J H E P 0 8 ( 2 0 1 2 ) 0 2 6 Published for SISSA by Springer Received: June 30, 2012 Accepted: July 24, 2012 Published: August 3, 2012 Search for stopped long-lived particles produced in pp collisions at √ s = 7TeV The CMS collaboration Abstract: A search has been performed for long-lived particles that have stopped in the CMS detector, during 7 TeV proton-proton operations of the CERN LHC. The existence of such particles could be inferred from observation of their decays when there were no proton- proton collisions in the CMS detector, namely during gaps between LHC beam crossings. Using a data set in which CMS recorded an integrated luminosity of 4.0 fb−1, and a search interval corresponding to 246 hours of trigger live time, 12 events are observed, with a mean background prediction of 8.6 ± 2.4 events. Limits are presented at 95% confidence level on long-lived gluino and stop production, over 13 orders of magnitude of particle lifetime. Assuming the “cloud model” of R-hadron interactions, a gluino with mass below 640 GeV and a stop with mass below 340 GeV are excluded, for lifetimes between 10µs and 1000 s. Keywords: Hadron-Hadron Scattering Open Access, Copyright CERN, for the benefit of the CMS collaboration doi:10.1007/JHEP08(2012)026 http://dx.doi.org/10.1007/JHEP08(2012)026 J H E P 0 8 ( 2 0 1 2 ) 0 2 6 Contents 1 Introduction 1 2 The CMS detector 2 3 Signal simulation 3 4 Event selection 4 5 Backgrounds 7 6 Systematic uncertainty 7 7 Search results 8 8 Excluded region in the mg̃ - mχ̃0 plane 10 9 Summary 11 The CMS collaboration 15 1 Introduction Heavy long-lived particles are predicted by many extensions of the standard model, includ- ing supersymmetric models [1–3], “hidden valley” scenarios [4], grand-unified theories [5] and split supersymmetry models [6]. In models in which their production proceeds via the strong interaction, relatively large cross sections at the Large Hadron Collider (LHC) are predicted [7–10]. While there are astrophysical constraints on the lifetime of such parti- cles [11], these are imprecise owing to uncertainty about their interactions. In this article, we look for evidence of long-lived particles that stop in the Compact Muon Solenoid (CMS) detector and decay in the quiescent periods between LHC beam crossings. Previous collider searches have used this method to set limits on the gluino (g̃) lifetime and mass [12–15]. We now expand the search to include scalar top quarks, known as stops (̃t). If long-lived gluinos or stops are produced at the LHC, they are expected to hadronize into g̃g, g̃qq, g̃qqq, t̃q, t̃qq states called “R-hadrons” [16–18]. These R-hadrons lose energy via nuclear interactions and, if charged, via ionisation, as they traverse the CMS detec- tor. The R-hadrons that are produced with sufficiently low velocity will come to rest in the detector volume [19], preferentially in the densest detector elements, the calorimeters. These stopped particles may subsequently decay, which may result in an energy deposit in the CMS calorimeters similar to that produced by a jet. If these decays occur out-of-time with respect to the proton-proton collisions producing the parent particles, the observation – 1 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 of such asynchronous events would constitute unambiguous evidence of new physics. This search is complementary to analyses [20–22] in which the long-lived particle signature is based on energy loss measurements in the charged-particle tracking system and timing in- formation. Because this analysis relies only on calorimetry, it is sensitive to non-relativistic particles with velocity β ≤ 0.3, for which searches based on tracking information have neg- ligible acceptance. The use of calorimetry also provides sensitivity to R-hadrons even in enhanced “charged-flipping” scenarios [23], where the R-hadron becomes neutral and track reconstruction may be difficult or impossible. Finally, the stopped particle method would allow an experimental measurement of the particle lifetime and other properties [24]. Section 2 provides an overview of the CMS experimental apparatus and the data sets used for the analysis. In section 3 we describe the dedicated simulation procedure for the signal, and in section 4, the online and offline event selection. The background estimation methods are described in section 5. The systematic uncertainties are listed in section 6 and the results are given in section 7. Finally, in section 8, we interpret the results as an excluded region in the mg̃ - mχ̃0 plane. 2 The CMS detector The central feature of the CMS apparatus is a superconducting solenoid, of 6 m inter- nal diameter, providing a magnetic field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass/scintillator hadron calorimeter (HCAL). Hybrid photodiodes (HPDs) are used for light collection from the HCAL scintillators. Muons are measured in gas-ionisation de- tectors embedded in the steel return yoke; drift tubes (DT) and resistive plate chambers (RPC) provide coverage in the barrel, while cathode strip chambers (CSC) and RPC pro- vide coverage in the endcaps. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. CMS uses a right-handed coordinate system, with the origin at the nominal interaction point, the x axis pointing to the centre of the LHC, the y axis pointing up (perpendicular to the LHC plane), and the z axis along the anticlockwise-beam direction. The polar angle, θ, is measured from the positive z axis and the azimuthal angle, φ, is measured in the x-y plane. The pseudorapidity, η, is defined as η = − ln[tan(θ/2)]. In the region |η| < 1.74, the HCAL cells have widths of 0.087 in η and 0.087 in φ. In the η-φ plane, and for |η| < 1.48, the HCAL cells map onto 5 × 5 ECAL crystals arrays to form calorimeter towers projecting radially outwards from close to the nominal interaction point. At larger values of |η|, the size of the towers increases and the matching ECAL arrays contain fewer crystals. Within each tower, the energy deposits in ECAL and HCAL cells are summed to define the calorimeter tower energies, subsequently used to provide the energies and directions of hadronic jets. For this search, jets are recon- structed offline from the energy deposits in the calorimeter towers, clustered by an iterative cone algorithm [25] with a cone radius of 0.5 in (η, φ) space. Muons, which are used to reject cosmic ray backgrounds, are measured in the pseudorapidity range |η| < 2.4. A more detailed description of the CMS apparatus can be found in ref. [26]. – 2 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 The search is performed using data recorded in 2011 during regular periods of LHC colliding beams (fills). Several fills taken towards the end of 2011 were not included in the search because the LHC vacuum was relatively low during these periods, which may have resulted in beam-gas backgrounds to which the search would have been sensitive. During the period analysed, CMS recorded an integrated luminosity of 4.0 fb−1, although it should be noted that the integrated luminosity to which this search is sensitive depends on the particle lifetime. Since we search for stopped particle decays in the gaps between colliding bunches, the fraction of time available for the search depends on the number (and spacing) of proton bunches in the LHC. For the fills analysed, the number of bunches per beam varied from 228 to 1380. During event selection, we veto any event within two 25 ns LHC clock cycles (BX) of a bunch passing through CMS. In addition, physics triggers are inhibited for a short time at the end of the LHC revolution period (the “LHC orbit”), while calibration triggers are taken. After accounting for these periods, between 85%, for 228 bunch fills, and 16%, for 1380 bunch fills, of the LHC orbit is available for the search. The total time during which the analysis is sensitive to decays of stopped particles (the “live time”) is 246 hours. For measurement of the background due to instrumental noise, we use a control sample taken between March and August 2010, comprising 249 hours of total live time. The integrated luminosity delivered in the control sample (3.6 pb−1) is sufficiently small that signal contamination can be neglected. 3 Signal simulation The same factorized simulation is employed as in our previous publication [13]. In the first phase, qq → g̃g̃, gg → g̃g̃, qq → t̃̃t, and gg → t̃̃t events are generated at √ s = 7 TeV using pythia [27] to simulate particle pair production, together with their subsequent hadronisation into R-hadrons [28]. In this phase the gluino or stop is defined to be stable. We simulate gluino masses in the range mg̃ = 300–1200 GeV, and stop masses in the range mt̃ = 300–800 GeV. A modified Geant4 simulation [29] that implements a phase-space driven “cloud model” of strong R-hadron interactions with matter [30, 31], referred to as the “generic” model in ref. [14], is used to simulate the interaction of these R-hadrons with the CMS detector and to record the final locations of those R-hadrons that stop in the detector. As shown in figure 1, the probability of at least one R-hadron to stop in the CMS detector was determined to be in the range 0.05–0.07, for both gluinos and stops in the mass range studied. In the next phase, we simulate the decay of the stopped R-hadron. Implicit in our factorized approach is the assumption that the decay time is much greater than the time required to stop the R-hadron. We again use pythia, this time to produce a R-hadron at rest; we then translate from the nominal vertex position to the recorded stopping location and decay the constituent gluino or stop instantaneously. We assume a 100% branching fraction for g̃→ g χ̃0 1, which dominates in split supersymmetry for the range of gluino mass to which the search is sensitive [32], although it should be noted that our method is also sensitive to final states with additional jets such as g̃→ qqχ̃0 1. Similarly, we assume a 100% branching fraction for t̃ → t χ̃0 1. The kinematics of the R-hadron decay is dominated by – 3 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 m [GeV] 300 400 500 600 700 800 900 1000 1100 1200 st op ε 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 = 7 TeVsCMS Simulation, g~ g~gluinos, t ~ t ~ stops, Figure 1. Probability for one of a pair of produced long-lived particles to stop in the barrel calorimeter (ECAL or HCAL), as a function of the particle mass. the properties of the gluino or stop, and neutralino, as the spectator quarks do not play a significant role. These spectator quarks cannot be ignored, however, as they participate in the hadronisation of the gluon or quarks produced in the decay. We developed and implemented a custom decay table to correctly account for the colour flow in these decays. Finally, we use a specialised Monte Carlo simulation that uses the measured delivered luminosity profile and the LHC filling scheme to simulate the time profile of stopping particle production. By randomly generating decay times according to the exponential distribution expected for a given lifetime hypothesis, and using the record of good data- taking periods and the LHC filling scheme, the simulation program calculates the fraction of stopped particle decays that occur during a triggerable interval, and hence determines an effective luminosity for each lifetime hypothesis. 4 Event selection In order to record decays of particles during gaps between the proton bunches that comprise the LHC beam, we use an updated version of the dedicated calorimeter trigger employed in our previous search [13]. This trigger uses information from the two beam position and timing (BPTX) monitors that are positioned 175 m from the centre of CMS, along the beam axis on each side, and that produce a signal when an LHC proton bunch passes. We require a jet trigger together with the condition that both BPTX signals are below threshold, ensuring that the trigger will not select particles from pp collisions or from beam-gas interactions of protons in unpaired bunches. We also require that at most one BPTX produces a signal in a window ±1 BX around the triggered event. This reduces the trigger rate due to lower intensity, out of time, “satellite” bunches that accompany – 4 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 the colliding protons. The energy deposition in the calorimeter of a jet from the R-hadron decay is sufficiently similar to those of jets originating directly from pp collisions that a calorimeter jet trigger can be used. At the hardware trigger level (L1), the jet transverse energy, ET , which is calculated assuming the jet was produced at the nominal interaction point, is required to be greater than 32 GeV, while in the software trigger (HLT) the jet energy is required to be greater than 50 GeV. At both L1 and HLT the pseudorapidity of the jet, |ηjet|, is required to be less than 3.0. Finally, the trigger vetoes any event that is accompanied by a L1 endcap muon beam-halo trigger, again within a ±1 BX window. The offline event selection, described below, is designed to reject backgrounds related to the passage of beam through CMS, as well as backgrounds from cosmic rays and from instrumental noise, while retaining good signal efficiency. We describe in turn the selection criteria that reject each source of background. Beam related backgrounds include out-of-time pp collisions, beam-gas interactions from unpaired proton bunches, and beam-halo. In order to reject events related to an unpaired bunch passing through CMS, events in which either BPTX is over threshold are vetoed, in a ±2 BX window around the trigger. This criterion also rejects other beam backgrounds, such as beam halo, and mis-timed jet triggers from in-time pp collisions. The most significant remaining beam-related background arises from beam halo. Beam-halo muons that result in energy deposits in the HCAL are well-reconstructed as track segments in the muon endcap CSC system, so we reject any event containing a CSC segment. Finally, to ensure that no out-of-time pp collision events due to satellite bunches contaminate the search sample, events with one or more reconstructed primary vertices are rejected. A small fraction of cosmic rays traversing CMS deposit significant energy in the calorimeters. To remove such background, we veto events which contain one or more reconstructed muons. Because of inefficiencies in the track reconstruction of cosmic rays, we also veto events which contain more than two DT segments, or more than two RPC hits. In the muon endcap, we require the hits in each RPC hit pair to be separated by ∆φ < 0.4, and in the muon barrel by ∆z < 40 cm. In addition to beam-related backgrounds and cosmic rays, instrumental noise can also mimic our signal. To combat this background, standard calorimeter cleaning and noise rejection criteria [33] are applied. We restrict our search to jets in the less noisy central HCAL, requiring that the most energetic jet in the event has |ηjet| < 1. This requirement has been tightened from the value used in ref. [13] in order to improve the rejection of beam-halo events, which tend to include calorimeter deposits at large pseudorapidity. A jet with reconstructed energy above 70 GeV is required, above the trigger efficiency turn- on region. To remove events due to noise in a single HCAL channel, events with more than 90% of the energy deposited in three or fewer calorimeter towers are vetoed. We also require that the leading jet has at least 60% of its energy contained in fewer than 6 towers. To suppress noise from HPD discharges [33], events with 5 or more of the leading towers at the same azimuthal angle, or with more than 95% of the jet energy contained within towers at the same azimuthal angle, are rejected. The HCAL electronics have a well-defined time response to charge deposits generated by showering particles. Analog signal pulses produced by these electronics are sampled – 5 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 ) [GeV] top (EgluonE 50 100 150 200 250 300 de t ε 0 0.1 0.2 0.3 0.4 0.5 = 7 TeVsCMS Simulation, = 300 GeVg~m = 600 GeVg~m = 300 GeV t ~m = 400 GeV t ~m = 500 GeV t ~m = 600 GeV t ~m Figure 2. Combined trigger and reconstruction efficiency (detection efficiency) for decays of parti- cles which have stopped in the CMS barrel calorimeters, as a function of the daughter gluon energy, Egluon, for gluino decays, and as a function of the daughter top energy, Etop, for stop decays. Each point corresponds to fixed mg̃ or mt̃ and mχ̃0 1 . Gluino and stop masses are shown on the plot, while the neutralino masses range from 100–548 GeV for gluino and from 50–300 GeV for stop. at 40 MHz, synchronised with the LHC clock. These pulses are read out over ten BX samples grouped about the pulse maximum. A pulse resulting from real energy deposition in the calorimeters (“a physical pulse”) has some notable properties, which we use to distinguish it from noise pulses. Physical pulses have a clear peak containing a large fraction of the energy (Epeak), significant energy in one bunch crossing before the peak (Epeak−1), and an exponential decay for several BX following the peak. Noise pulses tend to be spread over many BX or localised in one BX. We use the ratios R1 = Epeak+1/Epeak and R2 = Epeak+2/Epeak+1 to characterise the exponential decay, requiring R1 > 0.15 and 0.1 < R2 < 0.8. We also require the ratio of the peak energy to the total energy to be between 0.3 and 0.7. Finally, we remove events with more than 30% of the energy of the pulse outside the central four BX. The noise rejection selection was optimised to maximise the signal to background ratio, using simulated signal and the 2010 control sample, after removal of the cosmic ray background. After all selection criteria have been applied, the remaining event rate measured in the 2010 control sample is (5.6 ± 2.5) × 10−6 Hz. The efficiency for detection of a gluino decay signal (with mg̃ = 600 GeV and mχ̃0 1 = 490 GeV), estimated from the simulation as described above, is (51±4)% of all gluinos stopping in HCAL or ECAL barrel calorimeters. Since we consider a two body decay mode of the gluino, with fixed energy of the daughter gluon, a scan of gluino and neutralino masses allows us to calculate the detection efficiency as a function of Egluon, as shown in figure 2. The efficiency is roughly constant provided the gluon energy is above a minimum value, Emin gluon = 100 GeV. For stop decays, the detection – 6 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 Cosmic rays Beam-halo Noise Total 5.71± 0.62 1.50± 0.70 1.4± 2.2 8.6± 2.4 Table 1. Estimated number of background events during the search period for each background source. efficiency is lower than the gluino, due to undetectable muons and neutrinos in the final state, but is again roughly constant, at (31± 2)%, provided the daughter top quark energy is greater than Emin top = 125 GeV. 5 Backgrounds The residual backgrounds to this search consist of instrumental noise, unidentified cosmic rays, and unidentified beam backgrounds, principally beam halo. The cosmic ray muon re- jection inefficiency is essentially a geometric factor, which we estimate from the cosmic ray Monte Carlo simulation to be (0.214± 0.023)%. Taking the product of this factor with the number of events passing the full selection criteria, apart from the cosmic ray veto, we esti- mate the cosmic ray background to the search to be 5.71± 0.62 events. The beam-halo re- jection inefficiency is estimated to be approximately 0.2%, using a “tag and probe” method, where the tag is a well identified halo track in one endcap, and the probe is a CSC segment in the other. The halo background is estimated in bins of jet pseudorapidity, from the prod- uct of the rejection inefficiency and the number of positively identified halo events that pass the remaining selection criteria. The resulting total halo background estimate is 1.50±0.70 events. The noise background rate is assumed to be constant over time, and is calculated from the 2010 control sample. In this sample we observe 5 events, of which 3.56± 0.39 are expected to be cosmic rays, giving a noise rate of (1.5±2.5)×10−6 Hz. The noise background to the search is therefore estimated to be 1.4 ± 2.2 events. The total background to the search is taken as the sum of cosmic ray, halo, and noise backgrounds, giving 8.6±2.4 events. 6 Systematic uncertainty A model-independent search for stopped particles avoids many systematic uncertainties common in collider physics, such as those due to parton density functions. However, some sources of systematic uncertainty remain. We assign an uncertainty on the background estimate of 28%, dominated by the statistical uncertainties in the 2010 control sample used to estimate the noise background, and the sample used to estimate beam-halo background. There is a small systematic uncertainty due to the jet energy scale (JES). For a JES uncertainty of ±10%, we estimate a 7% effect on the cross section limit. The systematic uncertainty due to trigger efficiency is negligible since the data analysed are well above the turn-on region. Similarly, the systematic uncertainty due to reconstruction efficiency is negligible since we restrict our search to Egluon > 100 GeV, for gluino, and Etop > 125 GeV, for stop. Finally, there is a 2.2% uncertainty in the integrated luminosity [34]. – 7 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 τ Leff ( pb−1) Live time (s) Nexp Nobs 75 ns 19.6 2.06× 104 0.200± 0.056 1 100 ns 57.8 6.17× 104 0.60± 0.17 2 1µs 508 4.41× 105 4.3± 1.2 7 10µs 913 8.67× 105 8.5± 2.4 12 100µs 935 8.86× 105 8.6± 2.4 12 103 s 866 8.86× 105 8.6± 2.4 12 104 s 636 8.86× 105 8.6± 2.4 12 105 s 332 8.86× 105 8.6± 2.4 12 106 s 198 8.86× 105 8.6± 2.4 12 Table 2. Results of counting experiments for a range of stopped particle lifetimes, τ . The effective luminosity, Leff, for each lifetime is shown, along with the total live time, the expected number of background events, Nexp, and the total number of observed events, Nobs. Setting limits on a particular model (e.g. gluinos in split supersymmetry) introduces more substantial systematic uncertainties, since the signal yield is sensitive to the stopping probability. The Geant4 simulation used to derive the stopping efficiency described above implements models for both electromagnetic (EM) and nuclear interaction (NI) energy-loss mechanisms. Whereas the EM model is well understood, the R-hadron cloud model used for the NI has never been tested and is based on postulated physics extrapolated from low- energy QCD. Moreover, there are alternative models [35] in which R-hadrons preferentially become neutral after a NI. We do not attempt to quantify these uncertainties; instead we present limits for a particular model. 7 Search results After the selection criteria described in the preceding sections are applied, we perform a counting experiment. The method is unchanged from that described in ref. [13]. We consider particle lifetime hypotheses from 75 ns to 106 seconds. For lifetime hypotheses shorter than one LHC orbit (89µs), we search within a time window following each collision, of duration 1.3 × τ , for optimal sensitivity to the assumed lifetime τ . For longer lifetime hypotheses, no search window is used, other than the 2 BX veto around each collision applied during event selection, which affects all lifetime hypotheses. For each lifetime hypothesis, the background is assumed to be flat in time, and is calculated from the total live time in which we search, after the time window and the 2 BX veto around collisions have been applied. An effective integrated luminosity, Leff, is calculated for each lifetime, using the Monte Carlo simulation described in section 3. The effective luminosity decreases for very short and very long lifetimes, reflecting the fraction of signal that occurs during the search period. The efficiency for very short lifetimes is reduced by the ±2 BX veto around collisions, and the efficiency for very long lifetimes falls as more signal would appear after the search period is over. These results of the counting experiment are presented in table 2. In the search sample, – 8 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 [s]τ -710 -610 -510 -410 -310 -210 -110 1 10 210 310 410 510 610 [p b] de t ε × st op ε × B F × σ -310 -210 -110 1 10 CMS 2011 -1 L dt = 4.0 fb∫ = 7 TeVs > 125 GeV top > 100 GeV, EgluonE = 400 GeV) g~ (mtheoryσ = 400 GeV) t ~ (mtheoryσ 95% CL Limits: Observed σ1±Expected σ2±Expected ) [ pb ] 0 χ∼ g → g~ B F ( × ) g~ g~ → (p p σ -110 1 10 210 310 ) [ pb ] 0 χ∼ t → t~ B F ( × ) t~ t~ → (p p σ -110 1 10 210 310 Figure 3. Expected and observed 95% CL limits on stop and gluino pair production cross section (left-hand axes), using the cloud model of R-hadron interactions, as a function of particle lifetime. The theoretical cross sections for 400 GeV gluino and stop production are taken from ref. [39]. Also shown is the model-independent 95% CL limit on particle production cross-section × branching fraction × stopping probability × detection efficiency (right-hand axis). The structure observed between 10−7 s and 10−5 s is due to the number of observed events incrementing when crossing boundaries between lifetime bins. we do not observe a significant excess above expected background, Nexp for any lifetime hypothesis. It should be noted that the search interval for a given lifetime is either wholly contained within, or equal to, the interval used for any greater lifetime. Hence the events ob- served for a small lifetime hypothesis are also observed for longer lifetime hypotheses. A sig- nal would appear as an increased number of counts across all lifetime search intervals. For lifetimes shorter than one LHC orbit, the amount of signal in each lifetime bin would allow a measurement of the particle lifetime. For longer lifetimes, a lifetime measurement could be achieved using dedicated runs after the LHC beams are dumped at the end of each fill. We set 95% confidence level (CL) limits over 13 orders of magnitude in stopped particle lifetime, using a CLs [36, 37] limit calculator implemented in RooStats [38]. These limits are presented in figure 3 as a function of particle lifetime. The right-hand axis of figure 3 gives a model-independent limit on particle production cross section × branching fraction × stopping probability × detection efficiency. We then use the stopping probability and detection efficiency obtained from simulation, to place limits on the particle production cross section, shown on the left-hand axes of figure 3 for stop and gluino, respectively. These limits assume visible daughter energies of Egluon > 100 GeV for gluino, and Etop > 125 GeV for stop, ensuring the detection efficiency is on the plateau shown in figure 2. The sensitivity of the search decreases at short and long lifetimes as the effective luminosity decreases. The structure observed between 10−7 s and 10−5 s is due to the number of observed events incrementing across boundaries between lifetime bins. – 9 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 [s]τ -710 -610 -510 -410 -310 -210 -110 1 10 210 310 410 510 610 m [G eV ] 200 300 400 500 600 700 800 900 1000 1100 CMS 2011 -1 L dt = 4.0 fb∫ = 7 TeVs > 125 GeV top > 100 GeV, EgluonE 95% CL Limits: observedg~ observedt ~ σ1± expected g~ σ2± expected g~ σ1± expected t ~ σ2± expected t ~ Figure 4. The 95% CL limits on gluino and stop mass as a function of particle lifetime, assuming the cloud model of R-hadron interactions and the theoretical production cross sections given in ref. [39]. The structure observed between 10−7 s and 10−5 s is due to the number of observed events incrementing across boundaries between lifetime bins. The observed mass limit for the plateau between 10−5 s and 103 s is indicated by an arrow on the vertical axis. Figure 4 shows the limit on particle mass as a function of lifetime, for gluino and stop, assuming theoretical production cross sections [39], as well as BF(g̃ → gχ̃0 1) = 100% and BF(̃t → tχ̃0 1) = 100%. For lifetimes between 10µs and 1000 s, we exclude gluinos with masses below 640 GeV and stops with masses below 340 GeV, at 95% CL. 8 Excluded region in the mg̃ - mχ̃0 plane For lifetimes in the range 10µs to 1000 s, we interpret the results of the analysis as an excluded region in the mg̃ - mχ̃0 plane, assuming BF(g̃→ gχ̃0 1) = 100%. These results are presented in figure 5. The excluded region is bounded by two contours, one at constant mg̃ and one at constant Egluon. The latter is described by mg̃ = Emin gluon + √ Emin gluon 2 +m2 χ̃0 , where Emin gluon is the minimum gluon energy for which the result is valid, obtained from the start of the plateau in reconstruction efficiency shown in figure 2. Since the signal efficiency is essentially flat above Emin gluon, and the background falls steeply with energy, we obtain stronger limits on the gluino production cross section and hence on mg̃, by repeating the analysis with increased jet energy thresholds (Ethresh) of 100, 150 and 200 GeV. For each threshold, the background is estimated as described above, and limits are placed on the gluino production cross section and the gluino mass. The results are given in table 3, along with the value of Emin gluon for each threshold. The excluded region of mg̃-mχ̃0 is shown separately for each jet energy threshold in figure 5. – 10 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 Threshold (GeV) Emin gluon (GeV) Nexp Nobs mmin g̃ (GeV) 70 100 8.6± 2.4 12 640 100 150 3.4± 1.1 5 680 150 220 1.5± 1.0 2 720 200 300 0.83± 0.99 2 720 Table 3. Results of the analysis using a range of jet energy thresholds. The expected background, Nexp, and the number of observed events, Nobs, are shown. The resulting lower limit on the gluino mass (mmin g̃ ) assumes the minimum gluon energy (Emin gluon) given in the table, gluino lifetime in the range 10 µs and 1000 s, and BF(g̃→ gχ̃0 1) = 100%. [GeV]0χ∼ m 0 100 200 300 400 500 600 [G eV ] g~ m 0 100 200 300 400 500 600 700 800 Kinematically forbidden CMS 2011 -1 L dt = 4.0 fb∫ = 7 TeVs > 70 GeV thresh E > 100 GeV threshE > 150 GeV threshE > 200 GeV threshE Figure 5. The region of mg̃ - mχ̃0 excluded by the analysis, valid for gluino lifetimes 10−5 s < τg̃ < 103 s, using several jet energy thresholds Ethresh. 9 Summary New results have been presented on long-lived particles which have stopped in the CMS detector, after being produced in 7 TeV pp collisions from the CERN Large Hadron Collider. A search was performed for the decay of such particles, during gaps between LHC beam crossings, using a dedicated calorimeter trigger. Using a data set in which CMS recorded an integrated luminosity of 4.0 fb−1, and a total search interval of 246 hours, a total of 12 events were observed, against a mean background prediction of 8.6 ± 2.4 events. Limits are set at 95% CL on long-lived particle pair production, over 13 orders of magnitude of lifetime. For visible energy Egluon > 100 GeV, assuming BF(g̃ → gχ̃0 1) = 100%, a gluino with lifetimes ranging from 10µs to 1000 s and mg̃ < 640 GeV is excluded. Under similar assumptions, Etop > 125 GeV, and BF(̃t→ tχ̃0 1) = 100%, a stop with lifetimes ranging from – 11 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 10µs to 1000 s and mt̃ < 340 GeV is excluded. By repeating the analysis with increased jet energy thresholds, lower limits on the gluino mass are set up to 720 GeV, valid for Egluon > 150 GeV and lifetimes in the range 10µs to 1000 s. These results considerably extend constraints obtained from previous stopped particle searches [12–14] and are consistent with the complementary exclusions provided by the direct searches [20–22]. Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONA- CYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Founda- tion; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Council of Science and Industrial Research, India; and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund. Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. References [1] S. Dimopoulos, M. Dine, S. Raby and S.D. Thomas, Experimental signatures of low-energy gauge mediated supersymmetry breaking, Phys. Rev. Lett. 76 (1996) 3494 [hep-ph/9601367] [INSPIRE]. [2] H. Baer, K.-m. Cheung and J.F. Gunion, A heavy gluino as the lightest supersymmetric particle, Phys. Rev. D 59 (1999) 075002 [hep-ph/9806361] [INSPIRE]. – 12 – http://dx.doi.org/10.1103/PhysRevLett.76.3494 http://arxiv.org/abs/hep-ph/9601367 http://inspirehep.net/search?p=find+EPRINT+hep-ph/9601367 http://dx.doi.org/10.1103/PhysRevD.59.075002 http://arxiv.org/abs/hep-ph/9806361 http://inspirehep.net/search?p=find+EPRINT+hep-ph/9806361 J H E P 0 8 ( 2 0 1 2 ) 0 2 6 [3] T. Jittoh, J. Sato, T. Shimomura and M. Yamanaka, Long life stau in the minimal supersymmetric standard model, Phys. Rev. D 73 (2006) 055009 [hep-ph/0512197] [INSPIRE]. [4] M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE]. [5] A. Arvanitaki et al., Astrophysical probes of unification, Phys. Rev. D 79 (2009) 105022 [arXiv:0812.2075] [INSPIRE]. [6] N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE]. [7] S. Dawson, E. Eichten and C. Quigg, Search for supersymmetric particles in hadron-hadron collisions, Phys. Rev. D 31 (1985) 1581 [INSPIRE]. [8] W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE]. [9] T. Plehn, D. Rainwater and P.Z. Skands, Squark and gluino production with jets, Phys. Lett. B 645 (2007) 217 [hep-ph/0510144] [INSPIRE]. [10] W. Beenakker et al., Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [INSPIRE]. [11] A. Arvanitaki, C. Davis, P.W. Graham, A. Pierce and J.G. Wacker, Limits on split supersymmetry from gluino cosmology, Phys. Rev. D 72 (2005) 075011 [hep-ph/0504210] [INSPIRE]. [12] D0 collaboration, V. Abazov et al., Search for stopped gluinos from pp̄ collisions at√ s = 1.96 TeV, Phys. Rev. Lett. 99 (2007) 131801 [arXiv:0705.0306] [INSPIRE]. [13] CMS collaboration, V. Khachatryan et al., Search for Stopped Gluinos in pp collisions at√ s = 7 TeV, Phys. Rev. Lett. 106 (2011) 011801 [arXiv:1011.5861] [INSPIRE]. [14] ATLAS collaboration, G. Aad et al., Search for decays of stopped, long-lived particles from 7 TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 72 (2012) 1965 [arXiv:1201.5595] [INSPIRE]. [15] G. Farrar, R. Mackeprang, D. Milstead and J. Roberts, Limit on the mass of a long-lived or stable gluino, JHEP 02 (2011) 018 [arXiv:1011.2964] [INSPIRE]. [16] P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Phys. Lett. B 69 (1977) 489 [INSPIRE]. [17] P. Fayet, Massive gluinos, Phys. Lett. B 78 (1978) 417 [INSPIRE]. [18] G.R. Farrar and P. Fayet, Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [INSPIRE]. [19] A. Arvanitaki, S. Dimopoulos, A. Pierce, S. Rajendran and J.G. Wacker, Stopping gluinos, Phys. Rev. D 76 (2007) 055007 [hep-ph/0506242] [INSPIRE]. [20] CMS collaboration, V. Khachatryan et al., Search for Heavy Stable Charged Particles in pp collisions at √ s = 7 TeV, JHEP 03 (2011) 024 [arXiv:1101.1645] [INSPIRE]. [21] ATLAS collaboration, G. Aad et al., Search for Heavy Long-Lived Charged Particles with the ATLAS detector in pp collisions at √ s = 7 TeV, Phys. Lett. B 703 (2011) 428 [arXiv:1106.4495] [INSPIRE]. – 13 – http://dx.doi.org/10.1103/PhysRevD.73.055009 http://arxiv.org/abs/hep-ph/0512197 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0512197 http://dx.doi.org/10.1016/j.physletb.2007.06.055 http://dx.doi.org/10.1016/j.physletb.2007.06.055 http://arxiv.org/abs/hep-ph/0604261 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0604261 http://dx.doi.org/10.1103/PhysRevD.79.105022 http://arxiv.org/abs/0812.2075 http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.2075 http://dx.doi.org/10.1088/1126-6708/2005/06/073 http://arxiv.org/abs/hep-th/0405159 http://inspirehep.net/search?p=find+EPRINT+hep-th/0405159 http://dx.doi.org/10.1103/PhysRevD.31.1581 http://inspirehep.net/search?p=find+J+Phys.Rev.,D31,1581 http://dx.doi.org/10.1016/S0550-3213(97)00084-9 http://arxiv.org/abs/hep-ph/9610490 http://inspirehep.net/search?p=find+EPRINT+hep-ph/9610490 http://dx.doi.org/10.1016/j.physletb.2006.12.009 http://dx.doi.org/10.1016/j.physletb.2006.12.009 http://arxiv.org/abs/hep-ph/0510144 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0510144 http://dx.doi.org/10.1088/1126-6708/2009/12/041 http://dx.doi.org/10.1088/1126-6708/2009/12/041 http://arxiv.org/abs/0909.4418 http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4418 http://dx.doi.org/10.1103/PhysRevD.72.075011 http://arxiv.org/abs/hep-ph/0504210 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0504210 http://dx.doi.org/10.1103/PhysRevLett.99.131801 http://arxiv.org/abs/0705.0306 http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0306 http://dx.doi.org/10.1103/PhysRevLett.106.011801 http://arxiv.org/abs/1011.5861 http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5861 http://dx.doi.org/10.1140/epjc/s10052-012-1965-6 http://arxiv.org/abs/1201.5595 http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5595 http://dx.doi.org/10.1007/JHEP02(2011)018 http://arxiv.org/abs/1011.2964 http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2964 http://dx.doi.org/10.1016/0370-2693(77)90852-8 http://inspirehep.net/search?p=find+J+Phys.Lett.,B69,489 http://dx.doi.org/10.1016/0370-2693(78)90474-4 http://inspirehep.net/search?p=find+J+Phys.Lett.,B78,417 http://dx.doi.org/10.1016/0370-2693(78)90858-4 http://inspirehep.net/search?p=find+J+Phys.Lett.,B76,575 http://dx.doi.org/10.1103/PhysRevD.76.055007 http://arxiv.org/abs/hep-ph/0506242 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0506242 http://dx.doi.org/10.1007/JHEP03(2011)024 http://arxiv.org/abs/1101.1645 http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.1645 http://dx.doi.org/10.1016/j.physletb.2011.08.042 http://arxiv.org/abs/1106.4495 http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4495 J H E P 0 8 ( 2 0 1 2 ) 0 2 6 [22] CMS collaboration, S. Chatrchyan et al., Search for heavy long-lived charged particles in pp collisions at √ s = 7 TeV, Phys. Lett. B 713 (2012) 408 [arXiv:1205.0272] [INSPIRE]. [23] R. Mackeprang and D. Milstead, An updated description of heavy-hadron interactions in GEANT-4, Eur. Phys. J. C 66 (2010) 493 [arXiv:0908.1868] [INSPIRE]. [24] P.W. Graham, K. Howe, S. Rajendran and D. Stolarski, New Measurements with Stopped Particles at the LHC (2011), arXiv:1111.4176 [INSPIRE]. [25] S. Chekanov, Jet algorithms: A Minireview (2002), hep-ph/0211298 [INSPIRE]. [26] CMS collaboration, S. Chatrchyan et al., The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [INSPIRE]. [27] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE]. [28] M. Fairbairn et al., Stable massive particles at colliders, Phys. Rept. 438 (2007) 1 [hep-ph/0611040] [INSPIRE]. [29] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. [30] A.C. Kraan, Interactions of heavy stable hadronizing particles, Eur. Phys. J. C 37 (2004) 91 [hep-ex/0404001] [INSPIRE]. [31] R. Mackeprang and A. Rizzi, Interactions of coloured heavy stable particles in matter, Eur. Phys. J. C 50 (2007) 353 [hep-ph/0612161] [INSPIRE]. [32] P. Gambino, G. Giudice and P. Slavich, Gluino decays in split supersymmetry, Nucl. Phys. B 726 (2005) 35 [hep-ph/0506214] [INSPIRE]. [33] CMS collaboration, S. Chatrchyan et al., Identification and filtering of uncharacteristic noise in the CMS hadron calorimeter, 2010 JINST 5 T03014 [arXiv:0911.4881] [INSPIRE]. [34] CMS collaboration, Absolute Calibration of the Luminosity Measurement at CMS: Winter 2012 Update, CMS-PAS-SMP-12-008 (2012). [35] F. Buccella, G.R. Farrar and A. Pugliese, R-Baryon masses, Phys. Lett. B 153 (1985) 311 [INSPIRE]. [36] T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE]. [37] ATLAS, CMS collaborations and LHC Higgs Combination Group, Procedure for the LHC Higgs boson search combination in Summer 2011, ATL-PHYS-PUB/CMS NOTE 2011-11 (2011). [38] L. Moneta et al., The RooStats Project, PoS(ACAT2010)057 [arXiv:1009.1003] [INSPIRE]. [39] W. Beenakker et al., Squark and gluino hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637 [arXiv:1105.1110] [INSPIRE]. – 14 – http://dx.doi.org/10.1016/j.physletb.2012.06.023 http://arxiv.org/abs/1205.0272 http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0272 http://dx.doi.org/10.1140/epjc/s10052-010-1262-1 http://arxiv.org/abs/0908.1868 http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.1868 http://arxiv.org/abs/1111.4176 http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.4176 http://arxiv.org/abs/hep-ph/0211298 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0211298 http://dx.doi.org/10.1088/1748-0221/3/08/S08004 http://dx.doi.org/10.1088/1748-0221/3/08/S08004 http://inspirehep.net/search?p=find+J+JINST,3,S08004 http://dx.doi.org/10.1088/1126-6708/2006/05/026 http://dx.doi.org/10.1088/1126-6708/2006/05/026 http://arxiv.org/abs/hep-ph/0603175 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603175 http://dx.doi.org/10.1016/j.physrep.2006.10.002 http://arxiv.org/abs/hep-ph/0611040 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0611040 http://dx.doi.org/10.1016/S0168-9002(03)01368-8 http://dx.doi.org/10.1016/S0168-9002(03)01368-8 http://inspirehep.net/search?p=find+J+Nucl.Instrum.Meth.,A506,250 http://dx.doi.org/10.1140/epjc/s2004-01946-6 http://arxiv.org/abs/hep-ex/0404001 http://inspirehep.net/search?p=find+EPRINT+hep-ex/0404001 http://dx.doi.org/10.1140/epjc/s10052-007-0252-4 http://dx.doi.org/10.1140/epjc/s10052-007-0252-4 http://arxiv.org/abs/hep-ph/0612161 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0612161 http://dx.doi.org/10.1016/j.nuclphysb.2005.08.011 http://dx.doi.org/10.1016/j.nuclphysb.2005.08.011 http://arxiv.org/abs/hep-ph/0506214 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0506214 http://dx.doi.org/10.1088/1748-0221/5/03/T03014 http://arxiv.org/abs/0911.4881 http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4881 http://cdsweb.cern.ch/record/1434360 http://dx.doi.org/10.1016/0370-2693(85)90555-6 http://inspirehep.net/search?p=find+J+Phys.Lett.,B153,311 http://dx.doi.org/10.1016/S0168-9002(99)00498-2 http://dx.doi.org/10.1016/S0168-9002(99)00498-2 http://arxiv.org/abs/hep-ex/9902006 http://inspirehep.net/search?p=find+EPRINT+hep-ex/9902006 http://cdsweb.cern.ch/record/1379837 http://cdsweb.cern.ch/record/1379837 http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(ACAT2010)057 http://arxiv.org/abs/1009.1003 http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.1003 http://dx.doi.org/10.1142/S0217751X11053560 http://dx.doi.org/10.1142/S0217751X11053560 http://arxiv.org/abs/1105.1110 http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.1110 J H E P 0 8 ( 2 0 1 2 ) 0 2 6 The CMS collaboration Yerevan Physics Institute, Yerevan, Armenia S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan Institut für Hochenergiephysik der OeAW, Wien, Austria W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan1, M. Friedl, R. Frühwirth1, V.M. Ghete, J. Hammer, N. Hörmann, J. Hrubec, M. Jeitler1, W. Kiesenhofer, V. Knünz, M. Krammer1, D. Liko, I. Mikulec, M. Pernicka†, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz1 National Centre for Particle and High Energy Physics, Minsk, Belarus V. Mossolov, N. Shumeiko, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, S. Luyckx, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, Z. Staykova, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium F. Blekman, S. Blyweert, J. D’Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella Université Libre de Bruxelles, Bruxelles, Belgium B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, T. Reis, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang Ghent University, Ghent, Belgium V. Adler, K. Beernaert, A. Cimmino, S. Costantini, G. Garcia, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, N. Strobbe, F. Thyssen, M. Tytgat, P. Verwilligen, S. Walsh, E. Yazgan, N. Zaganidis Université Catholique de Louvain, Louvain-la-Neuve, Belgium S. Basegmez, G. Bruno, R. Castello, A. Caudron, L. Ceard, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco2, J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, L. Perrini, A. Pin, K. Piotrzkowski, N. Schul, J.M. Vizan Garcia Université de Mons, Mons, Belgium N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil G.A. Alves, M. Correa Martins Junior, D. De Jesus Damiao, T. Martins, M.E. Pol, M.H.G. Souza Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil W.L. Aldá Júnior, W. Carvalho, A. Custódio, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, D. Matos Figueiredo, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, L. Soares Jorge, A. Sznajder – 15 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil C.A. Bernardes3, F.A. Dias4, T.R. Fernandez Perez Tomei, E. M. Gregores3, C. Lagana, F. Marinho, P.G. Mercadante3, S.F. Novaes, Sandra S. Padula Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria V. Genchev5, P. Iaydjiev5, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova University of Sofia, Sofia, Bulgaria A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov Institute of High Energy Physics, Beijing, China J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China C. Asawatangtrakuldee, Y. Ban, S. Guo, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, S. Wang, B. Zhu, W. Zou Universidad de Los Andes, Bogota, Colombia C. Avila, J.P. Gomez, B. Gomez Moreno, A.F. Osorio Oliveros, J.C. Sanabria Technical University of Split, Split, Croatia N. Godinovic, D. Lelas, R. Plestina6, D. Polic, I. Puljak5 University of Split, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic University of Cyprus, Nicosia, Cyprus A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis Charles University, Prague, Czech Republic M. Finger, M. Finger Jr. Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt Y. Assran7, S. Elgammal8, A. Ellithi Kamel9, S. Khalil8, M.A. Mahmoud10, A. Radi11,12 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia M. Kadastik, M. Müntel, M. Raidal, L. Rebane, A. Tiko Department of Physics, University of Helsinki, Helsinki, Finland V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland – 16 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 Lappeenranta University of Technology, Lappeenranta, Finland K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, L. Millischer, A. Nayak, J. Rander, A. Rosowsky, I. Shreyber, M. Titov Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj13, C. Broutin, P. Busson, C. Charlot, N. Daci, T. Dahms, L. Dobrzynski, R. Granier de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Veelken, A. Zabi Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Univer- sité de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France J.-L. Agram14, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte14, F. Drouhin14, C. Ferro, J.-C. Fontaine14, D. Gelé, U. Goerlach, P. Juillot, A.-C. Le Bihan, P. Van Hove Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France F. Fassi, D. Mercier Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France S. Beauceron, N. Beaupere, O. Bondu, G. Boudoul, J. Chasserat, R. Chierici5, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, S. Tosi, Y. Tschudi, P. Verdier, S. Viret Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia Z. Tsamalaidze15 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany G. Anagnostou, S. Beranek, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen, K. Klein, J. Merz, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer, V. Zhukov16 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, P. Kreuzer, J. Lingemann, C. Magass, M. Merschmeyer, A. Meyer, M. Olschewski, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teyssier, M. Weber – 17 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany M. Bontenackels, V. Cherepanov, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Nowack, L. Perchalla, O. Pooth, J. Rennefeld, P. Sauerland, A. Stahl Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, J. Behr, W. Behrenhoff, U. Behrens, M. Bergholz17, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, E. Castro, F. Costanza, D. Dammann, C. Diez Pardos, G. Eckerlin, D. Eckstein, G. Flucke, A. Geiser, I. Glushkov, P. Gunnellini, S. Habib, J. Hauk, G. Hellwig, H. Jung, M. Kasemann, P. Katsas, C. Kleinwort, H. Kluge, A. Knutsson, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange, W. Lohmann17, B. Lutz, R. Mankel, I. Marfin, M. Marienfeld, I.-A. Melzer- Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme, J. Olzem, H. Perrey, A. Petrukhin, D. Pitzl, A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, E. Ron, M. Rosin, J. Salfeld-Nebgen, R. Schmidt17, T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany C. Autermann, V. Blobel, J. Draeger, H. Enderle, J. Erfle, U. Gebbert, M. Görner, T. Hermanns, R.S. Höing, K. Kaschube, G. Kaussen, H. Kirschenmann, R. Klanner, J. Lange, B. Mura, F. Nowak, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Schröder, T. Schum, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, J. Thomsen, L. Vanelderen Institut für Experimentelle Kernphysik, Karlsruhe, Germany C. Barth, J. Berger, C. Böser, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, M. Guthoff5, C. Hackstein, F. Hartmann, T. Hauth5, M. Heinrich, H. Held, K.H. Hoffmann, S. Honc, I. Katkov16, J.R. Komaragiri, P. Lobelle Pardo, D. Martschei, S. Mueller, Th. Müller, M. Niegel, A. Nürnberg, O. Oberst, A. Oehler, J. Ott, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, S. Röcker, A. Scheurer, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, M. Zeise Institute of Nuclear Physics ”Demokritos”, Aghia Paraskevi, Greece G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari University of Athens, Athens, Greece L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou University of Ioánnina, Ioánnina, Greece I. Evangelou, C. Foudas5, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary G. Bencze, C. Hajdu5, P. Hidas, D. Horvath18, F. Sikler, V. Veszpremi, G. Vesztergombi19 – 18 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi University of Debrecen, Debrecen, Hungary J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari Panjab University, Chandigarh, India S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Jindal, M. Kaur, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, J. Singh University of Delhi, Delhi, India Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri Saha Institute of Nuclear Physics, Kolkata, India S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, S. Sarkar, M. Sharan Bhabha Atomic Research Centre, Mumbai, India A. Abdulsalam, R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, P. Mehta, A.K. Mohanty5, L.M. Pant, P. Shukla Tata Institute of Fundamental Research - EHEP, Mumbai, India T. Aziz, S. Ganguly, M. Guchait20, M. Maity21, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage Tata Institute of Fundamental Research - HECR, Mumbai, India S. Banerjee, S. Dugad Institute for Research in Fundamental Sciences (IPM), Tehran, Iran H. Arfaei, H. Bakhshiansohi22, S.M. Etesami23, A. Fahim22, M. Hashemi, H. Hesari, A. Jafari22, M. Khakzad, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh24, M. Zeinali23 INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa,b, L. Barbonea,b, C. Calabriaa,b,5, S.S. Chhibraa,b, A. Colaleoa, D. Creanzaa,c, N. De Filippisa,c,5, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, L. Lusitoa,b, G. Maggia,c, M. Maggia, B. Marangellia,b, S. Mya,c, S. Nuzzoa,b, N. Pacificoa,b, A. Pompilia,b, G. Pugliesea,c, G. Selvaggia,b, L. Silvestrisa, G. Singha,b, R. Venditti, G. Zitoa INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy G. Abbiendia, A.C. Benvenutia, D. Bonacorsia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, M. Cuffiania,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa,b,5, P. Giacomellia, C. Grandia, L. Guiduccia,b, S. Marcellinia, G. Masettia, M. Meneghellia,b,5, A. Montanaria, F.L. Navarriaa,b, F. Odoricia, A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G. Sirolia,b, R. Travaglinia,b – 19 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 INFN Sezione di Catania a, Università di Catania b, Catania, Italy S. Albergoa,b, G. Cappelloa,b, M. Chiorbolia,b, S. Costaa,b, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, S. Frosalia,b, E. Galloa, S. Gonzia,b, M. Meschinia, S. Paolettia, G. Sguazzonia, A. Tropianoa,5 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, S. Colafranceschi25, F. Fabbri, D. Piccolo INFN Sezione di Genova, Genova, Italy P. Fabbricatore, R. Musenich INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy A. Benagliaa,b,5, F. De Guioa,b, L. Di Matteoa,b,5, S. Fiorendia,b, S. Gennaia,5, A. Ghezzia,b, S. Malvezzia, R.A. Manzonia,b, A. Martellia,b, A. Massironia,b,5, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, N. Redaellia, S. Salaa, T. Tabarelli de Fatisa,b INFN Sezione di Napoli a, Università di Napoli ”Federico II” b, Napoli, Italy S. Buontempoa, C.A. Carrillo Montoyaa,5, N. Cavalloa,26, A. De Cosaa,b,5, O. Doganguna,b, F. Fabozzia,26, A.O.M. Iorioa, L. Listaa, S. Meolaa,27, M. Merolaa,b, P. Paoluccia,5 INFN Sezione di Padova a, Università di Padova b, Università di Trento (Trento) c, Padova, Italy P. Azzia, N. Bacchettaa,5, M. Bellatoa, D. Biselloa,b, A. Brancaa,5, R. Carlina,b, P. Checchiaa, T. Dorigoa, F. Gasparinia,b, A. Gozzelinoa, K. Kanishcheva,c, S. Lacapraraa, I. Lazzizzeraa,c, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b,5, S. Vaninia,b, S. Venturaa, P. Zottoa,b, A. Zucchettaa, G. Zumerlea,b INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Torrea,b, P. Vituloa,b INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy M. Biasinia,b, G.M. Bileia, L. Fanòa,b, P. Laricciaa,b, A. Lucaronia,b,5, G. Mantovania,b, M. Menichellia, A. Nappia,b, F. Romeoa,b, A. Sahaa, A. Santocchiaa,b, S. Taronia,b,5 INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy P. Azzurria,c, G. Bagliesia, T. Boccalia, G. Broccoloa,c, R. Castaldia, R.T. D’Agnoloa,c, R. Dell’Orsoa, F. Fioria,b,5, L. Foàa,c, A. Giassia, A. Kraana, F. Ligabuea,c, T. Lomtadzea, L. Martinia,28, A. Messineoa,b, F. Pallaa, A. Rizzia,b, A.T. Serbana,29, P. Spagnoloa, P. Squillaciotia,5, R. Tenchinia, G. Tonellia,b,5, A. Venturia,5, P.G. Verdinia – 20 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 INFN Sezione di Roma a, Università di Roma ”La Sapienza” b, Roma, Italy L. Baronea,b, F. Cavallaria, D. Del Rea,b,5, M. Diemoza, M. Grassia,b,5, E. Longoa,b, P. Meridiania,5, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, M. Sigamania, L. Soffia,b INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, N. Cartigliaa, M. Costaa,b, N. Demariaa, A. Grazianoa,b, C. Mariottia,5, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha,5, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy S. Belfortea, V. Candelisea,b, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b,5, D. Montaninoa,b,5, A. Penzoa, A. Schizzia,b Kangwon National University, Chunchon, Korea S.G. Heo, T.Y. Kim, S.K. Nam Kyungpook National University, Daegu, Korea S. Chang, J. Chung, D.H. Kim, G.N. Kim, D.J. Kong, H. Park, S.R. Ro, D.C. Son, T. Son Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea J.Y. Kim, Zero J. Kim, S. Song Korea University, Seoul, Korea S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park University of Seoul, Seoul, Korea M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu Sungkyunkwan University, Suwon, Korea Y. Cho, Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu Vilnius University, Vilnius, Lithuania M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magaña Villalba, J. Mart́ınez-Ortega, A. Sánchez-Hernández, L.M. Villasenor-Cendejas Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico H.A. Salazar Ibarguen – 21 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 Universidad Autónoma de San Luis Potośı, San Luis Potośı, Mexico E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos University of Auckland, Auckland, New Zealand D. Krofcheck University of Canterbury, Christchurch, New Zealand A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan M. Ahmad, M.I. Asghar, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski Soltan Institute for Nuclear Studies, Warsaw, Poland H. Bialkowska, B. Boimska, T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski Laboratório de Instrumentação e F́ısica Experimental de Part́ıculas, Lisboa, Portugal N. Almeida, P. Bargassa, A. David, P. Faccioli, M. Fernandes, P.G. Ferreira Parracho, M. Gallinaro, J. Seixas, J. Varela, P. Vischia Joint Institute for Nuclear Research, Dubna, Russia I. Belotelov, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, A. Malakhov, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia S. Evstyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov5, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin Moscow State University, Moscow, Russia A. Belyaev, E. Boos, M. Dubinin4, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, A. Popov, L. Sarycheva†, V. Savrin, A. Snigirev – 22 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin5, V. Kachanov, D. Konstantinov, A. Korablev, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic30, M. Djordjevic, M. Ekmedzic, D. Krpic30, J. Milosevic Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domı́nguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia- Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott Universidad Autónoma de Madrid, Madrid, Spain C. Albajar, G. Codispoti, J.F. de Trocóniz Universidad de Oviedo, Oviedo, Spain H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez31 Instituto de F́ısica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini32, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jorda, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodŕıguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, J.F. Benitez, C. Bernet6, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, D. D’Enterria, A. Dabrowski, A. De Roeck, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Giunta, F. Glege, R. Gomez- Reino Garrido, P. Govoni, S. Gowdy, R. Guida, M. Hansen, P. Harris, C. Hartl, J. Harvey, B. Hegner, A. Hinzmann, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, K. Kousouris, P. Lecoq, Y.-J. Lee, P. Lenzi, C. Lourenço, T. Mäki, M. Malberti, L. Malgeri, M. Mannelli, – 23 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 L. Masetti, F. Meijers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, P. Musella, E. Nesvold, T. Orimoto, L. Orsini, E. Palencia Cortezon, E. Perez, L. Perrozzi, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes, G. Rolandi33, T. Rommerskirchen, C. Rovelli34, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwick, I. Segoni, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas35, D. Spiga, M. Spiropulu4, A. Tsirou, G.I. Veres19, J.R. Vlimant, H.K. Wöhri, S.D. Worm36, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille37 Institute for Particle Physics, ETH Zurich, Zurich, Switzerland L. Bäni, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Dünser, J. Eugster, K. Freudenreich, C. Grab, D. Hits, P. Lecomte, W. Lustermann, A.C. Marini, P. Martinez Ruiz del Arbol, N. Mohr, F. Moortgat, C. Nägeli38, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, A. Starodumov39, B. Stieger, M. Takahashi, L. Tauscher†, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, H.A. Weber, L. Wehrli Universität Zürich, Zurich, Switzerland E. Aguilo, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti National Central University, Chung-Li, Taiwan Y.H. Chang, K.H. Chen, C.M. Kuo, S.W. Li, W. Lin, Z.K. Liu, Y.J. Lu, D. Mekterovic, A.P. Singh, R. Volpe, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, X. Wan, M. Wang Cukurova University, Adana, Turkey A. Adiguzel, M.N. Bakirci40, S. Cerci41, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, G. Karapinar42, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk43, A. Polatoz, K. Sogut44, D. Sunar Cerci41, B. Tali41, H. Topakli40, L.N. Vergili, M. Vergili Middle East Technical University, Physics Department, Ankara, Turkey I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, E. Yildirim, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gülmez, B. Isildak45, M. Kaya46, O. Kaya46, S. Ozkorucuklu47, N. Sonmez48 – 24 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 Istanbul Technical University, Istanbul, Turkey K. Cankocak National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk University of Bristol, Bristol, United Kingdom F. Bostock, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold36, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams Rutherford Appleton Laboratory, Didcot, United Kingdom L. Basso49, K.W. Bell, A. Belyaev49, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley Imperial College, London, United Kingdom R. Bainbridge, G. Ball, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko39, A. Papageorgiou, J. Pela5, M. Pesaresi, K. Petridis, M. Pioppi50, D.M. Raymond, S. Rogerson, A. Rose, M.J. Ryan, C. Seez, P. Sharp†, A. Sparrow, M. Stoye, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, T. Whyntie Brunel University, Uxbridge, United Kingdom M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, U.S.A. K. Hatakeyama, H. Liu, T. Scarborough The University of Alabama, Tuscaloosa, U.S.A. O. Charaf, C. Henderson, P. Rumerio Boston University, Boston, U.S.A. A. Avetisyan, T. Bose, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak Brown University, Providence, U.S.A. J. Alimena, S. Bhattacharya, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer, K.V. Tsang University of California, Davis, Davis, U.S.A. R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, M. Gardner, R. Houtz, W. Ko, A. Kopecky, R. Lander, T. Miceli, D. Pellett, B. Rutherford, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra – 25 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 University of California, Los Angeles, Los Angeles, U.S.A. V. Andreev, D. Cline, R. Cousins, J. Duris, S. Erhan, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein†, J. Tucker, V. Valuev, M. Weber University of California, Riverside, Riverside, U.S.A. J. Babb, R. Clare, M.E. Dinardo, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng51, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny University of California, San Diego, La Jolla, U.S.A. W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, B. Mangano, S. Padhi, C. Palmer, G. Petrucciani, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech52, F. Würthwein, A. Yagil, J. Yoo University of California, Santa Barbara, Santa Barbara, U.S.A. D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi, V. Krutelyov, S. Lowette, N. Mccoll, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, C. West California Institute of Technology, Pasadena, U.S.A. A. Apresyan, A. Bornheim, Y. Chen, E. Di Marco, J. Duarte, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, V. Timciuc, P. Traczyk, J. Veverka, R. Wilkinson, Y. Yang, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev University of Colorado at Boulder, Boulder, U.S.A. J.P. Cumalat, B.R. Drell, C.J. Edelmaier, W.T. Ford, A. Gaz, B. Heyburn, E. Luiggi Lopez, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner Cornell University, Ithaca, U.S.A. J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich Fairfield University, Fairfield, U.S.A. D. Winn Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, J. Anderson, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, D. Green, O. Gutsche, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Kilminster, – 26 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 B. Klima, S. Kunori, S. Kwan, C. Leonidopoulos, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko53, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton- Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, P. Tan, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, D. Bourilkov, M. Chen, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic54, G. Mitselmakher, L. Muniz, R. Remington, A. Rinkevicius, P. Sellers, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria Florida International University, Miami, U.S.A. V. Gaultney, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. J.R. Adams, T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, C. Dragoiu, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, F. Lacroix, M. Malek, C. O’Brien, C. Silkworth, D. Strom, N. Varelas The University of Iowa, Iowa City, U.S.A. U. Akgun, E.A. Albayrak, B. Bilki55, W. Clarida, F. Duru, S. Griffiths, J.-P. Merlo, H. Mermerkaya56, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, Y. Onel, F. Ozok, S. Sen, E. Tiras, J. Wetzel, T. Yetkin, K. Yi Johns Hopkins University, Baltimore, U.S.A. B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, A. Whitbeck The University of Kansas, Lawrence, U.S.A. P. Baringer, A. Bean, G. Benelli, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, R. Stringer, G. Tinti, J.S. Wood, V. Zhukova Kansas State University, Manhattan, U.S.A. A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze – 27 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 Lawrence Livermore National Laboratory, Livermore, U.S.A. J. Gronberg, D. Lange, D. Wright University of Maryland, College Park, U.S.A. A. Baden, M. Boutemeur, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Peterman, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt Massachusetts Institute of Technology, Cambridge, U.S.A. G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, Y. Kim, M. Klute, K. Krajczar57, W. Li, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephans, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf, B. Wyslouch, S. Xie, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti University of Minnesota, Minneapolis, U.S.A. S.I. Cooper, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz University of Mississippi, University, U.S.A. L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, J. Keller, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow State University of New York at Buffalo, Buffalo, U.S.A. U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S.P. Shipkowski, K. Smith Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, D. Nash, D. Trocino, D. Wood, J. Zhang Northwestern University, Evanston, U.S.A. A. Anastassov, A. Kubik, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won University of Notre Dame, Notre Dame, U.S.A. L. Antonelli, D. Berry, A. Brinkerhoff, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf The Ohio State University, Columbus, U.S.A. B. Bylsma, L.S. Durkin, A. Hart, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer – 28 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 Princeton University, Princeton, U.S.A. N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, P. Jindal, D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, B. Safdi, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski University of Puerto Rico, Mayaguez, U.S.A. J.G. Acosta, E. Brownson, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyaniy Purdue University, West Lafayette, U.S.A. E. Alagoz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, H.D. Yoo, J. Zablocki, Y. Zheng Purdue University Calumet, Hammond, U.S.A. S. Guragain, N. Parashar Rice University, Houston, U.S.A. A. Adair, C. Boulahouache, K.M. Ecklund, F.J.M. Geurts, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, D. Vishnevskiy, M. Zielinski The Rockefeller University, New York, U.S.A. A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian Rutgers, the State University of New Jersey, Piscataway, U.S.A. S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, J. Robles, K. Rose, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas University of Tennessee, Knoxville, U.S.A. G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York Texas A&M University, College Station, U.S.A. R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon58, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback Texas Tech University, Lubbock, U.S.A. N. Akchurin, J. Damgov, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev – 29 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 Vanderbilt University, Nashville, U.S.A. E. Appelt, C. Florez, S. Greene, A. Gurrola, W. Johns, C. Johnston, P. Kurt, C. Maguire, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska University of Virginia, Charlottesville, U.S.A. M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood, R. Yohay Wayne State University, Detroit, U.S.A. S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov University of Wisconsin, Madison, U.S.A. M. Anderson, M. Bachtis, D. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, I. Ojalvo, F. Palmonari, G.A. Pierro, I. Ross, A. Savin, W.H. Smith, J. Swanson †: Deceased 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 3: Also at Universidade Federal do ABC, Santo Andre, Brazil 4: Also at California Institute of Technology, Pasadena, U.S.A. 5: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 6: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 7: Also at Suez Canal University, Suez, Egypt 8: Also at Zewail City of Science and Technology, Zewail, Egypt 9: Also at Cairo University, Cairo, Egypt 10: Also at Fayoum University, El-Fayoum, Egypt 11: Also at Ain Shams University, Cairo, Egypt 12: Now at British University, Cairo, Egypt 13: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland 14: Also at Université de Haute-Alsace, Mulhouse, France 15: Now at Joint Institute for Nuclear Research, Dubna, Russia 16: Also at Moscow State University, Moscow, Russia 17: Also at Brandenburg University of Technology, Cottbus, Germany 18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 19: Also at Eötvös Loránd University, Budapest, Hungary 20: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India 21: Also at University of Visva-Bharati, Santiniketan, India 22: Also at Sharif University of Technology, Tehran, Iran 23: Also at Isfahan University of Technology, Isfahan, Iran 24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran – 30 – J H E P 0 8 ( 2 0 1 2 ) 0 2 6 25: Also at Facoltà Ingegneria Università di Roma, Roma, Italy 26: Also at Università della Basilicata, Potenza, Italy 27: Also at Università degli Studi Guglielmo Marconi, Roma, Italy 28: Also at Università degli studi di Siena, Siena, Italy 29: Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania 30: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia 31: Also at University of Florida, Gainesville, U.S.A. 32: Also at University of California, Los Angeles, Los Angeles, U.S.A. 33: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy 34: Also at INFN Sezione di Roma; Università di Roma ”La Sapienza”, Roma, Italy 35: Also at University of Athens, Athens, Greece 36: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 37: Also at The University of Kansas, Lawrence, U.S.A. 38: Also at Paul Scherrer Institut, Villigen, Switzerland 39: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 40: Also at Gaziosmanpasa University, Tokat, Turkey 41: Also at Adiyaman University, Adiyaman, Turkey 42: Also at Izmir Institute of Technology, Izmir, Turkey 43: Also at The University of Iowa, Iowa City, U.S.A. 44: Also at Mersin University, Mersin, Turkey 45: Also at Ozyegin University, Istanbul, Turkey 46: Also at Kafkas University, Kars, Turkey 47: Also at Suleyman Demirel University, Isparta, Turkey 48: Also at Ege University, Izmir, Turkey 49: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom 50: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy 51: Also at University of Sydney, Sydney, Australia 52: Also at Utah Valley University, Orem, U.S.A. 53: Also at Institute for Nuclear Research, Moscow, Russia 54: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 55: Also at Argonne National Laboratory, Argonne, U.S.A. 56: Also at Erzincan University, Erzincan, Turkey 57: Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 58: Also at Kyungpook National University, Daegu, Korea – 31 – Introduction The CMS detector Signal simulation Event selection Backgrounds Systematic uncertainty Search results Excluded region in the m(tilde(g)) - m(tilde(x)*0) plane Summary The CMS collaboration