. Rohe,97 F. Bachmair,98 L. Bäni,98 P. Bortignon,98 M.A. Buchmann,98 B. Casal,98 N. Chanon,98 A. Deisher,98 G. Dissertori,98 M. Dittmar,98 M. Donegà,98 M. Dünser,98 P. Eller,98 K. Freudenreich,98 C. Grab,98 D. Hits,98 P. Lecomte,98 W. Lustermann,98 A. C. Marini,98 P. Martinez Ruiz del Arbol,98 N. Mohr,98 F. Moortgat,98 C. Nägeli,98,ll P. Nef,98 F. Nessi-Tedaldi,98 F. Pandolfi,98 L. Pape,98 F. Pauss,98 M. Peruzzi,98 F. J. Ronga,98 M. Rossini,98 L. Sala,98 A.K. Sanchez,98 A. Starodumov,98,mm B. Stieger,98 M. Takahashi,98 L. Tauscher,98,a A. Thea,98 K. Theofilatos,98 D. Treille,98 C. Urscheler,98 R. Wallny,98 H.A. Weber,98 L. Wehrli,98 C. Amsler,99,nn V. Chiochia,99 C. Favaro,99 M. Ivova Rikova,99 B. Kilminster,99 B. Millan Mejias,99 P. Otiougova,99 P. Robmann,99 H. Snoek,99 S. Tupputi,99 M. Verzetti,99 M. Cardaci,100 Y. H. Chang,100 K. H. Chen,100 C. Ferro,100 C.M. Kuo,100 PRL 110, 081803 (2013) P HY S I CA L R EV I EW LE T T E R S week ending 22 FEBRUARY 2013 081803-8 S.W. Li,100 W. Lin,100 Y. J. Lu,100 A. P. Singh,100 R. Volpe,100 S. S. Yu,100 P. Bartalini,101 P. Chang,101 Y.H. Chang,101 Y.W. Chang,101 Y. Chao,101 K. F. Chen,101 C. Dietz,101 U. Grundler,101 W.-S. Hou,101 Y. Hsiung,101 K. Y. Kao,101 Y. J. Lei,101 R.-S. Lu,101 D. Majumder,101 E. Petrakou,101 X. Shi,101 J. G. Shiu,101 Y.M. Tzeng,101 X. Wan,101 M. Wang,101 B. Asavapibhop,102 E. Simili,102 N. Srimanobhas,102 N. Suwonjandee,102 A. Adiguzel,103 M.N. Bakirci,103,oo S. Cerci,103,pp C. Dozen,103 I. Dumanoglu,103 E. Eskut,103 S. Girgis,103 G. Gokbulut,103 E. Gurpinar,103 I. Hos,103 E. E. Kangal,103 T. Karaman,103 G. Karapinar,103,qq A. Kayis Topaksu,103 G. Onengut,103 K. Ozdemir,103 S. Ozturk,103,rr A. Polatoz,103 K. Sogut,103,ss D. Sunar Cerci,103,pp B. Tali,103,pp H. Topakli,103,oo M. Vergili,103 I. V. Akin,104 T. Aliev,104 B. Bilin,104 S. Bilmis,104 M. Deniz,104 H. Gamsizkan,104 A.M. Guler,104 K. Ocalan,104 A. Ozpineci,104 M. Serin,104 R. Sever,104 U. E. Surat,104 M. Yalvac,104 M. Zeyrek,104 E. Gülmez,105 B. Isildak,105,tt M. Kaya,105,uu O. Kaya,105,uu S. Ozkorucuklu,105,vv N. Sonmez,105,ww H. Bahtiyar,106,xx E. Barlas,106 K. Cankocak,106 Y.O. Günaydin,106,yy F. I. Vardarl�,106 M. Yücel,106 L. Levchuk,107 J. J. Brooke,108 E. Clement,108 D. Cussans,108 H. Flacher,108 R. Frazier,108 J. Goldstein,108 M. Grimes,108 G. P. Heath,108 H. F. Heath,108 L. Kreczko,108 S. Metson,108 D.M. Newbold,108,kk K. Nirunpong,108 A. Poll,108 S. Senkin,108 V. J. Smith,108 T. Williams,108 L. Basso,109,zz K.W. Bell,109 A. Belyaev,109,zz C. Brew,109 R.M. Brown,109 D. J. A. Cockerill,109 J. A. Coughlan,109 K. Harder,109 S. Harper,109 J. Jackson,109 B.W. Kennedy,109 E. Olaiya,109 D. Petyt,109 B. C. Radburn-Smith,109 C. H. Shepherd-Themistocleous,109 I. R. Tomalin,109 W. J. Womersley,109 R. Bainbridge,110 G. Ball,110 R. Beuselinck,110 O. Buchmuller,110 D. Colling,110 N. Cripps,110 M. Cutajar,110 P. Dauncey,110 G. Davies,110 M. Della Negra,110 W. Ferguson,110 J. Fulcher,110 D. Futyan,110 A. Gilbert,110 A. Guneratne Bryer,110 G. Hall,110 Z. Hatherell,110 J. Hays,110 G. Iles,110 M. Jarvis,110 G. Karapostoli,110 M. Kenzie,110 L. Lyons,110 A.-M. Magnan,110 J. Marrouche,110 B. Mathias,110 R. Nandi,110 J. Nash,110 A. Nikitenko,110,mm J. Pela,110 M. Pesaresi,110 K. Petridis,110 M. Pioppi,110,aaa D.M. Raymond,110 S. Rogerson,110 A. Rose,110 C. Seez,110 P. Sharp,110,a A. Sparrow,110 M. Stoye,110 A. Tapper,110 M. Vazquez Acosta,110 T. Virdee,110 S. Wakefield,110 N. Wardle,110 T. Whyntie,110 M. Chadwick,111 J. E. Cole,111 P. R. Hobson,111 A. Khan,111 P. Kyberd,111 D. Leggat,111 D. Leslie,111 W. Martin,111 I. D. Reid,111 P. Symonds,111 L. Teodorescu,111 M. Turner,111 K. Hatakeyama,112 H. Liu,112 T. Scarborough,112 O. Charaf,113 S. I. Cooper,113 C. Henderson,113 P. Rumerio,113 A. Avetisyan,114 T. Bose,114 C. Fantasia,114 A. Heister,114 J. St. John,114 P. Lawson,114 D. Lazic,114 J. Rohlf,114 D. Sperka,114 L. Sulak,114 J. Alimena,115 S. Bhattacharya,115 G. Christopher,115 D. Cutts,115 Z. Demiragli,115 A. Ferapontov,115 A. Garabedian,115 U. Heintz,115 S. Jabeen,115 G. Kukartsev,115 E. Laird,115 G. Landsberg,115 M. Luk,115 M. Narain,115 M. Segala,115 T. Sinthuprasith,115 T. Speer,115 R. Breedon,116 G. Breto,116 M. Calderon De La Barca Sanchez,116 M. Caulfield,116 S. Chauhan,116 M. Chertok,116 J. Conway,116 R. Conway,116 P. T. Cox,116 J. Dolen,116 R. Erbacher,116 M. Gardner,116 R. Houtz,116 W. Ko,116 A. Kopecky,116 R. Lander,116 O. Mall,116 T. Miceli,116 R. Nelson,116 D. Pellett,116 F. Ricci-Tam,116 B. Rutherford,116 M. Searle,116 J. Smith,116 M. Squires,116 M. Tripathi,116 R. Vasquez Sierra,116 R. Yohay,116 V. Andreev,117 D. Cline,117 R. Cousins,117 J. Duris,117 S. Erhan,117 P. Everaerts,117 C. Farrell,117 J. Hauser,117 M. Ignatenko,117 C. Jarvis,117 G. Rakness,117 P. Schlein,117,a P. Traczyk,117 V. Valuev,117 M. Weber,117 J. Babb,118 R. Clare,118 M. E. Dinardo,118 J. Ellison,118 J.W. Gary,118 F. Giordano,118 G. Hanson,118 H. Liu,118 O. R. Long,118 A. Luthra,118 H. Nguyen,118 S. Paramesvaran,118 J. Sturdy,118 S. Sumowidagdo,118 R. Wilken,118 S. Wimpenny,118 W. Andrews,119 J. G. Branson,119 G. B. Cerati,119 S. Cittolin,119 D. Evans,119 A. Holzner,119 R. Kelley,119 M. Lebourgeois,119 J. Letts,119 I. Macneill,119 B. Mangano,119 S. Padhi,119 C. Palmer,119 G. Petrucciani,119 M. Pieri,119 M. Sani,119 V. Sharma,119 S. Simon,119 E. Sudano,119 M. Tadel,119 Y. Tu,119 A. Vartak,119 S. Wasserbaech,119,bbb F. Würthwein,119 A. Yagil,119 J. Yoo,119 D. Barge,120 R. Bellan,120 C. Campagnari,120 M. D’Alfonso,120 T. Danielson,120 K. Flowers,120 P. Geffert,120 C. George,120 F. Golf,120 J. Incandela,120 C. Justus,120 P. Kalavase,120 D. Kovalskyi,120 V. Krutelyov,120 S. Lowette,120 R. Magaña Villalba,120 N. Mccoll,120 V. Pavlunin,120 J. Ribnik,120 J. Richman,120 R. Rossin,120 D. Stuart,120 W. To,120 C. West,120 A. Apresyan,121 A. Bornheim,121 Y. Chen,121 E. Di Marco,121 J. Duarte,121 M. Gataullin,121 Y. Ma,121 A. Mott,121 H. B. Newman,121 C. Rogan,121 M. Spiropulu,121 V. Timciuc,121 J. Veverka,121 R. Wilkinson,121 S. Xie,121 Y. Yang,121 R. Y. Zhu,121 V. Azzolini,122 A. Calamba,122 R. Carroll,122 T. Ferguson,122 Y. Iiyama,122 D.W. Jang,122 Y. F. Liu,122 M. Paulini,122 H. Vogel,122 I. Vorobiev,122 J. P. Cumalat,123 B. R. Drell,123 W. T. Ford,123 A. Gaz,123 E. Luiggi Lopez,123 J. G. Smith,123 K. Stenson,123 K. A. Ulmer,123 S. R. Wagner,123 J. Alexander,124 A. Chatterjee,124 N. Eggert,124 L. K. Gibbons,124 B. Heltsley,124 W. Hopkins,124 A. Khukhunaishvili,124 B. Kreis,124 N. Mirman,124 G. Nicolas Kaufman,124 J. R. Patterson,124 A. Ryd,124 E. Salvati,124 W. Sun,124 W.D. Teo,124 J. Thom,124 J. Thompson,124 J. Tucker,124 Y. Weng,124 PRL 110, 081803 (2013) P HY S I CA L R EV I EW LE T T E R S week ending 22 FEBRUARY 2013 081803-9 L. Winstrom,124 P. Wittich,124 D. Winn,125 S. Abdullin,126 M. Albrow,126 J. Anderson,126 G. Apollinari,126 L. A. T. Bauerdick,126 A. Beretvas,126 J. Berryhill,126 P. C. Bhat,126 K. Burkett,126 J. N. Butler,126 V. Chetluru,126 H.W.K. Cheung,126 F. Chlebana,126 V.D. Elvira,126 I. Fisk,126 J. Freeman,126 Y. Gao,126 D. Green,126 O. Gutsche,126 J. Hanlon,126 R.M. Harris,126 J. Hirschauer,126 B. Hooberman,126 S. Jindariani,126 M. Johnson,126 U. Joshi,126 B. Klima,126 S. Kunori,126 S. Kwan,126 C. Leonidopoulos,126,ccc J. Linacre,126 D. Lincoln,126 R. Lipton,126 J. Lykken,126 K. Maeshima,126 J.M. Marraffino,126 V. I. Martinez Outschoorn,126 S. Maruyama,126 D. Mason,126 P. McBride,126 K. Mishra,126 S. Mrenna,126 Y. Musienko,126,ddd C. Newman-Holmes,126 V. O’Dell,126 E. Sexton-Kennedy,126 S. Sharma,126 W. J. Spalding,126 L. Spiegel,126 L. Taylor,126 S. Tkaczyk,126 N. V. Tran,126 L. Uplegger,126 E.W. Vaandering,126 R. Vidal,126 J. Whitmore,126 W. Wu,126 F. Yang,126 J. C. Yun,126 D. Acosta,127 P. Avery,127 D. Bourilkov,127 M. Chen,127 T. Cheng,127 S. Das,127 M. De Gruttola,127 G. P. Di Giovanni,127 D. Dobur,127 A. Drozdetskiy,127 R. D. Field,127 M. Fisher,127 Y. Fu,127 I. K. Furic,127 J. Gartner,127 J. Hugon,127 B. Kim,127 J. Konigsberg,127 A. Korytov,127 A. Kropivnitskaya,127 T. Kypreos,127 J. F. Low,127 K. Matchev,127 P. Milenovic,127,eee G. Mitselmakher,127 L. Muniz,127 R. Remington,127 A. Rinkevicius,127 N. Skhirtladze,127 M. Snowball,127 J. Yelton,127 M. Zakaria,127 V. Gaultney,128 S. Hewamanage,128 L.M. Lebolo,128 S. Linn,128 P. Markowitz,128 G. Martinez,128 J. L. Rodriguez,128 T. Adams,129 A. Askew,129 J. Bochenek,129 J. Chen,129 B. Diamond,129 S. V. Gleyzer,129 J. Haas,129 S. Hagopian,129 V. Hagopian,129 M. Jenkins,129 K. F. Johnson,129 H. Prosper,129 V. Veeraraghavan,129 M. Weinberg,129 M.M. Baarmand,130 B. Dorney,130 M. Hohlmann,130 H. Kalakhety,130 I. Vodopiyanov,130 F. Yumiceva,130 M.R. Adams,131 L. Apanasevich,131 Y. Bai,131 V. E. Bazterra,131 R. R. Betts,131 I. Bucinskaite,131 J. Callner,131 R. Cavanaugh,131 O. Evdokimov,131 L. Gauthier,131 C. E. Gerber,131 D. J. Hofman,131 S. Khalatyan,131 F. Lacroix,131 C. O’Brien,131 C. Silkworth,131 D. Strom,131 P. Turner,131 N. Varelas,131 U. Akgun,132 E. A. Albayrak,132 B. Bilki,132,fff W. Clarida,132 K. Dilsiz,132 F. Duru,132 S. Griffiths,132 J.-P. Merlo,132 H. Mermerkaya,132,ggg A. Mestvirishvili,132 A. Moeller,132 J. Nachtman,132 C. R. Newsom,132 E. Norbeck,132 H. Ogul,132 Y. Onel,132 F. Ozok,132,xx S. Sen,132 P. Tan,132 E. Tiras,132 J. Wetzel,132 T. Yetkin,132 K. Yi,132 B. A. Barnett,133 B. Blumenfeld,133 S. Bolognesi,133 D. Fehling,133 G. Giurgiu,133 A.V. Gritsan,133 Z. J. Guo,133 G. Hu,133 P. Maksimovic,133 M. Swartz,133 A. Whitbeck,133 P. Baringer,134 A. Bean,134 G. Benelli,134 R. P. Kenny Iii,134 M. Murray,134 D. Noonan,134 S. Sanders,134 R. Stringer,134 G. Tinti,134 J. S. Wood,134 A. F. Barfuss,135 T. Bolton,135 I. Chakaberia,135 A. Ivanov,135 S. Khalil,135 M. Makouski,135 Y. Maravin,135 S. Shrestha,135 I. Svintradze,135 J. Gronberg,136 D. Lange,136 F. Rebassoo,136 D. Wright,136 A. Baden,137 B. Calvert,137 S. C. Eno,137 J. A. Gomez,137 N. J. Hadley,137 R. G. Kellogg,137 M. Kirn,137 T. Kolberg,137 Y. Lu,137 M. Marionneau,137 A. C. Mignerey,137 K. Pedro,137 A. Peterman,137 A. Skuja,137 J. Temple,137 M.B. Tonjes,137 S. C. Tonwar,137 A. Apyan,138 G. Bauer,138 W. Busza,138 E. Butz,138 I. A. Cali,138 M. Chan,138 V. Dutta,138 G. Gomez Ceballos,138 M. Goncharov,138 Y. Kim,138 M. Klute,138 A. Levin,138 P. D. Luckey,138 T. Ma,138 S. Nahn,138 C. Paus,138 D. Ralph,138 C. Roland,138 G. Roland,138 G. S. F. Stephans,138 F. Stöckli,138 K. Sumorok,138 K. Sung,138 D. Velicanu,138 E. A.Wenger,138 R.Wolf,138 B.Wyslouch,138 M. Yang,138 Y. Yilmaz,138 A. S. Yoon,138 M. Zanetti,138 V. Zhukova,138 B. Dahmes,139 A. De Benedetti,139 G. Franzoni,139 A. Gude,139 S. C. Kao,139 K. Klapoetke,139 Y. Kubota,139 J. Mans,139 N. Pastika,139 R. Rusack,139 M. Sasseville,139 A. Singovsky,139 N. Tambe,139 J. Turkewitz,139 L.M. Cremaldi,140 R. Kroeger,140 L. Perera,140 R. Rahmat,140 D.A. Sanders,140 E. Avdeeva,141 K. Bloom,141 S. Bose,141 D. R. Claes,141 A. Dominguez,141 M. Eads,141 J. Keller,141 I. Kravchenko,141 J. Lazo-Flores,141 S. Malik,141 G. R. Snow,141 A. Godshalk,142 I. Iashvili,142 S. Jain,142 A. Kharchilava,142 A. Kumar,142 S. Rappoccio,142 Z. Wan,142 G. Alverson,143 E. Barberis,143 D. Baumgartel,143 M. Chasco,143 J. Haley,143 D. Nash,143 T. Orimoto,143 D. Trocino,143 D. Wood,143 J. Zhang,143 A. Anastassov,144 K.A. Hahn,144 A. Kubik,144 L. Lusito,144 N. Mucia,144 N. Odell,144 R. A. Ofierzynski,144 B. Pollack,144 A. Pozdnyakov,144 M. Schmitt,144 S. Stoynev,144 M. Velasco,144 S. Won,144 D. Berry,145 A. Brinkerhoff,145 K.M. Chan,145 M. Hildreth,145 C. Jessop,145 D. J. Karmgard,145 J. Kolb,145 K. Lannon,145 W. Luo,145 S. Lynch,145 N. Marinelli,145 D.M. Morse,145 T. Pearson,145 M. Planer,145 R. Ruchti,145 J. Slaunwhite,145 N. Valls,145 M. Wayne,145 M. Wolf,145 L. Antonelli,146 B. Bylsma,146 L. S. Durkin,146 C. Hill,146 R. Hughes,146 K. Kotov,146 T. Y. Ling,146 D. Puigh,146 M. Rodenburg,146 G. Smith,146 C. Vuosalo,146 G. Williams,146 B. L. Winer,146 E. Berry,147 P. Elmer,147 V. Halyo,147 P. Hebda,147 J. Hegeman,147 A. Hunt,147 P. Jindal,147 S. A. Koay,147 D. Lopes Pegna,147 P. Lujan,147 D. Marlow,147 T. Medvedeva,147 M. Mooney,147 J. Olsen,147 P. Piroué,147 X. Quan,147 A. Raval,147 H. Saka,147 D. Stickland,147 C. Tully,147 J. S. Werner,147 S. C. Zenz,147 A. Zuranski,147 E. Brownson,148 A. Lopez,148 H. Mendez,148 J. E. Ramirez Vargas,148 E. Alagoz,149 V. E. Barnes,149 D. Benedetti,149 G. Bolla,149 D. Bortoletto,149 PRL 110, 081803 (2013) P HY S I CA L R EV I EW LE T T E R S week ending 22 FEBRUARY 2013 081803-10 M. De Mattia,149 A. Everett,149 Z. Hu,149 M. Jones,149 O. Koybasi,149 M. Kress,149 A. T. Laasanen,149 N. Leonardo,149 V. Maroussov,149 P. Merkel,149 D.H. Miller,149 N. Neumeister,149 I. Shipsey,149 D. Silvers,149 A. Svyatkovskiy,149 M. Vidal Marono,149 H.D. Yoo,149 J. Zablocki,149 Y. Zheng,149 S. Guragain,150 N. Parashar,150 A. Adair,151 B. Akgun,151 C. Boulahouache,151 K.M. Ecklund,151 F. J.M. Geurts,151 W. Li,151 B. P. Padley,151 R. Redjimi,151 J. Roberts,151 J. Zabel,151 B. Betchart,152 A. Bodek,152 Y. S. Chung,152 R. Covarelli,152 P. de Barbaro,152 R. Demina,152 Y. Eshaq,152 T. Ferbel,152 A. Garcia-Bellido,152 P. Goldenzweig,152 J. Han,152 A. Harel,152 D. C. Miner,152 D. Vishnevskiy,152 M. Zielinski,152 A. Bhatti,153 R. Ciesielski,153 L. Demortier,153 K. Goulianos,153 G. Lungu,153 S. Malik,153 C. Mesropian,153 S. Arora,154 A. Barker,154 J. P. Chou,154 C. Contreras-Campana,154 E. Contreras-Campana,154 D. Duggan,154 D. Ferencek,154 Y. Gershtein,154 R. Gray,154 E. Halkiadakis,154 D. Hidas,154 A. Lath,154 S. Panwalkar,154 M. Park,154 R. Patel,154 V. Rekovic,154 J. Robles,154 K. Rose,154 S. Salur,154 S. Schnetzer,154 C. Seitz,154 S. Somalwar,154 R. Stone,154 S. Thomas,154 M. Walker,154 G. Cerizza,155 M. Hollingsworth,155 S. Spanier,155 Z. C. Yang,155 A. York,155 R. Eusebi,156 W. Flanagan,156 J. Gilmore,156 T. Kamon,156,hhh V. Khotilovich,156 R. Montalvo,156 I. Osipenkov,156 Y. Pakhotin,156 A. Perloff,156 J. Roe,156 A. Safonov,156 T. Sakuma,156 S. Sengupta,156 I. Suarez,156 A. Tatarinov,156 D. Toback,156 N. Akchurin,157 J. Damgov,157 C. Dragoiu,157 P. R. Dudero,157 C. Jeong,157 K. Kovitanggoon,157 S.W. Lee,157 T. Libeiro,157 I. Volobouev,157 E. Appelt,158 A.G. Delannoy,158 C. Florez,158 S. Greene,158 A. Gurrola,158 W. Johns,158 P. Kurt,158 C. Maguire,158 A. Melo,158 M. Sharma,158 P. Sheldon,158 B. Snook,158 S. Tuo,158 J. Velkovska,158 M.W. Arenton,159 M. Balazs,159 S. Boutle,159 B. Cox,159 B. Francis,159 J. Goodell,159 R. Hirosky,159 A. Ledovskoy,159 C. Lin,159 C. Neu,159 J. Wood,159 S. Gollapinni,160 R. Harr,160 P. E. Karchin,160 C. Kottachchi Kankanamge Don,160 P. Lamichhane,160 A. Sakharov,160 M. Anderson,161 D.A. Belknap,161 L. Borrello,161 D. Carlsmith,161 M. Cepeda,161 S. Dasu,161 E. Friis,161 L. Gray,161 K. S. Grogg,161 M. Grothe,161 R. Hall-Wilton,161 M. Herndon,161 A. Hervé,161 P. Klabbers,161 J. Klukas,161 A. Lanaro,161 C. Lazaridis,161 R. Loveless,161 A. Mohapatra,161 M.U. Mozer,161 I. Ojalvo,161 F. Palmonari,161 G. A. Pierro,161 I. Ross,161 A. Savin,161 W.H. Smith,161 and J. Swanson161 (CMS Collaboration) 1Yerevan Physics Institute, Yerevan, Armenia 2Institut für Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus 4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Université Libre de Bruxelles, Bruxelles, Belgium 7Ghent University, Ghent, Belgium 8Université Catholique de Louvain, Louvain-la-Neuve, Belgium 9Université de Mons, Mons, Belgium 10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12aUniversidade Estadual Paulista, São Paulo, Brazil 12bUniversidade Federal do ABC, São Paulo, Brazil 13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China 16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia 18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia 21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic 23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt 24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland 26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland 28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France PRL 110, 081803 (2013) P HY S I CA L R EV I EW LE T T E R S week ending 22 FEBRUARY 2013 081803-11 29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France 31Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France 32Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 33RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 34RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 35RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany 36Deutsches Elektronen-Synchrotron, Hamburg, Germany 37University of Hamburg, Hamburg, Germany 38Institut für Experimentelle Kernphysik, Karlsruhe, Germany 39Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece 40University of Athens, Athens, Greece 41University of Ioánnina, Ioánnina, Greece 42KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 43Institute of Nuclear Research ATOMKI, Debrecen, Hungary 44University of Debrecen, Debrecen, Hungary 45Panjab University, Chandigarh, India 46University of Delhi, Delhi, India 47Saha Institute of Nuclear Physics, Kolkata, India 48Bhabha Atomic Research Centre, Mumbai, India 49Tata Institute of Fundamental Research-EHEP, Mumbai, India 50Tata Institute of Fundamental Research-HECR, Mumbai, India 51Institute for Research in Fundamental Sciences (IPM), Tehran, Iran 52aINFN Sezione di Bari, Bari, Italy 52bUniversità di Bari, Bari, Italy 52cPolitecnico di Bari, Bari, Italy 53aINFN Sezione di Bologna, Bologna, Italy 53bUniversità di Bologna, Bologna, Italy 54aINFN Sezione di Catania, Catania, Italy 54bUniversità di Catania, Catania, Italy 55aINFN Sezione di Firenze, Firenze, Italy 55bUniversità di Firenze, Firenze, Italy 56INFN Laboratori Nazionali di Frascati, Frascati, Italy 57aINFN Sezione di Genova, Genova, Italy 57bUniversità di Genova, Genova, Italy 58aINFN Sezione di Milano-Bicocca, Milano, Italy 58bUniversità di Milano-Bicocca, Milano, Italy 59aINFN Sezione di Napoli, Napoli, Italy 59bUniversità di Napoli ‘‘Federico II,’’, Napoli, Italy 59cUniversità della Basilicata (Potenza), Napoli, Italy 59dUniversità G. Marconi (Roma), Napoli, Italy 60aINFN Sezione di Padova, Padova, Italy 60bUniversità di Padova, Padova, Italy 60cUniversità di Trento (Trento), Padova, Italy 61aINFN Sezione di Pavia, Pavia, Italy 61bUniversità di Pavia, Pavia, Italy 62aINFN Sezione di Perugia, Perugia, Italy 62bUniversità di Perugia, Perugia, Italy 63aINFN Sezione di Pisa, Pisa, Italy 63bUniversità di Pisa, Pisa, Italy 63cScuola Normale Superiore di Pisa, Pisa, Italy 64aINFN Sezione di Roma, Roma, Italy 64bUniversità di Roma, Roma, Italy 65aINFN Sezione di Torino, Torino, Italy 65bUniversità di Torino, Torino, Italy 65cUniversità del Piemonte Orientale (Novara), Torino, Italy 66aINFN Sezione di Trieste, Trieste, Italy 66bUniversità di Trieste, Trieste, Italy 67Kangwon National University, Chunchon, Korea 68Kyungpook National University, Daegu, Korea PRL 110, 081803 (2013) P HY S I CA L R EV I EW LE T T E R S week ending 22 FEBRUARY 2013 081803-12 69Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 70Korea University, Seoul, Korea 71University of Seoul, Seoul, Korea 72Sungkyunkwan University, Suwon, Korea 73Vilnius University, Vilnius, Lithuania 74Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 75Universidad Iberoamericana, Mexico City, Mexico 76Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 77Universidad Autónoma de San Luis Potosı́, San Luis Potosı́, Mexico 78University of Auckland, Auckland, New Zealand 79University of Canterbury, Christchurch, New Zealand 80National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 81National Centre for Nuclear Research, Swierk, Poland 82Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 83Laboratório de Instrumentação e Fı́sica Experimental de Partı́culas, Lisboa, Portugal 84Joint Institute for Nuclear Research, Dubna, Russia 85Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 86Institute for Nuclear Research, Moscow, Russia 87Institute for Theoretical and Experimental Physics, Moscow, Russia 88Moscow State University, Moscow, Russia 89P. N. Lebedev Physical Institute, Moscow, Russia 90State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 91University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 92Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 93Universidad Autónoma de Madrid, Madrid, Spain 94Universidad de Oviedo, Oviedo, Spain 95Instituto de Fı́sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 96CERN, European Organization for Nuclear Research, Geneva, Switzerland 97Paul Scherrer Institut, Villigen, Switzerland 98Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 99Universität Zürich, Zurich, Switzerland 100National Central University, Chung-Li, Taiwan 101National Taiwan University (NTU), Taipei, Taiwan 102Chulalongkorn University, Bangkok, Thailand 103Cukurova University, Adana, Turkey 104Middle East Technical University, Physics Department, Ankara, Turkey 105Bogazici University, Istanbul, Turkey 106Istanbul Technical University, Istanbul, Turkey 107National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 108University of Bristol, Bristol, United Kingdom 109Rutherford Appleton Laboratory, Didcot, United Kingdom 110Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom 112Baylor University, Waco, Texas 76706, USA 113The University of Alabama, Tuscaloosa, Alabama 35487, USA 114Boston University, Boston, Massachusetts 02215, USA 115Brown University, Providence, Rhode Island 02912, USA 116University of California, Davis, Davis, California 95616, USA 117University of California, Los Angeles, California 90095, USA 118University of California, Riverside, Riverside, California 92521, USA 119University of California, San Diego, La Jolla, California 92093, USA 120University of California, Santa Barbara, Santa Barbara, California 93106, USA 121California Institute of Technology, Pasadena, California 91125, USA 122Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 123University of Colorado at Boulder, Boulder, Colorado 80309, USA 124Cornell University, Ithaca, New York 14853, USA 125Fairfield University, Fairfield, Connecticut 06824, USA 126Fermi National Accelerator Laboratory, Batavia, Illinois 6051, USA 127University of Florida, Gainesville, Florida 3261, USA 128Florida International University, Miami, Florida 33199, USA 129Florida State University, Tallahassee, Florida 32306, USA PRL 110, 081803 (2013) P HY S I CA L R EV I EW LE T T E R S week ending 22 FEBRUARY 2013 081803-13 130Florida Institute of Technology, Melbourne, Florida 32901, USA 131University of Illinois at Chicago (UIC), Chicago, Illinois 60607, USA 132The University of Iowa, Iowa City, Iowa 52242, USA 133Johns Hopkins University, Baltimore, Maryland 21218, USA 134The University of Kansas, Lawrence, Kansas 66045, USA 135Kansas State University, Manhattan, Kansas 66506, USA 136Lawrence Livermore National Laboratory, Livermore, California 94720, USA 137University of Maryland, College Park, Maryland 20742, USA 138Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 139University of Minnesota, Minneapolis, Minnesota 55455, USA 140University of Mississippi, Oxford, Mississippi 38677, USA 141University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA 142State University of New York at Buffalo, Buffalo, New York 14260, USA 143Northeastern University, Boston, Massachusetts 02115, USA 144Northwestern University, Evanston, Illinois 60208, USA 145University of Notre Dame, Notre Dame, Indiana 46556, USA 146The Ohio State University, Columbus, Ohio 43210, USA 147Princeton University, Princeton, New Jersey 08544, USA 148University of Puerto Rico, Mayaguez, Puerto Rico 00680 149Purdue University, West Lafayette, Indiana 47907, USA 150Purdue University Calumet, Hammond, Indiana 46323, USA 151Rice University, Houston, Texas 77251, USA 152University of Rochester, Rochester, New York 14627, USA 153The Rockefeller University, New York, New York 10021, USA 154Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA 155University of Tennessee, Knoxville, Tennessee 37996, USA 156Texas A&M University, College Station, Texas 77843, USA 157Texas Tech University, Lubbock, Texas 79409, USA 158Vanderbilt University, Nashville, Tennessee 37235, USA 159University of Virginia, Charlottesville, Virginia 22901, USA 160Wayne State University, Detroit, Michigan 48202, USA 161University of Wisconsin, Madison, Wisconsin 53706, USA aDeceased. bAlso at Vienna University of Technology, Vienna, Austria. cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. dAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. eAlso at Universidade Estadual de Campinas, Campinas, Brazil. fAlso at California Institute of Technology, Pasadena, California, USA. gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. hAlso at Suez Canal University, Suez, Egypt. iAlso at Zewail City of Science and Technology, Zewail, Egypt. jAlso at Cairo University, Cairo, Egypt. kAlso at Fayoum University, El-Fayoum, Egypt. lAlso at British University in Egypt, Cairo, Egypt. mPresent address: Ain Shams University, Cairo, Egypt. nAlso at National Centre for Nuclear Research, Swierk, Poland. oAlso at Université de Haute-Alsace, Mulhouse, France. pAlso at Joint Institute for Nuclear Research, Dubna, Russia. qAlso at Moscow State University, Moscow, Russia. rAlso at Brandenburg University of Technology, Cottbus, Germany. sAlso at The University of Kansas, Lawrence, Kansas, USA. tAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. uAlso at Eötvös Loránd University, Budapest, Hungary. vAlso at Tata Institute of Fundamental Research–HECR, Mumbai, India. wPresent address: King Abdulaziz University, Jeddah, Saudi Arabia. xAlso at University of Visva-Bharati, Santiniketan, India. yAlso at Sharif University of Technology, Tehran, Iran. PRL 110, 081803 (2013) P HY S I CA L R EV I EW LE T T E R S week ending 22 FEBRUARY 2013 081803-14 zAlso at Isfahan University of Technology, Isfahan, Iran. aaAlso at Shiraz University, Shiraz, Iran. bbAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. ccAlso at Facoltà Ingegneria, Università di Roma, Roma, Italy. ddAlso at Università degli Studi di Siena, Siena, Italy. eeAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania. ffAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia. ggAlso at University of California, Los Angeles, California, USA. hhAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy. iiAlso at INFN Sezione di Roma, Roma, Italy. jjAlso at University of Athens, Athens, Greece. kkAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. llAlso at Paul Scherrer Institut, Villigen, Switzerland. mmAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. nnAlso at Albert Einstein Center for Fundamental Physics, Bern, Switzerland. ooAlso at Gaziosmanpasa University, Tokat, Turkey. ppAlso at Adiyaman University, Adiyaman, Turkey. qqAlso at Izmir Institute of Technology, Izmir, Turkey. rrAlso at The University of Iowa, Iowa City, Iowa, USA. ssAlso at Mersin University, Mersin, Turkey. ttAlso at Ozyegin University, Istanbul, Turkey. uuAlso at Kafkas University, Kars, Turkey. vvAlso at Suleyman Demirel University, Isparta, Turkey. wwAlso at Ege University, Izmir, Turkey. xxAlso at Mimar Sinan University, Istanbul, Istanbul, Turkey. yyAlso at Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey. zzAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. aaaAlso at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy. bbbAlso at Utah Valley University, Orem, Utah, USA. cccPresent address: University of Edinburgh, Scotland, Edinburgh, United Kingdom. dddAlso at Institute for Nuclear Research, Moscow, Russia. eeeAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. fffAlso at Argonne National Laboratory, Argonne, Illinois, USA. gggAlso at Erzincan University, Erzincan, Turkey. hhhAlso at Kyungpook National University, Daegu, Korea. PRL 110, 081803 (2013) P HY S I CA L R EV I EW LE T T E R S week ending 22 FEBRUARY 2013 081803-15