S d M R J E a S b c d e f g a A R R A A K E G H M T Y 1 e d G p a c h 0 Plant Science 252 (2016) 42–52 Contents lists available at ScienceDirect Plant Science j ourna l ho me pa g e: www.elsev ier .com/ locate /p lantsc i unflower HaGPAT9-1 is the predominant GPAT during seed evelopment iriam Payá-Milansa,b, Jose Antonio Aznar-Morenoa,c, Tiago S. Balbuenad,e, ichard P. Haslamf, Satinder K. Giddag, Javier Pérez-Hormaechea, Robert T. Mulleng, ay J. Thelend, Johnathan A. Napier f, Joaquín J. Salasa, Rafael Garcésa, nrique Martínez-Forcea, Mónica Venegas-Caleróna,∗ Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, 41013 Seville, pain Department of Entomology & Plant Pathology, University of Tennessee, Knoxville, TN 37996, United States Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, United States Department of Technology, São Paulo State University, Jaboticabal, São Paulo, Brazil Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada r t i c l e i n f o rticle history: eceived 22 April 2016 eceived in revised form 4 July 2016 ccepted 7 July 2016 vailable online 9 July 2016 eywords: ndoplasmic reticulum lycerol-3-phosphate acyltransferase elianthus annuus ass spectrometry a b s t r a c t In oil crops, triacylglycerol biosynthesis is an important metabolic pathway in which glycerol-3- phosphate acyltransferase (GPAT) performs the first acylation step. Mass spectrometry analysis of developing sunflower (Helianthus annuus) seed membrane fractions identified an abundant GPAT, HaGPAT9 isoform 1, with a N-terminal peptide that possessed two phosphorylated residues with possi- ble regulatory function. HaGPAT9-1 belongs to a broad eukaryotic GPAT family, similar to mammalian GPAT3, and it represents one of the two sunflower GPAT9 isoforms, sharing 90% identity with HaGPAT9-2. Both sunflower genes are expressed during seed development and in vegetative tissues, with HaGPAT9-1 transcripts accumulating at relatively higher levels than those for HaGPAT9-2. Green fluorescent pro- tein tagging of HaGPAT9-1 confirmed its subcellular accumulation in the endoplasmic reticulum. Despite their overall sequence similarities, the two sunflower isoforms displayed significant differences in their riacylglycerol east enzymatic activities. For instance, HaGPAT9-1 possesses in vivo GPAT activity that rescues the lethal phenotype of the cmy228 yeast strain, while in vitro assays revealed a preference of HaGPAT9-1 for palmitoyl-, oleoyl- and linoleoyl-CoAs of one order of magnitude, with the highest increase in yield for oleoyl- and linoleoyl-CoAs. By contrast, no enzymatic activity could be detected for HaGPAT9-2, even though its over-expression modified the TAG profile of yeast. © 2016 Elsevier Ireland Ltd. All rights reserved. . Introduction Glycerol-3-phosphate acyltransferases (GPAT; E.C. 2.3.1.15) are nzymes that transfer the acyl moiety from an acyl-coenzyme A Abbreviations: ACP, acyl carrier protein; ConA, Concanavalin A; DAF, ays after flowering; ER, endoplasmic reticulum; FOA, fluoroorotic acid; 3P, glycerol-3-phosphate; GFP, green fluorescent protein; GPAT, glycerol-3- hosphate acyltransferase; LPA, 1-acylglycerol-3-phosphate or lysophosphatidic cid; LPAAT, 1-acylglycerol-3-phosphate acyltransferase; PDAT, phosphatidyl- holine:diacylglycerol acyltransferase; TAG, triacylglycerol. ∗ Corresponding author. E-mail address: mvc@ig.csic.es (M. Venegas-Calerón). ttp://dx.doi.org/10.1016/j.plantsci.2016.07.002 168-9452/© 2016 Elsevier Ireland Ltd. All rights reserved. (CoA) donor (or acyl–acyl carrier protein [ACP] in plastids) to the sn-1 position of a glycerol-3-phosphate (G3P) molecule, yielding 1- acylglycerol-3-phosphate (or lysophosphatidic acid, LPA) [1]. This first acylation step occurs slower than the second [2], limiting the availability of LPA and producing a potential ‘bottleneck’ in the flow of carbon into glycerolipids, as originally defined by Eugene Kennedy [3]. It is now realized that GPAT-mediated regulation of glycerolipid synthesis is more complex than previously thought. Considerable effort has been dedicated to determine the major plant GPAT iso- forms implicated in seed oil synthesis, leading to the identification of GPAT sequences from three protein families in different plant species [4–6]. The GPAT family homologue of GPAT9 (At5g60620) dx.doi.org/10.1016/j.plantsci.2016.07.002 http://www.sciencedirect.com/science/journal/01689452 http://www.elsevier.com/locate/plantsci http://crossmark.crossref.org/dialog/?doi=10.1016/j.plantsci.2016.07.002&domain=pdf mailto:mvc@ig.csic.es dx.doi.org/10.1016/j.plantsci.2016.07.002 M. Payá-Milans et al. / Plant Science 252 (2016) 42–52 43 Table 1 Strains and plasmids used in this study. Yeast strains and plasmids Description Reference or source S. cerevisiae S288C MAT� SUC2 gal2 mal2 mel flo1 flo8-1 hap1 ho bio1 bio6 [14] W303-1A MAT� {leu2-3112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15} [15] gat1� MATa; his3�1; leu2�0; lys2�0;ura3�0; YKR067w:kanMX4 [16] ale1� MATa; his3�1; leu2�0; met15�0; ura3�0; YOR175c:kanMX4 [17] cmy228 W303-1A; MAT�; gat1�:TRP1 gat2�:HIS3 [pGAL1:GAT1 URA3] [18] Plasmids p416(LEU2) Yeast vector for constitutive expression of proteins under the control of a GPD promoter [19] actose rs Em ion of f b u m s [ f f b a c e H o i t a s d g o a o t c b t [ a o w f a e fi 2 2 l i a w g c L pGAL1(URA3):GAT1 Plasmid carried by cmy228 that drives gal pUC18/NheI-mGFP pUC18-based expression vector that harbo pYES2(URA3) Yeast expression vector for native express rom Arabidopsis thaliana L. has been attributed a direct role in TAG iosynthesis [7,8]. This enzyme is located in the endoplasmic retic- lum (ER) and its protein sequence shares certain similarity with ammalian GPAT3 and GPAT4, both of which are involved in lipid torage in white adipose tissue of the liver and mammary glands 9]. There have been several attempts to purify plant GPATs from ER ractions. For instance, partial purification of a solubilized GPAT rom avocado mesocarp (Persea americana Mill.) was achieved y Eccleston and Harwood [10] using affinity chromatography, lthough the purified enzyme was very unstable. A GPAT from palm allus (Elaeis guineensis Jacq.) was also partially purified using ion xchange and molecular exclusion chromatography by Manaf and arwood [11]. Based on this latter approach, Ruiz-Lopez et al. [12] btained fractions from sunflower (Helianthus annuus L.) enriched n microsomal GPAT activity, although the enzyme responsible for hat activity was not successfully sequenced. Common sunflower seeds accumulate high levels of TAGs that re rich in oleic and linoleic acids [13]. Moreover, several mutant unflower lines have been selected and bred to produce oils with iverse properties and fatty acid content [13]. The study of the enetics and biochemistry of oil biosynthesis in sunflower seeds not nly provides a basic understanding of the underlying processes but lso, it yields potential targets to customize the lipid composition f sunflower oil in order to improve both oil quality and produc- ion. As such, the GPAT activity in developing seed embryos was haracterized, whereby the highest activity was measured in seeds etween 15 and 20 days after flowering (DAF), showing specificity owards palmitoyl-CoA, oleoyl-CoA and linoleoyl-CoA derivatives 12]. The results of this study reflected the fatty acid composition t the sn-1 position of sunflower TAGs, supporting the involvement f this activity in oil assembly. To complement this earlier study, e report here the successful identification of the major GPAT iso- orm present in developing sunflower seed membranes, as well s its molecular and biochemical characterization. The role of this nzyme in sunflower oil synthesis is discussed in view of these ndings. . Materials and methods .1. Biological material and growth conditions The wild-type CAS-6 sunflower (H. annuus) line (Sunflower Col- ection of Instituto de la Grasa, CSIC, Spain) was grown as described n Ruiz-Lopez et al. [12]. Root, hypocotyl, leaf tissues and seeds t different days after flowering (DAF) from at least three plants ere harvested for downstream analyses. S. cerevisiae strains were rown at 22 ◦C in restricted SC medium supplemented with glu- ose, galactose or raffinose (2%, w/v). Tobacco (Nicotiana tabacum .) Bright Yellow-2 (BY-2) cells were cultured in suspension and inducible expression of GAT1 to confer viability [18] GFP gene driven by the CaMV35S promoter [20] proteins regulated by galactose Invitrogen prepared as described elsewhere [7]. The strains and plasmids used in this study are described in Table 1. For heterologous expression studies and complementation assays, the PLATE transformation method [21] was used to sepa- rately introduce the plasmid constructs into the yeast strains. Yeast transformants were grown at 30 ◦C overnight in liquid selective SC medium (SC-U for pYES2 and SC-L for p416) supplemented with 2% galactose. Complementation assays were performed on 5 �L aliquots of serial dilutions plated on various selective media and incubated at 22 ◦C. Yeast transformed with the empty plasmids were used as controls. 2.2. Cloning and expression of HaGPAT9s Sunflower HaGPAT9 isoforms 1 and 2 were identified based on a BLAST search of Helianthus sp. EST sequences using human GPAT3 as the query. Alignments from these ESTs revealed two complete GPAT sequences in sunflower, which were amplified from 15 DAF sunflower seed cDNA using specific primer pairs (HaGPAT9 [1,2]- F/-R: Electronic Material Table S1). The sequences of these cDNAs were confirmed (Secugen, Madrid, Spain) and complete sequences for HaGPAT9-1 and 2 were deposited in GenBank under accession numbers EF552845 and EF552846, respectively. Full-length sequences were amplified using the GPAT9 [1,2]pYES2-F/-R primer pairs (Table S1) and they were cloned into the pYES2(URA3) galactose inducible vector (Invitro- gen, Carlsbad, CA, USA). Alternatively, the GPAT9 [1,2]p416-F/-R primer pairs were used for constitutive expression in the yeast p416(LEU2) vector [19] (kindly provided by Dr Ana Rincón). Quan- titative PCR was performed using cDNA from seeds and tissues obtained at various DAF, as described in Sánchez-García et al. [22], and using the qGPAT9 [1,2]-F/-R primers (Table S1) and the corresponding constructs in the pYES2 plasmid. 2.3. Mass spectrometry analysis of sunflower seed proteins Solubilized proteins from sunflower seed microsomal fractions were analyzed on the LTQ-Orbitrap XL mass spectrometer (Meth- ods S1). The resulting spectra were searched against a custom sunflower database containing data from NCBI, TIGR and UniGene, as well as from the sunflower acyltransferases cloned to date that were added manually. 2.4. Confocal microscopy of GFP-tagged HaGPAT9-1 in tobacco cell suspensions The full-length open reading frame (ORF, minus the stop codon) of HaGPAT9-1 was amplified by PCR using GPAT9 1pUC18- F/-R primers, designed with NheI restriction sites (Table S1). Cloned products were inserted into the unique NheI restriction site of pUC18/NheI-mGFP [20]. The resulting construct encoded 4 lant Sc H o e w w a U B 6 h w a I a C t e U 2 [ 1 t 3 N s i [ s T p d c o r s 2 c M g 2 c 8 s a n ( 2 h 0 E a a g c 5 t 4 M. Payá-Milans et al. / P aGPAT9-1 linked at its C terminus to the monomeric green flu- rescent protein (GFP). Tobacco cells were transiently transformed with the plasmid ncoding HaGPAT9-1-GFP as described previously [7]. The cells ere then fixed and stained during the final 20 min of incubation ith Alexa Fluor 594 conjugated Concanavalin A (ConA) [23] at final concentration of 5 mg/mL (Molecular probes, Eugene, OR, SA). Confocal laser scanning microscopy (CLSM) images of the Y-2 cells were acquired on a Leica DM RBE microscope using a 3 x Plan Apochromat oil-immersion objective, a TCS SP2 scanning ead (Leica Microsystems, Germany) and the LEICA TCN NT soft- are package (Version 2.61). GFP was excited at 488 nm with an rgon laser and with an emission filter opening at 480–550 nm. mages of the cells were deconvoluted, and adjusted for brightness nd contrast using Northern Eclipse 5.0 software (Empix Imaging, anada). The images are representative of >20 cells from at least hree independent transformation experiments and they were gen- rated using Adobe Photoshop CS (Adobe Systems, San Jose, CA, SA). .5. Computational analysis Phosphorylation sites were predicted using the GPS 3.0 server 24]. Protein sequences were aligned using Clustal Omega (version .2.1) from the EMBL-EBI server [25,26], applying the default set- ings. Gene ontology (GO) assignments were made using Blast2GO .2 [27] from their closest GO-annotated orthologs in the plant R database using default settings. A phylogenetic tree was con- tructed from the alignment using the minimum evolution method n the MEGA 5.0 program and with a bootstrap value of 1000 28]. The programs used to predict the subcellular localization of unflower HaGPAT9-1 were TargetP1.1 (www.cbs.dtu.dk/services/ argetP/) and ChloroP1.1 (www.cbs.dtu.dk/services/ChloroP/). The rogram used to identify target regions that could potentially be isrupted by translational fusion to the GFP was TMHMM (www. bs.dtu.dk/services/TMHMM-2.0/). The OCTOPUS program (http:// ctopus.cbr.su.se/) was used to identify putative transmembrane egions. Statistical significance between control replicates and amples was obtained using Student’s t-test with P < 0.05. .6. Analysis of the TAG and fatty acid composition of yeast cells gat1� yeast strain transformed with a pYES2 construct either ontaining a GPAT or empty was grown in SC-U selective media (see ethods S1 for details). Overnight cultures were used to inoculate alactose-containing media to induce enzyme expression. After 4 h growth, cells were harvested, washed and dried under nitrogen urrent. The cell pellet was resuspended in methanol and heated at 0 ◦C for 10 min. Then, total lipids were extracted (Methods S1) and ubjected to TAG purification [29]. The molecular TAG species were nalyzed by MS as described in Hamilton et al. [30]. The data were ormalized to dry cell weight using the internal standard tri15:0 Nu-Check Prep, Elysian, MN, USA). .7. Preparation of yeast microsomal fractions Yeast cells transformed with different pYES2 constructs were arvested from 50 mL cultures, and they were resuspended in .5 mL of a lysis solution containing 50 mM HEPES [pH 7.0], 2 mM DTA and 10% (v/v) glycerol. An equivalent volume of 0.4–0.6 mm cid treated glass beads (Sigma-Aldrich, St. Louis, MO, USA) were dded to the cells and they were subjected to six cycles of 30 s rinding in a MiniBeadbeater-8 (BioSpec, Bartlesville, OK, USA) and ooled for 1 min on ice. The homogenate was spun at 600 g for min and the supernatant was collected into a clean tube. A fur- her 0.5 mL of the lysis solution was added and the cycles of lysis ience 252 (2016) 42–52 were repeated, adding the new supernatant to the former. This soluble fraction was centrifuged at 1500g for 5 min, collected and then centrifuged at 16,000 g for 15 min. The microsomal fraction was precipitated at 22,000 g for 2 h and it was then resuspended in 50 �L 100 mM phosphate buffer [pH 7.5] for immediate use. All the fractionation steps were carried out at 0–4 ◦C. 2.8. GPAT assay GPAT activity was measured on microsomes of gat1� trans- formants using a modification of the protocol reported by Ruiz-Lopez et al. [12]. The incubation mixture (final volume of 100 �L) contained 50 mM bis-tris propane [pH 7.0], 1.5 mM G3P (Sigma-Aldrich), including 3700 Bq L-[U-14C]glycerol-3-phosphate (American Radiolabeled Chemicals, St. Louis, MO, USA), 0.3 mM acyl-CoA (Sigma-Aldrich) and 0.05% (w/v) BSA. The reaction was started with the addition of 50 �g of microsomal proteins and it ran for 15 min at 30◦C unless otherwise specified. The reactions were stopped by adding 100 �L of 0.15 M acetic acid and the lipids were extracted and analyzed as described originally. 2.9. LPAAT assay LPAAT activity was measured on microsomes isolated from ale1� transformants. The reaction mixture (a final volume of 100 �L) contained 100 mM phosphate buffer [pH 7.5], 50 �M 1- oleoyl [1-oleoyl-9,10-3H]LPA (3667 Bq) (Perkin Elmer, Waltham, MA, USA), 20 �M acyl-CoA (Sigma-Aldrich), 1 mM MgCl2, 1 mM DTT and 50 �g of microsomal proteins. After incubating at 30◦C for 5 min, the reactions were stopped by adding 100 �L 0.15 M acetic acid, and the lipids were extracted by adding a further 500 �L of chloroform/methanol (1:1, v/v) followed by gentle mixing and spinning at 2000 g for 10 min. The lower chloroform phase con- taining the extracted lipids was recovered and the aqueous phase was re-extracted with a further 250 �L of chloroform. The lower phase recovered was combined with that previously extracted, it was evaporated under nitrogen at 36◦C and reconstituted in 50 �L of the chloroform/methanol mixture (2:1, v/v). Subsequently, 25 �L of the lipid suspension was analyzed by thin layer chromatogra- phy, as described by Ruiz-Lopez et al. [12], and radioactivity in the remaining volume was quantified using Ecoscint scintillant fluid (National Diagnostics, Atlanta, GA, USA) and a LS-6500 Multipur- pose Scintillation Counter (Beckman Coulter, Brea, CA, USA). 3. Results 3.1. Cloning of two sunflower GPAT genes: a phylogenetic study Based on the sequences of previously described microsomal GPAT3 from mouse and GPAT9 from Arabidopsis, we performed a sequence homology search of ESTs in Helianthus species, identify- ing fragments of two putative GPAT genes. The coding sequences for these two isoforms were successfully amplified from sunflower seed cDNA and they encoded proteins of 371 amino acids with a predicted molecular weight of 42.6 kDa. Blast searches at the nucleotide level using each isoform as a query against closely related species in the Asterid subclass only yielded results for iso- form 2 (data not shown). Even though sunflower behaves as a diploid, the presence of two isoforms is probably due to the ances- tral polyploid origin of the Helianthus genus [31]. Also, more than one isoform were observed in other hybrid or polyploid species (e.g., Malus x domestica, Sesamum indicum, Glycine max: Fig. 1). Comparison of these HaGPAT9 proteins with other similar pro- teins revealed 75–90% identity with those from flowering plants, 45–70% with those from more distant Viridiplantae species and http://www.cbs.dtu.dk/services/TargetP/ http://www.cbs.dtu.dk/services/TargetP/ http://www.cbs.dtu.dk/services/TargetP/ http://www.cbs.dtu.dk/services/TargetP/ http://www.cbs.dtu.dk/services/TargetP/ http://www.cbs.dtu.dk/services/TargetP/ http://www.cbs.dtu.dk/services/TargetP/ http://www.cbs.dtu.dk/services/ChloroP/ http://www.cbs.dtu.dk/services/ChloroP/ http://www.cbs.dtu.dk/services/ChloroP/ http://www.cbs.dtu.dk/services/ChloroP/ http://www.cbs.dtu.dk/services/ChloroP/ http://www.cbs.dtu.dk/services/ChloroP/ http://www.cbs.dtu.dk/services/ChloroP/ http://www.cbs.dtu.dk/services/TMHMM-2.0/ http://www.cbs.dtu.dk/services/TMHMM-2.0/ http://www.cbs.dtu.dk/services/TMHMM-2.0/ http://www.cbs.dtu.dk/services/TMHMM-2.0/ http://www.cbs.dtu.dk/services/TMHMM-2.0/ http://www.cbs.dtu.dk/services/TMHMM-2.0/ http://www.cbs.dtu.dk/services/TMHMM-2.0/ http://www.cbs.dtu.dk/services/TMHMM-2.0/ http://www.cbs.dtu.dk/services/TMHMM-2.0/ http://octopus.cbr.su.se/ http://octopus.cbr.su.se/ http://octopus.cbr.su.se/ http://octopus.cbr.su.se/ http://octopus.cbr.su.se/ http://octopus.cbr.su.se/ M. Payá-Milans et al. / Plant Science 252 (2016) 42–52 45 Fig. 1. Clade representation of proteins homologous to HaGPAT9. Phylogeny reconstruction using the minimum evolution method. Bootstrap values based on 1000 replications a opsis 2 t r p s u re shown at the nodes with values below 50% condensed. Two LPAATs from Arabid 5–35% identity with similar GPAT proteins in animals. Pro- ein alignment across various kingdoms revealed that 18% of the esidues were identical (Fig. S2). Clustering of homologous GPAT roteins yielded a tree consistent with the taxonomic relation- hips among their source species (Fig. 1), a tree that was rooted sing a couple of LPAAT proteins from A. thaliana as the outgroup. thaliana were used to root the tree. All sequences belonging to Viridiplantae species clustered well together (88% bootstrap), while separate clades contained the rest of the taxonomic groups (rhodophyta, amoebozoa, opisthokonta and vertebrates). The two sunflower isoforms are grouped together in a same clade. 4 lant Sc 3 l f p t c f a i a p t n S S a p o t l a p i 3 o n a p d t s a T i b t s l s i n t 1 c s 3 t e i s i r t t t t 6 M. Payá-Milans et al. / P .2. Proteomic analysis of seed microsomes In this study, sunflower seed microsomal proteins were ana- yzed using a combination of one-dimensional gel electrophoresis ollowed by liquid chromatography-mass spectrometry. The sam- le complexity was reduced by SDS-PAGE pre-fractioning prior to rypsin digestion (Fig. S1). In addition to the sunflower sequences ontained in the online databases, known sequences for acyltrans- erases were included in the main search database and they were lso used to generate a specific database for post-translational mod- fications. After applying a 1% false discovery rate (FDR) cut-off, this pproach resulted in the identification of 4413 non-redundant eptides representing 991 proteins. From these, the product of he HaGPAT9-1 gene (GenBank accession EF552845) was the most oteworthy. The corresponding peptides were derived from the DS-PAGE band containing proteins in the range of 35–40 kDa (Fig. 1). A further search against a custom database containing sunflower cyltransferase sequences was carried out to find peptides with ost-translational modifications. This search revealed the presence f four HaGPAT9-1 peptides defined by 7 spectra (Table 2). Of hese, two peptides were unmodified, one was carbamidomethy- ated and the other contained two phosphorylated residues (Tyr21 nd Thr32). The Tyr21 residue is conserved among all the flowering lant species analyzed (Fig. S2), whereas Thr32 was only found in soform 1. No deamidated peptides were found. .3. Evaluation of the relevant proteins in sunflower microsomes The assignment of GO terms to the proteins revealed that most f the involved biological processes were related to protein and ucleic acid metabolism (Table S3). 39 sequences were associ- ted to lipid metabolic process (GO: 0006629); at least 20 of them articipate in de novo lipid biosynthetic pathways and 7 in lipid egradation (Table 3). Amongst the enzymes involved in lipid syn- hesis that were associated with the ER, two long chain acyl-CoA ynthetases were found, as well as a delta-12 oleate desaturase nd a phosphatidylcholine:diacylglycerol acyltransferase (PDAT). here was a large representation of soluble proteins related with ntraplastidial fatty acid biosynthesis, including: acetyl-CoA car- oxylase subunits, malonyl-CoA:ACP transacylase, components of he fatty acid synthase complexes, acyl-ACP thioesterases and tearoyl-ACP desaturases. Moreover, many proteins involved in ipid degradation and �-oxidation were also present in this fraction, uch as an acyl-CoA synthetase, a delta(3,5)-delta(2,4)-dienoyl-CoA somerase, acyl-CoA oxidases and 3-hydroxyacyl-CoA dehydroge- ases (Table 3). A large number of the identified spectra belonged o proteins implicated in protein metabolism (Table S2). Moreover, 1S globulin seed storage proteins were also detected due to the pH onditions used for precipitation in the preparation of the micro- omes [32]. .4. Subcellular localization of HaGPAT9-1 The subcellular localization of HaGPAT9-1 was studied in obacco BY-2 cells by confocal microscopy [33–35]. The transient xpression of HaGPAT9-1-GFP (via biolistic bombardment) in an ndividual BY-2 cell revealed a reticular distribution that was imilar to the fluorescence attributable to the ER marker ConA, ndicating that HaGPAT9-1 is an ER resident protein (Fig. 2, top ow). Closer inspection of the images revealed that the distribu- ion of the GFP-tagged protein was not entirely uniform throughout he ConA-stained ER but rather, it was at times enriched in dis- inct regions of the ER or, less frequently, localized to regions hat were devoid of ConA (Fig. 2, bottom row; see solid and open ience 252 (2016) 42–52 arrowheads). The presence of aggregated ER structures was also conspicuous in HaGPAT9-1-GFP-transformed cells (Fig. 2, top row). Similar alterations in ER morphology were not detected in neigh- boring untransformed BY-2 cells, yet they have been reported in plant cells ectopically expressing other GPATs or other lipid biosyn- thetic enzymes [36–38,7], suggesting that they are a consequence of altering the amount of lipids in the ER membrane. 3.5. Functional complementation assay in yeast An assay of GPAT activity based on the complementation of the cmy228 S. cerevisiae strain (Table 1) was designed to evalu- ate the in vivo functionality of the HaGPAT9 proteins identified (Fig. 3). Yeasts possess two GPAT genes, GAT1 and GAT2, and dis- rupting either of these alone does not cause detectable growth effects. By contrast, disruption of both genes together is lethal. The yeast cmy228 strain is gat1�gat2� and it contains the vec- tor pGAL1(URA3):GAT1 that drives galactose inducible expression of GAT1, allowing these cells to survive in the presence of this sub- strate. To determine whether the activity of either of the sunflower GPATs could replace the missing activity in this yeast mutant, they were introduced into an expression system under the regulatory control of the constitutive GPD promoter (p416[LEU2]:HaGPAT9- 1 and 2) and used to transform cmy288 strain. The prototrophic strain S288C and the auxotrophic strain W303-1A carrying the empty p416(LEU2) vector were used as URA+ and URA- controls, respectively. The strains grown under control conditions of plasmid selection and induction (Fig. 3A) behaved quite distinctly to those grown on glucose, where the lethal phenotype of the cmy288 strain (Fig. 3B) was overcome by expressing the product of HaGPAT9-1 gene. However, the application of 5-fluoroorotic acid (FOA) to URA supplemented medium, which is lethal for URA+ cells, inhibited the growth of any cell that had not lost the pGAL1 plasmid (Fig. 3C). Therefore, the HaGPAT9 does not fully complement yeast GAT func- tionality. Growth in media not selecting p416 (Fig. 3D) triggered the loss of such plasmids carrying the heterologous enzymes, decreas- ing the rate at which cells grew (compare with Fig. 3B). 3.6. Overexpression of sunflower GPAT9s modifies the TAG profile in yeast A second approach to indirectly investigate the enzymatic activ- ity of HaGPAT9s was to analyze the modifications induced in yeast TAGs. Sunflower GPAT coding sequences were introduced into the inducible pYES2 expression vector, which was transformed into the GPAT deficient gat1� yeast strain. After growth on selective and inducible media the yeast cells were harvested, dried and weighted, and their TAGs extracted, analyzing both the TAG profile on a mass spectrometer and the TAG fatty acid composition. After normalization of the TAG data with internal lipid stan- dards and according to samples dry weight, the over-expression of both heterologous enzymes revealed an increase in the total amount of TAGs produced by the transformants relative to the con- trols (Fig. 4). HaGPAT9-1 expression induced the accumulation of most TAG species, a composition not displayed by its counterpart. The most abundant TAG species contained either 48 or 50 carbon atoms. Regarding the degree of unsaturation, TAGs containing less than C48 were present in saturated species, although there was a preference to contain one unsaturated fatty acid, whereas longer TAGs possessed at least one unsaturated fatty acid. Additionally, the differences in the accumulation of TAG species were consistent with the fatty acid composition of TAGs in the three strains (Fig. 5). M. Payá-Milans et al. / Plant Science 252 (2016) 42–52 47 Fig. 2. Localization of HaGPAT9-1 to the ER in tobacco BY-2 cells transiently transformed (via biolistic bombardment) with HaGPAT9-1-GFP and stained with the ER marker, ConA. The merged image shows the co-localization of HaGPAT9-1-GFP and ConA at the ER. The asterisk in the merged image highlights a region of aggregated ER. The boxes represent the area of the cell shown at higher magnification in the bottom row. Solid and open arrowheads in the bottom row represent examples where HaGPAT9-1-GFP appears to be localized to distinct regions of the ConA-stained ER and regions devoid of ConA, respectively. Scale bar = 10 �m. SC-L + FOA + 2% Glc SC-UL + 2% GlcSC-UL + 2% Gal SC-U + 2% Glc 1 10-1 10-2 10-3 10-4 10-5 A B C D E 1 10-1 10-2 10-3 10-4 10-51 10-1 10-2 10-3 10-4 10-5 1 10-1 10-2 10-3 10-4 10-5 A B C D E A B C D E A B C D E A B C D Fig. 3. Complementation assay of the double GPAT cmy228 mutant yeast strain with the two HaGPAT9 isoforms. The strains are displayed in rows and the dilutions in the columns. (A-D) The plate composition is specified at the bottom of each image: A, S. cerevisiae strain S288C; B, S. cerevisiae strain cmy228 p416(LEU2); C, S. cerevisiae strain cmy228 p416(LEU2):HaGPAT9-1; D, S. cerevisiae strain cmy228 p416(LEU2):HaGPAT9-2; E, S. cerevisiae strain W303-1A p416(LEU2). 48 M. Payá-Milans et al. / Plant Science 252 (2016) 42–52 Table 2 The mass spectrometry peptides belonging to the HaGPAT9-1 protein. Peptide sequence Best SEQUEST XCorr score Number of total spectra Variable modifications identified by spectrum Charge state GAFELGATVCPIAIK 2.69 6 c10: Carbamidomethyl (+57.02) +2H IFVDAFWNSR 2.05 6 +2H LRDLLDISPTLTEAAGAIVDDSFTR 2.88 6 +2H PNIEDYLPPDSIQQPHTK 2.62 1 y6: Phospho (+79.97), t17: Phospho (+79.97) +3H Table 3 Proteins in developing sunflower seeds identified by mass spectrometry that are related to lipid metabolism. Protein gb Peptides Biosynthesis Acetyl-CoA carboxylase carboxyltransferase GE494904 DLYTHLTPIQR, GGVLSHLSPFKPLK, KHEYPWPQDPDPNVK Malonyl-CoA:acyl carrier protein transacylase GE514621 GQAMQEAADAAK, LRGQAMQEAADAAK, VPAAAELYNK Beta-ketoacyl-ACP synthase III (KAS III) EF514400 DKMTGLAVEAAQK, ILDAVATRLEIPADR, IVDTSDEWISVR, LEVSNDDLSK, MTGLAVEAAQK, NVLVIGADALSR Beta-ketoacyl-ACP synthase III (KAS III) GE514912 ILTGNESLTGLAAEASLK, IVDTNDEWISAR Ketoacyl-ACP reductase 1 ADV16374 GITANAIAPGFISSDMTAK, LGEDIEKNILK Beta-hydroxyacyl-ACP dehydratase ADE06392 ENFVFAGVDK, ENFVFAGVDKVR, KPVVAGDTLVMR Beta-hydroxyacyl-ACP dehydratase ADL60215 DNFFFAGIDK, FPAFPTVIDINQIR, FPFLLVDR, VIEYNPGVSAVAIK Enoyl-ACP reductase 2 HM021138 AFIAGIADDNGYGWAIAK, AVSASSDTKPLPGLPVDLR Beta-ketoacyl-ACP synthase I (KAS I) EF177175 ALEDADLGGDK, ALEDADLGGDKLSK, LLAGESGIGLIDR, LLAGESGIGLIDRFDASK, RLDDCLR Beta-ketoacyl-ACP synthase I (KAS I) DY910493 ALEHADLAADNR, KALEHADLAADNR Beta-ketoacyl-ACP synthase II DQ835562 ALADAGISPSDSDEIDKSR, VFNDAIEALR Stearoyl-ACP desaturase U70374 AKESVNVPFSWIFDR, ATFISHGNTAR, ESVNVPFSWIFDR, HGDLLHQYLYLSGR, VADLTGLSGEGR Stearoyl-ACP desaturase U91339 AKEGPSIPFSWIFDR, AQDYVCGLPSR, KAQDYVCGLPSR, LAQICGTIAADEK Long chain acyl-CoA synthetase 4-like DY912306 HGPYVWLTYK, QVYDKVIQVGNAIR Long chain acyl-CoA synthetase DY911733 AAIGSGLVAHGIPK, VRPDGTVGDYK Delta-12 oleate desaturase U91341 ALRPVLGEYYR, FACHYVPTSPMYNER, FDKTPFYVAMWR, GALATVDRDYGVLNK, HHSNTGSLERDEVFVPK, YFNNTVGR Acyl-ACP thioesterase FATA1 AY078350 CYEVGINK, KLNLIWVTSR, SSGEGLELNR, TGVAVDVTEKR, VNDDIRDEYLIFCPK, WVMMNSETR Acyl-CoA synthetase GE500285 KVFITDSVPK, RIVAEHFLTR Phospholipid/glycerol acyltransferase (CDS gene = “ER-GPAT1”) ABU88984 GAFELGATVCPIAIK, IFVDAFWNSR, LRDLLDISPTLTEAAGAIVDDSFTR, PNIEDYLPPDSIQQPHTK Phosphatidylcholine:diacylglycerol acyltransferase GE497124 AMDPGLLDSEILGLK, SIMNIGPAFLGIPK, TWDSIISLLPK Degradation 3-hydroxyacyl-CoA dehydrogenase DY909264 LGLIDAIAPPQDLLK, TDKIGSLSEAR 3-hydroxyacyl-CoA dehyrogenase DY909099 FSGGFDINVFQK, LGLIDAIVPPQDLLK, VFNELVLSDTSK Acetyl-CoA acetyltransferase GQ254017 TPMGDFLGSLSSLPATK, ILVTLLGVLR, LGSIAIQSALQR Acetyl-CoA C-acyltransferase/3-ketoacyl-CoA thiolase GE513651 LNVHGGGVSLGHPLGCSGAR, LGLNVIAK 405 646 937 3 a g p s a e t t i a 1 i i s t i l m i Acyl-CoA dehydrogenase DY920 Acyl-CoA oxidase DY907 Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial-like DY916 .7. Glycerol-3-phosphate and lysophosphatidate acyltransferase ctivities of the HaGPAT9 proteins The GPAT assays carried out on microsomal preparations of the at1� yeast strain carrying the empty plasmid (control cells) dis- layed reduced background activity. After over-expressing both unflower isoforms, only the construct carrying HaGPAT9-1 induced n increase in GPAT activity. The influence of reaction time was valuated by running the assays for 15 or 30 min (Fig. 6A) and as he activity was 60% higher after the shorter 15 min reaction time, his was used in the following assays. The substrate specificity was nvestigated using different acyl-CoA derivatives and the strongest ctivity was evident with 16:0-CoA, followed by 18:2-CoA and 8:1-CoA (Fig. 6B). Compared to control, activity of yeast express- ng HaGPAT9-1 with 16:0-CoA experienced a two-fold significant ncrease while it raised to three-fold with the unsaturated sub- trates. Only weak activity was displayed towards 18:0-CoA, close o the limits of detection. No activity was detected for HaGPAT9-2 soform. The LPAAT activity of GPATs was also evaluated using 1-oleoyl ysophosphatidic acid as the acceptor and different acyl-CoAs. In ost cases the expression of the GPATs in yeast did not significantly ncrease the background LPAAT activity of the yeast microsomes LGALNIAGGTIK, SWYFNHPALDVSK, VEGGWVIEGQKR MANLVANDPAFEK, VSTHAVVYAR LPGIVGFGNAMELALTAR, HMQDAITSIEK (Fig. 6C), and a small but a significant increase in LPAAT activity was only measured when HaGPAT9-1 was expressed and 18:1-CoA or 18:2-CoA were the acyl donors. By contrast, the LPAAT activity associated with expression of the second isoform was lower than that of the controls. 3.8. HaGPAT9 expression The expression of microsomal GPATs was studied in developing sunflower seeds and vegetative tissues by RT-qPCR. HaGPAT9-1 is more actively transcribed than its homologue in most of the tissues analyzed (Fig. 7A), and the expression of this isoform was upregu- lated at the initial phases of embryo development and at the late stage of seed maturation. In addition, this isoform was strongly expressed in leaves. The HaGPAT9-2 gene exhibited a very different profile and it was generally expressed more weakly than its homo- logue. This isoform was only upregulated at early and mid-stages of seed development, as well as in vegetative tissues. 4. Discussion TAGs accumulate during sunflower seed maturation to reach values up to 40–50% of the total seed weight. The first acylation M. Payá-Milans et al. / Plant Sc Fig. 4. TAG molecular species in yeast over-expressing a sunflower HaGPAT9 and the empty vector control. Values are the mean ± SD of three replicates. The asterisks indicate statistically significant differences (P < 0.05) compared to the control. F a i r a fi t i f p s o s I b c p ig. 5. Fatty acid distribution in TAGs of yeast over-expressing a sunflower HaGPAT9 nd the empty vector control. Values are the mean ± SD of three replicates. The aster- sks indicate statistically significant differences (P < 0.05) compared to the control. eaction to produce these TAGs is carried out by sn-1 GPAT enzymes lthough in an initial search no such candidate proteins were identi- ed in sunflower [12]. Later, 60 Kd sunflower GPATs were detected hat were associated to a plant specific sn-2 GPAT family, GPATs 1–8 n Arabidopsis, involved in cutin/suberin biosynthesis [5]. No GPAT rom this family was identified in our mass spectrometry analysis. A rotein recently associated with TAG biosynthesis is the Arabidop- is GPAT9 [7,8] and here, we provide an extensive characterization f its counterpart in sunflower. We have cloned two GPAT genes from developing sunflower eeds designated HaGPAT9-1 and -2 after the Arabidopsis gene. soform 1 was the enzyme identified by proteomics in the mem- ranes of embryos at the onset of the oil accumulation. This isoform ontains some conserved blocks when aligned with homologous roteins, indicating the probable fragments that define the active ience 252 (2016) 42–52 49 site (e.g., the HX4D motif present in many acyltransferases) [39] and substrate binding regions (Fig. S2). However, examination of their amino acid sequences showed that both sunflower isoforms accumulate changes in relation to their homologues. A phylogenetic study showed a broad spectrum of taxonomic groups that have proteins similar to this GPAT, suggesting an ancient origin (at least in early eukaryotes) before they evolved into the current kingdoms. The disposition of clades in the tree is coher- ent with the group taxonomy, as partially reflected in the plant clade. Investigation of the genome evolution in those plant species carrying multiple isoforms of this enzyme points to hybridization and changes in ploidy as the probable sources of the duplica- tions. In view of our results, multiple isoforms do not appear to imply enzyme redundancy. In this regard, the presence of multiple GPAT proteins is frequent in nature, with the most representative example of multiple gene duplication and functional diversifica- tion depicted by the Arabidopsis GPAT1-8 family [5]. Conversely, GPAT9 has a single functional isoform, recently revealed by mutant analysis [8]. It is noteworthy that some eukaryotic clades do not contain any GPAT9 homologues, the most relevant belonging to Fungi kingdom. A Blast search only returned a few sequences sharing moderate similarity, none of which belonged to the yeast Dikarya sub-kingdom (Fig. S3). Instead, yeast enzymes with GPAT activity, Gat1p and Gat2p [16], are more similar to a plant GPAT family involved in polyester synthesis [40]. Furthermore, they not only possess GPAT but also dihydroxyacetone phosphate acyltrans- ferase (DHAPAT) activity, improving their functionality. In general, GPATs exhibit a high degree of redundancy, not only due to the presence of GPAT activity in various protein families but also, due to the multiplication and evolution of distinct family members. The fungal case is a clear example of how the redundant GPAT activity present in most organisms produces viable organisms with improved competitive capacity even after the loss of one isoform. To identify GPATs involved in lipid biosynthesis and consid- ering that these acyltransferases are membrane bound proteins, membrane protein fractions from developing sunflower seeds (15 DAF) were analyzed by mass spectrometry. The only GPAT pro- tein found in this fraction was HaGPAT9-1 (GenBank accession EF552845), which was unequivocally identified as the peptides detected accounted for 68 of the 371 amino acids of the full length sequence (18% coverage). Moreover, all them corresponded to the HaGPAT9-1 isoform despite the high similarity with its close homologue HaGPAT9-2 (90% amino acid identity, GenBank acces- sion EF552846). Phosphoresidue analysis revealed the presence of a peptide with two phosphorylated sites at the N-terminus of the protein (Tyr21 and Thr32), suggesting that its enzyme activity or subcellular localization could be modified by specific kinases. The Tyr21 residue is conserved among the homologues in all the flowering plant species analyzed, suggesting a regu- latory role of this amino acid. By contrast, Thr32 is unique to HaGPAT9-1 and its function is not yet known. Interestingly, the Gly32 residue in HaGPAT9-2 is also highly conserved in other homologues, suggesting functional divergence in the regulation of the two HaGPAT9 isoforms. The activity of yeast GPATs is regu- lated post-translationally by phosphorylation of the C-terminus, although it is not clear whether phosphorylation regulates GPAT localization [41]. Our results support the potential phosphoryla- tion of HaGPAT9-1 under physiological conditions, suggesting an analogous regulatory mechanism. At 15 DAF, both embryo growth and the accumulation of stor- age oil by the seed are very active, as reflected by the complexity of the enzymes determined by mass spectrometry that are involved in biological functions like protein synthesis and fate, metabolism and energy. The proteomic analysis of sunflower seed mem- branes identified enzymes related to lipid metabolism other than GPATs. For example, the identified PDAT belongs to an alternative 50 M. Payá-Milans et al. / Plant Science 252 (2016) 42–52 Fig. 6. GPAT enzyme assays in function of (A) time and (B) acyl-CoA substrate. (C) LPAAT assay as a function of the acyl-CoA substrate. Data are the mean of three replicates with SD error bars. The asterisks indicate statistically significant differences (P < 0.05) compared to the control. Fig. 7. Expression of the HaGPAT9-1 (white columns) and -2 (light grey columns) genes in developing seeds and vegetative tissues of Helianthus annuus, and of GPAT9 from A ys aft A yos; 6 a s ± SD p p a a s s o t D m rabidopsis thaliana. (A) Expression in sunflower determined by RT-qPCR: DAF, da rabidopsis stages: 3, mid globular to early heart embryos; 4, early to late heart embr nd 10, green cotyledons embryos. The values in panel A represent the mean value athway of TAG biosynthesis that involve the transesterification of hosphatidylcholine (PC) and diacylglycerol (DAG) to yield lyso-PC nd TAG. Previous research demonstrated that both diacylglycerol cyltransferase (DAGAT) and PDAT contribute to TAG synthesis in unflower seeds, and although DAGAT is more active, it has a lower ubstrate affinity than PDAT [42]. Our finding highlights the interest n this alternative pathway for TAG synthesis. Nonetheless, iden- ification of other enzymes in the Kennedy pathway, LPAAT and AGAT, is still missing. Considering that the method used to obtain the microso- al fraction did not exclude organelle membranes, the proteins er flowering. (B) Expression in Arabidopsis from microarrays of Schmid et al. [48]. , mid to late torpedo embryos; 8, walking-stick to early curled cotyledons embryos; of three independent samples. detected were from various subcellular localizations. Thus, many plastidial enzymes related to fatty acid synthesis were found, such as the stearoyl-ACP desaturase that was among the most abundant proteins in the microsomal fraction (Table S2) and that is strongly expressed in sunflower embryos [13]. Also, the first step in fatty acid synthesis is represented by the alpha subunit of the acetyl-CoA carboxylase complex (sunflower EST GE494904). However, not only enzymes related to lipid biosynthesis were sequenced in microsomes but also those involved in beta-oxidation, suggesting the development of peroxi- somes for eventual seed germination. Despite the good coverage of lant Sc t c o o a o c b c e o d T t ( i a i s o t y t p t f 1 c e w m w t f g o i i e f M e w p p A h t s s a T w p t t m W f h C c M. Payá-Milans et al. / P he activities in the lipid biosynthesis pathway, this method did not apture proteins represented by enzymes either at a low abundance r for which sequences have not yet been cloned in H. annuus. The HaGPAT9-1 enzyme was clearly located in the ER and based n the variation in fluorescence intensity, this enzyme is more bundant in the perinuclear ER than in the cortical membrane when ver-expressed in tobacco cells. Moreover, the ER morphology of ells producing the heterologous protein is altered, forming mem- rane aggregates in accordance with the altered ER morphology in ells expressing mammalian GPAT3 [43] or A. thaliana GPAT9, and ven GPAT8 [7]. Similar results were obtained after overexpression f a human LPAAT [44]. Also, the accumulation of lipid interme- iates may recruit interactors by generating microdomains [45]. hen, the prominent globular ER structure is probably formed due o: (i) the accumulation of a high proportion of acyltransferases; ii) their activity altering the membrane properties; and/or (iii), the ncrease in membrane destabilizing lipids. Moreover, the recurrent lteration of the ER after an enrichment of acyltransferase activ- ty also suggests the regulated formation of a possible lipogenetic tructure. In vivo functional assays were based on the complementation f lethality that the disruption of both yeast GAT genes causes in he cmy228 strain. Constitutive expression of HaGPAT9-1 allowed east to grow without inducing GAT1 expression. Full complemen- ation would have allowed yeast cells to lose the pGAL1(URA3) lasmid carrying GAT1 and then grow under FOA negative selec- ion. As indicated above, yeast GPATs belong to a different GPAT amily and they exhibit GPAT/DHAPAT activities. Thus, HaGPAT9- activity complements the cmy228 strain under certain growth onditions, although GPAT alone does not allow cell survival. Nev- rtheless, this study reveals that HaGPAT9-1 encodes an enzyme ith GPAT activity while that of its counterpart could not be deter- ined. The TAG content and composition in yeast was also altered hen sunflower GPATs were expressed, reflected by an increase in he total amount of TAGs as well as an enrichment in 16:0 and 16:1 atty acids. Hence, both enzymes are active in the yeast heterolo- ous system and their consequences are reflected in the alteration f yeast lipids. In this regard, the significant modifications detected n the strain over-expressing HaGPAT9-1 suggest enzyme selectiv- ty towards saturated fatty acids. On the contrary, the HaGPAT9-2 nzyme does not change the TAG composition. GPAT in vitro selectivity was studied in microsomal fractions rom a yeast strain with reduced GPAT activity, the gat1� mutant. icrosomes were incubated with radiolabeled G3P and differ- nt acyl-CoAs, and the products were a mixture of LPA combined ith lipids derived from this in the downstream TAG biosynthetic athway. Thus, the total radioactivity in the products of LPA, phos- hatidic acid (PA), diacylglycerol (DAG) and TAG were quantified. ccordingly, only HaGPAT9-1 activity was detected in vitro, with igh specificity towards 16:0-CoA and 18:2-CoA, lower specificity owards 18:1-CoA and very low for 18:0-CoA. This activity is con- istent with previous measurements of GPAT activity in sunflower eed microsomes [12] and with the TAG composition of sunflower, species in which palmitic acid predominates at the sn-1 position. he high GPAT specificity towards palmitoyl-CoA is also consistent ith the increase in TAG species with a palmitoyl moiety at the sn-1 osition in yeasts transformed with HaGPAT9-1. In light of the conservation of sequence motifs among acyl- ransferases, the HaGPAT9s were tested for LPAAT activity. Indeed, he length of these enzymes is similar to that of plant LPAATs, uch shorter than the plant GPATs previously characterized [5]. e used the ale1� mutant reduced in lysophospholipid acyltrans- erase activity as the host strain in these assays. HaGPAT9-1 strain ad weak yet significant LPAAT activity with oleoyl- and linoleoyl- oA substrates. However, direct implication of HaGPAT9-1 to the hange in LPAAT activity could not be verified. Interestingly, the ience 252 (2016) 42–52 51 LPAAT activity of membranes carrying HaGPAT9-2 was significantly reduced with the stearoyl-CoA substrate. Thus, although the iso- form 2 did not utilize G3P or sn-1-LPA as acyl acceptors, it is an enzyme that potentially competes for acyl-CoA substrates in a yet unknown mechanism. Our results are in agreement with the enzyme activity in microsomes from developing siliques of Ara- bidopsis GPAT9 knock-down line [8], which was reduced in GPAT activity but not LPAAT activity. HaGPAT9-1 is strongly expressed at the onset of TAG accumula- tion in seeds and leaves; the pattern observed during seed filling responds to the variations on the oil accumulation rate described previously [46], suggesting that HaGPAT9-1 is involved in oil depo- sition in sunflower seeds. By contrast, HaGPAT9-2 was strongly expressed in vegetative tissues with only short periods of activation in oil accumulating seeds. The first upregulation at 12 DAF coin- cides with the end of the pericarp growth period while a second upregulation at 21 DAF occurs when the embryo is actively devel- oping [47]. This differs from the Arabidopsis GPAT9 transcripts [48] that remain at similar levels in all the represented tissues and that are slightly downregulated at early stages of embryo development, suggesting constitutive expression of this gene. Also, a GPAT9-like transcript was found by RNA-sequencing of castor bean (Ricinus communis) that is expressed in all tissues, and especially in the developing seed endosperm [49], being the most abundant GPAT transcripts in the endosperm. The analysis of the sunflower genes performed here suggests that HaGPAT9-1, which is present in all tissues, carries the ancestral GPAT9 activity, and there is certain a functional divergence in this species revealed by the activity of HaGPAT9-2. Funding This work was supported by the “Ministerio de Economia y Com- petitividad” and FEDER [AGL2014-53537-R and JAE-CSIC to M.P-M]. Acknowledgments We thank A. González-Callejas and B. Lopez-Cordero for their skillful technical assistance. We also thank Dr. Ana Rincón for kindly providing the p416 (LEU) plasmid. Appendix A. Supplementary data Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.plantsci.2016.07. 002. References [1] M. Frentzen, Acyltransferases and triacylglycerols, in: TSMJ (Ed.), Lipid Metabolism in Plants, CRC Press, Boca Raton, 1993, pp. 195–220. [2] M. Bafor, L. Jonsson, A.K. Stobart, S. Stymne, Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolate, Biochem. J 272 (1990) 31–38. [3] E.P. Kennedy, S.B. Weiss, The function of cytidine coenzymes in the biosynthesis of phospholipides, J. Biol. Chem. 222 (1956) 193–214. [4] S.K. Gidda, J.M. Shockey, S.J. Rothstein, J.M. Dyer, R.T. Mullen, Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells, Plant Physiol. Biochem. 47 (2009) 867–879. [5] W. Yang, J.P. Simpson, Y. Li-Beisson, F. Beisson, M. Pollard, J.B. Ohlrogge, A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution, Plant Physiol. 160 (2012) 638–652. [6] M. Payá-Milans, M. Venegas-Calerón, J.J. Salas, R. Garcés, E. Martínez-Force, Cloning, heterologous expression and biochemical characterization of plastidial sn-glycerol-3-phosphate acyltransferase from Helianthus annuus, Phytochemistry 111 (2015) 27–36. [7] S.K. Gidda, J.M. Shockey, S.J. Rothstein, J.M. Dyer, R.T. Mullen, Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER http://dx.doi.org/10.1016/j.plantsci.2016.07.002 http://dx.doi.org/10.1016/j.plantsci.2016.07.002 http://dx.doi.org/10.1016/j.plantsci.2016.07.002 http://dx.doi.org/10.1016/j.plantsci.2016.07.002 http://dx.doi.org/10.1016/j.plantsci.2016.07.002 http://dx.doi.org/10.1016/j.plantsci.2016.07.002 http://dx.doi.org/10.1016/j.plantsci.2016.07.002 http://dx.doi.org/10.1016/j.plantsci.2016.07.002 http://dx.doi.org/10.1016/j.plantsci.2016.07.002 http://dx.doi.org/10.1016/j.plantsci.2016.07.002 http://dx.doi.org/10.1016/j.plantsci.2016.07.002 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0005 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0010 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0015 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0020 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0025 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0030 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 5 lant Sc [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ thaliana development, Nat. Genet. 37 (2005) 501–506. [49] A.P. Brown, J.T. Kroon, D. Swarbreck, M. Febrer, T.R. Larson, I.A. Graham, M. Caccamo, A.R. Slabas, Tissue-specific whole transcriptome sequencing in 2 M. Payá-Milans et al. / P retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells, Plant Physiol. Biochem. 47 (2009) 867–879. [8] J. Shockey, A. Regmi, K. Cotton, N. Adhikari, J. Browse, P.D. Bates, Identification of Arabidopsis GPAT9 (At5g60620) as an essential gene involved in triacylglycerol biosynthesis, Plant Physiol. 170 (2016) 163–179. [9] J. Cao, S. Perez, B. Goodwin, Q. Lin, H. Peng, A. Qadri, Y. Zhou, R.W. Clark, M. Perreault, J.F. Tobin, R.E. Gimeno, Mice deleted for GPAT3 have reduced GPAT activity in white adipose tissue and altered energy and cholesterol homeostasis in diet-induced obesity, Am. J. Physiol. Endocrinol. Metab. 306 (2014) E1176–1187. 10] V.S. Eccleston, J.L. Harwood, Solubilisation, partial purification and properties of acyl-CoA: glycerol-3-phosphate acyltransferase from avocado (Persea americana) fruit mesocarp, Biochim. Biophys. Acta 1257 (1995) 1–10. 11] A.M. Manaf, J.L. Harwood, Purification and characterisation of acyl-CoA: glycerol 3-phosphate acyltransferase from oil palm (Elaeis guineensis) tissues, Planta 210 (2000) 318–328. 12] N. Ruiz-Lopez, R. Garcés, J.L. Harwood, E. Martínez-Force, Characterization and partial purification of acyl-CoA:glycerol 3-phosphate acyltransferase from sunflower (Helianthus annuus L.) developing seeds, Plant Physiol. Biochem. 48 (2010) 73–80. 13] J.J. Salas, E. Martínez-Force, R. Garcés, Biochemical characterization of a high-palmitoleic acid Helianthus annuus mutant, Plant Physiol. Biochem. 42 (2004) 373–381. 14] R.K. Mortimer, J.R. Johnston, Genealogy of principal strains of the yeast genetic stock center, Genetics 113 (1986) 35–43. 15] B.J. Thomas, R. Rothstein, Elevated recombination rates in transcriptionally active DNA, Cell 56 (1989) 619–630. 16] S.A. Minskoff, P.V. Racenis, J. Granger, L. Larkins, A.K. Hajra, M.L. Greenberg, Regulation of phosphatidic acid biosynthetic enzymes in Saccharomyces cerevisiae, J. Lipid Res. 35 (1994) 2254–2262. 17] K. Hofmann, A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling, Trends Biochem. Sci. 25 (2000) 111–112. 18] V. Zaremberg, C.R. McMaster, Differential partitioning of lipids metabolized by separate yeast glycerol-3-phosphate acyltransferases reveals that phospholipase D generation of phosphatidic acid mediates sensitivity to choline-containing lysolipids and drugs, J. Biol. Chem. 277 (2002) 39035–39044. 19] D. Mumberg, R. Muller, M. Funk, Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds, Gene 156 (1995) 119–122. 20] J.P. Simpson, R. Di Leo, P.K. Dhanoa, W.L. Allan, A. Makhmoudova, S.M. Clark, G.J. Hoover, R.T. Mullen, B.J. Shelp, Identification and characterization of a plastid-localized Arabidopsis glyoxylate reductase isoform: comparison with a cytosolic isoform and implications for cellular redox homeostasis and aldehyde detoxification, J. Exp. Bot. 59 (2008) 2545–2554. 21] D.M. Becker, V. Lundblad, Introduction of DNA into yeast cells, Curr. Protoc. Mol. Biol. 13 (2001), Chapter 13, Unit 13.7. 22] A. Sánchez-García, A.J. Moreno-Pérez, A.M. Muro-Pastor, J.J. Salas, R. Garcés, E. Martínez-Force, Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation, Phytochemistry 71 (2010) 860–869. 23] A.M. Tartakoff, P. Vassalli, Lectin-binding sites as markers of Golgi subcompartments: proximal-to-distal maturation of oligosaccharides, J. Cell Biol. 97 (1983) 1243–1248. 24] Y. Xue, J. Ren, X. Gao, C. Jin, L. Wen, X. Yao, GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy, Mol. Cell. Proteom. 7 (2008) 1598–1608. 25] F. Sievers, A. Wilm, D. Dineen, T.J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Söding, J.D. Thompson, D.G. Higgins, Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol. 7 (2011) 539. 26] H. McWilliam, W. Li, M. Uludag, S. Squizzato, Y.M. Park, N. Buso, A.P. Cowley, R. Lopez, Analysis tool web services from the EMBL-EBI, Nucleic Acids Res. 41 (2013) W597–W600. 27] A. Conesa, S. Götz, J.M. García-Gómez, J. Terol, M. Tallón, M. Robles, Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics 21 (2005) 3674–3676. 28] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 28 (2011) 2731–2739. 29] V. Fernández-Moya, E. Martínez-Force, R. Garcés, Identification of triacylglycerol species from high-saturated sunflower (Helianthus annuus) mutants, J. Agric. Food Chem. 48 (2000) 764–769. ience 252 (2016) 42–52 30] M.L. Hamilton, R.P. Haslam, J.A. Napier, O. Sayanova, Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids, Metab. Eng. 22 (2014) 3–9. 31] R.C. Jackson, B.G. Murray, Colchicine induced quadrivalent formation in Helianthus: evidence of ancient polyploidy, Theor. Appl. Genet. 64 (3) (1983) 219–222. 32] V.H. Thanh, K. Shibasaki, Major proteins of soybean seeds. A straightforward fractionation and their characterization, J. Agric. Food Chem. 24 (1976) 1117–1121. 33] F. Brandizzi, S. Hanton, L.L. DaSilva, P. Boevink, D. Evans, K. Oparka, J. Denecke, C. Hawes, ER quality control can lead to retrograde transport from the ER lumen to the cytosol and the nucleoplasm in plants, Plant J. 34 (2003) 269–281. 34] Y. Miao, L. Jiang, Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells, Nat. Protoc. 2 (2007) 2348–2353. 35] J. Denecke, F. Aniento, L. Frigerio, C. Hawes, I. Hwang, J. Mathur, J.M. Neuhaus, D.G. Robinson, Secretory pathway research: the more experimental systems the better, Plant Cell 24 (2012) 1316–1326. 36] J.M. Dyer, D.C. Chapital, J.C. Kuan, R.T. Mullen, C. Turner, T.A. McKeon, A.B. Pepperman, Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity, Plant Physiol. 130 (2002) 2027–2038. 37] Y.T. Hwang, S.M. Pelitire, M.P. Henderson, D.W. Andrews, J.M. Dyer, R.T. Mullen, Novel targeting signals mediate the sorting of different isoforms of the tail-anchored membrane protein cytochrome b5 to either endoplasmic reticulum or mitochondria, Plant Cell 16 (2004) 3002–3019. 38] J.M. Shockey, S.K. Gidda, D.C. Chapital, J.C. Kuan, P.K. Dhanoa, J.M. Bland, S.J. Rothstein, R.T. Mullen, J.M. Dyer, Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum, Plant Cell 18 (2006) 2294–2313. 39] T.M. Lewin, P. Wang, R.A. Coleman, Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction, Biochemistry 38 (1999) 5764–5771. 40] Z. Zheng, Q. Xia, M. Dauk, W. Shen, G. Selvaraj, J. Zou, Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility, Plant Cell 15 (2003) 1872–1887. 41] M.W. Bratschi, D.P. Burrowes, A. Kulaga, J.F. Cheung, A.L. Alvarez, J. Kearley, V. Zaremberg, Glycerol-3-phosphate acyltransferases gat1p and gat2p are microsomal phosphoproteins with differential contributions to polarized cell growth, Eukaryot. Cell 8 (2009) 1184–1196. 42] W. Banas, A. Sánchez García, A. Banas, S. Stymne, Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds, Planta 237 (2013) 1627–1636. 43] J. Cao, J.L. Li, D. Li, J.F. Tobin, R.E. Gimeno, Molecular identification of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase, a key enzyme in de novo triacylglycerol synthesis, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 19695–19700. 44] W. Tang, J. Yuan, X. Chen, X. Gu, K. Luo, J. Li, B. Wan, Y. Wang, L. Yu, Identification of a novel human lysophosphatidic acid acyltransferase LPAAT-theta, which activates mTOR pathway, J. Steroid Biochem. Mol. Biol. 39 (2006) 626–635. 45] E.E. Kooijman, V. Chupin, B. de Kruijff, K.N. Burger, Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid, Traffic 4 (2003) 162–174. 46] C. Santonoceto, U. Anastasi, E. Riggi, V. Abbate, Accumulation dynamics of dry matter, oil and major fatty acids in sunflower seeds in relation to genotype and water regime, Ital. J. Agron. 7 (2003) 3–14. 47] A.I. Mantese, D. Medan, A.J. Hall, Achene structure, development and lipid accumulation in sunflower cultivars differing in oil content at maturity, Ann. Bot. 97 (2006) 999–1010. 48] M. Schmid, T.S. Davison, S.R. Henz, U.J. Pape, M. Demar, M. Vingron, B. Scholkopf, D. Weigel, J.U. Lohmann, A gene expression map of Arabidopsis castor, directed at understanding triacylglycerol lipid biosynthetic pathways, PLoS One 7 (2012) e30100. http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0035 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0040 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0045 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0050 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0055 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0060 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0065 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0070 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0075 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0080 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0085 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0090 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0095 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0100 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0105 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0105 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0105 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0105 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0105 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0105 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0105 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0105 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0105 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0105 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0105 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0105 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0105 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0105 http://refhub.elsevier.com/S0168-9452(16)30177-7/sbref0105 http://refhub.elsevier.com/S0168-9452(16)