Loiane Massunari Efeito de flavonoides sobre microrganismos de interesse endodôntico e sua influência na expressão de marcadores de mineralização Araçatuba - SP 2018 Loiane Massunari Efeito de flavonoides sobre microrganismos de interesse endodôntico e sua influência na expressão de marcadores de mineralização Tese de Doutorado apresentada à Faculdade de Odontologia da Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Araçatuba, como parte dos requisitos para a obtenção de título de Doutor em Ciência Odontológica - Área de Concentração: Endodontia. Orientadora: Profa. Dra. Cristiane Duque Araçatuba - SP 2018 Catalogação na Publicação (CIP) Diretoria Técnica de Biblioteca e Documentação – FOA / UNESP Massunari, Loiane. M422e Efeito de flavonoides sobre microrganismos de interesse endodôntico e sua influência na expressão de marcadores de mineralização / Loiane Massunari. - Araçatuba, 2018 152f. : il. ; tab. Tese (Doutorado) – Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba Orientadora: Profa. Cristiane Duque 1. Flavonoides 2. Testes de sensibilidade microbiana 3. Dentinogênese 4. Osteogênese 5. Técnicas de cultura de células I. T. Black D24 CDD 617.67 Responsável: Claudio Hideo Matsumoto – CRB-8/5550 2 Dedicatória 3 À Deus Meu criador Sempre em primeiro lugar À minha família Pai, Mãe, Ni, Glau, Jhone, Mia e Márcio Nada teria sentido sem vocês!!! 4 Agradecimentos Especiais 5 À Deus Por estar sempre comigo, guiando os meus passos e pensamentos; Pelo seu amor e misericórdia perante os meus erros; Por seus ensinamentos que nunca me faltaram. “Ao único Deus, nosso Salvador, mediante Jesus Cristo, Senhor nosso, glória, magestade, império e soberania, antes de todas as eras, e agora, e por todos os séculos. Amém” Judas 1:25 Aos meus pais Jorge e Elenice Pelo amor incondicional; Por toda a dedicação e cuidados; Pelas correções e conselhos sempre oportunos; Por sempre me proporcionarem muito mais do que precisei; Por me aguardarem aos finais de semana sempre com muito amor e carinho. Pessoas essenciais na minha formação, os responsáveis por cada conquista minha, vocês sempre serão as minhas melhores referências de integridade, honestidade e dedicação. Amo vocês!! Aos meus irmãos Nicole e Glauber Pelo amor e cuidados; Por serem tão presentes; Pelos momentos únicos; Por me ouvirem e me aconselharem. Os maiores presentes da minha vida, juntos nós passamos por muitos momentos, aprendemos e crescemos. Nosso amor é incomparável, inexplicável e eterno. Vocês realmente me completam! Amo vocês!! 6 Ao meu noivo Márcio Pelo amor e carinho; Pelos conselhos e cuidados; Pelos momentos únicos que tivemos e ainda teremos. Você realmente entrou na minha vida para acrescentar. Sempre me encorajando e apoiando nos momentos difíceis. Quero você sempre ao meu lado! Às minhas avós Mineco e Rosa (in memoriam) Pela companhia e cuidados; Pelos ensinamentos transmitidos, Por tudo que fizeram pela nossa família. Vocês sempre serão grandes exemplos para mim, donas dos corações mais puros e bondosos que Deus me permitiu amar. Guardarei cada ensinamento por toda a minha vida, buscando sempre ser uma pessoa melhor. À minha cunhada Jaqueline Pela amizade; Pelos momentos de alegria; Por ser tão presente e cuidadosa. Você já faz parte da nossa família, sempre muito atenciosa e disposta á ajudar. À Faculdade de Odontologia de Araçatuba - Unesp Nas pessoas dos professores, Dr. Wilson Roberto Poi digníssimo Diretor e, Dr. João Eduardo Gomes Filho digníssimo Vice-Diretor. 7 À minha orientadora Prof. Dra. Cristiane Duque Por toda ajuda durante a elaboração desse trabalho, pelas sugestões e auxílio sempre que precisei. A senhora sempre esteve disponível para me ajudar, me orientando e buscando extrair o meu melhor. O aprendizado não foi apenas técnico, terá sempre a minha admiração e gratidão. Aos meus colegas de Pós-Graduação da Endodontia, Farmacologia ePediatria Pela amizade, convívio, ajuda e experiências trocadas. À minha professora Dra Ana Cláudia Okamoto Pela orientação durante a graduação e no trabalho de conclusão de curso. A senhora me inspirou á entrar na pós-graduação; agradeço cada ensinamento transmitido e conselho dado. Lembro como se fosse hoje, a senhora me incentivando á participar de congressos e fazer aulas de inglês. Será sempre um exemplo para mim. À minha professora Dra Daniela Micheline dos Santos Pela orientação durante a iniciação científica, sempre orientando com muito amor e carinho, muito obrigada por toda a paciência e ensinamentos. À minha amiga Índia Por ter me acompanhado e ensinado os primeiros passos na cultura de células, sempre muito centrada e disposta á ajudar. Agradeço também as conversas e momentos de descontração durante todo esse período de pós-graduação. Sua amizade foi um presente para mim. À minha amiga Paula Por todas as conversas, conselhos e carinho. Quantas vezes você me lembrou que o maior significado disso tudo é Deus, me acalmando em momentos difíceis sempre com palavras sábias e de muito carinho. Mesmo distante, sempre se fez presente quando precisei, agradeço à Deus por ter te colocado em meu caminho durante a pós-graduação. Às minhas amigas Gaby, Juliana, Annelise e Lívia Pela amizade, carinho, conversas e conselhos. Estarei sempre torcendo por cada uma de vocês e espero tê-las sempre por perto. 8 Aos docentes da disciplina de Endodontia da FOA - Unesp Prof. Dr. Roberto Holland, Prof. Dr. Mauro Juvenal Nery, Prof. Dr. José Arlindo Otoboni Filho, Prof. Dr. Elói Dezan Júnior, Prof. Dr. João Eduardo Gomes Filho; Prof. Dr. Luciano Tavares Ângelo Cintra, Prof. Dr. Rogério Castilho Jacinto e Prof. Dr. Gustavo Sivieri Araújo. Pelos ensinamentos transmitidos e contribuição na minha formação profissional. À Prof Drª Sandra Helena Penha de Oliveira Por ter aberto as portas do seu laboratório, me permitindo realizar parte desse trabalho. Agradeço o carinho, disponibilidade e sugestões. Ao Prof Dr Carlos Alberto de Souza Costa Por ter me recebido em seu laboratório, me permitindo realizar parte desse trabalho. Sou muito grata por todos os ensinamentos e carinho transmitidos durante esse período. O senhor realmente inspira todos à sua volta, não somente pelo saber, mas também pelo lado humano e íntegro que possui. Às meninas do Laboratório de Patologia Experimental e Biomateriais Pelo ótimo convívio, ensinamentos e ajuda sempre que precisei. À querida Malu Por ter me recebido em sua casa durante todo o período que precisei, sempre com muito carinho e disponibilidade para me ajudar. Muito obrigada pelos ensinamentos no laboratório, ajuda durante os experimentos, conversas e conselhos que tornou a minha estadia em Araraquara muito melhor do que eu poderia imaginar. Você sempre estará guardada no meu coração. À Giovana Por ter me ensinado á executar todos os protocolos que realizei em Araraquara, sempre com muito carinho e atenção. Você foi essencial para a finalização desse trabalho. Ao curso de pós-graduação em Ciência Odontológica da FOA Na pessoa do coordenador Prof. Dr. Luciano Tavares Ângelo Cintra. 9 Aos funcionários do Departamento de Odontopediatria Ricardo, Mário e Luisinho. Pela amizade e ajuda sempre que precisei; Por manterem a organização no laboratório. Aos funcionários do Departamento de Endodontia Nelci, Elaine e Peterson. Pela amizade e ajuda sempre que precisei. Aos funcionários da biblioteca da FOA Ana Cláudia, Luzia, Ivone, Cláudio, Maria Cláudia, Luiz, Denise e Izamar. Pela atenção e disponibilidade. Aos funcionários da sessão de Pós Graduação da FOA Valéria, Cristiane e Lilian. Pelo profissionalismo e disponibilidade. À Fundação de Amparo à Pesquisa do Estado de São Paulo Pela concessão da bolsa de estudo (Processo 2015/00812-0). Muito Obrigado!!! 10 Resumo 11 Massunari, L. Efeito de flavonoides sobre microrganismos de interesse endodôntico e sua influência na expressão de marcadores de mineralização. [Tese] Universidade Estadual Paulista (Unesp), Faculdade de Odontologia de Araçatuba. Araçatuba, 2018. Resumo O tratamento endodôntico de dentes permanentes jovens representa um grande desafio clínico devido a presença de paredes dentinárias finas, divergentes ou paralelas e ápice aberto, o que dificulta a desinfecção e a execução dos procedimentos convencionais. Terapias de regeneração endodôntica envolvem o uso de materiais capazes de promover uma desinfecção eficaz sem causar citotoxicidade, além de induzir a diferenciação de células-tronco ou bioestimular células remanescentes do tecido pulpar mesmo após a injúria. Nesse contexto, os flavonoides, polifenóis presentes em frutas e vegetais, poderiam ser agentes interessantes para o tratamento endodôntico de dentes imaturos devido a sua amplitude terapêutica. Dessa forma, o objetivo do presente trabalho foi avaliar o efeito antimicrobiano, citotóxico e indutor de mineralização de flavonoides com finalidade de aplicação endodôntica. Este trabalho de tese foi dividido em três capítulos. O capítulo 1 avaliou a toxicidade dos flavonoides taxifolina, crisina, pinocembrina e galangina sobre fibroblastos pelo ensaio de MTT, a atividade antimicrobiana pela determinação da concentração inibitória e bactericida mínima, e a ação antibiofilme do flavonoide com melhor efeito antimicrobiano, por meio de ensaios em placas de poliestireno e em dentina radicular bovina por meio da análise por microscopia confocal. Os resultados mostraram que o flavonoide taxifolina não foi tóxico para os fibroblastos em nenhuma das concentrações analisadas, enquanto que os flavonoides crisina, pinocembrina e galangina apresentaram efeitos citotóxicos. Crisina, pinocembrina e galangina não apresentaram efeito antimicrobiano frente E. faecalis and S. mutans nas concentrações testadas. A taxifolina foi capaz de inibir todas as bactérias testadas, eliminar biofilmes de E. faecalis e S. mutans em placas de poliestireno e reduzir significantemente o biofilme de E. faecalis em túbulos dentinários. O capítulo 2 avaliou a citotoxicidade do flavonoide taxifolina e o seu potencial sobre a indução de marcadores de mineralização dentinária (produção de fosfatase alcalina - ALP, nódulos de mineralização – NM e expressão dos genes DSPP – sialofosfoproteína dentinária e 12 DMP-1 – proteína da matriz dentinária - 1) em células semelhantes a odontoblastos MDPC-23, após tratamentos de 24, 72h e contínuo. A taxifolina não apresentou citotoxicidade em nenhum dos três tipos de tratamento analisados. Todas as concentrações do tratamento de 24h e as concentrações de 10 e 5µM do tratamento de 72h aumentaram a atividade de ALP. A formação de NM aumentou com os tratamentos de taxifolina à 10µM em ambos os tratamentos de 24 e 72h, e à 5µM no tratamento de 24h. A expressão de DMP-1 aumentou com o tratamento de taxifolina em ambos os tratamentos de 24 e 72h, enquanto que a de DSPP aumentou apenas com o tratamento de 72h na concentração de 5µM. O capítulo 3 avaliou a citotoxicidade da taxifolina, e o seu potencial sobre a indução de marcadores de mineralização óssea (ALP, NM e expressão dos genes ALP e colágeno 1 - Col-1) em células semelhantes a osteoblastos Saos-2, após tratamentos de 24, 72h e contínuo. Os resultados mostraram que os tratamentos com taxifolina nas concentrações de 10, 5 e 1µM não foram citotóxicos em nenhum dos períodos analisados. O tratamento de 72h da taxifolina à 10µM foi capaz de aumentar a atividade de ALP e a formação de NM, além de aumentar a expressão de Col-1 após 13 dias. O tratamento de 24h da taxifolina na concentração de 10µM aumentou a expressão de ALP após 6 dias. Conclui-se que a taxifolina é um flavonoide com potencial uso para o tratamento endodôntico de dentes permanentes jovens, devido à sua ação antimicrobiana/antibiofilme, baixa citotoxicidade e capacidade de estimular a mineralização em odontoblastos e osteoblastos. Palavras-chave: Flavonoides, testes de sensibilidade microbiana, dentinogênese, osteogênese, técnicas de cultura de células. 13 Abstract 14 Massunari, L. Effect of flavonoids on endodontic microorganisms and their influence on the expression of mineralization markers. [Thesis] São Paulo State University (Unesp), School of Dentistry, Araçatuba, 2018. Abstract The endodontic treatment of young permanent teeth represents a great clinical challenge due to the presence of thin, divergent or parallel dentin walls and the open apex that makes it difficult to disinfect and perform conventional endodontic procedures. Endodontic regeneration therapies involve the use of materials capable of promoting effective disinfection without causing cytotoxicity, in addition to inducing differentiation of stem cells or biostimulating remaining pulp tissue cells even after injury. In this context, the flavonoids, polyphenols present in fruits and vegetables, could be interesting agents for the endodontic treatment of immature teeth due to the wide therapeutic use. Thus, the objective of the present study was to evaluate the antimicrobial, cytotoxic effects and capacity of mineralization induction of flavonoids for endodontic application. This thesis was divided into three chapters. The chapter 1 evaluated the toxicity of taxifolin, chrysin, pinocembrin and galangin flavonoids on fibroblasts by the MTT method, antimicrobial activity by determining the minimum inhibitory and bactericidal concentrations and analyzed the antibiofilm action of the flavonoid with the best antimicrobial effect, by means of the biofilm assays in polystyrene plates and in bovine root dentin and confocal microscopy analysis. The results showed that the flavonoid taxifolin was not toxic on fibroblasts in any tested concentration, while chrysin, pinocembrin and galangin flavonoids showed cytotoxic effects. Chrysin, pinocembrin and galangin showed no antimicrobial effect against E. faecalis and S. mutans in any tested concentrations. Taxifolin was able to inhibit all tested bacteria, to eliminate E. faecalis and S. mutans biofilms on polystyrene plates and significantly reduce E. faecalis biofilms from the dentin tubules. The chapter 2 evaluated the cytotoxicity of taxifolin and its potential on the induction of dentin mineralization markers (alkaline phosphatase production - ALP, mineralization nodules - MN and expression of genes DSPP - dentin sialophosphoprotein and DMP-1 - dentin matrix protein - 1) on odontoblast-like cells MDPC-23, after treatments of 24, 72h and continuous. Taxifolin did not present cytotoxicity at any of the three types of 15 treatments analyzed. All concentrations of 24h-treatment and 10 and 5μM of 72h- treatment increased ALP activity. NM formation increased with taxifolin treatments at 10μM in both 24 e 72h treatments, and at 5μM in the 24h-treatment. Expression of DMP-1 increased with taxifolin in both 24 e 72h-treatments, whereas DSPP expression increased only with 72h-treatment at 5μM. The chapter 3 evaluated the cytotoxicity of taxifolin and its potential on the induction of bone mineralization markers (ALP, NM and expression of ALP and collagen 1 -Col-1 genes) on Saos-2 osteoblast-like cells, after treatments of 24, 72h and continuous. The results showed that taxifolin treatments at 10, 5 and 1μM were not cytotoxic in any of the periods analyzed. The 72h-treatment of taxifolin at 10μM was able to increase ALP activity and NM formation, in addition to increasing Col-1 expression after 13 days. The 24h-treatment of taxifolin at 10μM increased ALP expression after 6 days. It is concluded that taxifolin is a flavonoid with potential use for endodontic treatment of young permanent teeth due to its antimicrobial/antibiofilm action, low cytotoxicity and ability to stimulate mineralization in odontoblasts and osteoblasts. Keywords: Flavonoids, microbial sensitivity tests, dentinogenesis, osteogenesis, cell culture techniques. 16 Lista de Abreviaturas 17 Lista de abreviaturas A. israelii – Actinomyces israelii ALP – Fosfatase alcalina (alkaline phosphatase) ANOVA – Análise de variância (analysis of variance) BHI – Infusão cérebro e coração (brain heart infusion) BSA – Albumina do soro bovino (bovine serum albumin) C. albicans – Candida albicans cDNA – Ácido desoxirribonucleico complementar (complementary deoxyribonucleic acid) CFU – Unidades formadoras de colônia (colony-forming unit) CH – Hidróxido de cálcio (calcium hydroxide) CHX – Digluconato de clorexidina (chlorhexidine digluconate) CLSI – Instituto de padrões clínicos e laboratoriais (Clinical and Laboratory Standard Institute) CLSM – Microscopia confocal de varredura a laser (confocal laser scanning microscopy) CO2 – Gás carbônico (carbon dioxide) Col-1 – Colágeno 1 (collagen 1) Ct – Ciclo limiar (Threshold cycle) CT – Tratamento contínuo (continuous treatment) d – Dias (days) DAP – Pasta biantibiótica (double antibiotic paste) ΔΔCt – Delta delta ciclo limiar (delta delta threshold cycle) DMEM – Meio de Eagle modificado por Dulbecco (Dulbecco Modified Eagle’s Medium) DMP-1 – Proteína da matriz dentinária (dentin matrix protein – 1) DMSO – Dimetilsulfóxido (dimethyl sulfoxide) DPSCs – Células-tronco da polpa dentária (Dental pulp stem cells) DSPP – Sialofosfoproteína dentinária (dentin sialophosphoprotein) E. coli – Escherichia coli E. faecalis – Enterococcus faecalis 18 EGCG – Epigalocatequina galato (Epigallocatechin gallate) FAPESP – Fundação de Amparo à Pesquisa do Estado de São Paulo (São Paulo Research Foundation) FBS – Soro fetal bovino (Fetal bovine serum) FIOCRUZ – Fundação Oswaldo Cruz (Oswaldo Cruz Foundation) FOA – Faculdade de Odontologia de Araçatuba (School of Dentistry, Araçatuba) g – Aceleração da gravidade (Gravitational acceleration) g/mL – Gramas por mililitros (Grams per milliliters) GAPDH – Gliceraldeído-3-fosfato desidrogenase (Glyceraldehyde-3-phosphate dehydrogenase) h – Horas (Hours) HDPCs – Células da polpa dentária humana (Human dental pulp cells) HGF – Fibroblastos gengivais humanos (Human gingival fibroblasts) IL- 1 – Interleucina 1 (Interleukin 1) IL-17 – Interleucina 17 (Interleukin 17) IL-1β – Interleucina 1 beta (Interleukin 1 beta) IL-6 – Interleucina 6 (Interleukin 6) ISO – Organização internacional de normalização (International Organization for Standardization) L929 – Linhagem celular de fibroblastos de camundongo (Murine fibroblast cell line) LDH – Lactato desidrogenase (Lactate dehydrogenase) Log – Logaritmo (Logarithm) MBC – Concentração bactericida mínima (Minimum bactericidal concentration) MDPC-23 – Células da papila dentária de camundongo (Mouse dental papilla cells) mg/mL – Miligramas por mililitros (Milligrams per milliliters) MIC – Concentração inibitória mínima (Minimum inhibitory concentration) min – Minutos (Minutes) mm – Milímetros (Millimeters) mM – Milimolar (Millimolar) mmol/L – Milimol por litro (Milimol per liter) 19 mRNA – Ácido ribonocleico mensageiro (Messenger ribonucleic acid) MSA – Ágar mitis salivarius (Mitis salivarius agar) MTA – Agregado de trióxido mineral (Mineral trioxide aggregate) MTT – Brometo de 3- (4,5-dimetiltiazol-2-il)-2,5-difeniltetrazólio (3-[4,5- dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) n – Tamanho da amostra (Sample size) NF-Kβ - Fator nuclear Kappa beta (Nuclear factor kappa beta) nm – Nanômetros (Nanometers) NM – Nódulos de mineralização (Mineralization nodule) 0C - Grau Celsius (Degrees Celsius) OD – Densidade óptica (Optical density) OH – Radical hidroxila (Hydroxyl radical) PDLSCs – Células-tronco do ligamento periodontal (Human periodontal ligament stem cells) qPCR – Reação da polimerase em cadeia (Quantitative Polymerase Chain Reaction) RANK - Receptor ativador do fator nuclear Kappa beta (Receptor activator of nuclear factor-kappa beta) RANKL - Ligante do receptor ativador do fator nuclear Kappa beta (Receptor activator of nuclear factor-kappa beta ligand) RE – Regeneração endodôntica (Regenerative Endodontics) RET – Terapias de regeneração endodôntica (Regenerative endodontic therapies) RNA – Ácido ribonucleic (Ribonucleic acid) S. aureus – Staphylococcus aureus S. mutans – Streptococcus mutans Saos-2- Linhagem de células semelhantes a osteoblastos humanos (Human osteoblast- like cell line) SD = Desvio padrão (Standard deviation) SHED – Células-tronco de dentes decíduos exfoliados humanos (Stem cells from human exfoliated deciduous teeth) TAP – Pasta triantibiótica (Triple antibiotic paste) TNF-α – Fator de necrose tumoral alfa (Tumor necrosis factor alpha) 20 U/L – Unidades por litro (Units per liter) U/mL – Unidades por mililitros (Units per milliliters) UNESP – Universidade Estadual Paulista (São Paulo State University) VPT – Terapia de vitalidade pulpar (Vital pulp therapy) µg/mL – Microgramas por mililitros (Micrograms per milliliters) µL – Microlitros (Microliters) µm – Micrometros (Micrometers) µM – Micromolar (Micromolar) 21 Lista de Figuras 22 Lista de Figuras Capítulo 1 Figure 1. Mean (bars) of the percentage of cell viability of fibroblasts from L929 line after exposure to different concentrations of flavonoids, using MTT assays…………………………………………………………………………………………………………………………58 Figure 2. Bacterial recovery (Log CFU+1) after 24h of taxifolin and chlorhexidine digluconate (CHX) treatments (10x MBC) on 48h-growth biofilm……………………………….59 Figure 3. Representative CLSM images (63x) of E. faecalis biofilms inside dentin tubules after 48h of the treatments …………….…………………………………………………………………………59 Figure 4. Means (bars-standard deviation) of the percentage of dead cells obtained after CLSM analysis of E. faecalis biofilm……………………………………………………………………60 Capítulo 2 Figure 1. Cell viability immediately after 24 and 72 h of treatments with different concentrations of taxifolin, using MTT assays. ………………………………….………………………79 Figure 2. Cell viability of cells after 6 and 13 days of the three forms of treatment (24h, 72h, and continuous treatment) with taxifolin, using MTT assays………………………………80 Figure 3. Alkaline phosphatase (ALP) activity of cells after 6 days of the three forms of treatment with taxifolin……………………………………………………………………………………………..81 Figure 4. Mineralization ability of cells after 13 days of the three forms of treatment with taxifolin, using alizarin red staining…………………………………………………………………….81 Figure 5. Representative images of alizarin red staining showing mineralization ability of MDPC-23 cells after 13 days of taxifolin treatment………………………………………………..82 23 Figure 6. Expression of dentin matrix protein - 1 (A) and dentin sialophosphoprotein (B) from MDPC-23 cells after 6 and 13 days of treatment with taxifolin…………………….83 Capítulo 3 Figure 1. Cell viability immediately after 24 and 72h of treatments with different concentrations of taxifolin, using MTT assays ……………………………………………….…………101 Figure 2. Cell viability of cells after 6 and 13 days of the three forms of treatment (24h, 72h and continuous treatment) with taxifolin, using MTT assays ……………………………101 Figure 3. Alkaline phosphatase (ALP) activity of cells after 6 days of the three forms of treatment with taxifolin……………………………………………………………………………………………102 Figure 4. Mineralization ability of cells after 13 days of the three forms of treatment with taxifolin, using alizarin red staining………………………………………………………………….102 Figure 5. Representative images of alizarin red staining showing mineralization ability of Saos-2 cells after 13 days of taxifolin treatments…………………………………………………103 Figure 6. Expression of alkaline phosphatase (A) and collagen-1 (B) from Saos-2 cells after 6 and 13 days of treatment with taxifolin…………………………………..……………………104 24 Lista de Tabelas 25 Lista de Tabelas Capítulo 1 Table 1. Minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of flavonoids…………………………………………………………………………….58 Capítulo 2 Table 1. Description of groups chosen for the present study………………..……………………79 Capítulo 3 Table 1. Description of groups chosen for this study…………………………………….…………100 Table 2. Nucleotides sequence of primers used for each selected gene………………….100 26 Sumário 27 Sumário Introdução geral ......................................................................................................................... 29 Proposição .................................................................................................................................. 36 Capítulo 1 .................................................................................................................................... 38 Anti-biofilm and cytotoxic effect of flavonoids intended for endodontic purposes .................... 38 Capítulo 2 .................................................................................................................................... 62 Cytotoxicity and potential of taxifolin, a catechol-type flavonoid, to induct mineralization markers in odontoblast-like cells ................................................................................................. 62 Capítulo 3 .................................................................................................................................... 85 Effect of Taxifolin on viability and mineralization markers of osteoblast-like cells .................... 85 Conclusão .................................................................................................................................. 106 Referências Bibliográficas ........................................................................................................ 108 Anexo A ..................................................................................................................................... 117 Guidelines for Publishing Papers in the Biofouling .................................................................... 117 Anexo B ..................................................................................................................................... 121 Guidelines for Publishing Papers in the International Endodontic Journal ............................... 121 Anexo C ..................................................................................................................................... 135 Guidelines for Publishing Papers in the Archives of Oral Biology .............................................. 135 Anexo D ..................................................................................................................................... 143 Comitê de Ética no Uso de Animais .......................................................................................... 143 Anexo E ..................................................................................................................................... 144 Protocolos Experimentais .......................................................................................................... 144 28 Introdução Geral 29 Introdução geral Após a erupção do dente permanente na cavidade bucal ainda são necessários aproximadamente 3 anos para o desenvolvimento completo das raizes e o fechamento dos respectivos ápices radiculares (Bhasker 1991). Desta forma, durante esta fase, a ocorrência de traumatismos dentários ou lesões de cárie que comprometam a vitalidade do tecido pulpar, podem interromper a formação da raiz, resultando na presença de paredes dentinárias finas, divergentes ou paralelas e ápice aberto, o que dificultará a execução dos procedimentos endodônticos convencionais, vindo a comprometer o resultado do tratamento a longo prazo (Rafter 2005, Iglesias-Linares et al. 2013). Além disso, nesses casos de dentes permanentes jovens, além da necessidade de um tratamento que promova a descontaminação do sistema de canais radiculares, é desejável que esse permita a continuação do desenvolvimento radicular, bem como a recuperação dos tecidos periapicais quando já estiverem comprometidos (Hargreaves et al. 2013). Durante muitos anos, o tratamento de dentes permanentes com rizogênese incompleta baseou-se na vitalidade do tecido pulpar afetado. Assim, para dentes que apresentam vitalidade pulpar tem se indicado procedimentos, como a pulpotomia, que consiste na remoção da polpa infectada e manutenção da polpa radicular, estimulando o desenvolvimento fisiológico contínuo e o término da formação radicular pelo processo de apicogênese. Os casos de dentes que apresentam vitalidade pulpar, porém o tecido pulpar encontra-se inflamado irreversivelmente, bem como os casos de dentes que apresentam necrose pulpar indica-se a técnica de apicificação, que se baseia na indução do fechamento do forame apical, por meio da deposição de uma barreira de tecido duro, na região apical ou ainda pela indução do desenvolvimento apical, o que se encontra diretamente relacionado à manutenção da bainha epitelial de Hertwig (American Association of Endodontics 2003; Rafter 2005; Soares et al. 2008). Na técnica de apicificação, o hidróxido de cálcio (HC) ainda é o material mais empregado, permitindo que ocorra o selamento biológico pela formação de um tecido duro, semelhante ao cemento. Entretanto, a capacidade indutora de mineralização do 30 HC é dependente da manutenção da alcalinidade do mesmo, durante todo o período de tratamento, que varia de 8 – 12 meses (Soares et al. 2008). Sendo assim, são necessárias trocas periódicas do material, visando renovar a sua propriedade alcalina. Além da necessidade de múltiplas sessões, o que aumenta o risco de contaminação; a apicificação resulta na formação de paredes dentinárias delgadas e desenvolvimento radicular incompleto, tornando o dente suscetível à fratura (Hargreaves et al. 2013). A técnica de apicificação também pode ser empregada por meio da colocação de uma barreira apical artificial - constituída por materiais à base de agregado de trióxido mineral (MTA) - que permite a obturação do canal radicular logo após o protocolo de descontaminação (American Association of Endodontists, 2003). O MTA tem sido indicado principalmente em casos onde há a impossibilidade de acompanhamento a longo-prazo, e tem se mostrado capaz de induzir a formação da barreira apical, semelhantemente ao HC (Shabahang et al. 1999). Além da redução no número de sessões durante o tratamento (Damle et al. 2012, Marí-Beffa et al. 2017), o emprego do MTA também tem sido associado a um menor número de fraturas (Jeeruphan et al. 2012). Entretanto, a técnica de apicificação, seja com HC ou plug de MTA, não permite o desenvolvimento radicular completo, tanto em espessura quanto em comprimento (Jeeruphan et al. 2012), além de não restabelecer funcionalmente o tecido pulpar (Hargreaves et al. 2013). Recentemente, terapias biológicas denominadas de regeneração endodôntica (RE), que visam recuperar as funções fisiológicas de estruturas do complexo dentino- pulpar e permitir a formação radicular completa estão sendo estudadas (Hargreaves et al. 2013, Marí-Beffa et al. 2017). Banchs e Trope (2004) trouxeram o conceito de RE pela técnica de revascularização, por meio da indução do sangramento apical após o emprego de uma pasta triantibiótica, observando então o desenvolvimento contínuo da raiz, evidenciado não só pelo aumento do seu comprimento, mas também pelo espessamento das paredes do canal radicular. Embora a técnica de revascularização tenha se mostrado eficaz na continuação da formação radicular (Petrino et al. 2010) alguns estudos avaliaram o tecido neoformado no espaço do canal radicular e observaram que o mesmo corresponde a um tecido conjuntivo semelhante ao ligamento periodontal, e a um tecido semelhante ao cemento ou cemento - ósseo 31 (Becerra et al. 2014, Torabinejad et al. 2015). Dessa forma, do ponto de vista clínico, a regeneração do tecido perdido não pode ser alcançada, visto que não há o restabelecimento da vascularização, inervação e deposição de dentina como no tecido pulpar normal. Técnicas da bioengenharia têm sido propostas visando a formação de um tecido semelhante à polpa, bem como a diferenciação odontoblástica, por meio do uso de “scaffolds” - estruturas tridimensionais que permitem a adesão, proliferação e diferenciação de células tronco mesenquimais - associado ao emprego de biomateriais ou moléculas de sinalização que estimulem esses processos (Hargreaves et al. 2008), como o fator de crescimento fibroblástico básico (bFGF) (Chang et al. 2017), fator de crescimento derivado de plaquetas (PDGF) (Cai et al. 2016), plasma rico em plaquetas (PRP) (Torabinejad & Faras 2012, Torabinejad et al. 2015), fibrina rica em plaquetas (PRF) (Subash et al. 2016), entre outros. A RE em dentes permanentes jovens apresenta um prognóstico favorável devido à ampla comunicação entre o canal radicular e os tecidos periapicais. Essa vascularização tem se mostrado capaz de manter a viabilidade celular mesmo após danos aos tecidos pulpar e/ou periapicais (Tsukiboshi et al. 2017). Células-tronco são células progenitoras que apresentam ampla capacidade de auto-renovação e diferenciação (Gronthos et al. 2002, Huang et al. 2006, Limjeerajarus et al. 2014, Maglione et al. 2017), podendo ser classificadas em totipotentes - apresentam a capacidade de originar qualquer tipo celular, inclusive tecidos extraembrionários como a placenta; pluripotentes – originam todas as células de um organismo, exceto de tecidos extraembrionários; e multipotentes – originam linhagens específicas de células (Rodriguez-Lozano et al. 2011). Células-tronco mesenquimais apresentam grande potencial em procedimentos de RE, uma vez que estão presentes na própria polpa dentária - DPSCs (Gronthos et al. 2002), dentes decíduos – SHED (Miura et al. 2003), ligamento periodontal - PDLSCs (Jo et al. 2007) e papila apical - SCAP (Huang et al. 2008). Mesmo na presença de processo inflamatório, células da polpa dentária e da região periapical, apresentaram alta expressão de marcadores de células-tronco mesenquimais (Alongi et al. 2010, Liao et al. 2011). A busca por tratamentos capazes de induzir a diferenciação de células (Asgary et al. 2014, Chen et al. 2015, Huang et al. 2016), bioestimular células remanescentes 32 em concentrações não tóxicas (Washington et al. 2011, Kuang et al. 2016, Chen et al. 2015), promover uma desinfecção eficaz sem citotoxicidade (Bottino et al. 2013, Palasuk et al. 2014, Kamocki et al. 2015), ou ainda criar um scaffold que permita a proliferação e diferenciação celular, além de oferecer suporte adequado para biomoléculas (Bottino et al. 2015, Kuang et al. 2016) tem sido alvo de diversos estudos no campo da RE. A análise de marcadores de diferenciação osteogênica após determinado tratamento proposto em células indiferenciadas (d'Aquino et al. 2007, Wang et al. 2017), ou ainda em células diferenciadas que poderiam ser remanescentes à determinada injúria (Satué et al. 2013, Zeng et al. 2013, Liu et al. 2017) tem sido amplamente realizada com o intuito de analisar a capacidade bioestimulatória de diferentes materiais, visando induzir o processo de reparo. Dentre esses marcadores de mineralização estão a fosfatase alcalina (ALP – enzima responsável pela mineralização da matriz dentinária ou óssea); cuja expressão ocorre em células envolvidas no processo de mineralização, como os odontoblastos e osteoblastos, a proteína da matriz dentinária (DMP-1) e a sialofosfoproteína dentinária (DSPP) que são proteínas não-colagenosas que participam da mineralização da dentina e maturação das fibras colágenas durante o processo de dentinogênese. Essas proteínas permanecem no interior do substrato dentinário, sendo liberadas em resposta às injúrias teciduais, para estimular odontoblastos primários a produzirem dentina terciária reacional, ou ainda para estimular a diferenciação de células pulpares em odontoblastos que irão produzir dentina terciária reparadora (Ferracane et al. 2010, de Souza Costa et al. 2014). A desinfecção do sistema de canais radiculares também representa um desafio dentro das terapias de RE, uma vez que esses dentes permanentes jovens apresentam canal radicular e ápice amplos, além de paredes dentinárias delgadas, inviabilizando o preparo biomecânico convencional. A pasta triantibiótica (metronidazol, ciprofloxacina e minociclina) tem se mostrado eficaz em tratamentos de RE para dentes imaturos (Windley et al. 2005, Petrino et al. 2010); entretanto, foi observada uma significativa redução na viabilidade de células-tronco da papila apical (Ruparel et al. 2012) e fibroblastos do ligamento periodontal (Yadlapati et al. 2014) após a sua aplicação. Esse efeito citotóxico também foi demostrado em células da polpa humana, onde a pasta 33 na concentração de 2,5mg/mL, ou seja bem menor do que aquelas empregadas durante as terapias de RE (aproximadamente 1g/mL), foi capaz de reduzir a proliferação celular (Labban et al. 2014). Devido à algumas desvantagens, como a descoloração dentinária (Kim et al. 2010), a minociclina – antibiótico semisintético derivado da tetraciclina – foi removida da pasta triantibiótica. A pasta biantibiótica (metronidazol e ciproflofaxacina) tem apresentado bons resultados frente à infecção endodôntica (Iwaya et al. 2001), porém com maior efeito citotóxico, reduzindo a viabilidade de células pulpares à partir da concentração de 0,5mg/mL (Labban et al. 2014). De maneira semelhante, o hidróxido de cálcio também não demonstrou toxicidade em baixas concentrações (até 2,5mg/mL), entretanto a concentração utilizada clinicamente é de aproximadamente 0,7g/mL (Labban et al. 2014). Compostos biativos derivados de plantas como os flavonoides, têm recebido destaque na literatura devido à sua amplitude terapêutica. Os flavonoides são moléculas polifenólicas presentes em frutas e vegetais (Panche et al. 2016) que apresentam propriedades antimicrobiana, antioxidante, osteogênica e antiosteoclastogênica (Pietta 2000, Tripoli et al. 2007, Sharan et al. 2009, Pilsakova et al. 2010, Domitrovic 2011). Dentre eles, a taxifolina, um flavonoide tipo catecol, isolado de diversas plantas (da Costa et al. 2014, Wang et al. 2015, Park et al. 2016 ), e mais recentemente do chá verde (Wang et al. 2017), tem apresentado ampla ação terapêutica, entre as quais, atividade antimicrobiana contra Enterococcus faecalis resistente a vancomicina (Jeong et al. 2009), Acinetobacter hemolyticus (Chatzopoulou et al. 2010); atividade antifúngica (Kanwal et al. 2010); capacidade de estimular o aumento da expressão gênica de osteocalcina, osteoprotegerina e sialoproteína óssea, além de diminuir a expressão de RANKL (marcador de reabsorção óssea) em osteoblastos (Satué et al. 2013) e estimular a diferenciação de células-tronco mesenquimais em osteoblastos (Córdoba et al. 2015, Wang et al. 2017). Própolis, substância resinosa produzida por abelhas por meio da mistura de suas secreções com produtos obtidos de diversas plantas, tem sido amplamente estudada devido as suas propriedades terapêuticas (Yokoyama et al. 2014, Aral et al. 2015, Asawahame et al, 2015). Dentre essas, a sua atividade antimicrobiana tem sido relatada por alguns autores (Uzel et al. 2005, de Luca et al. 2014), inclusive frente à 34 microrganismos de interesse endodôntico, como Enterococcus faecalis, Candida albicans, Streptococcus mutans e Pseudomonas aeruginosa (Uzel et al. 2005). Dentre os principais compostos isolados da própolis estão os flavonoides galangina, crisina e pinocembrina. Huh et al. (2013) observou que a galangina reduziu as citocinas inflamatórias IL- 1β, TNF-α e IL-17; inibiu a formação de osteoclastos e fatores osteoclastogênicos; além de aumentar a expressão gênica de osteoprotegerina em osteoblastos. Liu et al. (2017) também observaram um aumento na expressão de marcadores de diferenciação osteogênica, como colágeno, fosfatase alcalina (ALP), osteocalcina e osteopontina em células derivadas de osteosarcoma após o tratamento com galangina. Esse flavonoide mostrou ainda atividade inibitória contra S. aureus e Enterococcus (Li et al. 2012), apresentando como possível mecanismo de ação um dano direto à membrana citoplasmática ou indireto à parede celular, por provocar a perda de íons potássio (Cushnie e Lamb 2005). O flavonoide crisina também demonstrou atividade contra bactérias Gram positivas e Gram negativas, incluindo S. aureus e E. coli com concentrações inibitórias mínimas (CIM) que variaram de 50 à 6,25 µg/mL (Liu et al. 2010) e promoveu aumento da expressão de marcadores osteogênicos, como colágeno, osteocalcina e osteopontina em osteoblastos (Zeng et al. 2013). A pinocembrina apresentou atividade antimicrobiana contra C. albicans e S. aureus, com CIMs de 6.25 e 12.5 μg/ml respectivamente (Katerere et al. 2012), além de atenuar a resposta inflamatória induzida por lipopolissacarídeos (Giri et al. 2016). Assim, os flavonoides apresentam diversas propriedades desejáveis nas terapias de regeneração endodôntica devido às suas múltiplas funções biológicas. 35 Proposição 36 Proposição O objetivo geral do presente trabalho foi avaliar o efeito antimicrobiano, citotóxico e indutor de mineralização de flavonoides com finalidade de aplicação endodôntica, tanto em procedimentos de vitalidade pulpar quanto na regeneração endodôntica. Os objetivos específicos foram: - Avaliar o efeito citotóxico dos flavonoides taxifolina, crisina, galangina e pinocembrina em cultura de fibroblastos (L-929); - Avaliar a atividade antimicrobiana dos flavonoides frente Streptococcus mutans, Enterococcus faecalis e Actinomyces israelii; - Avaliar o efeito antibiofilme do flavonoide taxifolina em biofilme formado em placas de poliestireno e túbulos dentinários; - Avaliar o efeito citotóxico de diferentes tratamentos com a taxifolina em células semelhantes a odontoblastos (MDPC-23) e a osteoblastos (Saos-2); - Avaliar a atividade da fosfatase alcalina e produção de nódulos de mineralização após os tratamentos com a taxifolina nas células MDPC-23 e Saos-2; - Avaliar a expressão gênica de DSPP e DMP-1 nas células MDPC-23 após 24 e 72h de tratamento com a taxifolina; - Avaliar a expressão gênica de ALP e Col-1 nas células Saos-2 após 24 e 72h de tratamento com a taxifolina. 37 Capítulo 1 38 Cytotoxic, antibacterial and anti-biofilm activities of flavonoids intended for endodontic purposes* Abstract The rhizogenesis process can be interrupted after dental pulp injury. The aim of this study was to evaluate the toxicity on fibroblasts, antibacterial and anti-biofilm of flavonoids. MTT assays were conducted to analyzed taxifolin, chrysin, pinocembrin, and galangin treatments on fibroblasts viability. Minimal inhibitory and bactericidal concentrations were determined for the same flavonoids against Enterococcus faecalis, Actinomyces israelii, and Streptococcus mutans. Biofilm assays were performed only with taxifolin in polystyrene plates and inside dentin tubules. The results showed that taxifolin had no toxic effect on fibroblasts, while the other flavonoids showed cytotoxic effects. Taxifolin was the unique flavonoid able to inhibit all tested bacteria growth through the microdilution broth method, besides to eliminate E. faecalis and S. mutans biofilms in polysterene plates, and reduce E. faecalis biofilm on dentin tubules. Taxifolin presents potential use in permanent teeth for endodontic purposes, due to its antimicrobial/anti-biofilm effects and low toxicity on fibroblasts. Keywords: Flavonoids, Cell Culture Techniques, Microbial Sensitivity Tests, Biofilms. *The manuscript is according to the guide for authors of Biofouling (Anexo A). 39 Introduction Dental caries or trauma in immature permanent teeth can interrupt the normal apical closure process due to pulp tissue injury. The exposed pulp allows root canal contamination by bacteria from the oral cavity or those found in deep dentinal caries, such as Streptococcus mutans and Actinomyces israelii (van Houte et al. 1996; Munson et al. 2004; Rôças et al. 2015), which are able to invade the pulp via dentinal tubules and trigger an endodontic infection. Primary endodontic infection is polymicrobial in nature, probably due to oxygen variation and nutrient availability in root canal thirds. Studies have reported a prevalence of facultative anaerobic bacteria in primary endodontic infections (Gomes et al. 2006; Sedgley et al. 2006; Ruviére et al. 2007; Ledezma-Rasillo et al. 2010) and similarity in the microbial composition between permanent young teeth and completely formed teeth (Baumotte et al. 2011). Due to a wide root canal, open apex, and thin dentinal walls, chemo-mechanical root canal preparation is limited and therefore disinfection occurs mainly by intracanal medicament. For a long time the treatment of choice for young permanent teeth was apexification with calcium hydroxide (CH). Despite the success attributed to this technique in virtue of formation of an apical hard tissue barrier (Rafter et al. 2005), the multiple sessions and long-term treatment frequently increases the potential for recontamination, the formation of fragile dentin walls, and subsequent susceptibility to fractures (Hargreaves et al. 2013). Another technique that has been used is artificial apical barrier through the application of mineral trioxide aggregate (MTA) as a plug in the tooth apical third. One advantage of the MTA technique is the reduction in clinical appointments (Marí-Beffa et al. 2017). Inevitably, both these techniques lead to loss of vital pulp tissues including odontoblasts, fibroblasts, stem cells, and the Hertwig epithelial root sheath need for complete root development (Chueh et al. 2006). Studies have appointed higher levels of mesenchymal stem cell markers in dental pulp stem cells even in inflamed pulps or in periapical progenitor cells from inflamed periapical tissue collected during endodontic surgical procedures (Alongi et al. 2010; Liao et al. 2011). 40 Regenerative endodontic therapies (RET) have been considered as bioengineering therapies as part of the search for new materials that allow the synthesis of a new pulp-like tissue able to restore lost functions (Mohammad et al. 2015; Marí-Beffa et al. 2017). RET are possible in any permanent teeth, however immature permanent teeth present apical enlargement that provides communication between root canal and periapical tissues providing a large blood supply, carrying cellular and molecular components of the immune system (Tsukiboshi et al. 2017). Immature teeth also have been presented a large number of undifferentiated mesenchymal cells and odontoblasts than adult teeth (de Souza Costa et al. 2014), likely due the recruitment of these cells during physiological tooth wear, carious process and cavity preparation in adult teeth. The material most commonly used based on these techniques is the triple antibiotic paste (TAP - metronidazole, minocycline, and ciprofloxacin) for microbial decontamination followed by the induction of revascularization by blood clot formation (Petrino et al. 2010). However, the use of TAP has generated some discussion regarding bacterial resistance, crown discoloration, and possible allergic reaction (Cohenca et al. 2010; Kim et al. 2010; Akcay et al. 2014). Others antimicrobials commonly used in RET, such as CH and double antibiotic paste (DAP – metronidazole and ciprofloxacin) also had show drawbacks related to their cytotoxic effect. Safest non-toxic concentrations of TAP, DAP and CH were lower than the intracanal concentrations that have been advocated in RET (Labban et al. 2014). Plants are a wide source of bioactive compounds, which present several biological activities (Dimech et al. 2013; Coronado-Aceves et al. 2016; Wang et al. 2017). Among these natural compounds, flavonoids are an important class known for their therapeutic use. They are plant secondary metabolites, mainly pigments that color flowers, fruits, and seeds, constituted by a polyphenolic structure (Panche et al. 2016). Taxifolin is a catechol-type flavonoid isolated from Hymenaea courbaril (da Costa et al. 2014) Morus laevigata (Wang et al. 2015), Hovenia dulcis (Park et al. 2016), and green tea (Wang et al. 2017) among others. Studies have reported the antimicrobial potential (Chatzopoulou et al. 2010; Kanwal et al. 2010; Jeong et al. 2009) of taxifolin and its ability to stimulate osteogenic differentiation (Satué et al. 41 2013; Wang et al. 2017). Other flavonoids frequently isolated from propolis, such as pinocembrin, galangin, and chrysin have been related to antimicrobial activity of this resinous substance produced by bees (Uzel et al. 2005; Suleman et al. 2015). Among them, galangin has also inhibited osteoclastogenic factors (Hu et al. 2013) and both galangin and chrysin enhanced the expression of osteoblast differentiation markers and mineralization (Liu et al. 2017; Zeng et al. 2013). Based on the fact that the commonly used antimicrobial agents have presented cell toxicity in the concentrations advocated for endodontic regeneration (Yadlapati et al. 2014; Labban et al. 2014), the aim of this study was to evaluate the antimicrobial activity and toxicity of taxifolin, chrysin, pinocembrin, and galangin on fibroblasts, besides to analyze the anti-biofilm effect of the flavonoid with the best antimicrobial effect, intended to be used for endodontic purposes. The null hypotheses tested were: (1) flavonoids present cytotoxic effect on L929 fibroblasts, (2) flavonoids do not have antibacterial activity, and (3) taxifolin does not have anti-biofilm effect. Materials and Methods Cell viability assays Flavonoids Taxifolin (#78666), chrysin (#C80105), pinocembrin (#P5239), and galangin (#282200) were purchased from Sigma-Aldrich (St. Louis, MO, USA). A stock solution was prepared in Dimethyl Sulfoxide (DMSO - Sigma-Aldrich, St. Louis, MO, USA) and stored at -20°C for each flavonoid. Solution with the final concentration of 0.5% DMSO was included as the control group in the experiments. Chlorhexidine digluconate (CHX, Sigma Aldrich, St. Louis, MO, USA) was used as a positive control. Cell Lines Mouse fibroblasts (L-929) were grown in Dulbecco Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (FBS, GIBCO BRL, Gaithersburg, MD) streptomycin (50 g/mL), and 1% antibiotic/antimycotic cocktail (300 U/mL penicillin, 300 mg/mL streptomycin, 5 mg/mL amphotericin B, and L-glutamine 0.3 g/L) 42 (GIBCO BRL, Gaithersburg, MD) under standard cell culture conditions (37ºC, 100% humidity, 95% air, and 5% CO2). MTT assay The cells were plated at a density of 1x10⁵ cells/well in 96-well plates and incubated for 24 hours in a humidified air atmosphere of 5% at 37ºC to allow cell attachment. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the cell viability according to Takamiya et al. (2016). Briefly, after the cell attachment, the flavonoid groups (600, 300, 150, 75, 37.5, 18.75, and 9.37µg/mL) were added to the cells. The controls were cultured in medium without flavonoid treatment. At 24h after addition, the treatments were removed and the MTT solution (Sigma-Aldrich, St. Louis, MO, USA) was added to the cells and the plates were incubated at 37°C for 4h protected from light. This tetrazolium salt is metabolically reduced by viable cells to yield a purple insoluble formazan crystal. Next, the MTT solution was discarded and 200µL of isopropyl alcohol was added to each well to dissolve the crystals under continuous agitation for 30 min. The solution was transferred to a 96-well plate to measure the optical density (OD) at 570nm in a spectrophotometer (Shimadzu MultSpec-1501; Shimadzu Corporation, Tokyo, Japan). The experiments were performed in triplicate. Antimicrobial assay Microbial conditions The following microbial strains used in the present study were kindly provided by the Oswaldo Cruz Foundation (FIOCRUZ - Rio de Janeiro, RJ, BR): Streptococcus mutans (ATCC 25175), Enterococcus faecalis (ATCC 51299), and Actinomyces israelii (ATCC 12102). Stock microbial suspensions were inoculated in Brain Heart Infusion Agar (BHI, Difco Laboratories, Detroit, MI, USA) for E. faecalis and A. israelii or Mitis Salivarius Agar base (MSA, Difco Laboratories) with 0.2 U mg ml−1 bacitracin (Sigma- Aldrich) for S. mutans. Representative colonies of these strains were grown overnight in BHI broth (Difco Laboratories) and incubated at 37°C for 24 hours in 5% CO₂ (Incubator Ultra Safe, HF212-UV). All microorganisms were incubated in these 43 atmospheric conditions to simulate the low oxygen concentration inside root canals. Growth curve assays were performed for each microorganism in order to determine the optical density at the mid-log phase [approximately 0.5 (1-5x10⁸ CFU/mL)] to be used in the following experiments. The absorbance was measured using a microplate reader (Eon Microplate Spectrophotometer, BioTek Instruments, Winooski, Vermont, USA) to assess the cell growth. Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) MIC and MBC were determined through the microdilution broth method, in 96- well microtiter plates, following the criteria previously described by Clinical and Laboratory Standard Institute M7-A9 (CLSI, 2012). The final concentration of bacterial suspension in the wells was 1-5x10⁵CFU/mL. Initially, the flavonoid stock solutions were serially diluted in water and after that, correctly adjusted microbial suspensions were inoculated in each well. The flavonoid concentrations tested ranged from 2 – 0.0002mg/mL. The plates were incubated at 37°C for 24 hours in a 5% CO₂ atmosphere. Afterwards, 15µL of 0.01% resazurin (R7017 Sigma-Aldrich – St. Louis, Missouri, USA) was applied in each well and incubated for 4 hours to promote oxidation-reduction and determine the cell viability through visual detection of the color change. Posteriorly the wells corresponding to MIC (the last blue well) and at least three previous wells were homogenized, six times diluted and plated on Mueller- Hinton Agar (Difco Laboratories) for E. faecalis and A. israelii or Mitis Salivarius Agar base (Difco Laboratories) with 0.2 U mg ml−1 bacitracin (Sigma-Aldrich) for S. mutans to determine the MBC. The plates were incubated at 37°C for 24 hours in a 5% CO₂ atmosphere. The colonies were counted and the number of viable bacteria determined in CFU/mL. The MBC was considered when the flavonoid treatment killed more than 99% of the tested microbial culture. Chlorhexidine digluconate (CHX) was used as a positive control. The negative control was the culture without antimicrobial agents. Assays were repeated three times for each microorganism, in three independent experiments. Anti-biofilm assays 44 Biofilm formation in polystyrene microplates Taxifolin was selected for biofilm assays as it presented the best results in the previous assays: MTT, MIC, and MBC. Biofilm assays were conducting according to Massunari et al. (2017) with E. faecalis, S. mutans, and A. israelii. Twenty microliters of each microorganism suspension (approximately 1-5x10⁶CFU/mL) were inoculated in sterile U-shaped bottom polystyrene 96-well microplates containing 180µL of BHI supplemented with 0.5% glucose. The plates were incubated at 37°C in a 5% CO₂ atmosphere. After 48 hours, the culture medium was removed and the wells were washed with sterile saline for subsequent addition of 200µL of previously diluted taxifolin per well. The concentration of taxifolin was 10 times higher than the MBC concentration (10x MBC) obtained for each microorganism. The microplates were incubated again in the same conditions for 24 hours. All cultures in the wells were diluted six times and plated in brain heart infusion agar and incubated for 24 hours. After this period, the colony forming units (CFU)/mL were determined. Chlorhexidine digluconate (10x MBC) was used as a positive control as well as biofilm in medium without antimicrobial agents as a negative control. Assays were repeated three times for each microorganism, in three independent experiments. Biofilm formation in dentin tubules of bovine roots Biofilm assays for confocal laser scanning microscopy (CLSM) analysis were conducted with E. faecalis, using taxifolin and CHX, according to the method proposed by Ma et al. (2011) with some modifications. Briefly, dentin blocks (Ethics Committee on the Use of Animals – FOA/UNESP, Protocol 01194-2017) with a length of 4 mm were obtained from bovine roots (n = 3/group), sectioned horizontally 1 mm below the cement-enamel junction. After enlargement of the root canals with Gates Glidden drill #6 (1.5 mm diameter) (Dentsply, Tulsa, USA), each cylindrical dentin block was fractured into two semi cylindrical halves and ground using 600-grit silicon carbide paper until reaching the final size of 3 × 3 × 2 mm. The blocks were cleaned in an ultrasonic bath initially using 17% EDTA solution for 3 minutes and then distilled water for 5 minutes. After autoclaved, the blocks were fixed in a microtube with a resin composite (3M ESPE, USA) and light cured for 40 seconds. Five hundred microliters of 45 E. faecalis suspension at 107 CFU/mL in BHI broth were added to each microtube and sequentially harvested at 1400, 2000, 3600, and 5600 g, twice each, for 5 minutes. A fresh suspension of bacteria was inserted between every centrifugation and the final solution was discarded. Dentin blocks were incubated individually in 48-well plates in BHI broth for 15 days, replacing the culture medium every 72h. After this period, the blocks were washed twice with sterile saline and transferred, under aseptic conditions, to a new plate and exposed to taxifolin (at 10x MBC) and CHX (100 and 1000x MBC) for 2h under agitation and a further 46h in static conditions. After that, the dentin blocks were washed again twice, cut into transverse slices of 1mm thickness, and polished with 1200 grit sandpaper disks. After new washing with sterile water, the dentin blocks were stained with 100µL of fluorescent LIVE/DEAD BacLight Bacterial Viability stain (L13152, Molecular Probes, Eugene, OR) containing SYTO9 and propidium iodide, according to the manufacturer’s instructions. The excitation/emission wavelengths were 480/500 nm for SYTO 9 and 490/635nm for propidium iodide. Two additional untreated specimens were stained using the same protocol as the negative controls. The mounted specimens were observed using a 63x NA 1.4 oil immersion lens. CLSM images were acquired using the software LAS AF (Leica Mic-systems). The Z stack was obtained from the top until the bottom of the biofilms. Using a 0.5µm interval stack between each frame, 4 randomly selected areas of each dentin specimen were made for each sample. Each 2D (two-dimension) image was obtained by the max projection of the Z stack. The ratio of red fluorescence to green-and-red fluorescence indicated the proportion of dead cells for each antimicrobial agent, measured using Image J software (Rasband, W.S., Image J, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2016). Statistical analysis The results were presented as means ± standard deviation (SD) and analyzed using SPSS version 17.0 software (SPSS, IL, USA). Data from bacterial recovery from biofilm assays were converted in logarithmic scale log10 (CFU+1) and calculated the percentage (%) of bacterial growth compared to control groups. Values were normally distributed as verified by Kolmogorov-Smirnov test. Analysis of variance (ANOVA) 46 followed by Bonferroni tests were performed for all results, considering p<0.05 as significant. Results Cell viability Taxifolin showed no toxic effect on L-929 fibroblast cells at any tested concentration. Chrysin demonstrated low cytotoxic effect over 150 µg mL-1. Pinocembrin was cytotoxic from 600 to 150 µg mL-1. Galangin was the most cytotoxic flavonoid reducing its toxicity only below 37.5 µg mL-1. Chlorhexidine digluconate was cytotoxic from 600 to 18.75 µg mL-1 (Figure 1). Antimicrobial activity MIC and MBC values for flavonoids ranged between 0.03 and 1 mg mL-1 (Table 1). All flavonoids tested demonstrated antibacterial activity against A. israelii, except chrysin that had no effect against any of the bacteria on tested concentrations. Only taxifolin was able to inhibit all tested bacteria growth through the microdilution broth method. S. mutans and E. faecalis growth was not affected by pinocembrin, galangin, or chrysin (Table 1). The control chlorhexidine presented the lowest values of MIC and MBC for all tested bacteria (Table 1). Anti-biofilm effect in polystyrene plates Taxifolin at 10x MBC concentration was able to completely eliminate E. faecalis and S. mutans biofilms, and reduce A. israelii biofilm. Chlorhexidine digluconate in the same conditions (10x MBC) was able to eliminate only S. mutans biofilm and reduce A. israelii biofilm, but did not present an effect against E. faecalis biofilm (Figure 2). Anti-biofilm effect in dentin tubules of bovine roots Representative CLSM images of E. faecalis biofilms formed in bovine root dentin specimens are presented in Figure 3A-D. Both taxifolin and CHX showed higher quantification of dead cells (red points) when compared to the control (culture medium). Taxifolin at 10x MBC strongly reduced E. faecalis (99.74% dead cells). Similar 47 reduction (93.73% dead cells) was observed for CHX at 1000x MBC and a lower reduction (64.61% dead cells) for CHX at 100x MBC (Figure 4). Discussion The aims of this study were to evaluate the cytotoxicity and antibacterial activity of four flavonoids, as well to analyze the anti-biofilm effect of the flavonoid which was highlighted in previous assays. The null hypothesis 1 was partially accepted, since taxifolin was the unique tested flavonoid without cytotoxicity on L929. The hypothesis 2 also was partially accepted, once only chrysin did not have antibacterial activity; and the hypothesis 3 was rejected because taxifolin showed anti-biofilm effect. Among the flavonoids tested, taxifolin did not affect viability of fibroblast cells up to 600 µg mL-1. Although taxifolin caused 15% of reduction on L929 cell viability at 600 µg mL-1, this effect is considered low, since ISO 10993-5:2009 recommendations characterized a reduction of from 30% in cell viability as a cytotoxic effect. Gómez- Florit et al. (2014) also evaluated the effect of chrysin, taxifolin and galangin on human primary gingival fibroblasts (HGF cells) and observed that 100-200 µM chrysin, 500 µM galangin and doses higher than 10µM taxifolin produced a significant release of lactate dehydrogenase (LDH) activity compared to controls. In this same study, the highest concentration of taxifolin (500 µM – around 150 µg mL-1) caused low toxicity (20%) on fibroblasts; different from the present study, which showed minimal toxic effect of taxifolin at 600 µg mL-1. Likely this difference is related to different cell types used in the studies. Primary cells gradually reduce their proliferation rate in vitro, shortening of telomeres, coming in cellular senescence (Milyavsky et al. 2003); while immortalized cells, such as L929, presents the elongation of telomeres increasing the stability of chromosomes (Maqsood et al. 2013). Chlorhexidine is a broad-spectrum antiseptic, used as endodontic irrigant or root canal dressing (Gomes et al. 2006, Rôças et al. 2016), however have been presented cytotoxicity against eukaryotic cells (Hidalgo & Domingues 2001; Faria et al. 2007). The present study showed cytotoxic effect of the CLX up to 20 µg mL-1 on L929. Similarly to ours, Faria et al. (2007) observed CHX at 0,002% (20 µg mL-1) caused a 48 significant increase in the percentage of necrotic cell (34%). Faria et al. (2009) showed CHX causes endoplasmic reticulum overexpression in L929 due accumulation of proteins, resulting in cell death by necrosis or apoptosis, depending on the CHX concentration. According the authors CLX at high concentration (from 0,002%) might retard the periapical healing, due cell necrosis, a passive form of cell death that results from disruption of cell membranes and release of cell components to the extracellular matrix, triggering an inflammatory reaction. Another important characteristic of a biomaterial indicated for endodontic purposes is the antimicrobial activity, mainly against deep caries-related bacteria, such like S. mutans and A. israelii, and persistent endodontic infection such as E. faecalis. These bacteria were selected in the present study due their close relationship with the endodontic polymicrobial infection. Tsukiboshi et al. (2017) showed the presence of apical periodontitis in radicular vital pulp, characterizing a partial pulp necrosis in immature permanent teeth. According the authors this clinical condition can be due large foraminal opening which carries cellular and molecular components of the immune system, delaying the necrosis procces. Therefore, early colonizers such as S. mutans could play a role at the beginning of apical periodontitis formation. A. israelii is a common facultative anaerobe isolated from the root canal and periapical tissues due its capacity to form biofilm and break into soft tissue (Xia & Baumgartner 2003). The high production of extracellular polymers can result in a well-organized biofilm with difficult elimination, even after both taxifolin and chlorhexidine treatments at high concentrations, as showed in the Figure 2. E. faecalis was included in this study due its presence in persistent endodontic infections, surviving at alkaline pH by proton pump (Evans et al. 2002), and invading dentin tubules forming biofilm into them, as observed in Figure 3. Taxifolin was able to inhibit all tested bacteria, while other flavonoids demonstrated activity against A. israelii, excepted for chrysin that had no effect against any of the tested bacteria. Jeong et al. (2009) also found important taxifolin activity against E. faecalis and vancomycin-resistant E. faecalis showing MIC values ranging from 128 to 512 µg mL-1. In the current study, other flavonoids did not inhibit E. faecalis and S. mutans growth at the tested concentrations. Studies evaluating the 49 isolated effect of these flavonoids on oral bacteria were not found. On the other hand, Suleman et al. (2015) observed a noteworthy antimicrobial activity of propolis samples from Brazil and South Africa against important pathogens such as E. faecalis, S. aureus, and C. albicans and attributed this property to flavonoid content composed mainly of pinocembrin, galangin, and chrysin, possibly through the synergic effect between them. Antimicrobial activity of flavonoids has been related to their structure, mainly their B ring. The hydroxy groups of taxifolin were able to bind to site of β-Ketoacyl carrier protein synthase (KAS III) of E. faecalis, by hydrogen-bonding networks, showing as a candidate inhibitor of this protein. KAS lll is an enzyme responsible for catalyze condensation reaction in type II fatty acid synthesis pathway, that is essential for bacterial survival (Jeong et al. 2009). In the present study, taxifolin was selected for biofilm assays based on its previous antibacterial and non-cytotoxic effects. This is the first study to evaluate the anti-biofilm effect of taxifolin. Biofilm assays were performed at a 10x MBC concentration for taxifolin as the architecture of biofilms provides advantages to bacteria, such as more resistance regarding environmental stresses, including antimicrobial agent effects. In the present study, taxifolin and CHX at 10x MBC were able to eliminate S. mutans biofilm. Lee et al. (2016) also showed that CHX treatment reduced bacterial viability in mature S. mutans biofilms. CHX antimicrobial activity is related to its cationic nature, which allows it to bond strongly to anionic sites on cell membranes and walls (Jensen, 1977). A. israelli biofilm presented a remarkable reduction after CHX and taxifolin treatment, but elimination was not observed. Barnard et al. (1996) suggested that this difficulty in A. israelii elimination is due to the genotypic tolerance of the species. Only taxifolin at 10x MBC eliminated E. faecalis in both biofilm assays. E. faecalis has demonstrated high resistance to endodontic medicaments (Eswar et al. 2013), and the ability to form biofilms both in treated and untreated root canals (Gomes et al. 2006, Vidana et al. 2016). The absence of a CHX effect on E. faecalis biofilm is associated with the concentration chosen for the biofilm assays in polystyrene plates (10x MBC). In dentin tubules, CHX at 100x MBC was effective in reducing E. faecalis biofilm and practically eliminated biofilm at 1000x 50 MBC. In other studies, CHX was also effective against E. faecalis biofilm at high concentrations (0.2-2% or 2-20 mg mL-1) (Eswar et al. 2013, Komiyama et al. 2016). This study was performed with fibroblast cells due its wide application, being present in both the pulp and periapical tissues. Primary these cells are known as structural elements, constructing an important structure to support tissue integrity and repair. Moreover, fibroblasts can behave as immunoregulatory cell, producing chemokines that initiate the recruitment of bone-marrow-derived cells, after activated by several bacterial products, such as LPS (Smith et al 1997). Further studies are need to test cytotoxic effect of taxifolin on undifferentiated cells, besides their capacity to promote pulp regeneration and stimulate the formation of mineralized tissue when proposed as pulp-capping agent. Chrysin, pinocembrin and galangin showed cytotoxic effects at any tested concentrations besides not displaying antibacterial activity against S. mutans and E. faecalis. Taxifolin promotes a potential antimicrobial/anti-biofilm effect against all tested bacteria, without toxicity on fibroblasts, could be indicated for endodontic purposes, such as vital pulp and regenerative endodontic therapies. Acknowledgements The authors would like to thank Oswaldo Cruz Foundation (FIOCRUZ) by supporting the microbial strains. Disclosure statement The authors reported no potential conflict of interest. Funding This work was supported by the São Paulo Research Foundation (FAPESP) under grants #2015/00812-0 and 2017/10940-1. References 1. [CLSI] - Clinical and Laboratory Standard Institute. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 9th ed., Wayne, PA, CLSI document, M7-A9. 51 2. [ISO] - International Standards Organization: ISO 10993-12:2012 (E). 2012. Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicity. 2nd ed. Géneve: ISO. 3. Akcay M, Arslan H, Yasa B, Kavrık F, Yasa E. 2014. Spectrophotometric analysis of crown discoloration induced by various antibiotic pastes used in revascularization. J Endod. 40 (6): 845-8. doi: 10.1016/j.joen.2013.09.019. 4. Alongi DJ, Yamaza T, Song Y, Fouad AF, Romberg EE, Shi S, Tuan RS, Huang GT. 2010. Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med. 5 (4): 617-31. doi: 10.2217/rme.10.30. 5. Barnard D, Davies J, Figdor D. 1996. Susceptibility of Actinomyces israelii to antibiotics, sodium hypochlorite and calcium hydroxide. Int Endod J. 29 (5): 320- 326. doi.org/10.1111/j.1365-2591.1996.tb01392.x 6. Baumotte K, Bombana AC, Cai S. 2011. Microbiologic endodontic status of young traumatized tooth. Dent Traumatol. 27 (6): 438-41. doi: 10.1111/j.1600- 9657.2010.00903.x. 7. Chatzopoulou A, Karioti A, Gousiadou C, Lax Vivancos V, Kyriazopoulos P, Golegou S, Skaltsa H. 2010. Depsides and other polar constituents from Origanum dictamnus L. and their in vitro antimicrobial activity in clinical strains. J Agric Food Chem. 58 (10): 6064-8. doi: 10.1021/jf904596m. 8. Chueh LH, Huang GT. 2006. Immature teeth with periradicular periodontitis or abscess undergoing apexogenesis: a paradigm shift. J Endod. 32 (12): 1205-13. doi.org/10.1016/j.joen.2006.07.010 9. Cohenca N, Heilborn C, Johnson JD, Flores DSH, Ito IY, Silva LAB. 2010. Apical negative pressure irrigation versus conventional irrigation plus triantibioticintracanal dressing on root canal disinfection in dog teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 109 (1): 42-46. doi: 10.1016/j.tripleo.2009.08.029. 10. Córdoba A, Satué M, Gómez-Florit M, Hierro-Oliva M, Petzold C, Lyngstadaas SP, González-Martín ML, Monjo M, Ramis JM. 2015. Flavonoid-modified surfaces: multifunctional bioactive biomaterials with osteopromotive, anti-inflammatory, and anti-fibrotic potential. AdvHealthc Mater. 11 (4): 540-9. doi: 10.1002/adhm.201400587. 52 11. Coronado-Aceves EW, Sánchez-Escalante JJ, López-Cervantes J, Robles-Zepeda RE, Velázquez C, Sánchez-Machado DI, Garibay-Escobar A. 2016. Antimycobacterial activity of medicinal plantsused by the Mayo people of Sonora, Mexico. J Ethnopharmcol. 190: 106-115. doi: 10.1016/j.jep.2016.05.064. 12. da Costa MP, Bozinis MC, Andrade WM, Costa CR, da Silva AL, Alves de Oliveira CM, Kato L, Fernandes Ode F, Souza LK, Silva M. 2014. Antifungal and cytotoxicity activities of the fresh xylem sap of Hymenaea courbaril L. and its major constituent fisetin. BMC Complement Altern Med. 14: 245. doi: 10.1186/1472-6882-14-245. 13. de Souza Costa CA, Hebling J, Scheffel DL, Soares DG, Basso FG, Ribeiro AP. 2014. Methods to evaluate and strategies to improve the biocompatibility of dental materials and operative techniques. Dental Materials. 30: 769-784. doi: 10.1016/j.dental.2014.04.010. 14. Dimech GS, Soares LA, Ferreira MA, de Oliveira AG, Carvalho M da C, Ximenes EA. 2013. Phytochemical and antibacterial investigations of the extracts and fractions from the stem bark of Hymenaea stigonocarpa Mart. ex Hayne and effecton ultrastructure of Staphylococcus aureus induced by hydroalcoholic extract. Sci World J. Article ID 862763. doi: 10.1155/2013/862763. 15. Eswar K, Venkateshbabu N, Rajeswari K, Kandaswamy D. 2013. Dentinal tubule disinfection with 2% chlorhexidine, garlic extract, and calcium hydroxide against Enterococcus faecalis by using real-time polymerase chain reaction: In vitro study. J Conserv Dent. 16 (3): 194-8. doi: 10.4103/0972-0707.111312. 16. Evans M, Davies JK, Sundqvist G, Figdor D. 2002. Mechanisms involved in the resistance of Enterococcus faecalis to calcium hydroxide. Int Endod J. 35 (3): 221-8. doi.org/10.1046/j.1365-2591.2002.00504.x 17. Faria G, Cardoso CR, Larson RE, Silva JS, Rossi MA. 2009. Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: A role for endoplasmic reticulum stress. Toxicol Appl Pharmacol. 15;234(2): 256-65. doi: 10.1016/j.taap.2008.10.012. 18. Faria G, Celes MR, De Rossi A, Silva LA, Silva JS, Rossi MA. 2007. Evaluation of chlorhexidine toxicity injected in the paw of mice and added to cultured l929 fibroblasts. J Endod. 33(6): 715-22. doi.org/10.1016/j.joen.2006.12.023. 53 19. Gomes BP, Pinheiro ET, Sousa EL, Jacinto RC, Zaia AA, Ferraz CC, de Souza-Filho FJ. 2006. Enterococcus faecalis in dental root canals detected by culture and by polymerase chain reaction analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 102 (2): 247-53. doi.org/10.1016/j.tripleo.2005.11.031 20. Gómez-Florit M, Monjo M, Ramis JM. 2014. Identification of quercitrin as a potential therapeutic agent for periodontal applications. J Periodontol. 85 (7): 966- 74. doi: 10.1902/jop.2014.130438. 21. Hargreaves KM, Diogenes A, Teixeira FB. 2013. Treatment options: biological basis of regenerative endodontic procedures. J Endod. 39 (3): 30-43. doi: 10.1016/j.joen.2012.11.025. 22. Hidalgo E, Domingues C. 2001. Mechanisms underlying chlorhexidine-induced cytotoxicity. Toxicol In Vitro. 15: 271– 6. doi.org/10.1016/S0887-2333(01)00020-0. 23. Huh JE, Jung IT, Choi J, Baek YH, Lee JD, Park DS, Choi DY. 2013. The natural flavonoid galangin inhibits osteoclastic bone destruction and osteoclastogenesis by suppressing NF-κB in collagen-induced arthritis and bone marrow-derived macrophages. Eur J Pharmacol. 698 (1-3): 57-66. doi: 10.1016/j.ejphar.2012.08.013. 24. Jensen JE. 1977. Binding of dyes to chlorhexidine-treated hydroxyapatite. Scand J Dent Res. 85: 334–340. 25. Jeong KW, Lee JY, Kang DI, Lee JU, Shin SY, Kim Y. 2009. Screening of flavonoids as candidate antibiotics against Enterococcus faecalis. J Nat Prod. 72 (4): 719-24. doi: 10.1021/np800698d. 26. Kanwal Q, Hussain I, LatifSiddiqui H, Javaid A. 2010. Antifungal activity of flavonoids isolated from mango (Mangifera indica L.) leaves. Nat Prod Res. 24 (20): 1907-14. doi: 10.1080/14786419.2010.488628. 27. Kim JH, Kim Y, Shin SJ, Park JW, Jung IY. 2010. Tooth discoloration of immature permanent incisor associated with triple antibiotic therapy: a case report. J Endod. 36 (6): 1086-91. doi: 10.1016/j.joen.2010.03.031. 28. Komiyama EY, Lepesqueur LS, Yassuda CG, Samaranayake LP, Parahitiyawa NB, Balducci I, Koga-Ito CY. 2016. Enterococcus Species in the Oral Cavity: Prevalence, 54 Virulence Factors and Antimicrobial Susceptibility. PLoS One. 11 (9): 1-11. doi: 10.1371/journal.pone.0163001. 29. Labban N, Yassen GH, Windsor LJ, Platt JA. 2014. The direct cytotoxic effects of medicaments used in endodontic regeneration on human dental pulp cells. Dent Traumatol. 30 (6): 429-34. doi: 10.1111/edt.12108. 30. Ledezma-Rasillo G, Flores-Reyes H, Gonzalez-Amaro AM, Garrocho-Rangel A, Ruiz- Rodriguez MS, Pozos-Guillen AJ. 2010. Identification of cultivable microorganisms from primary teeth with necrotic pulps. J Clin Pediatr Dent. 34 (4): 329-33. 31. Lee DW, Jung JE, Yang YM, Kim JG, Yi HK, Jeon JG. 2016. The antibacterial activity of chlorhexidine digluconate against Streptococcus mutans biofilms follows sigmoidal patterns. Eur J Oral Sci. 124 (5): 440-446. doi: 10.1111/eos.12285. 32. Liao J, Al Shahrani M, Al-Habib M, Tanaka T, Huang GT. 2011. Cells isolated from inflamed periapical tissue express mesenchymal stem cell markers and are highly osteogenic. J Endod. 37 (9): 1217-24. doi: 10.1016/j.joen.2011.05.022. 33. Liu C, Ma M, Zhang J, Gui S, Zhang X, Xue S. 2017. Galangin inhibits human osteosarcoma cells growth by inducing transforming growth factor-β1-dependent osteogenic differentiation. Biomed Pharmacother. 89: 1415-1421. doi: 10.1016/j.biopha.2017.03.030. 34. Ma J, Wang Z, Shen Y, Haapasalo M. 2011. A new noninvasive model to study the effectiveness of dentin disinfection by using confocal laser scanning microscopy. J Endod. 37 (10): 1380-5. doi: 10.1016/j.joen.2011.06.018. 35. Maqsood MI, Matin MM, Bahrami AR, Ghasroldasht MM. 2013. Immortality of cell lines: challenges and advantages of establishment. Cell Biol Int. 37(10):1038-45. doi: 10.1002/cbin.10137. 36. Marí-Beffa M, Segura-Egea JJ, Díaz-Cuenca A. 2017. Regenerative Endodontic Procedures: A Perspective from Stem Cell Niche Biology. J Endod. 43 (1): 52-62. doi: 10.1016/j.joen.2016.09.011. 37. Massunari L, Novais RZ, Oliveira MT, Valentim D, Dezan Jr E, Duque C. 2017. Antimicrobial activity and biocompatibility of the Psidium cattleianum extracts for endodontic purposes. Braz Dent J. 28 (3): 372-379. doi: 10.1590/0103- 6440201601409. 55 38. Milyavsky M, Shats I, Erez N, Tang X, Senderovich S, Meerson A, Tabach Y, Goldfinger N, Ginsberg D, Harris CC, Rotter V. 2003. Prolonged culture of telomerase-immortalized human fibroblasts leads to a premalignant phenotype. Cancer Res. 63 (21): 7147-57. 39. Munson MA, Banerjee A, Watson TF, Wade WG. 2004. Molecular analysis of the microflora associated with dental caries. J Clin Microbiol. 42 (7): 3023-9. doi: 10.1128/JCM.42.7.3023-3029.2004. 40. Panche AN, Diwan AD, Chandra SR. 2016. Flavonoids: an overview. J Nutr Sci. 29 (5): e47. doi: 10.1017/jns.2016.41. 41. Park JS, Kim IS, Shaheed Ur Rehman, Na CS, Yoo HH. 2016. HPLC Determination of Bioactive Flavonoids in Hovenia dulcis Fruit Extracts. J Chromatogr Sci. 54 (2): 130- 5. doi: 10.1093/chromsci/bmv114. 42. Petrino JA, Boda KK, Shambarger S, Bowles WR, McClanahan SB. 2010. Challenges in regenerative endodontics: a case series. J Endod. 36 (3): 536-41. doi.org/10.1016/j.joen.2009.10.006. 43. Rafter M. 2005. Apexification: a review. Dent Traumatol. 21:1–8. doi.org/10.1111/j.1600-9657.2004.00284.x 44. Rôças IN, Lima KC, Assunção IV, Gomes PN, Bracks IV, Siqueira JF Jr. 2015. Advanced Caries Microbiota in Teeth with Irreversible Pulpitis. J Endod. 41 (9): 1450-5. doi: 10.1016/j.joen.2015.05.013. 45. Rôças IN, Provenzano JC, Neves MA, Siqueira JF Jr. 2016. Disinfecting Effects of Rotary Instrumentation with Either 2.5% Sodium Hypochlorite or 2% Chlorhexidine as the Main Irrigant: A Randomized Clinical Study. J Endod. 42(6): 943-7. doi.org/10.1016/j.joen.2016.03.019. 46. Ruviére DB, Leonardo MR, da Silva LA, Ito IY, Nelson-Filho P. 2007. Assessment of the microbiota in root canals of human primary teeth by checkerboard DNA-DNA hybridization. J Dent Child (Chic). 74 (2): 118-23. 47. Saghiri MA, Asatourian A, Sorenson CM, Sheibani N. 2015. Role of angiogenesis in endodontics: contributions of stem cells and proangiogenic and antiangiogenic factors to dental pulp regeneration. J Endod. 41 (6): 797-803. doi: 10.1016/j.joen.2014.12.019. 56 48. Satué M, Arriero MM, Monjo M, Ramis JM. 2013. Quercitrin and taxifolin stimulate osteoblast differentiation in MC3T3-E1 cells and inhibit osteoclastogenesis in RAW 264.7 cells. Biochem Pharmacol. 86: 1476-1486. doi: 10.1016/j.bcp.2013.09.009. 49. Sedgley C, Nagel A, Dahlén G, Reit C, Molander A. 2006. Real-time quantitative polymerase chain reaction and culture analyses of Enterococcus faecalis in root canals. J Endod. 32 (3): 173-7. doi.org/10.1016/j.joen.2005.10.037. 50. Smith RS, Smith TJ, Blieden TM, Phipps RP. 1997. Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am J Pathol. 151(2):317- 22. 51. Suleman T, van Vuuren S, Sandasi M, Viljoen AM. 2015. Antimicrobial activity and chemometric modelling of South African propolis. J Appl Microbiol. 119 (4): 981-90. doi: 10.1111/jam.12906. 52. Takamiya AS, Monteiro DR, Bernabé DG, Gorup LF, Camargo ER, Gomes-Filho JE, Oliveira SH, Barbosa DB. 2016. In Vitro and In Vivo Toxicity Evaluation of Colloidal Silver Nanoparticles Used in Endodontic Treatments. J Endod. 42: 953-60. doi: 10.1016/j.joen.2016.03.014. 53. Tsukiboshi M, Ricucci D, Siqueira JF Jr. 2017. Mandibular Premolars with Immature Roots and Apical Periodontitis Lesions Treated with Pulpotomy: Report of 3 Cases. J Endod. 43: 65-74. doi: 10.1016/j.joen.2017.06.013. 54. Uzel A, Sorkun K, Onçağ O, Cogŭlu D, Gençay O, Salih B. 2005. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol Res. 160 (2): 189-95. doi.org/10.1016/j.micres.2005.01.002. 55. vanHoute J, Lopman J, Kent R. 1996. The final pH of bacteria comprising the predominant flora on sound and carious human root and enamel surfaces. J Dent Res. 75 (4): 1008-14. doi: 10.1177/00220345960750040201. 56. Vidana R, Rashid MU, Özenci V, Weintraub A, Lund B. 2016. The origin of endodontic Enterococcus faecalis explored by comparison of virulence factor patterns and antibiotic resistance to that of isolates from stool samples, blood cultures and food. Int Endod J. 49 (4): 343-51. doi: 10.1111/iej.12464. 57 57. Wang M, Yu BW, Yu MH, Gao LX, Li JY, Wang HY, Li J, Hou AJ. 2015. New Isoprenylated Phenolic Compounds from Morus laevigata. Chem Biodivers. 12 (6): 937-4. doi: 10.1002/cbdv.201400210. 58. Wang YJ, Zhang HQ, Han HL, Zou YY, Gao QL, Yang GT. 2017. Taxifolin enhances osteogenic differentiation of human bone marrow mesenchymal stem cells partially via NF-κB pathway. Biochem Biophys Res Commun. 490 (1): 36-43. doi: 10.1016/j.bbrc.2017.06.002. 59. Xia T, Baumgartner JC. 2003. Occurrence of Actinomyces in infections of endodontic origin. J Endod. 29(9):549-52. doi: 10.1097/00004770-200309000- 00001 60. Yadlapati M, Souza LC, Dorn S, Garlet GP, Letra A, Silva RM. 2014. Deleterious effect of triple antibiotic paste on human periodontal ligament fibroblasts. Int Endod J. 47 (8): 769-75. doi: 10.1111/iej.12216. 61. Zeng W, Yan Y, Zhang F, Zhang C, Liang W. 2013. Chrysin promotes osteogenic differentiation via ERK/MAPK activation. Protein Cell. 4 (7): 539-47. doi: 10.1007/s13238-013-3003-3. 58 Figures and Tables Figure 1. Mean (bars) of the percentage of cell viability of fibroblasts from L-929 line after exposure to different concentrations of flavonoids, using MTT assays. aDifferent lower case letters show statistical differences between the groups, considering each concentration separately, according to ANOVA and Bonferroni tests, considering p<0.05. Table 1. Minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of flavonoids. Flavonoid Bacteria MIC (mg/mL) MBC (mg/mL) Taxifolin S. mutans 0.5 1 E.faecalis 0.25 1 A.israelii 0.25 0.5 Chrysin S. mutans >2 >2 E.faecalis >2 >2 A.israelii >2 >2 Pinocembrin S. mutans >2 >2 E.faecalis >2 >2 A.israelii 0.03 0.03 Galangin S. mutans >2 >2 E.faecalis >2 >2 A.israelii 0.03 0,03 Chlorhexidine Digluconate S. mutans 0.0002 0.002 E.faecalis 0.004 0.004 A.israelii 0.002 0.002 59 Figure 2. Bacterial recovery (Log CFU+1) after 24h of taxifolin and chlorhexidine digluconate (CHX) treatments (10x MBC) on 48h-growth biofilm. aDifferent lower case letters show statistical differences between the groups, considering each strain separately, according to ANOVA e Bonferroni tests, considering p<0.05. Figure 3. Representative CLSM images (63x) of E. faecalis biofilms inside dentin tubules after 48h of the treatments. (A) control – culture medium; (B) taxifolin 10x MBC; (C) CHX 100x MBC; (D) CHX 1000x MBC. 60 Figure 4. Means (bars-standard deviation) of the percentage of dead cells obtained after CLSM analysis of E. faecalis biofilm. Different lower case letters show statistical differences between the groups, considering each strain separately, according to ANOVA e Bonferroni tests, considering p<0.05. 61 Capítulo 2 62 Cytotoxicity and potential of taxifolin, a catechol-type flavonoid, to induct mineralization markers in odontoblast-like cells* Abstract The aim of this study was to evaluate the effects of treatment with taxifolin flavonoid on the viability of odontoblast-like cells and expression of mineralization markers. MDPC-23 was exposed to different concentrations of taxifolin treatment (10, 5, and 1µM) for different periods (24h, 72h, and continuous treatment). Cell viability, alkaline phosphatase (ALP) activity, mineralization nodule formation, and expression of DMP-1 and DSPP were determined. For all periods, taxifolin treatment was not cytotoxic to cells in the concentrations tested, according to ANOVA and Tukey tests. Taxifolin at the concentrations 10 to 1µM for 24h and 10 to 5µM for 72h stimulated ALP activity of cells. The percentage of mineralization nodule formation at 13d increased after 24h of treatment with taxifolin at 10 and 5µM, and 72h of treatment at 10µM. Continuous treatment did not stimulate ALP activity or mineralization by cells. The most elevated DMP-1 mRNA levels were observed on day 13 after 72h of treatment with 10µM of taxifolin. Groups exposed to taxifolin at 5µM for 72h presented elevated DSPP mRNA levels on days 6 and 13 without statistical difference between them, according to Kruskal-Wallis and Mann-Whitney tests. In conclusion, taxifolin treatments of 24 and 72h were more effective than continuous treatment, demonstrating that a lower dose of taxifolin over short periods of time has a biostimulatory effect on MDPC-23 cells. Our results suggest that taxifolin could be used as a biomaterial to stimulate remaining primary odontoblasts and odontoblast-like cells to produce a mineralized tissue barrier in vital pulp procedures. Running title: Taxifolin biostimulate MDPC-23 Keywords: Cell Culture Techniques, Flavonoids, Odontoblasts, Pulpotomy. *The manuscript is according to the guide for authors of International Endodontic Journal (Anexo B). 63 Introduction Immature permanent teeth with pulp exposed by caries, trauma, or restorative procedures require different treatments depending on the pulpal status, size of exposure, and microbial contamination (Bortolluzi et al. 2008). Vital pulp therapy (VPT) procedures have been extensively studied aiming at maintaining the vitality of radicular pulp and thus allowing dentin formation and completed root development (Lima et al. 2011, Keswani et al. 2014, Tsukiboshi et al. 2017). VPT includes pulp capping and pulpotomy procedures and their success depends mainly on the capacity of healing of the pulp tissue. Pulpotomy is a procedure based on amputation of the infected and inflamed coronal pulp and treatment of remaining vital radicular pulp tissue with medicaments (American Academy of Pediatric Dentistry 2014). When there is little pulp exposed, direct pulp capping is the treatment of choice (Keswani et al. 2014, Taha & Khazali 2017). Different from pulpotomy, pulp-capping material is placed in contact with the exposed pulp tissue, without amputation, however, both procedures allow the formation of mineralized tissue on the exposed area and apexogenesis - the continued physiological development and formation of the root apex. VPT procedures have been indicated for young permanent teeth without clinical or radiographic signs of irreversible pulpitis or necrosis (American Academy of Pediatric Dentistry 2014). Odontoblasts are the main link between the dentin and pulp, whose primordial functions are synthesis and deposition of dentin matrix. These specialized pulp cells are the first line of defense of the dentin-pulp complex, and are also therefore the first cells injured by harmful effects (de Souza Costa et al. 2014). A complicating factor in VPT is the difficulty of predicting the degree of pulpal damage. Generally, low intensity injuries induce primary odontoblasts to produce reactionary dentin; however the repair of severe injuries involves the recruitment of undifferentiated mesenchymal cells from pulp due to the death of the primary odontoblasts. These stem cells differentiate into odontoblast-like cells and start to produce reparative dentin (de Souza Costa et al. 2014). Calcium hydroxide (CH) and mineral trioxide aggregate (MTA) are conventional endodontic materials frequently used in VPT (Keswani et al. 2014, Taha & Khazali 2017, 64 Tsukiboshi et al. 2017). In partial pulpotomy, MTA has presented a higher success rate than CH (Taha & Khazali 2017). However, both materials demonstrate drawbacks. Tunnel defects in dentin bridges and microleakage have been observed in pulpotomy with CH which, over time, can lead to infection/necrosis of pulp (Schuurs et al. 2000). Studies have pointed out difficulties with the handling and insertion of MTA due to its grainy consistency and the possibility of break down due to a long setting time and prolonged maturation phase (Kogan et al. 2006), allied to high cost and tooth discoloration (Belobrov & Parasho 2011). Bioactive molecules have been suggested as VPT materials in several studies (Bortolluzi et al.2008, Parolia et al. 2010, Li et al. 2011, Lima et al. 2011, Kim et al. 2013, Keswani et al. 2014, Daltoé et al. 2016, Balata et al. 2017). According to Tziafas et al. (2000), an ideal pulp-capping agent should present effective adhesion to dentin, antimicrobial effect, and promote dentinogenesis, stimulating the formation of dentin bridge, indicative of a favorable prognosis after VPT (Kim et al. 2013). Alkaline phosphatase (ALP), dentin sialophosphoprotein (DSPP), and dentin matrix protein 1 (DMP1) are mineralization markers and have been used to assess the biostimulating action of materials (Li et al. 2011, Kim et al. 2013, Daltoé et al. 2016, Wang et al. 2017) Flavonoids are secondary plant metabolites constituted by a polyphenolic structure (Panche et al. 2016). Taxifolin is a catechol-type flavonoid isolated from green tea (Wang et al. 2017), which has presented antimicrobial activity (Jeong et al. 2009) as well as stimulating osteoblast differentiation in the mouse osteoblastic cell line (Satué et al. 2013) and in human bone marrow mesenchymal stem cells (Wang et al. 2017). The biostimulatory effect of taxifolin on odontoblast cells has not yet been studied. Therefore, the present study aimed to evaluate the effects of taxifolin treatment on the viability of odontoblast-like cells and expression of mineralization markers. The null hypotheses tested were: (1) taxifolin present cytotoxic effect on MDPC-23 cells, and (2) taxifolin treatments would not stimulate odontoblast-like cells to increase the expression of mineralization markers. 65 Materials and Methods Materials Culture medium, antibiotics, and reagents were purchased from Thermo Fisher Scientific (Pittsburgh, PA, USA). Taxifolin (#78666, Sigma-Aldrich, Saint Louis, MO, USA) was dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich, Saint Louis, MO, USA) and the stock solution stored at -20o C. Cell Culture and study design Immortalized odontoblast-like (MDPC-23) cell line was cultured in Dulbecco’s modified Eagle’s medium (DMEM, GIBCO, Grand Island, NY, USA) with 10% fetal bovine serum (FBS; GIBCO, Grand Island, NY, USA), penicillin (100 IU/ml), streptomycin (100 μg/ml), and glutamine (2 mmol/L) (GIBCO, Grand Island, NY, USA). Cells were seeded (2.5x103 cells/well) in 96-well plates and incubated at 37oC under a 5% CO2 and 95% air atmosphere (Thermo Plate, Fisher Scientific, Pittsburgh, PA, USA) for 24 h. After incubation, taxifolin (T) treatments were performed as follows: 24h treatment – cells were exposed once to the flavonoid treatment; 72h treatment – cells were exposed three times; continuous treatment – cells were exposed daily up to 13 days. All treatments were assayed with three taxifolin concentrations: 10, 5, and 1µM (T10, T5, and T1). After 24 or 72h of taxifolin treatment, the DMEM was replaced every 24h until completion of the experimental period (6 or 13 days). The negative control was DMEM without flavonoid, and the control group was DMSO 10µM (Table 1). Cell Viability Analysis Methylthiazol tetrazolium assay was performed to determine cell viability 24h, 72h, 6d, and 13d after beginning treatments. MTT assay is based on the succinate dehydrogenase enzyme produced by mitochondria, which reduces the MTT salt metabolically, converting it into formazan crystals. The treatments or DMEM were aspirated, then MTT 5mg/mL (Sigma-Aldrich, Saint Louis, MO, USA) was applied into wells and the plate was incubated at 37o C under a 5% CO2 and 95% air atmosphere for 4 h. Thereafter, the MTT solution was aspirated and replaced by acidified isopropanol solution to dissolve the formazan crystals. Cell viability was determined by absorbance in a spectrophotometer (Synergy H1 Hybrid multi-Mode Microplate Reader; Biotek Instruments, Winooski, VT, USA) at 570 nm. This assay was performed in duplicate. 66 Alkaline Phosphatase Assays Total Protein Production The quantification of total protein was performed according to Huck et al. (2017) with some modifications. On the sixth day, the treatments were aspirated and 200µL of sodium lauryl sulfate 0.1% (Sodium dodecyl sulfate, Sigma-Aldrich, Saint Louis, MO, USA) previously dissolved in deionized water were added to each well to lyse the cells. After 40 min at room temperature, the solution was homogenized and 100µL were separated for ALP activity assay. Next, 100µL of Lowry reagent (Sigma- Aldrich, Saint Louis, MO, USA) were added to the lysed cells and incubated for 20 min at room temperature. Posteriorly, 50µL of Folin (Folin-Ciocalteu’s phenol reagent, Sigma-Aldrich, Saint Louis, MO, USA), previously diluted in deionized water at a ratio of 1:3, were applied to each well and incubated for 30 min. After this period, all the samples were read in a spectrophotometer (Synergy H1 Hybrid multi-Mode Microplate Reader; Biotek Instruments, Winooski, VT, USA) to determine absorbance at 655 nm. A standard curve containing 32, 64, 96, 128, and 160 µg mL-1 of bovine albumin was determined to measure total protein of each sample (BSA, Sigma-Aldrich, Saint Louis, MO, USA). Alkaline Phosphatase Activity Alkaline phosphatase (ALP) activity was evaluated fo