RESSALVA Atendendo a solicitação do(a) autor(a), o texto completo desse trabalho será disponibilizado no repositório a partir de 22/03/2025. LUCAS EIGI BORGES TANAKA CARACTERIZAÇÃO DE RESINA IMPRESSA PARA CONFECÇÃO DE RESTAURAÇÕES DEFINITIVAS 2023 LUCAS EIGI BORGES TANAKA CARACTERIZAÇÃO DE RESINA IMPRESSA PARA CONFECÇÃO DE RESTAURAÇÕES DEFINITIVAS Dissertação apresentada ao Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (Unesp), Campus de São José dos Campos, como parte dos requisitos para a obtenção do título de MESTRE, pelo Programa de Pós- Graduação em CIÊNCIAS APLICADAS À SAÚDE BUCAL. Área: Prótese Dentária Linha de pesquisa: Desempenho de materiais reabilitadores impressos protéticos. Orientadora: Pesquisadora II Dra. Renata Marques de Melo Marinho Coorientadora: Dra. Camila da Silva Rodrigues São José dos Campos 2023 IMPACTO POTENCIAL DESTA PESQUISA O presente estudo tem como objetivo avaliar a possibilidade da ampla utilização de restaurações em resina composta confeccionadas através do fluxo digital por meio da manufatura aditiva, podendo servir de referência para corroborar sua utilização ou para indicar onde deve ser aprimorada a confecção das restaurações impressas para o mercado. POTENTIAL IMPACT OF THIS RESEARCH The present study aims to evaluate the possibility of the wide use of composite resin restorations made through the digital flow through additive manufacturing, which can serve as a reference to corroborate its use or to indicate where the manufacture of printed restorations should be improved for the Marketplace. BANCA EXAMINADORA Pesquisadora II Dra. Renata Marques de Melo Marinho (Orientador) Universidade Estadual Paulista (Unesp) Instituto de Ciência e Tecnologia Campus de São José dos Campos Prof. Dr. Alexandre Luiz Souto Borges Universidade Estadual Paulista (Unesp) Instituto de Ciência e Tecnologia Campus de São José dos Campos Prof. Dr. Tiago Moreira Bastos Campos Instituto Tecnológico da Aeronáutica Departamento de Física São José dos Campos, 22 de Março de 2023. Instituto de Ciência e Tecnologia [internet]. Normalização de tese e dissertação [acesso em 2023]. Disponível em http://www.ict.unesp.br/biblioteca/normalizacao. Apresentação gráfica e normalização de acordo com as normas estabelecidas pelo Serviço de Normalização de Documentos da Seção Técnica de Referência e Atendimento ao Usuário e Documentação (STRAUD). http://www.ict.unesp.br/biblioteca/normalizacao DEDICATÓRIA Este trabalho só pode ser realizado por conta de todo o apoio que eu recebi. Por esse motivo, dedico esse trabalho a Deus, a minha família, a Universidade Estadual Paulista, minha amada UNESP, e a todas as pessoas que nela tive a honra de conhecer. Sou grato à todos que participaram deste processo, que legitimamente dedico à cada pessoa que está e esteve comigo. Para todas as pessoas a quem dedico o meu trabalho, ciente de que sem elas, nada disso seria possível, dedico em especial ao meu primo/irmão Pedro, que nos deixou durante o início do meu mestrado. Pedro, meu irmão, de onde você estiver, espero que esteja sentindo orgulho de mim. AGRADECIMENTOS Agradeço a Deus por ter me dado saúde, forças e a oportunidade de realizar este trabalho e durante toda a minha trajetória ter vivido junto às pessoas que tanto valorizo e que contribuíram nesta importante etapa da minha formação. À Universidade Estadual Paulista “Júlio de Mesquita Filho” - UNESP, minha casa de formação na graduação e na pós-graduação, na figura de todos os professores e funcionários. Nela, aprendi a admirar mais a docência, sonho da minha vida, por conta de incríveis mestres que tive a oportunidade de conhecer e me inspirar, assim como tive a luz de me encontrar com profissionais, desde os técnicos até os funcionários da manutenção e limpeza, que diariamente exerciam suas funções com afinco, auxiliando em diversas situações ou se preocupando “Se limpar o laboratório agora iria atrapalhar”. Sinto imenso orgulho de onde me formei. Ao Programa de Pós-graduação em Ciências Aplicadas à Saúde Bucal, onde fiz amigos e tive a oportunidade de aprender com grandes profissionais da Docência e Pesquisa. À minha orientadora, Pesquisadora II Dra. Renata Marques de Melo Marinho, que aceitou a missão de me orientar e fez de forma séria e responsável, mas igualmente amistosa e serena. Desejo à todos que um dia ingressem em uma pós-graduação que possam ter uma orientação admirável como eu tive. À minha coorientadora, Doutora Camila da Silva Rodrigues, que igualmente me honra com a orientação, sendo fundamental na minha formação como pesquisador, no desenvolvimento desse trabalho e na paciência ao me ensinar muito do que hoje sei e espero ter a oportunidade de poder propagar com igual maestria. Sou contemplado por toda orientação que tive ao decorrer do trabalho e da minha pós-graduação. À minha banca examinadora, Professor Adjunto Doutor Alexandre Luiz Souto Borges, professor que desde a graduação admirei pela competência, didática, afinco e seriedade, tal qual pelo bom convívio entre os demais alunos, tanto da graduação quanto da pós-graduação. Prova viva que profissionalismo pode coexistir com bom humor. E ao Professor Doutor Tiago Moreira Bastos Campos, profissional que admiro por sua inteligência, capacidade, esforço e dedicação ao trabalho. Sou grato por toda a ajuda técnica, científica e conselhos dados, assim como pela amistosidade e acessibilidade. À minha família, a qual destaco algumas pessoas que foram fundamentais na minha formação e na minha trajetória. À minha mãe, Melina, por todo amor e suporte dado, se fazendo presente mesmo à distância sempre que precisei. Ao meu pai, Alexandre, por sempre me apoiar, me incentivar e torcer por mim, comemorando todas as minhas vitórias e conquistas. Aos meu avós, Fernando e Keiko, por todo o carinho dado, por serem meus apoiadores e por permitirem que eu pudesse me dedicar aos estudos e seguir meu sonho desde sempre. Aos meus irmãos, Kenzo e Davi, que me inspiram diariamente com pureza e alegria e que me alegram ao dizer que se inspiram em mim. À minha amada namorada, Gabriella, por todo companheirismo, incentivo, apoio e por carinhosamente me suportar nos momentos mais difíceis e de dificuldade. Sinto muito orgulho de poder estar construindo minha vida ao seu lado. À todos os meus companheiros de pós-graduação, em especial: À Clarice, minha companheira e dupla de graduação, de pós e de vida, sempre disposta a me ajudar em todas as situações que precisei. É uma honra ser seu contemporâneo e fazer parte do mesmo grupo que você. À Talita, minha amiga que sempre me ajudou em todos os aspectos, sempre de bom humor apesar de todos os obstáculos. Por você, tenho não somente grande carinho mas uma imensa admiração. À empresa Smart Dent, que viabilizou este trabalho, cedendo os materias que possibilitaram a realização desse estudo. É um orgulho poder contribuir com uma empresa que busca inovação, principalmente se tratando de uma empresa nacional. RESUMO Tanaka, LEB. Caracterização de resina impressa para restaurações definitivas [dissertação]. São José dos Campos (SP): Universidade Estadual Paulista (Unesp), Instituto de Ciência e Tecnologia; 2023. Este estudo teve como objetivo avaliar o comportamento de uma resina composta feita por impressão 3D (BPC 66, Smart Dent, São Carlos, Brasil), submetidas a diversos testes mecânicos, comparada com uma resina composta usinável (Grandio Blocs, Voco GmbH, Cuxhaven, Alemanha). Os espécime foram submetidos aos testes de Dureza Knoop (n=5), desgaste (n=10), resistência à flexão (n=25), módulo de elasticidade (n=3), a alteração de cor e translucidez (n=15), rugosidade (n=15) e resistência de união (n=15). Também foram analisados em microscopia eletrônica de varredura (MEV) para determinação da estrutura. Os valores de dureza (132,76 (16,32) HK- Grandio e 35,87 (2,78) HK – impressa), resistência à flexão (172,17 (26,99) MPa - Grandio e 88,69 (8,39) MPa - impressa) e alteração de cor/ translucidez de 1,86 (0,31)/0,06 - Grandio e 3,73 (0,36)/9,16- impressa e profundidade de desgaste (24,97 mm (3,60)- Grandio e 7,16 mm (2,84)- impressa)foram estatisticamente diferentes. Não foram observadas diferenças estatísticas para a rugosidade média (Ra) entre os materiais. Para a resistência de união, observou-se os valores de 16,23 (3,68) MPa para o cimento Bifix (Voco GmbH, Cuxhaven, Alemanha) e 25,33 (3,86) MPa para o cimento Variolink (Ivoclar Vivadent, Schaan, Liechtenstein) na resina impressa e 17,96 (4,88) MPa para o cimento Bifix e 20,76 (8,38) MPa para o cimento Variolink na Grandio. De um lado, o fator material não afetou a resistência adesiva (p=0,75), mas o fator cimento afetou (p=0,05), não sendo observada interação significante entre os fatores (p=0,07). A melhor dispersão e o maior tamanho das partículas inorgânicas na Grandio foram contrastados com partículas aglomeradas e de menor dimensão da resina impressa, em microscopia eletrônica de varredura. Dessa forma, as propriedades mecânicas e estabilidade de cor da resina usinável ainda foram superiores aos da resina impressa, provavelmente devido à maior quantidade e dispersão de partículas inorgânicas da resina usinável. Palavras-chave: Resina impressa; propriedades mecânicas; propriedades ópticas; desgaste. ABSTRACT Tanaka, LEB. Characterization of imprinted resin for definitive restorations. São José dos Campos (SP): São Paulo State University (Unesp), Institute of Science and Technology; 2023. This study aimed to evaluate the behavior of a composite resin made by 3D printing (BPC 66, Smart Dent, São Carlos, Brazil), subjected to several mechanical tests, compared with a machinable composite resin (Grandio Blocs, Voco GmbH, Cuxhaven, Germany). The specimens were submitted to Knoop Hardness (n=5), wear (n=10), flexural strength (n=25), modulus of elasticity (n=3), color change and translucency (n=15) tests.), roughness (n=15) and bond strength (n=15). They were also analyzed by scanning electron microscopy (SEM) to determine the structure. Hardness values (132.76 (16.32) HK- Grandio and 35.87 (2.78) HK - printed), flexural strength (172.17 (26.99) MPa - Grandio and 88.69 (8.39) MPa - printed) and color/translucency change of 1.86 (0.31)/0.06 - Grandio and 3.73 (0.36)/9.16-printed and depth of wear (24 .97 mm (3.60) - grandiose and 7.16 mm (2.84) - printed) were statistically different. No statistical differences were observed for mean roughness (Ra) between materials. For bond strength, values of 16.23 (3.68) MPa were observed for Bifix cement (Voco GmbH, Cuxhaven, Germany) and 25.33 (3.86) MPa for Variolink cement (Ivoclar Vivadent, Schaan, Liechtenstein) in printed resin and 17.96 (4.88) MPa for Bifix cement and 20.76 (8.38) MPa for Variolink cement in Grandio. On the one hand, the material factor did not affect bond strength (p=0.75), but the cement factor did (p=0.05), with no significant interaction between the factors being observed (p=0.07). The better dispersion and larger size of the inorganic particles in the Grandio were contrasted with the agglomerated and smaller particles of the printed resin, in scanning electron microscopy. Thus, the mechanical properties and color stability of the machinable resin were still superior to those of the printed resin, probably due to the greater amount and dispersion of inorganic particles in the machinable resin. Keywords: Printed resin; mechanical properties; optical properties; wear. SUMÁRIO RESUMO ............................................................................................................................. 9 ABSTRACT ....................................................................................................................... 10 1 INTRODUÇÃO ............................................................................................................ 12 2 REVISÃO DE LITERATURA ....................................................................................... 14 2.1 Polímeros Odontológicos ......................................................................................... 14 2.2 Fluxo Digital e os Desafios Gerais do Sistema CAD/CAM ..................................... 15 2.3 Resinas para Manufatura Subtrativa........................................................................ 18 3 PROPOSIÇÃO ............................................................................................................ 22 4 MATERIAL E MÉTODOS ............................................................................................ 23 4.1 Confecção dos Corpos de Prova ............................................................................. 23 4.2 Microdureza ............................................................................................................... 25 4.3 Desgaste..................................................................................................................... 26 4.4 Resistência à flexão .................................................................................................. 29 4.5 Propriedades Ópticas ............................................................................................... 30 4.6 Rugosidade ................................................................................................................ 32 4.7 Módulo de Elasticidade e Coeficiente de Poisson ................................................. 33 4.8 Resistência Adesiva .................................................................................................. 34 5 RESULTADOS ............................................................................................................ 37 5.1 Composição Química ................................................................................................ 37 5.2 Dureza......................................................................................................................... 41 5.3 Resistência à Flexão ................................................................................................. 41 5.4 Desgaste..................................................................................................................... 43 5.5 Módulo de Elasticidade ............................................................................................. 46 5.6 Propriedades Ópticas ............................................................................................... 46 5.7 Rugosidade ................................................................................................................ 47 5.8 Resistência Adesiva .................................................................................................. 48 6 DISCUSSÃO........................... .....................................................................................49 7 CONCLUSÃO ............................................................................................................. 55 REFERÊNCIAS ........................................................................................................... 56 56 REFERÊNCIAS Ab-Ghani Z, Jaafar W, Foo SF, Ariffin Z, Mohamad D. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement. J Conserv Dent. 2015 Sep- Oct;18(5):355-9. doi: 10.4103/0972-0707.164028. PMID: 26430296; PMCID: PMC4578177. Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater. 2005 Oct;21(10):984-91. doi: 10.1016/j.dental.2005.03.013. PMID: 16085302. Abu-Izze FO, Ramos GF, Borges ALS, Anami LC, Bottino MA. Fatigue behavior of ultrafine tabletop ceramic restorations. Dent Mater. 2018 Sep;34(9):1401-1409. doi: 10.1016/j.dental.2018.06.017. Epub 2018 Jun 19. PMID: 29934124. Alamoush RA, Salim NA, Elraggal A, Satterthwaite JD, Silikas N. The effect of water storage on nanoindentation creep of various CAD-CAM composite blocks. BMC Oral Health. 2023 Aug 7;23(1):543. doi: 10.1186/s12903-023-03145-1. PMID: 37550631; PMCID: PMC10408048. Albanchez-González MI, Brinkmann JC, Peláez-Rico J, López-Suárez C, Rodríguez-Alonso V, Suárez-García MJ. Accuracy of Digital Dental Implants Impression Taking with Intraoral Scanners Compared with Conventional Impression Techniques: A Systematic Review of In Vitro Studies. Int J Environ Res Public Health. 2022 Feb 11;19(4):2026. doi: 10.3390/ijerph19042026. PMID: 35206217; PMCID: PMC8872312. Al-Haj Husain N, Feilzer AJ, Kleverlaan CJ, Abou-Ayash S, Özcan M. Effect of hydrothermal aging on the microhardness of high- and low-viscosity conventional and additively manufactured polymers. J Prosthet Dent. 2022 Oct;128(4):822.e1-822.e9. doi: 10.1016/j.prosdent.2022.08.022. Epub 2022 Oct 4. PMID: 36202632. Al-Qarni FD, Gad MM. Printing Accuracy and Flexural Properties of Different 3D-Printed Denture Base Resins. Materials (Basel). 2022 Mar 24;15(7):2410. doi: 10.3390/ma15072410. PMID: 35407742; PMCID: PMC8999488. Alshamrani AA, Raju R, Ellakwa A. Effect of Printing Layer Thickness and Postprinting Conditions on the Flexural Strength and Hardness of a 3D-Printed Resin. Biomed Res Int. 2022 Feb 21;2022:8353137. doi: 10.1155/2022/8353137. PMID: 35237691; PMCID: PMC8885203. Alshamrani AA, Raju R, Ellakwa A. Effect of Printing Layer Thickness and Postprinting Conditions on the Flexural Strength and Hardness of a 3D-Printed Resin. Biomed Res Int. 2022 Feb 21;2022:8353137. doi: 10.1155/2022/8353137. PMID: 35237691; PMCID: PMC8885203. Althahban SA, Alomari AS, Sallam HEDM, Jazaa Y. An investigation of wear, mechanical, and water sorption/solubility behaviors of a commercial restorative composite containing nano- additives. J Mater Res Technol. 2023;23:491-502.doi: https://doi.org/10.1016/j.jmrt.2023.01.025 Alves L, Rodrigues C, Ramos G, Campos T, Melo R. Wear behavior of silica- infiltrated monolithic zirconia: Effects on the mechanical properties and surface characterization, Ceram. Int. 2022 , v. 48, n. 5, p. 6649-6656, https://doi.org/10.1016/j.jmrt.2023.01.025 57 Alves PB, Brandt WC, Neves AC, Cunha LG, Silva-Concilio LR. Mechanical properties of direct and indirect composites after storage for 24 hours and 10 months. Eur J Dent. 2013 Jan;7(1):117-22. PMID: 23407869; PMCID: PMC3571519. Ardu S, Braut V, Gutemberg D, Krejci I, Dietschi D, Feilzer AJ. A long-term laboratory test on staining susceptibility of esthetic composite resin materials. Quintessence Int. 2010 Sep;41(8):695-702. PMID: 20657860. Ardu S, Daher R, Di Bella E, Rossier I, Krejci I. Influence of mechanical and chemical degradation on surface gloss of direct and CAD-CAM resin composite materials. Am J Dent. 2020 Jun;33(3):157-160. PMID: 32470242 Arkoy S, Ulusoy M. Effect of Different Surface Treatments on Repair Bond Strength of CAD/CAM Resin-Matrix Ceramics. Materials (Basel). 2022 Sep 12;15(18):6314. doi: 10.3390/ma15186314. PMID: 36143627; PMCID: PMC9505560. Arocha MA, Mayoral JR, Lefever D, et al. Color stability of siloranes versus methacrylate-based composites after immersion in staining solutions. Clinical Oral Investigations. 2013 Jul;17(6):1481-1487. DOI: 10.1007/s00784-012-0837-7. PMID: 22993112. Aydın N, Karaoğlanoğlu S, Oktay EA, Kılıçarslan MA. Investigating the color changes on resin- based CAD/CAM Blocks. J Esthet Restor Dent. 2020; 32: 251– 256. doi: https://doi.org/10.1111/jerd.12561 Aydın, N., et al. "Superficial effects of different finishing and polishing systems on the surface roughness and color change of resin-based CAD/CAM Blocks." Odovtos-International Journal of Dental Sciences 23.3 (2022): 87-97.doi: DOI:10.15517/ijds.2021.46679 Bayraktar, E. T, Türkmen, C. , Yılmaz Atalı, P. , Tarçın, B. , Korkut, B. & Yaşa, B. (2020). Evaluation of Correlation Between Wear Resistance and Microhardness of Resin Based CAD/CAM Blocks. Eur. J. Dent, 4 (1) , 25-30 . doi: 10.35333/ERD.2020.183 Belli R, Geinzer E, Muschweck A, Petschelt A, Lohbauer U. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations. Dent Mater. 2014 Apr;30(4):424-32. doi: 10.1016/j.dental.2014.01.003. Epub 2014 Feb 17. Erratum in: Dent Mater. 2014 Oct;30(10):1204. PMID: 24553249. Berli C, Thieringer FM, Sharma N, Müller JA, Dedem P, Fischer J, Rohr N. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J Prosthet Dent. 2020 Dec;124(6):780-786. doi: 10.1016/j.prosdent.2019.10.024. Epub 2020 Jan 17. PMID: 31955837. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997 Jul;13(4):258-69. doi: 10.1016/s0109-5641(97)80038-3. PMID: 11696906. Borba M, Della Bona A, Cecchetti D. Flexural strength and hardness of direct and indirect composites. Braz Oral Res. 2009 Jan-Mar;23(1):5-10. doi: 10.1590/s1806- 83242009000100002. PMID: 19488465. Bottino, Marco Antônio; FARIA, Renata; VALANDRO, Luiz Felipe. Percepção - estética em próteses livres de metal em dentes naturais e implantes. São Paulo: Artes Médicas, 2009. 804 p. https://doi.org/10.1111/jerd.12561 http://dx.doi.org/10.15517/ijds.2021.46679 58 Bowen RL. Use of epoxy resins in restorative materials. J Dent Res. 1956 Jun;35(3):360-9. doi: 10.1177/00220345560350030501. PMID: 13332138. Cailleaux S, Sanchez-Ballester NM, Gueche YA, Bataille B, Soulairol I. Fused Deposition Modeling (FDM), the new asset for the production of tailored medicines. J Control Release. 2021 Feb 10;330:821-841. doi: 10.1016/j.jconrel.2020.10.056. Epub 2020 Oct 29. PMID: 33130069. Çakmak G, Cuellar AR, Donmez MB, Abou-Ayash S, Lu WE, Schimmel M, Yilmaz B. Effect of printing layer thickness on the trueness of 3-unit interim fixed partial dentures. J Prosthet Dent. 2022 May 27:S0022-3913(22)00271-2. doi: 10.1016/j.prosdent.2022.04.015. Epub ahead of print. PMID: 35636984. Campanelli de Morais D, de Oliveira Abu-Izze F, Rivoli Rossi N, Gallo Oliani M, de Assunção E Souza RO, de Siqueira Anzolini Saavedra G, Bottino MA, Marques de Melo Marinho R. Effect of Consecutive Firings on the Optical and Mechanical Properties of Silicate and Lithium Disilicate Based Glass-Ceramics. J Prosthodont. 2021 Dec;30(9):776-782. doi: 10.1111/jopr.13306. Epub 2021 Jan 6. PMID: 33320403. Cekic-Nagas I, Ergun G, Egilmez F, Vallittu PK, Lassila LV. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials. J Prosthodont Res. 2016 Oct;60(4):265-273. doi: 10.1016/j.jpor.2016.02.003. Epub 2016 Mar 10. PMID: 26973053. Chang J, Choi Y, Moon W, Chung SH. Impact of postpolymerization devices and locations on the color, translucency, and mechanical properties of 3D-printed interim resin materials. J Prosthet Dent. 2022 Sep 27:S0022-3913(22)00514-5. doi: 10.1016/j.prosdent.2022.08.018. Epub ahead of print. PMID: 36180261. Colombo M, Poggio C, Lasagna A, Chiesa M, Scribante A. Vickers Micro-Hardness of New Restorative CAD/CAM Dental Materials: Evaluation and Comparison after Exposure to Acidic Drink. Materials (Basel). 2019 Apr 16;12(8):1246. doi: 10.3390/ma12081246. PMID: 31014032; PMCID: PMC6515223. Correia, A.R.M.; Fernandes, J.C.A.S.; Cardoso, J.A.P.; Silva, C.F.C.L. . CAD-CAM: informatics applied to fixed prosthodontics Rev. odontol. UNESP 2006, vol.35, n2, p.183- 189 D’haese, R.; Vrombaut, T.; Roeykens, H.; Vandeweghe, S. In Vitro Accuracy of Digital and Conventional Impressions for Full-Arch Implant-Supported Prostheses. J. Clin. Med. 2022, 11, 594. https://doi.org/10.3390/jcm11030594 Da Rosa Rodolpho PA, Rodolfo B, Collares K, Correa MB, Demarco FF, Opdam NJM, Cenci MS, Moraes RR. Clinical performance of posterior resin composite restorations after up to 33 years. Dent Mater. 2022 Apr;38(4):680-688. doi: 10.1016/j.dental.2022.02.009. Epub 2022 Feb 25. PMID: 35221128. Darvell, B.W,. Chapter 20 - Cutting, Abrasion and Polishing, Editor(s): B.W. Darvell, In Woodhead Publishing Series in Biomaterials, Materials Science for Dentistry (Tenth Edition), Woodhead Publishing, 2018, Pages 515-539, ISBN 9780081010358, https://doi.org/10.1016/B978-0-08-101035-8.50020-1 de Andrade GS, Augusto MG, Simões BV, Pagani C, Saavedra GSFA, Bresciani E. Impact of simulated toothbrushing on surface properties of chairside CAD-CAM materials: An in vitro study. J Prosthet Dent. 2021 Mar;125(3):469.e1-469.e6. doi: 10.1016/j.prosdent.2020.08.028. Epub 2020 Dec 2. PMID: 33279154. https://doi.org/10.3390/jcm11030594 https://doi.org/10.1016/B978-0-08-101035-8.50020-1 59 De Nys S, Duca RC, Vervliet P, Covaci A, Boonen I, Elskens M, Vanoirbeek J, Godderis L, Van Meerbeek B, Van Landuyt KL. Bisphenol A release from short-term degraded resin-based dental materials. J Dent. 2022 Jan;116:103894. doi: 10.1016/j.jdent.2021.103894. Epub 2021 Nov 17. PMID: 34798152. de Paula Lopez V, Dias Corpa Tardelli J, Botelho AL, Marcondes Agnelli JA, Cândido Dos Reis A. Mechanical performance of 3-dimensionally printed resins compared with conventional and milled resins for the manufacture of occlusal devices: A systematic review. J Prosthet Dent. 2023 Jan 9:S0022-3913(22)00766-1. doi: 10.1016/j.prosdent.2022.12.006. Epub ahead of print. PMID: 36631367. Della Bona A, Cantelli V, Britto VT, Collares KF, Stansbury JW. 3D printing restorative materials using a stereolithographic technique: a systematic review. Dent Mater. 2021 Feb;37(2):336-350. doi: 10.1016/j.dental.2020.11.030. Epub 2021 Jan 19. PMID: 33353734; PMCID: PMC7855936.. Di Fiore A, Meneghello R, Graiff L, Savio G, Vigolo P, Monaco C, Stellini E. Full arch digital scanning systems performances for implant-supported fixed dental prostheses: a comparative study of 8 intraoral scanners. J Prosthodont Res. 2019 Oct;63(4):396-403. doi: 10.1016/j.jpor.2019.04.002. Epub 2019 May 7. PMID: 31072730. Dimitrova, M.; Corsalini, M.; Kazakova, R.; Vlahova, A.; Barile, G.; Dell’Olio, F.; Tomova, Z.; Kazakov, S.; Capodiferro, S. Color Stability Determination of CAD/CAM Milled and 3D Printed Acrylic Resins for Denture Bases: A Narrative Review. J. Compos. Sci. 2022, 6, 201. https://doi.org/10.3390/jcs6070201 Donmez MB, Okutan Y. Marginal gap and fracture resistance of implant-supported 3D-printed definitive composite crowns: An in vitro study. J Dent. 2022 Sep;124:104216. doi: 10.1016/j.jdent.2022.104216. Epub 2022 Jul 5. PMID: 35803388. Duma SM, Ilie N. Adhesion to a CAD/CAM Composite: Causal Factors for a Reliable Long-Term Bond. J Funct Biomater. 2022 Nov 3;13(4):217. doi: 10.3390/jfb13040217. PMID: 36412858; PMCID: PMC9680384. El Zohairy AA, De Gee AJ, Mohsen MM, Feilzer AJ. Microtensile bond strength testing of luting cements to prefabricated CAD/CAM ceramic and composite blocks. Dent Mater. 2003 Nov;19(7):575-83. doi: 10.1016/s0109-5641(02)00107-0. PMID: 12901980. Eliades, GC, Vougiouklakis, GJ, Caputo AA. Degree of double bond conversion in light-cured composites. Dental Materials. 1987, 3(1), 19–25. doi:10.1016/s0109-5641(87)80055-6 Ellakany P, Al-Harbi F, El Tantawi M, Mohsen C. Evaluation of the accuracy of digital and 3D- printed casts compared with conventional stone casts. J Prosthet Dent. 2022 Mar;127(3):438- 444. doi: 10.1016/j.prosdent.2020.08.039. Epub 2020 Dec 8. PMID: 33308856. Elraggal A, R Afifi R, Alamoush RA, Raheem IA, Watts DC. Effect of acidic media on flexural strength and fatigue of CAD-CAM dental materials. Dent Mater. 2023 Jan;39(1):57-69. doi: 10.1016/j.dental.2022.11.019. Epub 2022 Dec 7. PMID: 36496258. Elsaka S, Taibah S, Elnaghy A. Effect of staining beverages and bleaching on optical properties of a CAD/CAM nanohybrid and nanoceramic restorative material. BMC Oral Health. 2022 Mar 27;22(1):96. doi: 10.1186/s12903-022-02136-y. PMID: 35346162; PMCID: PMC8958766. https://doi.org/10.3390/jcs6070201 60 Elsaka SE. Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems. Dent Mater J. 2015;34(2):161-7. doi: 10.4012/dmj.2014-159. Epub 2015 Jan 19. PMID: 25736259. Espinar C, Della Bona A, Pérez MM, Pulgar R. Color and optical properties of 3D printing restorative polymer-based materials: A scoping review. J Esthet Restor Dent. 2022 Sep;34(6):853-864. doi: 10.1111/jerd.12904. Epub 2022 Mar 29. PMID: 35347852; PMCID: PMC9545726. Esquivel-Upshaw JF, Dieng FY, Clark AE, Neal D, Anusavice KJ. Surface degradation of dental ceramics as a function of environmental pH. J Dent Res. 2013 May;92(5):467-71. doi: 10.1177/0022034513484332. Ferracane JL. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater. 1985 Feb;1(1):11-4. doi: 10.1016/S0109-5641(85)80058-0. PMID: 3160625. Fraga S, Amaral M, Bottino MA, Valandro LF, Kleverlaan CJ, May LG. Impact of machining on the flexural fatigue strength of glass and polycrystalline CAD/CAM ceramics. Dent Mater. 2017 Nov;33(11):1286-1297. doi: 10.1016/j.dental.2017.07.019. Epub 2017 Aug 14. PMID: 28818339. Fraga S, Valandro LF, Bottino MA, May LG. Hard machining, glaze firing and hydrofluoric acid etching: Do these procedures affect the flexural strength of a leucite glass-ceramic? Dent Mater. 2015 Jul;31(7):e131-40. doi: 10.1016/j.dental.2015.04.005. Epub 2015 May 2. PMID: 25940916. Giannetti L, Apponi R, Mordini L, Presti S, Breschi L, Mintrone F, The occlusal precision of milled versus printed provisional crowns, J Dent. 2022, Volume 117, , 103924, ISSN 0300-5712, Giugovaz A, Pérez-Giugovaz MG, Al-Haj Husain N, Barmak AB, Özcan M, Revilla-León M. Flexural strength of aged and nonaged interim materials fabricated by using milling, additive manufacturing, and a combination of subtractive and additive methods. J Prosthet Dent. 2022 Sep;128(3):513.e1-513.e11. doi: 10.1016/j.prosdent.2022.05.004. Epub 2022 Aug 5. PMID: 35934575. Gómez-Polo M, Ortega R, Sallorenzo A, Agustín-Panadero R, Barmak AB, Kois JC, Revilla- León M. Influence of the surface humidity, implant angulation, and interimplant distance on the accuracy and scanning time of complete-arch implant scans. J Dent. 2022 Dec;127:104307. doi: 10.1016/j.jdent.2022.104307. Epub 2022 Sep 23. PMID: 36162637. Grassi EDA, de Andrade GS, Tribst JPM. et al. Fatigue behavior and stress distribution of molars restored with MOD inlays with and without deep margin elevation. Clin Oral Invest 2022 26, p. 2513–2526. https://doi.org/10.1007/s00784- 021-04219-6 Greaves, G., Greer, A., Lakes, R. et al. Poisson's ratio and modern materials. Nature Mater 10, 823–837 (2011). https://doi.org/10.1038/nmat3134 Grzebieluch W, Kowalewski P, Grygier D, Rutkowska-Gorczyca M, Kozakiewicz M, Jurczyszyn K. Printable and Machinable Dental Restorative Composites for CAD/CAM Application- Comparison of Mechanical Properties, Fractographic, Texture and Fractal Dimension Analysis. Materials (Basel). 2021 Aug 29;14(17):4919. doi: 10.3390/ma14174919. PMID: 34501009; PMCID: PMC8434230. https://doi.org/10.1038/nmat3134 61 Grzebieluch W, Mikulewicz M, Kaczmarek U. Resin Composite Materials for Chairside CAD/CAM Restorations: A Comparison of Selected Mechanical Properties. J Healthc Eng. 2021 Apr 28;2021:8828954. doi: 10.1155/2021/8828954. PMID: 34007429; PMCID: PMC8099508. Gul P, Altınok-Uygun L. Repair bond strength of resin composite to three aged CAD/CAM blocks using different repair systems. J Adv Prosthodont. 2020 Jun;12(3):131-139. doi: 10.4047/jap.2020.12.3.131. Epub 2020 Jun 18. PMID: 32601532; PMCID: PMC7314627. Hayama H, Fueki K, Wadachi J, Wakabayashi N. Trueness and precision of digital impressions obtained using an intraoral scanner with different head size in the partially edentulous mandible. J Prosthodont Res. 2018 Jul;62(3):347-352. doi: 10.1016/j.jpor.2018.01.003. Epub 2018 Mar 2. PMID: 29502933. Hirata, R.. Inlays e Onlays em resina composta laboratorial e porcelana: Caso e sequência clínica para execução. Jornal Brasileiro de Odontologia Clínica. Curitiba, p. 72-79. 1998. Holmer L, Othman A, Lührs AK, von See C. Comparison of the shear bond strength of 3D printed temporary bridges materials, on different types of resin cements and surface treatment. J Clin Exp Dent. 2019 Apr 1;11(4):e367-e372. doi: 10.4317/jced.55617. PMID: 31110617; PMCID: PMC6522115. https://doi.org/10.1016/j.jdent.2021.103924.. Ilie N, Ruse ND. Shear bond strength vs interfacial fracture toughness - Adherence to CAD/CAM blocks. Dent Mater. 2019 Dec;35(12):1769-1775. doi: 10.1016/j.dental.2019.10.003. Epub 2019 Nov 2. PMID: 31690506. Jeong YG, Lee WS, Lee KB. Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method. J Adv Prosthodont. 2018 Jun;10(3):245-251. doi: 10.4047/jap.2018.10.3.245. Epub 2018 Jun 12. PMID: 29930795; PMCID: PMC6004348. Kekez IV, Karega GP, Gadža M, Benzon B, Mikić IM, Vukojevic K, & Govorko DK Conventional vs. Digital Dental Impression: Practitioner and Patient Perspectives. International Journal of Reliable and Quality E-Healthcare (IJRQEH) 2022., 11(1), 1-13. http://doi.org/10.4018/ijrqeh.298631 Kelly JR, Rungruanganunt P, Hunter B, Vailati F. Development of a clinically validated bulk failure test for ceramic crowns. J Prosthet Dent. 2010 Oct;104(4):228-38. doi: 10.1016/S0022- 3913(10)60129-1. PMID: 20875527. Keßler A, Dosch M, Reymus M, Folwaczny M. Influence of 3D-printing method, resin material, and sterilization on the accuracy of virtually designed surgical implant guides. J Prosthet Dent. 2022 Aug;128(2):196-204. doi: 10.1016/j.prosdent.2020.08.038. Epub 2021 Feb 8. PMID: 33573833. Kim JH, Pinhata-Baptista OH, Ayres AP, da Silva RLB, Lima JF, Urbano GS, No-Cortes J, Vasques MT, Cortes ARG. Accuracy Comparison among 3D- Printing Technologies to Produce Dental Models. Appl. Sci. 2022, 12, 8425. https://doi.org/10.3390/app12178425 Koseoglu M, Kahramanoglu E, Akin H. Evaluating the Effect of Ambient and Scanning Lights on the Trueness of the Intraoral Scanner. J Prosthodont. 2021 Dec;30(9):811-816. doi: 10.1111/jopr.13341. Epub 2021 Feb 24. PMID: 33533100. Laborie M, Naveau A, Menard A. CAD-CAM resin-ceramic material wear: A systematic review. J Prosthet Dent. 2022 Apr 19:S0022-3913(22)00076-2. doi: 10.1016/j.prosdent.2022.01.027. Epub ahead of print. PMID: 35459543. https://doi.org/10.1016/j.jdent.2021.103924 http://doi.org/10.4018/ijrqeh.298631 https://doi.org/10.3390/app12178425 62 Lee EH, Ahn JS, Lim YJ, Kwon HB, Kim MJ. Effect of layer thickness and printing orientation on the color stability and stainability of a 3D-printed resin material. J Prosthet Dent. 2022 May;127(5):784.e1-784.e7. doi: 10.1016/j.prosdent.2022.01.024. Epub 2022 Feb 25. PMID: 35221037. Lee EH, Ahn JS, Lim YJ, Kwon HB, Kim MJ. Effect of post-curing time on the color stability and related properties of a tooth-colored 3D-printed resin material. J Mech Behav Biomed Mater. 2022 Feb;126:104993. doi: 10.1016/j.jmbbm.2021.104993. Epub 2021 Nov 24. PMID: 34871954 Lee SJ, Jamjoom FZ, Le T, Radics A, Gallucci GO. A clinical study comparing digital scanning and conventional impression making for implant-supported prostheses: A crossover clinical trial. J Prosthet Dent. 2022 Jul;128(1):42-48. doi: 10.1016/j.prosdent.2020.12.043. Epub 2021 Feb 16. PMID: 33602542.. Lee YK, Yu B, Lim HN, Lim JI. Difference in the color stability of direct and indirect resin composites. J Appl Oral Sci. 2011;19:154-160. doi: 10.1590/s1678- 77572011000200012. PMID: 21552717; PMCID: PMC4243754. Lee YS, Kim SY, Oh KC, Moon HS. A Comparative Study of the Accuracy of Dental CAD Programs in Designing a Fixed Partial Denture. J Prosthodont. 2022 Mar;31(3):215-220. doi: 10.1111/jopr.13406. Epub 2021 Aug 9. PMID: 34310790. Leyva Del Rio D, Johnston WM. Optical characteristics of experimental dental composite resin materials. J Dent. 2022 Mar;118:103949. doi: 10.1016/j.jdent.2022.103949. Epub 2022 Jan 10. PMID: 35026354. Ling L, Ma Y, Malyala R. A novel CAD/CAM resin composite block with high mechanical properties. Dent Mater. 2021 Jul;37(7):1150-1155. doi: 10.1016/j.dental.2021.03.006. Epub 2021 Apr 10. PMID: 33849756. Maier E, Grottschreiber C, Knepper I, Opdam N, Petschelt A, Loomans B, Lohbauer U. Evaluation of wear behavior of dental restorative materials against zirconia in vitro. Dent Mater. 2022 May;38(5):778-788. doi: 10.1016/j.dental.2022.04.016. Epub 2022 Apr 19. PMID: 35459553. Manicone P., Angelis P., Rella E., Damis G., D’addona, A., Patient preference and clinical working time between digital scanning and conventional impression making for implant- supported prostheses: A systematic review and meta-analysis. J Prosthet Dent. 2022 oct;128(4):589-596. doi: https://doi.org/10.1016/j.prosdent.2020.11.042 Manojlovic D, Dramićanin MD, Miletic V, Mitić-Ćulafić D, Jovanović B, Nikolić B. Cytotoxicity and genotoxicity of a low-shrinkage monomer and monoacylphosphine oxide photoinitiator: comparative analyses of individual toxicity and combination effects in mixtures. Dent Mater. 2017;33:454-466. doi: 10.1016/j.dental.2017.02.002. Epub 2017 Feb 28. PMID: 28258769. Mante F, Saleh N, Mante M. Softening patterns of post-cure heat-treated dental composites. Dent Mater. 1993 Sep;9(5):325-31. doi: 10.1016/0109-5641(93)90051-q. PMID: 7995485. May MM;, Sara Fraga, Liliana Gressler May, Effect of milling, fitting adjustments, and hydrofluoric acid etching on the strength and roughness of CAD-CAM glass- ceramics: A systematic review and meta-analysis, The Journal of Prosthetic Dentistry, 2021, Apr 14:S0022- 3913(21)00134-7. doi: 10.1016/j.prosdent.2021.02.031. Epub ahead of print. PMID: 33865557. https://doi.org/10.1016/j.prosdent.2020.11.042 63 Mayer J, Reymus M, Wiedenmann F, Edelhoff D, Hickel R, Stawarczyk B. Temporary 3D printed fixed dental prosthesis materials: Impact of post printing cleaning methods on degree of conversion as well as surface and mechanical properties. Int J Prosthodont. 2021 November/December;34(6):784–795. doi: 10.11607/ijp.7048. Medina AD, de Paula AB, de Fucio SB, Puppin-Rontani RM, Correr-Sobrinho L, Sinhoreti MA. Marginal adaptation of indirect restorations using different resin coating protocols. Braz Dent J. 2012;23(6):672-8. doi: 10.1590/s0103-64402012000600008. PMID: 23338259. Mine A, Kabetani T, Kawaguchi-Uemura A, Higashi M, Tajiri Y, Hagino R, Imai D, Yumitate M, Ban S, Matsumoto M, Yatani H. Effectiveness of current adhesive systems when bonding to CAD/CAM indirect resin materials: A review of 32 publications. Jpn Dent Sci Rev. 2019 Nov;55(1):41-50. doi: 10.1016/j.jdsr.2018.10.001. Epub 2018 Nov 23. PMID: 30733844; PMCID: PMC6354283. No-Cortes J, Son A, Ayres AP, Markarian RA, Attard NJ, Cortes ARG. Effect of varying levels of expertise on the reliability and reproducibility of the digital waxing of single crowns: A preliminary in vitro study. J Prosthet Dent. 2022 Jan;127(1):128-133. doi: 10.1016/j.prosdent.2020.10.007. Epub 2020 Nov 14. PMID: 33198990. Nulty A. A comparison of trueness and precision of 12 3D printers used in dentistry. BDJ Open. 2022 May 26;8(1):14. doi: 10.1038/s41405-022-00108-6. PMID: 35618716; PMCID: PMC9135705. Otto T, Schneider D. Long-term clinical results of chairside Cerec CAD/CAM inlays and onlays: a case series. Int J Prosthodont. 2008 Jan-Feb;21(1):53-9. PMID: 18350948. Paolone G, Mandurino M, De Palma F, Mazzitelli C, Scotti N, Breschi L, Gherlone E, Cantatore G, Vichi A. Color Stability of Polymer-Based Composite CAD/CAM Blocks: A Systematic Review. Polymers (Basel). 2023 Jan 16;15(2):464. doi: 10.3390/polym15020464. PMID: 36679343; PMCID: PMC9865673. Pongprueksa P, Kuphasuk W, Senawongse P. The elastic moduli across various types of resin/dentin interfaces. Dent Mater. 2008 Aug;24(8):1102-6. doi: 10.1016/j.dental.2007.12.008. Epub 2008 Mar 4. PMID: 18304626. Prause E, Hey J, Beuer F, Schmidt F. Wear resistance of 3D-printed materials: A systematic review, Dentistry Review 2022. Jun.2(2): 100051, ISSN Prosthodont. (2021), 10.1111/jopr.13400 Revilla-León M, Gómez-Polo M, Park SH, Barmak AB, Özcan M. Adhesion of veneering porcelain to cobalt-chromium dental alloys processed with casting, milling, and additive manufacturing methods: A systematic review and meta-analysis. J Prosthet Dent. 2022 Oct;128(4):575-588. doi: 10.1016/j.prosdent.2021.01.001. Epub 2021 Jul 20. PMID: 34294418. Revilla-León M, Morillo JA, Att W, Özcan M. Chemical Composition, Knoop Hardness, Surface Roughness, and Adhesion Aspects of Additively Manufactured Dental Interim Materials. J Prosthodont. 2021 Oct;30(8):698-705. doi: 10.1111/jopr.13302. Epub 2020 Dec 24. PMID: 33290604. Revilla-León M, Özcan M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J Prosthodont. 2019 Feb;28(2):146-158. doi: 10.1111/jopr.12801. Epub 2018 Apr 22. PMID: 29682823. 64 Revilla-León M, Subramanian SG, Att W, Krishnamurthy VR. Analysis of Different Illuminance of the Room Lighting Condition on the Accuracy (Trueness and Precision) of An Intraoral Scanner. J Prosthodont. 2021 Feb;30(2):157-162. doi: 10.1111/jopr.13276. Epub 2020 Nov 7. PMID: 33094878. Rosentritt M, Behr M, Preis V. A critical evaluation of fatigue studies for restorative materials in Dentistry. Curr Oral Health Rep. 2016 Jun;3:221–228. https://doi. org/10.1007/s40496-016- 0097-8. Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications. J Dent Res. 2014 Dec;93(12):1232-4. doi: 10.1177/0022034514553976. Epub 2014 Oct 24. PMID: 25344335; PMCID: PMC4462808. Said AM, Zohdy MMM, Morsy TSED. The Effect of Aging and Surface Treatments on Micro- shear Bond Strength of Resin Nano-Ceramic Material using two Resin Cements. J Dent Oral Sci. 2020;2(1):1-14. DOI: https://doi.org/10.37191/Mapsci-2582-3736-2(1)-021 Salas M., Lucena C., Herrera L.J., Yebra A., Della Bona A., Pérez M.M., Translucency thresholds for dental materials, Dental Materials, Volume 34, Issue 8, 2018, Pages 1168-1174, ISSN 0109-5641, https://doi.org/10.1016/j.dental.2018.05.001. Sarahneh O, Günal-Abduljalil B. The effect of silane and universal adhesives on the micro-shear bond strength of current resin-matrix ceramics. J Adv Prosthodont. 2021 Oct;13(5):292-303. doi: 10.4047/jap.2021.13.5.292. Epub 2021 Oct 27. PMID: 34777719; PMCID: PMC8558573. Schlenz MA, Michel K, Wegner K, Schmidt A, Rehmann P, Wöstmann B. Undergraduate dental students' perspective on the implementation of digital dentistry in the preclinical curriculum: a questionnaire survey. BMC Oral Health. 2020 Mar 18;20(1):78. doi: 10.1186/s12903-020-01071- 0. PMID: 32188456; PMCID: PMC7079522. Sellan PLB, Campaner LM, Tribst, JPM, de Oliveira Dal Piva AM, de Andrade GS. Borges ALS, Bresciani E, Lanzotti A, Ausiello P. Functional or Nonfunctional Cusps Preservation for Molars Restored with Indirect Composite or Glass-Ceramic Onlays: 3D FEA Study. Polymers 2021, 13, 3831. doi: 10.3390/polym13213831. Seyidaliyeva A, Rues S, Evagorou Z, Hassel AJ, Rammelsberg P, Zenthöfer A. Color stability of polymer-infiltrated-ceramics compared with lithium disilicate ceramics and composite. J Esthet Restor Dent 2020;32:43–50. Shin JW, Kim JE, Choi YJ, Shin SH, Nam NE, Shim JS, Lee KW. Evaluation of the Color Stability of 3D-Printed Crown and Bridge Materials against Various Sources of Discoloration: An In Vitro Study. Materials (Basel). 2020 Nov 26;13(23):5359. doi: 10.3390/ma13235359. PMID: 33255922; PMCID: PMC7731151. Sidhom M, Zaghloul H, Mosleh IE, Eldwakhly E. Effect of Different CAD/CAM Milling and 3D Printing Digital Fabrication Techniques on the Accuracy of PMMA Working Models and Vertical Marginal Fit of PMMA Provisional Dental Prosthesis: An In Vitro Study. Polymers (Basel). 2022 Mar 22;14(7):1285. doi: 10.3390/polym14071285. PMID: 35406159; PMCID: PMC9003362. Silva EA, Simionato AA, Faria ACL, Bonfante EA, Rodrigues RCS, Ribeiro RF. Mechanical Properties, Wear Resistance, and Reliability of Two CAD-CAM Resin Matrix Ceramics. Medicina. 2023; 59(1):128. https://doi.org/10.3390/medicina59010128 https://doi.org/10.37191/Mapsci-2582-3736-2(1)-021 https://doi.org/10.1016/j.dental.2018.05.001 https://doi.org/10.3390/medicina59010128 65 Singh V. Rapid prototyping, materials for RP and applications of RP. Int J Eng Res Sci 2013;4:473–480 Souza EMD, Silva e Souza Júnior MH, Lopes FAM, Osternack FHR. Facetas estéticas indiretas em porcelana. Jornal Brasileiro de Dentística e Estética, Curitiba, v. 1, n. 3, p. 256-262, jul./set. 2002. Strini BS, Marques JFL, Pereira R, Sobral-Souza DF, Pecorari VGA, Liporoni PCS, Aguiar FHB. Comparative Evaluation of Bulk-Fill Composite Resins: Knoop Microhardness, Diametral Tensile Strength and Degree of Conversion. Clin Cosmet Investig Dent. 2022 Aug 4;14:225-233. doi: 10.2147/CCIDE.S376195. PMID: 35957701; PMCID: PMC9359371. Sulaiman TA, Suliman AA, Mohamed EA, Rodgers B, Altak A, Johnston WM. Optical properties of bisacryl-, composite-, ceramic- resin restorative materials: An aging simulation study. J Esthet Restor Dent. 2021 Sep;33(6):913-918. doi: 10.1111/jerd.12653. Epub 2020 Sep 8. PMID: 32896995. Takada D, Kumagai D, Fusejima F, Ueno T, Kariya S. Wear Resistance Comparison of 3D- Printed Composite Resin Material, Dent Mater.2022;38(1) Page 42, ISSN 0109-5641, https://doi.org/10.1016/j.dental.2021.12.099. Turkyilmaz I, Wilkins GN, Yun S. Moving from analogue to digital workflows in dentistry: Understanding undermilling and overmilling as detrimental factors in fabricating CAD/CAM crowns. Prim Dent J. 2022 Jun;11(2):59-61. doi: 10.1177/20501684221100938. PMID: 35658655. Van Noort R, Noroozi S, Howard IC, Cardew G. A critique of bond strength measurements. J Dent. 1989 Apr;17(2):61-7. doi: 10.1016/0300-5712(89)90131-0. PMID: 2659632. Venturini AB, Prochnow C, Pereira GKR, Segala RD, Kleverlaan CJ, Valandro LF. Fatigue performance of adhesively cemented glass-, hybrid- and resin-ceramic materials for CAD/CAM monolithic restorations. Dent Mater. 2019 Apr;35(4):534-542. doi: 10.1016/j.dental.2019.01.013. Epub 2019 Jan 25. PMID: 30686711. Vichi A, Goracci C, Carrabba M, Tozzi G, Louca C. Flexural resistance of CAD-CAM blocks. Part 3: Polymer-based restorative materials for permanent restorations. Am J Dent. 2020 Oct;33(5):243-247. PMID: 33017526. Wang H, Cui B, Li J, Li S, Lin Y, Liu D, Li M. Mechanical properties and biocompatibility of polymer infiltrated sodium aluminum silicate restorative composites. J. Adv. Ceram. 2017, 6: 73–79 doi:https://doi.org/10.1007/s40145-016-0214-0 Wendler M, Kaizer MR, Belli R, Lohbauer U, Zhang Y. Sliding contact wear and subsurface damage of CAD/CAM materials against zirconia. Dent Mater. 2020 Mar;36(3):387-401. doi: 10.1016/j.dental.2020.01.015. Epub 2020 Jan 30. PMID: 32007314; PMCID: PMC7042091. Yamamoto T, Nakamura Y, Nishide A, Kubota Y, Momoi Y. Contraction stresses in direct and indirect composite restorations compared by crack analysis. J Adhes Dent. 2013 Feb;15(1):47- 54. doi: 10.3290/j.jad.a28171. PMID: 23534000. Yin R, Jang YS, Lee MH, Bae TS. Comparative Evaluation of Mechanical Properties and Wear Ability of Five CAD/CAM Dental Blocks. Materials (Basel). 2019 Jul 12;12(14):2252. doi: 10.3390/ma12142252. PMID: 31336968; PMCID: PMC6678169. https://doi.org/10.1016/j.dental.2021.12.099 66 Yu B, Lee YK. Comparison of stabilities in translucency, fluorescence and opalescence of direct and indirect composite resins. Eur J Esthet Dent. 2013 Summer;8(2):214-25. PMID: 23712342. Yuzbasioglu E, Kurt H, Turunc R, Bilir H. Comparison of digital and conventional impression techniques: evaluation of patients' perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health. 2014 Jan 30;14:10. doi: 10.1186/1472-6831-14-10. PMID: 24479892; PMCID: PMC3913616. Zheng Z, He Y, Ruan W, Ling Z, Zheng C, Gai Y, Yan W. Biomechanical behavior of endocrown restorations with different CAD-CAM materials: A 3D finite element and in vitro analysis. J Prosthet Dent. 2021 Jun;125(6):890-899. doi: 10.1016/j.prosdent.2020.03.009. Epub 2020 May 26. PMID: 32471627.