Physics Letters B 739 (2014) 229–249 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Search for pair production of third-generation scalar leptoquarks and top squarks in proton–proton collisions at √ s = 8 TeV .CMS Collaboration � CERN, Switzerland a r t i c l e i n f o a b s t r a c t Article history: Received 4 August 2014 Received in revised form 1 October 2014 Accepted 26 October 2014 Available online 30 October 2014 Editor: M. Doser Keywords: CMS Physics Leptoquark Top squark A search for pair production of third-generation scalar leptoquarks and supersymmetric top quark partners, top squarks, in final states involving tau leptons and bottom quarks is presented. The search uses events from a data sample of proton–proton collisions corresponding to an integrated luminosity of 19.7 fb−1, collected with the CMS detector at the LHC with √ s = 8 TeV. The number of observed events is found to be in agreement with the expected standard model background. Third-generation scalar leptoquarks with masses below 740 GeV are excluded at 95% confidence level, assuming a 100% branching fraction for the leptoquark decay to a tau lepton and a bottom quark. In addition, this mass limit applies directly to top squarks decaying via an R-parity violating coupling λ′ 333. The search also considers a similar signature from top squarks undergoing a chargino-mediated decay involving the R- parity violating coupling λ′ 3 jk . Each top squark decays to a tau lepton, a bottom quark, and two light quarks. Top squarks in this model with masses below 580 GeV are excluded at 95% confidence level. The constraint on the leptoquark mass is the most stringent to date, and this is the first search for top squarks decaying via λ′ 3 jk . © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3. 1. Introduction Many extensions of the standard model (SM) predict new scalar or vector bosons, called leptoquarks (LQ), which carry non-zero lepton and baryon numbers, as well as color and fractional elec- tric charge. Examples of such SM extensions include SU(5) grand unification [1], Pati–Salam SU(4) [2], composite models [3], super- strings [4], and technicolor models [5]. Leptoquarks decay into a quark and a lepton, with a model-dependent branching fraction for each possible decay. Experimental limits on flavor-changing neutral currents and other rare processes suggest that searches should fo- cus on leptoquarks that couple to quarks and leptons within the same SM generation, for leptoquark masses accessible to current colliders [3,6]. The dominant pair production mechanisms for leptoquarks at the CERN LHC would be gluon–gluon fusion and quark–antiquark annihilation via quantum chromodynamic (QCD) couplings. The cross sections for these processes depend only on the leptoquark mass for scalar leptoquarks. In this Letter, a search with the CMS detector for third-generation scalar leptoquarks, each decaying to a tau lepton and a bottom quark, is presented. � E-mail address: cms-publication-committee-chair@cern.ch. Similar signatures arising from supersymmetric models are also covered by this search. Supersymmetry (SUSY) [7,8] is an attractive extension of the SM because it can resolve the hierarchy problem without unnatural fine-tuning, if the masses of the supersymmet- ric partner of the top quark (top squark) and the supersymmetric partners of the Higgs boson (higgsinos) are not too large [9,10]. In many natural SUSY models the top squark and the higgsinos are substantially lighter than the other scalar SUSY particles. This light top squark scenario can be realized in both R-parity conserving (RPC) and R-parity violating (RPV) SUSY models, where R-parity is a new quantum number [11] that distinguishes SM and SUSY parti- cles. In the context of an RPC decay of the top squark, the presence of an undetected particle (the lightest SUSY particle) is expected to generate a signature with large missing transverse momentum. If R-parity is violated, however, SUSY particles can decay into final states containing only SM particles. The RPV terms in the superpo- tential are: W � 1 2 λi jk Li L j Ec k + λ′ i jk Li Q j Dc k + 1 2 λ′′ i jkU c i Dc j Dc k + μi Li Hu (1) where W is the superpotential; L is the lepton doublet superfield; E is the lepton singlet superfield; Q is the quark doublet super- field; U and D are the quark singlet superfields; Hu is the Higgs http://dx.doi.org/10.1016/j.physletb.2014.10.063 0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3. http://dx.doi.org/10.1016/j.physletb.2014.10.063 http://www.ScienceDirect.com/ http://www.elsevier.com/locate/physletb http://creativecommons.org/licenses/by/3.0/ mailto:cms-publication-committee-chair@cern.ch http://dx.doi.org/10.1016/j.physletb.2014.10.063 http://creativecommons.org/licenses/by/3.0/ http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2014.10.063&domain=pdf 230 CMS Collaboration / Physics Letters B 739 (2014) 229–249 doublet superfield that couples to up-type quarks; λ, λ′ , and λ′′ are coupling constants; and i, j, and k are generation indices. At the LHC, top squarks (t̃) would be directly pair-produced via strong interactions. In this search, two different decay channels of directly produced top squarks are considered. Both scenarios relate to simplified models in which all of the other SUSY particles have masses too large to participate in the interactions. In the first case we study the two-body lepton number violating decay t̃ → τb [11] with a coupling constant λ′ 333 allowed by the trilinear RPV opera- tors. The final-state signature and kinematic distributions of such a signal are identical to those from the pair production of third- generation scalar leptoquarks. When the masses of the supersym- metric partners of the gluon and quarks, excluding the top squark, are large, the top squark pair production cross section is the same as that of the third generation LQ. Thus, the results of the lepto- quark search can be directly interpreted in the context of RPV top squarks. In some natural SUSY models [12], if the higgsinos (χ̃0, χ̃±) are lighter than the top squark, or if the RPV couplings that allow di- rect decays to SM particles are sufficiently small, the top squark decay may preferentially proceed via superpartners. In the second part of the search we focus on a scenario in which the dominant RPC decay of the top squark is t̃ → χ̃±b. This requires the mass splitting between the top squark and the chargino to be less than the mass of the top quark, so it is chosen to be 100 GeV. The chargino is assumed to be a pure higgsino and to be nearly de- generate in mass with the neutralino. We consider the case when χ̃± → ν̃τ± → qqτ± . The decay of the sneutrino occurs accord- ing to an RPV operator with a coupling constant λ′ 3 jk , where the cases j, k = 1, 2 are considered. Such signal models can only be probed by searches that do not require large missing transverse momentum, as the other decay of the chargino, χ̃± → ντ̃ , does not contribute to scenarios involving the λ′ 3 jk coupling because of chiral suppression. From such a signal process, we expect events with two tau leptons, two jets originating from hadronization of the bottom quarks, and at least four additional jets. In this Letter, the search for scalar leptoquarks and top squarks decaying through the coupling λ′ 333 is referred to as the lepto- quark search. The search for the chargino-mediated decay of top squarks involving the λ′ 3 jk coupling is referred to as the top squark search. The data sample used in this search has been recorded with the CMS detector in proton–proton collisions at a center-of-mass energy of 8 TeV and corresponds to an integrated luminosity of 19.7 fb−1. One of the tau leptons in the final state is required to decay leptonically: τ → �ν̄�ντ , where � can be either an electron or a muon, denoted as a light lepton. The other tau lepton is re- quired to decay to hadrons (τh): τ → hadrons + ντ . These decays result in two possible final states labeled below as eτh and μτh, or collectively �τh when the lepton flavor is unimportant. The lepto- quark search is performed in a mass range from 200 to 1000 GeV using a sample of events containing one light lepton, a hadroni- cally decaying tau lepton, and at least two jets, with at least one of the jets identified as originating from bottom quark hadronization (b-tagged). The top squark search is performed in a mass range from 200 to 800 GeV using a sample of events containing one light lepton, a hadronically decaying tau lepton, and at least five jets, with at least one of the jets b-tagged. No evidence for third-generation leptoquarks or top squarks decaying to tau leptons and bottom quarks has been found in pre- vious searches [13,14]. The most stringent lower limit to date on the mass of a scalar third generation leptoquark decaying to a tau lepton and a bottom quark with a 100% branching fraction is about 530 GeV from both the CMS and ATLAS experiments. This Letter also presents the first search for the chargino-mediated decay of the top squark through the RPV coupling λ′ 3 jk . 2. The CMS detector The central feature of the CMS apparatus is a superconduct- ing solenoid, of 6 m internal diameter, providing a field of 3.8 T. Within the field volume are several subdetectors. A silicon pixel and strip tracker allows the reconstruction of the trajectories of charged particles within the pseudorapidity range |η| < 2.5. The calorimetry system consists of a lead tungstate crystal electro- magnetic calorimeter (ECAL) and a brass and scintillator hadron calorimeter, and measures particle energy depositions for |η| < 3. The CMS detector also has extensive forward calorimetry (2.8 < |η| < 5.2). Muons are measured in gas-ionization detectors embed- ded in the steel flux-return yoke of the magnet. Collision events are selected using a two-tiered trigger system [15]. A more de- tailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [16]. 3. Object and event selection Candidate LQ or top squark events were collected using a set of triggers requiring the presence of either an electron or a muon with transverse momentum (pT) above a threshold of 27 or 24 GeV, respectively. Both electrons and muons are required to be reconstructed within the range |η| < 2.1 and to have pT > 30 GeV. Electrons, reconstructed using information from the ECAL and the tracker, are required to have an electromagnetic shower shape consistent with that of an electron, and an energy deposition in ECAL that is compatible with the track reconstructed in the tracker. Muons are required to be reconstructed by both the tracker and the muon spectrometer. A particle-flow (PF) technique [17–19] is used for the reconstruction of hadronically decaying tau lepton candidates. In the PF approach, information from all subdetectors is combined to reconstruct and identify all final-state particles produced in the collision. The particles are classified as either charged hadrons, neutral hadrons, electrons, muons, or photons. These particles are used with the “hadron plus strips” algorithm [20] to identify τh ob- jects. Hadronically decaying tau leptons with one or three charged pions and up to two neutral pions are reconstructed. The recon- structed τh is required to have visible pT > 50 GeV and |η| < 2.3. Electrons, muons, and tau leptons are required to be isolated from other reconstructed particles. The identified electron (muon) and τh are required to originate from the same vertex and be separated by R = √ ( η)2 + ( φ)2 > 0.5. The light lepton and the τh are also required to have opposite electric charge. Events are vetoed if another light lepton is found, passing the kinematic, identification, and isolation criteria described above, that has an opposite electric charge from the selected light lepton. Jets are reconstructed using the anti-kT algorithm [21,22] with a size parameter 0.5 using particle candidates reconstructed with the PF technique. Jet energies are corrected by subtracting the av- erage contribution from particles coming from other proton–proton collisions in the same beam crossing (pileup) and by applying a jet energy calibration, determined empirically [23]. Jets are required to be within |η| < 2.4, have pT > 30 GeV, and be separated from both the light lepton and the τh by R > 0.5. The minimum jet pT requirement eliminates most jets from pileup interactions. Jets are b-tagged using the combined secondary vertex algorithm with the loose operating point [24]. In the leptoquark search, the b-tagged jet with the highest pT is selected, and then the remaining jet with the highest pT is selected whether or not it is b-tagged. In the top squark search, the b-tagged jet with the highest pT is selected, and then the remaining four jets with the highest pT are selected whether or not they are b-tagged. CMS Collaboration / Physics Letters B 739 (2014) 229–249 231 To discriminate between signal and background in the lepto- quark search, the mass of the τh and a jet, denoted M(τh, jet), is required to be greater than 250 GeV. There are two possible pair- ings of the τh with the two required jets. The pairing is chosen to minimize the difference between the mass of the τh and one jet and the mass of the light lepton and another jet. According to a simulation, the correct pairing is selected in approximately 70% of events. The ST distribution after the final selection is used to extract the limits on both the leptoquark and top squark signal scenarios, where ST is defined as the scalar sum of the pT of the light lepton, the τh, and the two jets (five jets) for the leptoquark search (top squark search). 4. Background and signal models Several SM processes can mimic the final-state signatures ex- pected from leptoquark or top squark pair production and decay. For this analysis, the backgrounds are divided into three groups, which are denoted as tt irreducible, major reducible, and other. The tt irreducible background comes from the pair production of top quarks (tt) when both the light lepton and τh are genuine, each produced from the decay of a W boson. In this case, the light lepton can originate either directly from the W boson decay or from a decay chain W → τντ → �ν�ντ ντ . The major reducible background consists of events in which a quark or gluon jet is misidentified as a τh. The processes contributing to the major re- ducible background are associated production of a W or Z boson with jets, and tt. Additionally, a small contribution from the QCD multijet process is included, in which both the light lepton and the τh are misidentified jets. The third group, other backgrounds, consists of processes that make small contributions and may con- tain either genuine or misidentified tau leptons. This includes the diboson and single-top-quark processes, the tt and Z + jets pro- cesses when a light lepton is misidentified as a τh, and the Z + jets process when the Z boson decays to a pair of tau leptons. The other backgrounds are estimated from the simulation described below, while the tt irreducible and major reducible backgrounds are estimated using observed data. The major reducible and other backgrounds include events with both genuine and misidentified light leptons. The pythia v6.4.24 generator [25] is used to model the signal and diboson processes. The leptoquark signal samples are gener- ated with masses ranging from 200 to 1000 GeV, and the top squark signal samples are generated with masses ranging from 200 to 800 GeV and the sneutrino mass set to 2000 GeV. The MadGraph v5.1.3.30 generator [26] is used to model the tt, W + jets, and Z + jets processes. This generation includes contributions from heavy-flavor and extra jets. The single top-quark production is modeled with the powheg 1.0 r138 [27–29] generator. Both the MadGraph and powheg generators are interfaced with pythia for hadronization and showering. The tauola program [30] is used for tau lepton decays in the leptoquark, tt, W + jets, Z + jets, dibo- son, and single top-quark samples. Each sample is passed through a full simulation of the CMS detector based on Geant4 [31] and the complete set of reconstruction algorithms is used to ana- lyze collision data. Cross sections for the leptoquark signal and diboson processes are calculated to next-to-leading order (NLO) [32,33]. The cross sections for the top squark signal are calculated at NLO in the strong coupling constant, including the resumma- tion of soft gluon emission at next-to-leading-logarithmic accuracy (NLO + NLL) [34–38]. The next-to-next-to-leading-order or approx- imate next-to-next-to-leading-order [39,40] cross sections are used for the rest of the background processes. The efficiencies of the trigger and final selection criteria for signal processes are estimated from the simulation. The efficien- cies for light leptons and b jets are calculated from data and used where necessary to correct the event selection efficiency estima- tions from the simulation. No correction is required for hadroni- cally decaying tau leptons. The tt irreducible background is estimated from an eμ sam- ple that is 87% pure in tt events according to the simulation. The contributions from other processes are simulated and subtracted from the observed data. This sample comprises events with one electron and one muon that satisfy the remaining final selection criteria, except that a τh is not required. The potential signal con- tamination of this sample has been found to be negligible for any signal mass hypothesis. The final yield of the eμ sample is scaled by the relative difference in the selection efficiencies between the �τh and eμ samples. The selection efficiencies are measured in the simulation and are corrected to match those from collision data. The estimation of the final yield based on the observed data agrees with both the direct prediction from the simulation and the yield obtained after applying the same method to the Monte Carlo (MC) samples. The ST distribution for the tt irreducible background is obtained from a simulated tt sample that consists exclusively of fully leptonic decays of top quarks. The major reducible background from tt, W + jets, and Z + jets events in which a jet is misidentified as a hadronically decay- ing tau lepton is estimated from observed data. The probability of misidentification is measured using events recorded with a Z bo- son produced in association with jets and decaying to a pair of muons (Z → μμ). The invariant mass of the muon pair is required to be greater than 50 GeV and events are required to contain at least one jet that is incorrectly identified as a τh and may or may not pass the isolation requirement. The misidentification probabil- ity f (pT(τ )) is calculated as the fraction of these τh candidates that pass the isolation requirement and depends on the pT of the candidates. The background yield is estimated from a sample of events satisfying the final selection criteria, except that all τh can- didates in the events must fail the isolation requirement. Eq. (2) relates the yield of these “anti-isolated” events to the yield of events passing the final selection, using the misidentification prob- ability: NmisID τ = (anti-iso)∑ events 1 − ∏ τ [1 − f (pT(τ ))]∏ τ [1 − f (pT(τ ))] . (2) The estimation of the final yield based on the observed data agrees with both the direct prediction from the simulation and the esti- mation performed using the same approach on simulated samples. The ST distribution for the major reducible background is obtained using simulated samples for the W + jets and Z + jets processes and the tt process with exclusively semi-leptonic decays. The QCD multijet process contributes only in the eτh channel in the leptoquark search and corresponds to 16% of the reducible background. The contribution from multijet events is estimated from a sample of observed events satisfying the final selection cri- teria for the eτh channel except that the electron and τh must have the same electric charge. The QCD component is included in the distribution of the rest of the major reducible background, de- scribed above. 5. Systematic uncertainties There are a number of systematic uncertainties associated with both the background estimation and the signal efficiency. The un- certainty in the total integrated luminosity is 2.6% [41]. The un- certainty in the trigger and lepton efficiencies is 2%, while the 232 CMS Collaboration / Physics Letters B 739 (2014) 229–249 Table 1 The estimated backgrounds, observed event yields, and expected number of signal events for the leptoquark search. For the simulation-based entries, the statistical and systematic uncertainties are shown separately, in that order. eτh μτh tt irreducible 105.6 ± 18.1 66.7 ± 12.6 Major reducible 147.8 ± 33.0 117.3 ± 18.9 Z(��/ττ ) + jets 21.4 ± 7.4 ± 4.9 7.5 ± 4.6 ± 0.2 Single t 16.0 ± 2.8 ± 4.4 17.3 ± 2.8 ± 4.7 VV 4.1 ± 0.6 ± 1.3 2.6 ± 0.5 ± 0.8 Total exp. bkg. 294.9 ± 7.9 ± 39.1 211.4 ± 5.4 ± 23.4 Observed 289 216 MLQ = 500 GeV 57.7 ± 1.4 ± 5.9 51.6 ± 1.3 ± 5.3 MLQ = 600 GeV 20.1 ± 0.5 ± 1.9 17.7 ± 0.4 ± 1.6 MLQ = 700 GeV 7.1 ± 0.2 ± 6.3 6.2 ± 0.1 ± 5.5 MLQ = 800 GeV 2.7 ± 0.1 ± 0.2 2.3 ± 0.1 ± 0.2 uncertainty assigned to the τh identification efficiency is 6%. The uncertainties in the b-tagging efficiency and mistagging probabil- ity depend on the η and pT of the jet and are on average 4% and 10%, respectively [42]. Systematic uncertainties, totaling 19–22% depending on the channel and the search, are assigned to the normalization of the tt irreducible background based on statistical uncertainty in the control samples and the propagation of the uncertainties in the acceptances, efficiencies, and subtraction of the contributions from other processes in the eμ sample. Systematic uncertainties in the major reducible background are driven by statistical uncertainty in the measured misidentification probability and variation in the misidentification probability based on the event topology. These uncertainties amount to 16–24%, depending on the channel and the search. Because of the limited number of events in the simulation, uncertainties in the small backgrounds range between 20–50%. Uncertainty due to the effect of pileup modeling in the MC is es- timated to be 3%. A 4% uncertainty, due to modeling of initial- and final-state radiation in the simulation, is assigned to the signal acceptance. The uncertainty in the initial- and final-state radia- tion was found to have a negligible effect on the simulated back- grounds. A 7–32% uncertainty from knowledge of parton distribu- tion functions and a 14–80% uncertainty from QCD renormalization and factorization scales are assigned to the theoretical signal cross- section. Finally, jet energy scale uncertainties (2–4% depending on η and pT) and energy resolution uncertainties (5–10% depending on η), as well as energy scale (3%) and resolution (10%) uncertain- ties for τh, affect both the ST distributions and the expected yields from the signal and background processes. 6. Results The numbers of observed events and expected signal and back- ground events after the final selection for the leptoquark and top squark searches are listed in Tables 1 and 2, respectively, and the selection efficiencies for the two signals are listed in Tables 3 and 4. The ST distributions of the selected events from the ob- served data and from the background predictions, combining eτh and μτh channels, are shown in Fig. 1 for the leptoquark search and Fig. 2 for the top squark search. The distribution from the 500 GeV (300 GeV) signal hypothesis is added to the background in Fig. 1 (Fig. 2) to illustrate how a hypothetical signal would ap- pear above the background prediction. The data agree well with the SM background prediction. An upper bound at 95% confidence level (CL) is set on σB2, where σ is the cross section for pair production of third-generation LQs (top squarks) and B is the branching fraction for the LQ decay Table 2 The estimated backgrounds, observed event yields, and expected number of signal events for the top squark search. For the simulation-based entries, the statistical and systematic uncertainties are shown separately, in that order. eτh μτh tt irreducible 88.3 ± 13.7 55.0 ± 9.5 Major reducible 65.7 ± 16.4 59.8 ± 13.8 Z(��/ττ ) + jets 4.9 ± 2.5 ± 1.1 11.6 ± 5.5 ± 2.7 Single t 3.9 ± 1.5 ± 1.1 3.5 ± 1.3 ± 0.9 VV 0.6 ± 0.2 ± 0.2 0.4 ± 0.2 ± 0.1 Total exp. bkg. 163.4 ± 2.9 ± 21.5 130.3 ± 5.6 ± 17.1 Observed 156 123 M t̃ = 300 GeV 94.3 ± 8.5 ± 13.2 82.8 ± 8.0 ± 11.7 M t̃ = 400 GeV 43.9 ± 2.6 ± 4.3 38.3 ± 2.3 ± 3.8 M t̃ = 500 GeV 19.4 ± 0.8 ± 1.8 15.4 ± 0.7 ± 1.5 M t̃ = 600 GeV 6.9 ± 0.9 ± 0.7 5.7 ± 0.3 ± 0.5 Table 3 Selection efficiencies in % for the signal in the leptoquark search, estimated from the simulation. MLQ (GeV) eτh μτh 200 0.1 0.1 250 0.3 0.2 300 1.0 0.8 350 1.9 1.5 400 2.4 2.3 450 3.0 2.9 500 3.6 3.2 550 4.0 3.3 600 4.4 3.8 650 4.5 4.0 700 4.7 4.1 750 4.9 4.2 800 5.1 4.3 850 5.4 4.4 900 5.1 4.4 950 5.4 4.3 1000 5.5 4.4 Table 4 Selection efficiencies in % for the signal in the top squark search, estimated from the simulation. M t̃ (GeV) eτh μτh 200 0.02 0.02 300 0.3 0.2 400 0.7 0.6 500 1.2 1.0 600 1.5 1.2 700 1.8 1.4 800 1.8 1.3 900 1.5 1.1 to a tau lepton and a bottom quark (the top squark decay to a χ̃± and a bottom quark, with a subsequent decay of the chargino via χ̃± → ν̃τ± → qqτ±). The symbol MLQ is used for the lepto- quark mass and the symbol M t̃ is used for the top squark mass. The modified-frequentist construction CLs [43–45] is used for the limit calculation. A maximum likelihood fit is performed to the ST spectrum simultaneously for the eτh and μτh channels, tak- ing into account correlations between the systematic uncertainties. Expected and observed upper limits on σB2 as a function of the signal mass are shown in Fig. 3 for the leptoquark search and Fig. 4 for the top squark search. We extend the current limits and exclude scalar leptoquarks and top squarks decaying through the coupling λ′ 333 with masses below 740 GeV, in agreement with a limit at 750 GeV, expected in the absence of a signal. We exclude top squarks undergoing a CMS Collaboration / Physics Letters B 739 (2014) 229–249 233 Fig. 1. The final ST distribution for the leptoquark search with the eτh and μτh channels combined. A signal sample for leptoquarks with the mass of 500 GeV is added on top of the background prediction. The last bin contains the overflow events. The horizontal bar on each observed data point indicates the width of the bin in ST. Fig. 2. The final ST distribution for the top squark search with the eτh and μτh channels combined. A signal sample for top squarks with the mass of 300 GeV is added on top of the background prediction. The last bin contains the overflow events. The horizontal bar on each observed data point indicates the width of the bin in ST. chargino-mediated decay involving the coupling λ′ 3 jk with masses in the range 200–580 GeV, in agreement with the expected exclu- sion limit in the range 200–590 GeV. These upper limits assume B = 100%. Similar results are obtained when calculating upper bounds using a Bayesian method with a uniform positive prior for the cross section. The upper bounds for the leptoquark search as a function of the leptoquark branching fraction and mass are shown in Fig. 5. Small B values are not constrained by this search. Results from the CMS experiment on a search for top squarks decaying to a top quark and a neutralino [46] are used to further constrain B. If the neu- tralino is massless, the final state kinematic distributions for such a signal are the same as those for the pair production of leptoquarks decaying to a tau neutrino and a top quark. Limits can therefore be placed on this signal, which must have a branching fraction of 1 − B if the leptoquark only decays to third-generation fermions. This reinterpretation is included in Fig. 5. The unexcluded region Fig. 3. The expected and observed combined upper limits on the third-generation LQ pair production cross section σ times the square of the branching fraction, B2, at 95% CL, as a function of the LQ mass. These limits also apply to top squarks decaying directly via the coupling λ′ 333. The green (darker) and yellow (lighter) uncertainty bands represent 68% and 95% CL intervals on the expected limit. The dark blue curve and the hatched light blue band represent the theoretical LQ pair production cross section, assuming B = 100%, and the uncertainties due to the choice of PDF and renormalization/factorization scales. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) Fig. 4. The expected and observed combined upper limits on the top squark pair production cross section σ times the square of the branching fraction, B2, at 95% CL, as a function of the top squark mass. These limits apply to top squarks with a chargino-mediated decay through the coupling λ′ 3kj . The green (darker) and yel- low (lighter) uncertainty bands represent 68% and 95% CL intervals on the expected limit. The dark blue curve and the hatched light blue band represent the theoretical top squark pair production cross section, assuming B = 100%, and the uncertainties due to the choice of PDF and renormalization/factorization scales. (For interpreta- tion of the references to color in this figure legend, the reader is referred to the web version of this article.) at MLQ = 200–230 GeV corresponds to a portion of phase space where it is topologically very difficult to distinguish between the top squark signal and the tt process, owing to small missing trans- verse momentum. A top squark excess in this region would imply an excess in the measured tt cross section of ∼ 10%. 7. Summary A search for pair production of third-generation scalar lep- toquarks and top squarks has been presented. The search for 234 CMS Collaboration / Physics Letters B 739 (2014) 229–249 Fig. 5. The expected (dashed black) and observed (green solid) 95% CL upper lim- its on the branching fraction for the leptoquark decay to a tau lepton and a bottom quark, as a function of the leptoquark mass. A search for top squark pair production [46] has the same kinematic signature as the leptoquark decay to a tau neutrino and a top quark. This search is reinterpreted to provide the expected (blue hatched) and observed (blue open) 95% CL upper limits for low values of B, assuming the leptoquark only decays to third-generation fermions. (For interpretation of the ref- erences to color in this figure legend, the reader is referred to the web version of this article.) leptoquarks and top squarks decaying through the R-parity vio- lating coupling λ′ 333 is performed in final states that include an electron or a muon, a hadronically decaying tau lepton, and at least two jets, at least one of which is b-tagged. The search for top squarks undergoing a chargino-mediated decay involving the R-parity violating coupling λ′ 3 jk is performed in events contain- ing an electron or a muon, a hadronically decaying tau lepton, and at least five jets, at least one of which is b-tagged. No ex- cesses above the standard model background prediction are ob- served in the ST distributions. Assuming a 100% branching fraction for the decay to a tau lepton and a bottom quark, scalar lepto- quarks and top squarks decaying through λ′ 333 with masses below 740 GeV are excluded at 95% confidence level. Top squarks decay- ing through λ′ 3 jk with masses below 580 GeV are excluded at 95% confidence level, assuming a 100% branching fraction for the de- cay to a tau lepton, a bottom quark, and two light quarks. The constraint on the third-generation leptoquark mass is the most stringent to date, and this is the first search for top squarks de- caying through λ′ 3 jk . Acknowledgements We congratulate our colleagues in the CERN accelerator depart- ments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS in- stitutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construc- tion and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie pro- gramme and the European Research Council and EPLANET (Euro- pean Union); the Leventis Foundation; the Alfred P. Sloan Founda- tion; the Alexander von Humboldt Foundation; the Belgian Fed- eral Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT- Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation For Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Re- search Fund. References [1] H. Georgi, S.L. Glashow, Unity of all elementary-particle forces, Phys. Rev. Lett. 32 (1974) 438, http://dx.doi.org/10.1103/PhysRevLett.32.438. [2] J.C. Pati, A. Salam, Lepton number as the fourth “color”, Phys. Rev. D 10 (1974) 275, http://dx.doi.org/10.1103/PhysRevD.10.275. [3] B. Gripaios, Composite leptoquarks at the LHC, J. High Energy Phys. 02 (2010) 045, http://dx.doi.org/10.1007/JHEP02(2010)045, arXiv:0910.1789. [4] J.L. Hewett, T.G. Rizzo, Low-energy phenomenology of superstring in- spired E6 models, Phys. Rep. 183 (1989) 193, http://dx.doi.org/10.1016/0370- 1573(89)90071-9. [5] E. Eichten, K. Lane, Dynamical breaking of weak interaction symmetries, Phys. Lett. B 90 (1980) 125, http://dx.doi.org/10.1016/0370-2693(80)90065-9. [6] O. Shanker, π�2, K�3, and K0 − K0 constraints on leptoquarks and super- symmetric particles, Nucl. Phys. B 204 (1982) 375, http://dx.doi.org/10.1016/ 0550-3213(82)90196-1. [7] H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rep. 110 (1984) 1, http://dx.doi.org/10.1016/0370-1573(84)90008-5. [8] H.E. Haber, G.L. Kane, The search for supersymmetry: probing physics be- yond the standard model, Phys. Rep. 117 (1985) 75, http://dx.doi.org/10.1016/ 0370-1573(85)90051-1. [9] M. Papucci, J.T. Ruderman, A. Weiler, Natural SUSY endures, J. High Energy Phys. 09 (2012) 035, http://dx.doi.org/10.1007/JHEP09(2012)035, arXiv:1110.6926. [10] R. Kitano, Y. Nomura, Supersymmetry, naturalness, and signatures at the CERN LHC, Phys. Rev. D 73 (2006) 095004, http://dx.doi.org/10.1103/PhysRevD. 73.095004, arXiv:hep-ph/0602096. [11] R. Barbier, C. Bérat, M. Besançon, M. Chemtob, A. Deandrea, E. Dudas, P. Fayet, S. Lavignac, G. Moreau, E. Perez, Y. Sirois, R-parity-violating supersymme- try, Phys. Rep. 420 (2005) 1, http://dx.doi.org/10.1016/j.physrep.2005.08.006, arXiv:hep-ph/0406039. [12] J. Evans, Y. Kats, LHC searches examined via the RPV MSSM, in: 2013 Eur. Phys. Soc. Conf. on High Energy Physics, SISSA, 2013; URL: http://pos.sissa.it/ archive/conferences/180/287/EPS-HEP%202013_287.pdf, arXiv:1311.0890. [13] CMS Collaboration, Search for pair production of third-generation leptoquarks and top squarks in pp collisions at √s = 7 TeV, Phys. Rev. Lett. 110 (2013) 081801, http://dx.doi.org/10.1103/PhysRevLett.110.081801, arXiv:1210.5629. [14] ATLAS Collaboration, Search for third generation scalar leptoquarks in pp col- lisions at √s = 7 TeV with the ATLAS detector, J. High Energy Phys. 06 (2013) 033, http://dx.doi.org/10.1007/JHEP06(2013)033, arXiv:1303.0526. [15] CMS Collaboration, The CMS high level trigger, Eur. Phys. J. C 46 (2006) 605, http://dx.doi.org/10.1140/epjc/s2006-02495-8, arXiv:hep-ex/0512077. [16] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3 (2008) S08004, http://dx.doi.org/10.1088/1748-0221/3/08/S08004. http://dx.doi.org/10.1103/PhysRevLett.32.438 http://dx.doi.org/10.1103/PhysRevD.10.275 http://dx.doi.org/10.1007/JHEP02(2010)045 http://dx.doi.org/10.1016/0370-1573(89)90071-9 http://dx.doi.org/10.1016/0370-2693(80)90065-9 http://dx.doi.org/10.1016/0550-3213(82)90196-1 http://dx.doi.org/10.1016/0370-1573(84)90008-5 http://dx.doi.org/10.1016/0370-1573(85)90051-1 http://dx.doi.org/10.1007/JHEP09(2012)035 http://dx.doi.org/10.1103/PhysRevD.73.095004 http://dx.doi.org/10.1016/j.physrep.2005.08.006 http://pos.sissa.it/archive/conferences/180/287/EPS-HEP%202013_287.pdf http://pos.sissa.it/archive/conferences/180/287/EPS-HEP%202013_287.pdf http://dx.doi.org/10.1103/PhysRevLett.110.081801 http://dx.doi.org/10.1007/JHEP06(2013)033 http://dx.doi.org/10.1140/epjc/s2006-02495-8 http://dx.doi.org/10.1088/1748-0221/3/08/S08004 http://dx.doi.org/10.1016/0370-1573(89)90071-9 http://dx.doi.org/10.1016/0550-3213(82)90196-1 http://dx.doi.org/10.1016/0370-1573(85)90051-1 http://dx.doi.org/10.1103/PhysRevD.73.095004 CMS Collaboration / Physics Letters B 739 (2014) 229–249 235 [17] CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and MET, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, CERN, 2009; URL: http://cds.cern.ch/record/1194487. [18] CMS Collaboration, Commissioning of the particle-flow reconstruction in minimum-bias and jet events from pp collisions at 7 TeV, CMS Physics Anal- ysis Summary CMS-PAS-PFT-10-002, CERN, 2010; URL: http://cdsweb.cern.ch/ record/1279341. [19] CMS Collaboration, Commissioning of the particle-flow event reconstruction with leptons from J/Ψ and W decays at 7 TeV, CMS Physics Analysis Summary CMS-PAS-PFT-10-003, CERN, 2010; URL: http://cdsweb.cern.ch/record/1279347. [20] CMS Collaboration, Performance of τ -lepton reconstruction and identifica- tion in CMS, J. Instrum. 7 (2012) 01001, http://dx.doi.org/10.1088/1748-0221/ 7/01/P01001, arXiv:1109.6034. [21] G.P. Salam, Towards jetography, Eur. Phys. J. C 67 (2010) 637, http://dx.doi.org/ 10.1140/epjc/s10052-010-1314-6, arXiv:0906.1833. [22] M. Cacciari, G.P. Salam, G. Soyez, The anti-kt jet clustering algorithm, J. High Energy Phys. 04 (2008) 063, http://dx.doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189. [23] CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS, J. Instrum. 6 (2011) 11002, http://dx.doi.org/ 10.1088/1748-0221/6/11/P11002, arXiv:1107.4277. [24] CMS Collaboration, Identification of b-quark jets with the CMS experiment, J. Instrum. 8 (2013) P04013, http://dx.doi.org/10.1088/1748-0221/8/04/P04013, arXiv:1211.4462. [25] T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 05 (2006) 026, http://dx.doi.org/10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175. [26] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, arXiv:1405.0301, 2014. [27] S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, J. High Energy Phys. 11 (2007) 070, http://dx.doi.org/10.1088/1126-6708/2007/11/070, arXiv:0709.2092. [28] S. Alioli, P. Nason, C. Oleari, E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, J. High Energy Phys. 09 (2009) 111, http://dx.doi.org/10.1088/1126-6708/2009/09/111, arXiv:0907.4076, (Erratum: http://dx.doi.org/10.1007/JHEP02(2010)011). [29] E. Re, Single-top W t-channel production matched with parton showers us- ing the POWHEG method, Eur. Phys. J. C 71 (2011) 1547, http://dx.doi.org/ 10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450. [30] Z. Wąs, TAUOLA the library for τ lepton decay, and KKMC/KORALB/ KORALZ. . . status report, Nucl. Phys. B, Proc. Suppl. 98 (2001) 96, http://dx.doi. org/10.1016/S0920-5632(01)01200-2. [31] S. Agostinelli, et al., Geant4 – a simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 506 (2003) 250, http://dx.doi.org/10.1016/S0168-9002(03)01368-8. [32] M. Krämer, T. Plehn, M. Spira, P.M. Zerwas, Pair production of scalar lepto- quarks at the CERN LHC, Phys. Rev. D 71 (2005) 057503, http://dx.doi.org/ 10.1103/PhysRevD.71.057503, arXiv:hep-ph/0411038. [33] J.M. Campbell, R.K. Ellis, C. Williams, Vector boson pair production at the LHC, J. High Energy Phys. 07 (2011) 018, http://dx.doi.org/10.1007/JHEP07(2011)018, arXiv:1105.0020. [34] W. Beenakker, R. Höpker, M. Spira, P.M. Zerwas, Squark and gluino pro- duction at hadron colliders, Nucl. Phys. B 492 (1997) 51, http://dx.doi.org/ 10.1016/S0550-3213(97)80027-2, arXiv:hep-ph/9610490. [35] A. Kulesza, L. Motyka, Threshold resummation for squark–antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802, http:// dx.doi.org/10.1103/PhysRevLett.102.111802, arXiv:0807.2405. [36] A. Kulesza, L. Motyka, Soft gluon resummation for the production of gluino– gluino and squark–antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004, http://dx.doi.org/10.1103/PhysRevD.80.095004, arXiv:0905.4749. [37] W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen, I. Niessen, Soft- gluon resummation for squark and gluino hadroproduction, J. High Energy Phys. 12 (2009) 041, http://dx.doi.org/10.1088/1126-6708/2009/12/041, arXiv: 0909.4418. [38] W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen, L. Motyka, I. Niessen, Squark and gluino hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637, http://dx.doi.org/10.1142/S0217751X11053560, arXiv:1105.1110. [39] K. Melnikov, F. Petriello, Electroweak gauge boson production at hadron collid- ers through O(α2 s ), Phys. Rev. D 74 (2006) 114017, http://dx.doi.org/10.1103/ PhysRevD.74.114017, arXiv:hep-ph/0609070. [40] N. Kidonakis, Differential and total cross sections for top pair and single top production, in: Proc. of XX Int. Workshop on Deep-Inelastic Scattering and Re- lated Subjects, 2012, p. 831, http://dx.doi.org/10.3204/DESY-PROC-2012-02/251, arXiv:1205.3453. [41] CMS Collaboration, CMS luminosity based on pixel cluster counting – Sum- mer 2013 update, CMS Physics Analysis Summary CMS-PAS-LUM-13-001, CERN, Geneva, 2013; URL: https://cds.cern.ch/record/1598864. [42] CMS Collaboration, Performance of b tagging at √s = 8 TeV in multijet, tt̄ and boosted topology events, CMS Physics Analysis Summary CMS-PAS-BTV-13-001, CERN, Geneva, 2013; URL: http://cds.cern.ch/record/1581306/. [43] A.L. Read, Presentation of search results: the CLs technique, J. Phys. G 28 (2002) 2693, http://dx.doi.org/10.1088/0954-3899/28/10/313. [44] T. Junk, Confidence level computation for combining searches with small statis- tics, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. As- soc. Equip. 434 (1999) 435, http://dx.doi.org/10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006. [45] ATLAS and CMS Collaborations, LHC Higgs Combination Group, Procedure for the LHC Higgs boson search combination in Summer 2011, Technical Re- port ATL-PHYS-PUB-2011-11, CMS-NOTE-2011-005, CERN, 2011; URL: http:// cdsweb.cern.ch/record/1379837. [46] CMS Collaboration, Search for top-squark pair production in the single-lepton final state in pp collisions at √ s = 8 TeV, Eur. Phys. J. C 73 (2013) 2677, http://dx.doi.org/10.1140/epjc/s10052-013-2677-2, arXiv:1308.1586. CMS Collaboration V. Khachatryan, A.M. Sirunyan, A. Tumasyan Yerevan Physics Institute, Yerevan, Armenia W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan 1, M. Friedl, R. Frühwirth 1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler 1, W. Kiesenhofer, V. Knünz, M. Krammer 1, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady 2, B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz 1 Institut für Hochenergiephysik der OeAW, Wien, Austria V. Mossolov, N. Shumeiko, J. Suarez Gonzalez National Centre for Particle and High Energy Physics, Minsk, Belarus S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, S. Ochesanu, B. Roland, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Universiteit Antwerpen, Antwerpen, Belgium http://cds.cern.ch/record/1194487 http://cdsweb.cern.ch/record/1279341 http://cdsweb.cern.ch/record/1279341 http://cdsweb.cern.ch/record/1279347 http://dx.doi.org/10.1088/1748-0221/7/01/P01001 http://dx.doi.org/10.1140/epjc/s10052-010-1314-6 http://dx.doi.org/10.1088/1126-6708/2008/04/063 http://dx.doi.org/10.1088/1748-0221/6/11/P11002 http://dx.doi.org/10.1088/1748-0221/8/04/P04013 http://dx.doi.org/10.1088/1126-6708/2006/05/026 http://refhub.elsevier.com/S0370-2693(14)00796-5/bib4D61644772617068s1 http://refhub.elsevier.com/S0370-2693(14)00796-5/bib4D61644772617068s1 http://refhub.elsevier.com/S0370-2693(14)00796-5/bib4D61644772617068s1 http://refhub.elsevier.com/S0370-2693(14)00796-5/bib4D61644772617068s1 http://dx.doi.org/10.1088/1126-6708/2007/11/070 http://dx.doi.org/10.1088/1126-6708/2009/09/111 http://dx.doi.org/10.1007/JHEP02(2010)011 http://dx.doi.org/10.1140/epjc/s10052-011-1547-z http://dx.doi.org/10.1016/S0920-5632(01)01200-2 http://dx.doi.org/10.1016/S0168-9002(03)01368-8 http://dx.doi.org/10.1103/PhysRevD.71.057503 http://dx.doi.org/10.1007/JHEP07(2011)018 http://dx.doi.org/10.1016/S0550-3213(97)80027-2 http://dx.doi.org/10.1103/PhysRevLett.102.111802 http://dx.doi.org/10.1103/PhysRevD.80.095004 http://dx.doi.org/10.1088/1126-6708/2009/12/041 http://dx.doi.org/10.1142/S0217751X11053560 http://dx.doi.org/10.1103/PhysRevD.74.114017 http://dx.doi.org/10.3204/DESY-PROC-2012-02/251 https://cds.cern.ch/record/1598864 http://cds.cern.ch/record/1581306/ http://dx.doi.org/10.1088/0954-3899/28/10/313 http://dx.doi.org/10.1016/S0168-9002(99)00498-2 http://cdsweb.cern.ch/record/1379837 http://cdsweb.cern.ch/record/1379837 http://dx.doi.org/10.1140/epjc/s10052-013-2677-2 http://dx.doi.org/10.1088/1748-0221/7/01/P01001 http://dx.doi.org/10.1140/epjc/s10052-010-1314-6 http://dx.doi.org/10.1088/1748-0221/6/11/P11002 http://dx.doi.org/10.1140/epjc/s10052-011-1547-z http://dx.doi.org/10.1016/S0920-5632(01)01200-2 http://dx.doi.org/10.1103/PhysRevD.71.057503 http://dx.doi.org/10.1016/S0550-3213(97)80027-2 http://dx.doi.org/10.1103/PhysRevLett.102.111802 http://dx.doi.org/10.1103/PhysRevD.74.114017 236 CMS Collaboration / Physics Letters B 739 (2014) 229–249 F. Blekman, S. Blyweert, J. D’Hondt, N. Daci, N. Heracleous, J. Keaveney, S. Lowette, M. Maes, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella Vrije Universiteit Brussel, Brussel, Belgium C. Caillol, B. Clerbaux, G. De Lentdecker, D. Dobur, L. Favart, A.P.R. Gay, A. Grebenyuk, A. Léonard, A. Mohammadi, L. Perniè 2, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang Université Libre de Bruxelles, Bruxelles, Belgium V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Crucy, S. Dildick, A. Fagot, G. Garcia, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, E. Yazgan, N. Zaganidis Ghent University, Ghent, Belgium S. Basegmez, C. Beluffi 3, G. Bruno, R. Castello, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco 4, J. Hollar, P. Jez, M. Komm, V. Lemaitre, C. Nuttens, D. Pagano, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov 5, L. Quertenmont, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia Université Catholique de Louvain, Louvain-la-Neuve, Belgium N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad Université de Mons, Mons, Belgium W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, T. Dos Reis Martins, C. Mora Herrera, M.E. Pol Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W. Carvalho, J. Chinellato 6, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli Manganote 6, A. Vilela Pereira Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil C.A. Bernardes b, S. Dogra a, T.R. Fernandez Perez Tomei a, E.M. Gregores b, P.G. Mercadante b, S.F. Novaes a, Sandra S. Padula a a Universidade Estadual Paulista, São Paulo, Brazil b Universidade Federal do ABC, São Paulo, Brazil A. Aleksandrov, V. Genchev 2, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, M. Vutova Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov University of Sofia, Sofia, Bulgaria J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, R. Du, C.H. Jiang, S. Liang, R. Plestina 7, J. Tao, X. Wang, Z. Wang Institute of High Energy Physics, Beijing, China C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, D. Wang, W. Zou State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria Universidad de Los Andes, Bogota, Colombia CMS Collaboration / Physics Letters B 739 (2014) 229–249 237 N. Godinovic, D. Lelas, D. Polic, I. Puljak University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia Z. Antunovic, M. Kovac University of Split, Faculty of Science, Split, Croatia V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic Institute Rudjer Boskovic, Zagreb, Croatia A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis University of Cyprus, Nicosia, Cyprus M. Bodlak, M. Finger, M. Finger Jr. 8 Charles University, Prague, Czech Republic Y. Assran 9, S. Elgammal 10, M.A. Mahmoud 11, A. Radi 10,12 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt M. Kadastik, M. Murumaa, M. Raidal, A. Tiko National Institute of Chemical Physics and Biophysics, Tallinn, Estonia P. Eerola, G. Fedi, M. Voutilainen Department of Physics, University of Helsinki, Helsinki, Finland J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland Helsinki Institute of Physics, Helsinki, Finland J. Talvitie, T. Tuuva Lappeenranta University of Technology, Lappeenranta, Finland M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M. Titov DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France S. Baffioni, F. Beaudette, P. Busson, C. Charlot, T. Dahms, M. Dalchenko, L. Dobrzynski, N. Filipovic, A. Florent, R. Granier de Cassagnac, L. Mastrolorenzo, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, C. Veelken, Y. Yilmaz, A. Zabi Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3–CNRS, Palaiseau, France J.-L. Agram 13, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte 13, J.-C. Fontaine 13, D. Gelé, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, P. Van Hove Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France S. Gadrat Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France S. Beauceron, N. Beaupere, G. Boudoul 2, E. Bouvier, S. Brochet, C.A. Carrillo Montoya, J. Chasserat, R. Chierici, D. Contardo 2, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, 238 CMS Collaboration / Physics Letters B 739 (2014) 229–249 T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao Université de Lyon, Université Claude Bernard Lyon 1, CNRS–IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France Z. Tsamalaidze 8 Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia C. Autermann, S. Beranek, M. Bontenackels, M. Edelhoff, L. Feld, O. Hindrichs, K. Klein, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, H. Weber, B. Wittmer, V. Zhukov 5 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany M. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Padeken, P. Papacz, H. Reithler, S.A. Schmitz, L. Sonnenschein, D. Teyssier, S. Thüer, M. Weber RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, A. Heister, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann 2, A. Nowack, I.M. Nugent, L. Perchalla, O. Pooth, A. Stahl RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, A.J. Bell, M. Bergholz 14, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, J. Garay Garcia, A. Geiser, P. Gunnellini, J. Hauk, G. Hellwig, M. Hempel, D. Horton, H. Jung, A. Kalogeropoulos, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, D. Krücker, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann 14, B. Lutz, R. Mankel, I. Marfin, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, O. Novgorodova, F. Nowak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, E. Ron, M.Ö. Sahin, J. Salfeld-Nebgen, P. Saxena, R. Schmidt 14, T. Schoerner-Sadenius, M. Schröder, C. Seitz, S. Spannagel, A.D.R. Vargas Trevino, R. Walsh, C. Wissing Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, V. Blobel, M. Centis Vignali, A.r. Draeger, J. Erfle, E. Garutti, K. Goebel, M. Görner, J. Haller, M. Hoffmann, R.S. Höing, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, T. Lapsien, T. Lenz, I. Marchesini, J. Ott, T. Peiffer, N. Pietsch, J. Poehlsen, T. Poehlsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer University of Hamburg, Hamburg, Germany C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, F. Frensch, M. Giffels, F. Hartmann 2, T. Hauth 2, U. Husemann, I. Katkov 5, A. Kornmayer 2, E. Kuznetsova, P. Lobelle Pardo, M.U. Mozer, Th. Müller, A. Nürnberg, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, R. Wolf Institut für Experimentelle Kernphysik, Karlsruhe, Germany G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, A. Psallidas, I. Topsis-Giotis Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Stiliaris University of Athens, Athens, Greece CMS Collaboration / Physics Letters B 739 (2014) 229–249 239 X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas University of Ioánnina, Ioánnina, Greece G. Bencze, C. Hajdu, P. Hidas, D. Horvath 15, F. Sikler, V. Veszpremi, G. Vesztergombi 16, A.J. Zsigmond Wigner Research Centre for Physics, Budapest, Hungary N. Beni, S. Czellar, J. Karancsi 17, J. Molnar, J. Palinkas, Z. Szillasi Institute of Nuclear Research ATOMKI, Debrecen, Hungary P. Raics, Z.L. Trocsanyi, B. Ujvari University of Debrecen, Debrecen, Hungary S.K. Swain National Institute of Science Education and Research, Bhubaneswar, India S.B. Beri, V. Bhatnagar, R. Gupta, U. Bhawandeep, A.K. Kalsi, M. Kaur, M. Mittal, N. Nishu, J.B. Singh Panjab University, Chandigarh, India Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma University of Delhi, Delhi, India S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan Saha Institute of Nuclear Physics, Kolkata, India A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty 2, L.M. Pant, P. Shukla, A. Topkar Bhabha Atomic Research Centre, Mumbai, India T. Aziz, S. Banerjee, S. Bhowmik 18, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtu 19, G. Kole, S. Kumar, M. Maity 18, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage 20 Tata Institute of Fundamental Research, Mumbai, India H. Bakhshiansohi, H. Behnamian, S.M. Etesami 21, A. Fahim 22, R. Goldouzian, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh 23, M. Zeinali Institute for Research in Fundamental Sciences (IPM), Tehran, Iran M. Felcini, M. Grunewald University College Dublin, Dublin, Ireland M. Abbrescia a,b, L. Barbone a,b, C. Calabria a,b, S.S. Chhibra a,b, A. Colaleo a, D. Creanza a,c, N. De Filippis a,c, M. De Palma a,b, L. Fiore a, G. Iaselli a,c, G. Maggi a,c, M. Maggi a, S. My a,c, S. Nuzzo a,b, A. Pompili a,b, G. Pugliese a,c, R. Radogna a,b,2, G. Selvaggi a,b, L. Silvestris a,2, G. Singh a,b, R. Venditti a,b, P. Verwilligen a, G. Zito a a INFN Sezione di Bari, Bari, Italy b Università di Bari, Bari, Italy c Politecnico di Bari, Bari, Italy G. Abbiendi a, A.C. Benvenuti a, D. Bonacorsi a,b, S. Braibant-Giacomelli a,b, L. Brigliadori a,b, R. Campanini a,b, P. Capiluppi a,b, A. Castro a,b, F.R. Cavallo a, G. Codispoti a,b, M. Cuffiani a,b, 240 CMS Collaboration / Physics Letters B 739 (2014) 229–249 G.M. Dallavalle a, F. Fabbri a, A. Fanfani a,b, D. Fasanella a,b, P. Giacomelli a, C. Grandi a, L. Guiducci a,b, S. Marcellini a, G. Masetti a,2, A. Montanari a, F.L. Navarria a,b, A. Perrotta a, F. Primavera a,b, A.M. Rossi a,b, T. Rovelli a,b, G.P. Siroli a,b, N. Tosi a,b, R. Travaglini a,b a INFN Sezione di Bologna, Bologna, Italy b Università di Bologna, Bologna, Italy S. Albergo a,b, G. Cappello a, M. Chiorboli a,b, S. Costa a,b, F. Giordano a,c,2, R. Potenza a,b, A. Tricomi a,b, C. Tuve a,b a INFN Sezione di Catania, Catania, Italy b Università di Catania, Catania, Italy c CSFNSM, Catania, Italy G. Barbagli a, V. Ciulli a,b, C. Civinini a, R. D’Alessandro a,b, E. Focardi a,b, E. Gallo a, S. Gonzi a,b, V. Gori a,b,2, P. Lenzi a,b, M. Meschini a, S. Paoletti a, G. Sguazzoni a, A. Tropiano a,b a INFN Sezione di Firenze, Firenze, Italy b Università di Firenze, Firenze, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo INFN Laboratori Nazionali di Frascati, Frascati, Italy F. Ferro a, M. Lo Vetere a,b, E. Robutti a, S. Tosi a,b a INFN Sezione di Genova, Genova, Italy b Università di Genova, Genova, Italy M.E. Dinardo a,b, S. Fiorendi a,b,2, S. Gennai a,2, R. Gerosa 2, A. Ghezzi a,b, P. Govoni a,b, M.T. Lucchini a,b,2, S. Malvezzi a, R.A. Manzoni a,b, A. Martelli a,b, B. Marzocchi, D. Menasce a, L. Moroni a, M. Paganoni a,b, D. Pedrini a, S. Ragazzi a,b, N. Redaelli a, T. Tabarelli de Fatis a,b a INFN Sezione di Milano-Bicocca, Milano, Italy b Università di Milano-Bicocca, Milano, Italy S. Buontempo a, N. Cavallo a,c, S. Di Guida a,d,2, F. Fabozzi a,c, A.O.M. Iorio a,b, L. Lista a, S. Meola a,d,2, M. Merola a, P. Paolucci a,2 a INFN Sezione di Napoli, Napoli, Italy b Università di Napoli ‘Federico II’, Napoli, Italy c Università della Basilicata (Potenza), Napoli, Italy d Università G. Marconi (Roma), Napoli, Italy P. Azzi a, N. Bacchetta a, D. Bisello a,b, A. Branca a,b, R. Carlin a,b, P. Checchia a, M. Dall’Osso a,b, T. Dorigo a, U. Dosselli a, M. Galanti a,b, F. Gasparini a,b, U. Gasparini a,b, P. Giubilato a,b, A. Gozzelino a, K. Kanishchev a,c, S. Lacaprara a, M. Margoni a,b, A.T. Meneguzzo a,b, J. Pazzini a,b, N. Pozzobon a,b, P. Ronchese a,b, F. Simonetto a,b, E. Torassa a, M. Tosi a,b, P. Zotto a,b, A. Zucchetta a,b, G. Zumerle a,b a INFN Sezione di Padova, Padova, Italy b Università di Padova, Padova, Italy c Università di Trento (Trento), Padova, Italy M. Gabusi a,b, S.P. Ratti a,b, C. Riccardi a,b, P. Salvini a, P. Vitulo a,b a INFN Sezione di Pavia, Pavia, Italy b Università di Pavia, Pavia, Italy M. Biasini a,b, G.M. Bilei a, D. Ciangottini a,b, L. Fanò a,b, P. Lariccia a,b, G. Mantovani a,b, M. Menichelli a, F. Romeo a,b, A. Saha a, A. Santocchia a,b, A. Spiezia a,b,2 a INFN Sezione di Perugia, Perugia, Italy b Università di Perugia, Perugia, Italy K. Androsov a,24, P. Azzurri a, G. Bagliesi a, J. Bernardini a, T. Boccali a, G. Broccolo a,c, R. Castaldi a, M.A. Ciocci a,24, R. Dell’Orso a, S. Donato a,c, F. Fiori a,c, L. Foà a,c, A. Giassi a, M.T. Grippo a,24, F. Ligabue a,c, CMS Collaboration / Physics Letters B 739 (2014) 229–249 241 T. Lomtadze a, L. Martini a,b, A. Messineo a,b, C.S. Moon a,25, F. Palla a,2, A. Rizzi a,b, A. Savoy-Navarro a,26, A.T. Serban a, P. Spagnolo a, P. Squillacioti a,24, R. Tenchini a, G. Tonelli a,b, A. Venturi a, P.G. Verdini a, C. Vernieri a,c,2 a INFN Sezione di Pisa, Pisa, Italy b Università di Pisa, Pisa, Italy c Scuola Normale Superiore di Pisa, Pisa, Italy L. Barone a,b, F. Cavallari a, G. D’imperio a,b, D. Del Re a,b, M. Diemoz a, M. Grassi a,b, C. Jorda a, E. Longo a,b, F. Margaroli a,b, P. Meridiani a, F. Micheli a,b,2, S. Nourbakhsh a,b, G. Organtini a,b, R. Paramatti a, S. Rahatlou a,b, C. Rovelli a, F. Santanastasio a,b, L. Soffi a,b,2, P. Traczyk a,b a INFN Sezione di Roma, Roma, Italy b Università di Roma, Roma, Italy N. Amapane a,b, R. Arcidiacono a,c, S. Argiro a,b,2, M. Arneodo a,c, R. Bellan a,b, C. Biino a, N. Cartiglia a, S. Casasso a,b,2, M. Costa a,b, A. Degano a,b, N. Demaria a, L. Finco a,b, C. Mariotti a, S. Maselli a, E. Migliore a,b, V. Monaco a,b, M. Musich a, M.M. Obertino a,c,2, G. Ortona a,b, L. Pacher a,b, N. Pastrone a, M. Pelliccioni a, G.L. Pinna Angioni a,b, A. Potenza a,b, A. Romero a,b, M. Ruspa a,c, R. Sacchi a,b, A. Solano a,b, A. Staiano a, U. Tamponi a a INFN Sezione di Torino, Torino, Italy b Università di Torino, Torino, Italy c Università del Piemonte Orientale (Novara), Torino, Italy S. Belforte a, V. Candelise a,b, M. Casarsa a, F. Cossutti a, G. Della Ricca a,b, B. Gobbo a, C. La Licata a,b, M. Marone a,b, D. Montanino a,b, A. Schizzi a,b,2, T. Umer a,b, A. Zanetti a a INFN Sezione di Trieste, Trieste, Italy b Università di Trieste, Trieste, Italy S. Chang, A. Kropivnitskaya, S.K. Nam Kangwon National University, Chunchon, Republic of Korea D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son Kyungpook National University, Daegu, Republic of Korea T.J. Kim Chonbuk National University, Jeonju, Republic of Korea J.Y. Kim, S. Song Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh Korea University, Seoul, Republic of Korea M. Choi, J.H. Kim, I.C. Park, S. Park, G. Ryu, M.S. Ryu University of Seoul, Seoul, Republic of Korea Y. Choi, Y.K. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, H. Seo, I. Yu Sungkyunkwan University, Suwon, Republic of Korea A. Juodagalvis Vilnius University, Vilnius, Lithuania J.R. Komaragiri, M.A.B. Md Ali National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia 242 CMS Collaboration / Physics Letters B 739 (2014) 229–249 H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz 27, R. Lopez-Fernandez, A. Sanchez-Hernandez Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico S. Carrillo Moreno, F. Vazquez Valencia Universidad Iberoamericana, Mexico City, Mexico I. Pedraza, H.A. Salazar Ibarguen Benemerita Universidad Autonoma de Puebla, Puebla, Mexico E. Casimiro Linares, A. Morelos Pineda Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico D. Krofcheck University of Auckland, Auckland, New Zealand P.H. Butler, S. Reucroft University of Canterbury, Christchurch, New Zealand A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, M.A. Shah, M. Shoaib National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski National Centre for Nuclear Research, Swierk, Poland G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, W. Wolszczak Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev 28, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, N. Skatchkov, V. Smirnov, A. Zarubin Joint Institute for Nuclear Research, Dubna, Russia V. Golovtsov, Y. Ivanov, V. Kim 29, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Nuclear Research, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin Institute for Theoretical and Experimental Physics, Moscow, Russia CMS Collaboration / Physics Letters B 739 (2014) 229–249 243 V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov P.N. Lebedev Physical Institute, Moscow, Russia A. Belyaev, E. Boos, V. Bunichev, M. Dubinin 30, L. Dudko, A. Ershov, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia P. Adzic 31, M. Ekmedzic, J. Milosevic, V. Rekovic University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran Universidad Autónoma de Madrid, Madrid, Spain H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias Universidad de Oviedo, Oviedo, Spain J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte Instituto de Física de Cantabria (IFCA), CSIC–Universidad de Cantabria, Santander, Spain D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, C. Bernet 7, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi 32, M. D’Alfonso, D. d’Enterria, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, M. Dobson, M. Dordevic, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, J. Marrouche, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, P. Musella, L. Orsini, L. Pape, E. Perez, L. Perrozzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, M. Plagge, A. Racz, G. Rolandi 33, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas 34, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi, D. Treille, A. Tsirou, G.I. Veres 16, J.R. Vlimant, N. Wardle, H.K. Wöhri, H. Wollny, W.D. Zeuner CERN, European Organization for Nuclear Research, Geneva, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe Paul Scherrer Institut, Villigen, Switzerland 244 CMS Collaboration / Physics Letters B 739 (2014) 229–249 F. Bachmair, L. Bäni, L. Bianchini, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, W. Lustermann, B. Mangano, A.C. Marini, P. Martinez Ruiz del Arbol, D. Meister, N. Mohr, C. Nägeli 35, F. Nessi-Tedaldi, F. Pandolfi, F. Pauss, M. Peruzzi, M. Quittnat, L. Rebane, M. Rossini, A. Starodumov 36, M. Takahashi, K. Theofilatos, R. Wallny, H.A. Weber Institute for Particle Physics, ETH Zurich, Zurich, Switzerland C. Amsler 37, M.F. Canelli, V. Chiochia, A. De Cosa, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, B. Millan Mejias, J. Ngadiuba, P. Robmann, F.J. Ronga, S. Taroni, M. Verzetti, Y. Yang Universität Zürich, Zurich, Switzerland M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu National Central University, Chung-Li, Taiwan P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, K.Y. Kao, Y.J. Lei, Y.F. Liu, R.-S. Lu, D. Majumder, E. Petrakou, Y.M. Tzeng, R. Wilken National Taiwan University (NTU), Taipei, Taiwan B. Asavapibhop, N. Srimanobhas, N. Suwonjandee Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand A. Adiguzel, M.N. Bakirci 38, S. Cerci 39, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut 40, K. Ozdemir, S. Ozturk 38, A. Polatoz, D. Sunar Cerci 39, B. Tali 39, H. Topakli 38, M. Vergili Cukurova University, Adana, Turkey I.V. Akin, B. Bilin, S. Bilmis, H. Gamsizkan, G. Karapinar 41, K. Ocalan, S. Sekmen, U.E. Surat, M. Yalvac, M. Zeyrek Middle East Technical University, Physics Department, Ankara, Turkey E. Gülmez, B. Isildak 42, M. Kaya 43, O. Kaya 44 Bogazici University, Istanbul, Turkey K. Cankocak, F.I. Vardarlı Istanbul Technical University, Istanbul, Turkey L. Levchuk, P. Sorokin National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold 45, S. Paramesvaran, A. Poll, S. Senkin, V.J. Smith, T. Williams University of Bristol, Bristol, United Kingdom K.W. Bell, A. Belyaev 46, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, W.J. Womersley, S.D. Worm Rutherford Appleton Laboratory, Didcot, United Kingdom M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, G. Hall, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas 45, L. Lyons, A.-M. Magnan, S. Malik, B. Mathias, CMS Collaboration / Physics Letters B 739 (2014) 229–249 245 J. Nash, A. Nikitenko 36, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp †, A. Tapper, M. Vazquez Acosta, T. Virdee, S.C. Zenz Imperial College, London, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Brunel University, Uxbridge, United Kingdom J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough Baylor University, Waco, USA O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio The University of Alabama, Tuscaloosa, USA A. Avetisyan, T. Bose, C. Fantasia, P. Lawson, C. Richardson, J. Rohlf, D. Sperka, J. St. John, L. Sulak Boston University, Boston, USA J. Alimena, E. Berry, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, N. Dhingra, A. Ferapontov, A. Garabedian, U. Heintz, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer, J. Swanson Brown University, Providence, USA R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, T. Miceli, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, M. Searle, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay University of California, Davis, Davis, USA R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, E. Takasugi, V. Valuev, M. Weber University of California, Los Angeles, USA K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova Rikova, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, A. Luthra, M. Malberti, H. Nguyen, M. Olmedo Negrete, A. Shrinivas, S. Sumowidagdo, S. Wimpenny University of California, Riverside, Riverside, USA W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, D. Evans, A. Holzner, R. Kelley, D. Klein, M. Lebourgeois, J. Letts, I. Macneill, D. Olivito, S. Padhi, C. Palmer, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, C. Welke, F. Würthwein, A. Yagil, J. Yoo University of California, San Diego, La Jolla, USA D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Incandela, C. Justus, N. Mccoll, J. Richman, D. Stuart, W. To, C. West University of California, Santa Barbara, Santa Barbara, USA A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, A. Mott, H.B. Newman, C. Pena, C. Rogan, M. Spiropulu, V. Timciuc, R. Wilkinson, S. Xie, R.Y. Zhu California Institute of Technology, Pasadena, USA V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev Carnegie Mellon University, Pittsburgh, USA 246 CMS Collaboration / Physics Letters B 739 (2014) 229–249 J.P. Cumalat, W.T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner University of Colorado at Boulder, Boulder, USA J. Alexander, A. Chatterjee, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, L. Skinnari, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich Cornell University, Ithaca, USA D. Winn Fairfield University, Fairfield, USA S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, K. Kaadze, B. Klima, B. Kreis, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko 28, S. Nahn, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, A. Soha, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, A. Whitbeck, J. Whitmore, F. Yang Fermi National Accelerator Laboratory, Batavia, USA D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, M. Carver, T. Cheng, D. Curry, S. Das, M. De Gruttola, G.P. Di Giovanni, R.D. Field, M. Fisher, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic 47, G. Mitselmakher, L. Muniz, A. Rinkevicius, L. Shchutska, M. Snowball, J. Yelton, M. Zakaria University of Florida, Gainesville, USA S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida International University, Miami, USA T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg Florida State University, Tallahassee, USA M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva Florida Institute of Technology, Melbourne, USA M.R. Adams, L. Apanasevich, V.E. Bazterra, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, P. Kurt, D.H. Moon, C. O’Brien, C. Silkworth, P. Turner, N. Varelas University of Illinois at Chicago (UIC), Chicago, USA E.A. Albayrak 48, B. Bilki 49, W. Clarida, K. Dilsiz, F. Duru, M. Haytmyradov, J.-P. Merlo, H. Mermerkaya 50, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok 48, A. Penzo, R. Rahmat, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin 51, K. Yi The University of Iowa, Iowa City, USA B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A.V. Gritsan, P. Maksimovic, C. Martin, M. Swartz Johns Hopkins University, Baltimore, USA CMS Collaboration / Physics Letters B 739 (2014) 229–249 247 P. Baringer, A. Bean, G. Benelli, C. Bruner, R.P. Kenny III, M. Malek, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood The University of Kansas, Lawrence, USA A.F. Barfuss, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, S. Shrestha, N. Skhirtladze, I. Svintradze Kansas State University, Manhattan, USA J. Gronberg, D. Lange, F. Rebassoo, D. Wright Lawrence Livermore National Laboratory, Livermore, USA A. Baden, A. Belloni, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, M.B. Tonjes, S.C. Tonwar University of Maryland, College Park, USA A. Apyan, R. Barbieri, G. Bauer, W. Busza, I.A. Cali, M. Chan, L. Di Matteo, V. Dutta, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, T. Ma, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephans, F. Stöckli, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch, M. Yang, M. Zanetti, V. Zhukova Massachusetts Institute of Technology, Cambridge, USA B. Dahmes, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz University of Minnesota, Minneapolis, USA J.G. Acosta, S. Oliveros University of Mississippi, Oxford, USA E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, S. Malik, F. Meier, G.R. Snow University of Nebraska–Lincoln, Lincoln, USA J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio State University of New York at Buffalo, Buffalo, USA G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, D. Trocino, R.-J. Wang, D. Wood, J. Zhang Northeastern University, Boston, USA K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won Northwestern University, Evanston, USA A. Brinkerhoff, K.M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Luo, S. Lynch, N. Marinelli, T. Pearson, M. Planer, R. Ruchti, N. Valls, M. Wayne, M. Wolf, A. Woodard University of Notre Dame, Notre Dame, USA L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, G. Smith, B.L. Winer, H. Wolfe, H.W. Wulsin The Ohio State University, Columbus, USA 248 CMS Collaboration / Physics Letters B 739 (2014) 229–249 O. Driga, P. Elmer, P. Hebda, A. Hunt, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Stickland 2, C. Tully, J.S. Werner, A. Zuranski Princeton University, Princeton, USA E. Brownson, H. Mendez, J.E. Ramirez Vargas University of Puerto Rico, Mayaguez, USA V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, Z. Hu, M.K. Jha, M. Jones, K. Jung, M. Kress, N. Leonardo, D. Lopes Pegna, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, H.D. Yoo, J. Zablocki, Y. Zheng Purdue University, West Lafayette, USA N. Parashar, J. Stupak Purdue University Calumet, Hammond, USA A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel Rice University, Houston, USA B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, A. Khukhunaishvili, G. Petrillo, D. Vishnevskiy University of Rochester, Rochester, USA R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian The Rockefeller University, New York, USA S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, S. Kaplan, A. Lath, S. Panwalkar, M. Park, R. Patel, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker Rutgers, The State University of New Jersey, Piscataway, USA K. Rose, S. Spanier, A. York University of Tennessee, Knoxville, USA O. Bouhali 52, A. Castaneda Hernandez, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon 53, V. Khotilovich, V. Krutelyov, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Rose, A. Safonov, T. Sakuma, I. Suarez, A. Tatarinov Texas A&M University, College Station, USA N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev Texas Tech University, Lubbock, USA E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska Vanderbilt University, Nashville, USA M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, J. Wood University of Virginia, Charlottesville, USA CMS Collaboration / Physics Letters B 739 (2014) 229–249 249 C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy Wayne State University, Detroit, USA D.A. Belknap, D. Carlsmith, M. Cepeda, S. Dasu, L. Dodd, S. Duric, E. Friis, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, C. Lazaridis, A. Levine, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W.H. Smith, D. Taylor, C. Vuosalo, N. Woods University of Wisconsin, Madison, USA † Deceased. 1 Also at Vienna University of Technology, Vienna, Austria. 2 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland. 3 Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France. 4 Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. 5 Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia. 6 Also at Universidade Estadual de Campinas, Campinas, Brazil. 7 Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3–CNRS, Palaiseau, France. 8 Also at Joint Institute for Nuclear Research, Dubna, Russia. 9 Also at Suez University, Suez, Egypt. 10 Also at British University in Egypt, Cairo, Egypt. 11 Also at Fayoum University, El-Fayoum, Egypt. 12 Now at Ain Shams University, Cairo, Egypt. 13 Also at Université de Haute Alsace, Mulhouse, France. 14 Also at Brandenburg University of Technology, Cottbus, Germany. 15 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. 16 Also at Eötvös Loránd University, Budapest, Hungary. 17 Also at University of Debrecen, Debrecen, Hungary. 18 Also at University of Visva-Bharati, Santiniketan, India. 19 Now at King Abdulaziz University, Jeddah, Saudi Arabia. 20 Also at University of Ruhuna, Matara, Sri Lanka. 21 Also at Isfahan University of Technology, Isfahan, Iran. 22 Also at Sharif University of Technology, Tehran, Iran. 23 Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. 24 Also at Università degli Studi di Siena, Siena, Italy. 25 Also at Centre National de la Recherche Scientifique (CNRS) – IN2P3, Paris, France. 26 Also at Purdue University, West Lafayette, USA. 27 Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico. 28 Also at Institute for Nuclear Research, Moscow, Russia. 29 Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia. 30 Also at California Institute of Technology, Pasadena, USA. 31 Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia. 32 Also at Facoltà Ingegneria, Università di Roma, Roma, Italy. 33 Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy. 34 Also at University of Athens, Athens, Greece. 35 Also at Paul Scherrer Institut, Villigen, Switzerland. 36 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia. 37 Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland. 38 Also at Gaziosmanpasa University, Tokat, Turkey. 39 Also at Adiyaman University, Adiyaman, Turkey. 40 Also at Cag University, Mersin, Turkey. 41 Also at Izmir Institute of Technology, Izmir, Turkey. 42 Also at Ozyegin University, Istanbul, Turkey. 43 Also at Marmara University, Istanbul, Turkey. 44 Also at Kafkas University, Kars, Turkey. 45 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom. 46 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. 47 Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. 48 Also at Mimar Sinan University, Istanbul, Istanbul, Turkey. 49 Also at Argonne National Laboratory, Argonne, USA. 50 Also at Erzincan University, Erzincan, Turkey. 51 Also at Yildiz Technical University, Istanbul, Turkey. 52 Also at Texas A&M University at Qatar, Doha, Qatar. 53 Also at Kyungpook National University, Daegu, Republic of Korea. Search for pair production of third-generation scalar leptoquarks and top squarks in proton-proton collisions at √s = 8 TeV 1 Introduction 2 The CMS detector 3 Object and event selection 4 Background and signal models 5 Systematic uncertainties 6 Results 7 Summary Acknowledgements References CMS Collaboration