J H E P 0 8 ( 2 0 1 2 ) 0 2 3 Published for SISSA by Springer Received: April 20, 2012 Revised: June 10, 2012 Accepted: July 12, 2012 Published: August 3, 2012 Search for leptonic decays of W ′ bosons in pp collisions at √ s = 7TeV The CMS collaboration Abstract: A search for a new heavy gauge boson W ′ decaying to an electron or muon, plus a low mass neutrino, is presented. This study uses data corresponding to an integrated luminosity of 5.0 fb−1, collected using the CMS detector in pp collisions at a centre-of-mass energy of 7 TeV at the LHC. Events containing a single electron or muon and missing trans- verse momentum are analyzed. No significant excess of events above the standard model expectation is found in the transverse mass distribution of the lepton-neutrino system, and upper limits for cross sections above different transverse mass thresholds are presented. Mass exclusion limits at 95% CL for a range of W ′ models are determined, including a limit of 2.5 TeV for right-handed W ′ bosons with standard-model-like couplings and limits of 2.43–2.63 TeV for left-handed W ′ bosons, taking into account their interference with the standard model W boson. Exclusion limits have also been set on Kaluza-Klein WKK states in the framework of split universal extra dimensions. Keywords: Hadron-Hadron Scattering Open Access, Copyright CERN, for the benefit of the CMS collaboration doi:10.1007/JHEP08(2012)023 http://dx.doi.org/10.1007/JHEP08(2012)023 J H E P 0 8 ( 2 0 1 2 ) 0 2 3 Contents 1 Introduction 1 2 Physics models 1 3 The CMS detector 3 4 Event selection 4 5 Signal and background simulation 5 6 Systematic uncertainties 7 7 Results and limits 8 8 Summary 13 The CMS collaboration 16 1 Introduction This Letter describes a search for a new heavy gauge boson W ′ , using proton-proton collision data collected during 2011 using the Compact Muon Solenoid (CMS) detector [1] at the Large Hadron Collider (LHC) at a centre-of-mass energy of 7 TeV. The dataset corresponds to an integrated luminosity of 5.0 ± 0.1 fb−1 [2]. The search attempts to identify an excess of events with a charged lepton (an electron or muon) and a neutrino in the final state, and an interpretation of the results is provided in the context of several theoretical models. 2 Physics models New heavy gauge bosons such as the W ′ and Z′ are predicted by various extensions of the standard model (SM). In the sequential standard model (SSM) [3], the W ′ boson is considered to be a left-handed heavy analogue of the W. It is assumed to be a narrow s-channel resonance with decay modes and branching fractions similar to those of the W, with the addition of the tb channel that becomes relevant for W ′ masses above 180 GeV. Interference between the W ′ and W is assumed to be negligible. If the W ′ is heavy enough to decay to top and bottom quarks, the predicted branching fraction is about 8.5% for each of the two leptonic channels studied in the present analysis. Under these assumptions, the width of a 1 TeV W ′ is about 33 GeV. Decays of the W ′ into WZ dibosons are usually suppressed in this model. – 1 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 The assumptions of the SSM were used in previous searches in leptonic channels at the Tevatron [4, 5] and the LHC [6–9]. The signature of a charged high-momentum lepton and a neutrino would also be observed in the decays of a right-handed W′ R, predicted by left-right symmetric models [10–13]. This particle is typically predicted to decay to a heavy right-handed neutrino [14–16]. However, the mass of the right-handed neutrino is not constrained, and it could be light as long as it does not couple to SM weak bosons. This would result in the same W′ R decay signature as for the W. If the W ′ is right-handed it will not interfere with the W. However, if it is left-handed (W′ L), interference with the W is expected expected [17–19]. Constructive (destructive) interference occurs in the mass range between W and W ′ if the coupling of the W ′ boson to quarks and leptons has opposite sign to (same sign as) the coupling of the W boson to left-handed fermions (gL). While constructive interference increases the W ′ production cross section, and therefore allows experimental sensitivity at higher masses, destructive interference would yield a lower cross section, rendering previously published LHC mass exclusion limits [7, 9] slightly optimistic. Interference has previously been considered in searches for the decay to top and bottom quarks [19, 20], but never for leptonic decays. Figure 1 shows the transverse mass distribution for a W ′ of 2.5 TeV mass for the cases of constructive, destructive and non-interference, along with the background due to the SM W. In the absence of interference the cross sections and transverse mass spectrum of left- and right-handed W ′ are identical. The W ′ manifests itself as a Jacobian peak with its width almost independent of the presence and type of interference. However, the intermediate region around MT ∼ 1 TeV shows a clear variation of the shape. Destructive interference of a W′ L boson with mass ≥ 2 TeV modulates the W transverse mass tail, resulting in a faster fall-off. The modulation strength and the resulting effect on the cross section both increase with the W ′ mass and width. Given sufficient detector resolution, the constructive and destructive interference scenarios may be distinguishable. The leptonic final states under study may also be interpreted in the framework of universal extra dimensions (UED) with bulk mass fermions, or split-UED [21, 22]. This is a model based on an extended space-time with an additional compact fifth dimension of radius R. All SM fermions and gauge bosons have Kaluza-Klein (KK) states, for instance Wn KK, where n denotes the n-th KK excitation mode, and m2 Wn KK ≡ m2 n = m2 W + ( n R )2 , (2.1) gn = gSMFn(πµR), (2.2) Fn(x) =  0 if n = 2m+ 1 x2[−1 + (−1)me2x](cothx− 1)√ 2(1 + δm0)(x2 +m2π2/4) if n = 2m. (2.3) Here µ is the bulk mass parameter in five dimensions of the fermion field, with [1/R, µ] defining the UED parameter space. The coupling of the Wn KK to SM fermions is denoted gn and defined as a modification of the SM coupling gSM of the W. The function F2m(x) tends – 2 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 [GeV]TM 1000 1500 2000 2500 3000 3500 [f b/ 20 G eV ] T /d M σ di ff. c ro ss s ec tio n d -410 -310 -210 -110 1 No Interference MadGraph Destructive Interference MadGraph Constructive Interference MadGraph Standard Model (No W') MadGraph Destructive Interference CompHep m(W') = 2500 GeV CMS Simulation Figure 1. MadGraph and CompHEP predictions of the transverse mass distribution for the SM W background and various W ′ models for m(W ′ )=2.5 TeV. In the absence of interference, W′R and W′L cross sections are identical. A W′L could experience constructive or destructive interference with the SM W, yielding the shown modulation of the MT spectrum. to approach (−1)m √ 2 as x → ∞. In minimal UED models, the parameter µ is assumed to be zero [23]. Following [21, 22], we assume a non-zero value for µ, thus increasing the cross sections sufficiently to allow observation by LHC experiments. KK-odd modes of Wn KK do not couple to SM fermions, owing to KK-parity conserva- tion. Moreover, there is no expected sensitivity for n ≥ 4 modes at the LHC centre-of-mass energy and luminosity used in this analysis. W2 KK is therefore the only mode considered. Under this assumption, the decay to leptons is kinematically identical to the sequential SM-like W ′ decay, and the observed limits obtained from the W ′ → eν and W ′ → µν searches can directly be reinterpreted in terms of the Wn KK mass considering the different widths. The width of a Wn KK is F2 n times the SSM-like W ′ width: ΓWn KK = F2 n 4 3 mWn KK mW ΓW. (2.4) 3 The CMS detector The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter and the brass/scintillator hadron calorimeter. The electromagnetic calorimeter consists of nearly 76 000 lead tungstate crys- tals. The energy resolution for electrons with the very high transverse momentum used in – 3 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 this analysis, which are predominantly in the central pseudorapidity region, is about 1%. In the forward region the resolution is about 2%. Muons are measured in gas-ionization de- tectors embedded in the steel return yoke. Central and forward regions are instrumented with four muon stations combining high precision tracking detectors (drift tubes in the central region and forward cathode strip chambers) with resistive plate chambers, which contribute to the trigger as well as the track measurement. The muon transverse mo- mentum, pµT, is determined from the curvature of its track, measured as it traverses the magnetized return yoke. Each muon track is matched to a track measured in the silicon tracker, resulting in a muon pT resolution of 1 to 10% for pT of up to 1 TeV. CMS uses a two-level trigger system comprising custom hardware processors and a High-Level Trig- ger processor farm. Together, these systems select around 300 Hz of the most interesting recorded bunch-crossings for permanent storage. A detailed description of CMS can be found in ref. [1]. A cylindrical coordinate system about the beam axis is used, in which the polar angle θ is measured with respect to the counterclockwise beam direction and the azimuthal angle φ is measured in the xy plane, where the x axis points towards the center of the LHC ring. The quantity η is the pseudo-rapidity, defined as η = − ln[tan θ/2]. 4 Event selection Candidate events with at least one high-transverse-momentum (pT) lepton were selected using single-muon and single-electron triggers. The trigger thresholds were raised as the LHC luminosity increased during the data-taking period, the highest values being pT > 80 GeV for electrons and pT > 40 GeV for muons. Offline, electrons and muons were required to have pT at least 5 GeV higher than the online threshold, which does not impair the search in the high mass region. Muons were reconstructed by combining tracks from the inner tracker and the outer muon system. Well-reconstructed muons were selected by requiring at least one pixel hit, hits in eight tracker layers and segments in two muon stations. Since the segments have multiple hits and are typically found in different muon detectors separated by thick layers of iron, the latter requirement significantly reduces the amount of hadronic punch-through. The transverse impact parameter |d0| of a muon track with respect to the beam spot is required to be less than 0.02 cm, in order to reduce the cosmic ray muon background. Furthermore, the muon is required to be isolated within a ∆R ≡ √ (∆φ)2 + (∆η)2 < 0.3 cone around its direction. Muon isolation requires that the scalar sum of the transverse momenta of all tracks originating at the interaction vertex, excluding the muon, is less than 15% of its pT. An additional requirement is that there be no second muon in the event with pT > 25 GeV to reduce the Z, Drell-Yan and cosmic ray muon backgrounds. Electrons were reconstructed as isolated objects in the electromagnetic calorimeter, with additional requirements on the shower shape and the ratio of hadronic to electro- magnetic deposited energies. The electrons were required to have at least one inner hit, a transverse energy greater than 85 GeV, and required to be isolated in a cone of radius ∆R < 0.3 around the electron candidate direction, both in the tracker and in the calorime- – 4 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 ter. In the tracker, the sum of the pT of the tracks, excluding tracks within an inner cone of 0.04, was required to be less than 5 GeV. For the isolation using calorimeters, the total transverse energy in the barrel, excluding deposits associated to the electron, was required to be less than 0.03 ·peleT +2.0 GeV. The isolation requirements were modified as luminosity increased, owing to the increase in the typical number of additional pp interactions (‘pile- up’) per LHC bunch crossing. These selections are designed to ensure high efficiency for electrons and a high rejection of misreconstructed electrons from multi-jet backgrounds. The main observable in this search is the transverse mass MT of the lepton-Emiss T system, calculated as MT ≡ √ 2 · p`T · Emiss T · (1− cos ∆φ`,ν) (4.1) where ∆φ`,ν is the azimuthal opening angle between the charged lepton’s transverse mo- mentum (p`T) and missing transverse energy (Emiss T ) direction. The neutrino is not detected directly, but gives rise to experimentally observed Emiss T . This quantity was determined using a particle-flow technique [24], an algorithm designed to reconstruct a complete list of distinct particles using all the subcomponents of the CMS detector. Muons, electrons, photons, and charged and neutral hadrons were all reconstructed individually. The Emiss T for each event was then calculated as the vector opposing the total transverse momentum of all reconstructed particles in each event. In W ′ decays, the lepton and Emiss T are expected to be almost back-to-back in the trans- verse plane, and balanced in transverse energy. Candidate events were therefore selected through a requirement on the ratio of the lepton pT and the Emiss T , 0.4 < pT/E miss T < 1.5. A requirement was also imposed on the angular difference in the transverse plane of the lepton and Emiss T direction, ∆φ`,ν > 0.8 × π. No selection is made on jets. After these selections, the average W ′ signal efficiency for masses up to 2.5 TeV in simulated events was found to be around 80% in both channels, including the roughly 90% geometrical ac- ceptance corresponding to a requirement of |ηµ| < 2.1 for muons, and with |ηe| < 1.442 or 1.56 < |ηe| < 2.5 for electrons. The transverse mass distributions after these selections are shown in figure 2. 5 Signal and background simulation Several large samples of simulated events were used to evaluate signal and background efficiencies. The generated events were processed through a full simulation of the CMS detector based on Geant4 [25, 26], a trigger emulation, and the event reconstruction chain. The event samples for the W′ R signal were produced separately from the SM W sample, using the pythia 6.4.9 generator [27]. This is consistent with the case of non-interference assumed for the previous ATLAS and CMS studies. In order to include interference of W′ L and W in this analysis, a model of a single new heavy vector boson W ′ with a SM- like left-handed coupling strength |g′L| ≈ 0.65 was implemented in the MadGraph event generator [28]. This model includes spin correlations as well as finite-width effects. For such a left-handed scenario with interference, the generation of samples is technically more challenging. Since the scattering amplitude responsible for the `ν final state is the sum of – 5 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 [GeV]TM 500 1000 1500 2000 2500 E ve nt s / 2 0 G eV -210 -110 1 10 210 310 410 510 [GeV]TM 500 1000 1500 2000 2500 E ve nt s / 2 0 G eV -210 -110 1 10 210 310 410 510 ν e→W νµ →W ντ →W Dibosons Top ll→DY Multijet +Jetsγ Data =2.3 TeV) W' W' (m Background Prediction CMS -1 L dt = 5.0 fb∫ = 7 TeVs ν e →W' o ve rf lo w b in [GeV]TM 500 1000 1500 2000 2500 E ve nt s / 2 0 G eV -210 -110 1 10 210 310 410 510 610 710 [GeV]TM 500 1000 1500 2000 2500 E ve nt s / 2 0 G eV -210 -110 1 10 210 310 410 510 610 710 ν µ →W ντ →W Dibosons Top ll→DY Multijet Data =2.3 TeV) W' W' (m Background Prediction CMS -1 L dt = 5.0 fb∫ = 7 TeVs ν µ →W' o ve rf lo w b in Figure 2. Observed transverse mass distributions for the electron (left) and muon (right) channels. Simulated signal distributions for a (left- or right-handed) W ′ without interference of 2.3 TeV mass are also shown, including detector resolution effects. The simulated background labelled as ‘diboson’ includes WW, ZZ and WZ contributions. The top background prediction includes single top and top pair production. The total background prediction from a fit to the simulated transverse mass spectrum in each channel is shown by the dashed line. W′ L and SM W boson terms, both contributions have to be generated simultaneously. A threshold in MT was applied to suppress the dominant W contribution around the W-mass, where interference effects are negligible for the W′ L masses considered in this search. The simulation uses MadGraph 4.5.1, matched to pythia for showering and hadronisation. For the hadronisation model, the pythia Tune Z2 was used for both the W′ R and W′ L simulations. Both generators simulate at leading order (LO) and use the CTEQ6L1 parton distribution functions (PDF) [29]. Mass-dependent K-factors, varying from 1.14 to 1.36, for the next-to-next-to-leading order (NNLO) correction were calculated with fewz [30, 31]. The resulting NNLO W ′ → `ν production cross section times branching fraction ranged from 17.7 pb (for mW′ = 0.5 TeV) to 0.71 fb (for mW′ = 3 TeV) for a W ′ without interference (see table 1 for cross sections). Efficiencies and detector acceptance are then taken into account for estimating the expected number of signal events. The acceptance is nearly maximal since the decay products of such heavy particles tend to populate low pseudorapidities. Efficiencies are high because the selections have been optimised. Detailed numbers for both quantities are given in section 4. The Tevatron W′ L → tb search used the CompHEP generator [32, 33] which has the case of destructive interference implemented. The agreement between the model implementations in CompHEP and MadGraph is demonstrated for the case of destructive interference in figure 1. The primary source of background is the off-peak, high transverse mass tail of the standard model W → `ν decays. Other important backgrounds arise from QCD multijet, tt, and Drell-Yan events. Dibosons (WW, WZ, ZZ) decaying to electrons, muons, or taus were also considered. The event samples for the electroweak background processes W → `ν – 6 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 and Z→ `` (` = e, µ, τ) were produced using pythia. NNLO cross sections were accounted for via a single K-factor of 1.32 for the W, and mass-dependent K-factors, ranging from 1.28 to 1.23, for the Z. The pythia generator was also used for QCD multijet events. The tt events were generated with MadGraph in combination with pythia, and the newly-calculated NNLL (next-to-leading-order including the leading logarithms of NNLO) cross section was applied [34]. All other event samples were normalised to the integrated luminosity of the recorded data, using calculated NNLO cross sections. The only exceptions were the diboson and QCD samples, for which the NLO and LO cross sections were used respectively. We note that multijet background is largely suppressed by the event selection requirements. The simulation of pile-up is included in all event samples by superimposing minimum bias interactions onto the main background processes. In order to provide a background estimate independent of any interference effects in the W transverse mass tail, the shape of the background was determined from simulation. The full transverse mass spectrum was modelled by a function optimised to best describe the spectrum in either channel up to very high masses. This function, of the form f(MT) = a (MT + b)c (5.1) was fitted to the simulation and then normalised to data in the region 200 GeV < MT < 500 GeV, and used to estimate the expected number of SM background events for all transverse mass bins (shown as the dashed lines in figure 2). A cross check under the assumption of no interference was done by fitting the MT distribution in data confirming the simulation. To determine the uncertainty introduced by this method, in addition to statistical errors on the fit parameters, two alternative functions were fitted: f(MT) = a (M2 T + b ·MT + c)d (5.2) f(MT) = a(1 +MT)b (M c+d·lnMT T ) (5.3) The largest difference in the background prediction with respect to the original fit was taken as a systematic uncertainty. For MT larger than 1.4 TeV, this corresponds to an additional uncertainty of 0.14 events with a background expectation of 0.98 events in the muon channel and 0.26 events with a background expectation of 1.28 events in the electron channel. 6 Systematic uncertainties The expected number of potential signal and background events was evaluated from simu- lation. In addition to uncertainties due to the fit procedure for the background, systematic uncertainties due to imperfections in the description of the detector performance were in- cluded. Uncertainties due to the lepton energy or momentum resolution and scale, ranging between 0.4% and 10% [6, 7] were applied to the transverse mass spectrum. Uncertainties due to momentum scale were evaluated using detailed studies of the Z → µµ shape and high pT muons. The muon pT resolution has been previously determined with cosmic ray – 7 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 muons to be within 10% for high momentum tracks [35]. In order to estimate the un- certainty on the number of expected events, the muon pT spectrum was distorted (scaled and smeared) according to the values extracted from comparisons with data. The missing transverse energy was adjusted accordingly, and finally a distorted transverse mass spec- trum was obtained and observed to vary by ∼1%. The electron energy scale uncertainty was around 1% in the ECAL barrel and 3% in the endcaps. Its impact on the number of signal events above the threshold of MT > 600 GeV was ascertained to be less than 1% for all W ′ masses. We assume an uncertainty of 10% on the hadronic component of the Emiss T resolution (that is, excluding the lepton), and the x and y components of the reconstructed Emiss T in the simulation were smeared accordingly. The impact on the number of signal events was found to be around 2%. Effects caused by pile-up were modeled by adding to the generated events multiple in- teractions with a multiplicity distribution matched to the luminosity profile of the collision data. The resulting impact on the signal was studied by varying the mean of the distri- bution of pile-up interactions by 8%, yielding a variation of the signal efficiency of ∼2%. Following the recommendations of the PDF4LHC group [36], the signal event samples for W′ R generated with pythia were reweighted using the LHAPDF package [37]. PDF and αs variations of the MSTW2008 [38], CTEQ6.6 [39] and NNPDF2.0 [40] PDF sets were taken into account and the impact on the signal cross sections was estimated. 7 Results and limits A W ′ → eν or W ′ → µν signal is expected to manifest itself as an excess over the SM expectation in the tail of the MT distribution. No significant excess has been observed in the data. For W ′ masses well below the centre-of-mass energy of √ s = 7 TeV the signal events are expected to lie in the Jacobian peak corresponding to the W ′ mass. For masses above 2.3 TeV, the reduced phase space results in many events below the Jacobian peak, and the acceptance for the Mmin T cut drops from about 40% for intermediate masses to 14% at very high W ′ masses. The expected signal yields given in table 1 for a range of W′ R masses are largely unaffected when introducing interference effects, owing to the high MT cut corre- sponding to the optimum search window, which naturally lies around the Jacobian peak. We set upper limits on the production cross section times the branching fraction σW′ R × B(W′ R → `ν), with ` = e or µ. The observed highest transverse mass events had MT = 1.6± 0.1 TeV in the electron channel, and MT = 2.4± 0.1 TeV in the muon channel. For MT > 1.6 TeV, the background expectation from the fit to simulation is less than one event in each channel. Cross-section limits were derived using a Bayesian method [41] with a uniform prior probability distribution for the signal cross section. The number of data events above an optimised transverse mass threshold Mmin T was compared to the expected number of signal and background events. Systematic uncertainties on the signal and back- ground yield were included via nuisance parameters with a log-normal prior distribution. The Mmin T threshold was optimised for the best expected exclusion limit, a procedure used in previous analyses [7] which is also appropriate for establishing a W ′ discovery. The Mmin T threshold defining the search window increases with W ′ mass up to masses around 2.5 TeV, – 8 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 W ′ mass Mmin T Nsig Nbkg Nobs σtheory Exp. Limit Obs. Limit ( GeV) ( GeV) (Events) (Events) (Events) (fb) (fb) (fb) Electron channel 500 350 44000 ± 4200 830 ± 85 850 17723 64.15 70.18 700 550 9600 ± 1500 114 ± 15 128 4514 16.94 22.48 900 700 3160 ± 460 37.4 ± 5.7 41 1470 8.38 9.61 1000 800 1730 ± 280 20.0 ± 3.8 22 886 6.77 7.55 1400 1050 294 ± 36 5.4 ± 1.6 6 144 3.56 3.77 1600 1150 128 ± 13 3.4 ± 1.1 5 63.3 3.02 3.80 1800 1200 63.9 ± 5.5 2.79 ± 0.99 3 28.5 2.53 2.57 2100 1350 18.7 ± 1.5 1.55 ± 0.64 2 9.37 2.38 2.61 2400 1450 5.47 ± 0.39 1.08 ± 0.49 2 3.40 2.69 3.39 2700 1450 1.75 ± 0.13 1.08 ± 0.49 2 1.43 3.54 4.46 3000 1400 0.59 ± 0.05 1.29 ± 0.56 2 0.71 5.45 6.42 Muon channel 500 350 41000 ± 3200 749 ± 47 732 17723 44.65 39.13 700 550 8700 ± 1000 102 ± 10 100 4514 15.42 14.28 900 700 2920 ± 370 32.6 ± 5.0 36 1470 8.24 9.51 1000 750 1840 ± 150 23.3 ± 4.2 26 886 6.62 7.57 1400 1000 313 ± 25 5.6 ± 1.9 6 144 3.37 3.47 1600 1100 136.3 ± 9.2 3.4 ± 1.4 4 63.3 2.83 3.04 1800 1250 56.5 ± 3.7 1.78 ± 0.86 3 28.5 2.48 3.18 2100 1300 18.5 ± 0.9 1.45 ± 0.75 2 9.37 2.35 2.65 2400 1400 5.54 ± 0.26 0.98 ± 0.56 2 3.40 2.59 3.37 2700 1450 1.68 ± 0.08 0.81 ± 0.49 2 1.43 3.45 4.77 3000 1400 0.58 ± 0.03 0.98 ± 0.56 2 0.71 5.17 6.73 Table 1. Mmin T requirement for different W′R masses, expected number of signal and background events, number of observed events, theoretical cross section and upper limits on σ(W′R)×B(W′R → `ν), with ` = e, µ. following the Jacobian peak. For larger masses, cross sections become so small that fewer than two events are expected in the recorded data. These events are likely to have lower transverse mass because the production is shifted to the off-peak region, as mentioned above. Both these effects serve to lower the Mmin T threshold of the search window for very heavy W ′ bosons. The expected number of signal and background events listed separately for the two channels are summarized in table 1. A common theoretical NNLO cross section is assumed. The expected and observed upper limits for both channels and their combination, in the right-handed scenario without interference, are shown in figure 3. Using the central value of the theoretical cross section times the branching fraction, we exclude at 95% confidence level (CL) the existence of a W′ R with SM-like couplings of masses less than 2.5 TeV (compared with an expected limit of 2.6 TeV). Note that the background uncertainty has a negligible impact on the lower limits on W ′ mass, owing to the lack of observed events in the tail of the MT distribution. – 9 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 W' mass [GeV] 500 1000 1500 2000 2500 3000 ) [fb ] ν + µ e / → B R (W ' . σ 1 10 210 310 410 CMS = 7 TeVs -1 L dt = 5.0 fb∫ 95% Observed Limit (Electron) 95% Observed Limit (Muon) 95% Observed (Combined) 95% Expected (Combined) Theoretical Cross Section SSM W' with K-factor Theoretical Cross Section SSM W' without K-factor = 10 TeV)µ (KKTheoretical Cross Section for W = 0.05 TeV)µ (KKTheoretical Cross Section for W Figure 3. Upper limits on σ(W′R) × B(W′R → `ν), with ` = e, µ, and their combination at 95% confidence level. The one (two) sigma uncertainty bands are shown in green (yellow). The theoretical cross section, with PDF uncertainties, is displayed with and without a mass-dependent NNLO K-factor for the right-handed model without interference. The theoretical cross sections for Kaluza-Klein W2 KK with µ=0.05 TeV and µ=10 TeV are also shown. A similar search procedure was performed including the effect of interference. The theoretical cross sections are approximately 10–30% lower (higher) for destructive (con- structive) interference when integrating over the transverse mass spectrum above 500 GeV and hence influence the resulting mass limits [17]. Optimising for the best expected cross section limit resulted in very similar search windows at high MT, yielding lower limits on the W′ L mass of 2.63 (2.43) TeV for constructive (destructive) interference, based on the same MadGraph cross sections and K-factors as the ones used in figure 3. We note that the interference affects mainly the medium MT and hardly the Jacobian peak region, with the latter being used to set the limits. The limits shown do not take into account higher order electroweak corrections at high mass, which can be sizable. The effect of these miss- ing corrections would be a reduction of the size of interference effects, leading to limits that are closer to the ones quoted for the no-interference case. In addition to the model dependent results on W ′ production, upper limits for the cross section of beyond-the-SM production of charged lepton-neutrino events are given in table 2 and figure 4. The results are presented as a function of the transverse mass threshold, Mmin T , and listed separately for the electron and the muon channels, and their combina- tion. The only assumptions made here are that we are searching for a narrow s-channel – 10 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 Electron channel Muon channel Combined channels Mmin T Events Limit (fb) Events Limit (fb) Limit (fb) ( GeV) Nbkg Nobs Exp. Obs. Nbkg Nobs Exp. Obs. Exp. Obs. 500 175 ± 22 192 10.14 13.85 158 ± 14 141 8.20 6.13 6.86 6.04 600 77 ± 10 83 5.99 7.13 67.9 ± 8.1 62 5.12 4.46 4.01 3.95 700 37.4 ± 5.7 41 3.80 4.57 32.6 ± 5.0 36 3.60 4.41 2.65 3.31 800 20.0 ± 3.8 22 3.03 3.24 17.0 ± 3.6 16 2.95 2.54 1.94 1.99 900 11.4 ± 2.6 12 2.10 2.30 9.5 ± 2.6 11 2.01 2.46 1.46 1.68 1000 6.8 ± 1.8 8 1.79 2.02 5.6 ± 1.9 6 1.57 1.80 1.11 1.32 1100 4.3 ± 1.3 6 1.40 1.88 3.4 ± 1.4 4 1.32 1.56 0.94 1.19 1200 2.79 ± 0.98 3 1.32 1.32 2.2 ± 1.0 3 1.18 1.45 0.78 0.92 1300 1.87 ± 0.74 2 1.15 1.15 1.45 ± 0.75 2 0.97 1.26 0.69 0.77 1400 1.29 ± 0.56 2 0.94 1.22 0.98 ± 0.56 2 1.00 1.32 0.59 0.85 1500 0.91 ± 0.43 1 0.97 0.97 0.68 ± 0.43 2 0.72 1.37 0.53 0.76 Table 2. Excluded cross sections times branching fraction in the search window (MT > Mmin T ) in the electron and muon channels individually, along with their combination. The number of expected background events was taken from simulation. The expected and observed cross section limits are given for each search window. [GeV]min TM 600 800 1000 1200 1400 E xc lu de d B S M c ro ss s ec tio n x B R [f b] 1 10 CMS = 7 TeVs -1 L dt = 5.0 fb∫ ν l →W' 95% Observed Limit (Electron) 95% Observed Limit (Muon) 95% Observed (Combined) 95% Expected (Combined) (Combined)σ1±Expected (Combined)σ2±Expected Figure 4. 95% confidence level upper limits on the cross section times branching fraction for physics beyond the SM (labelled BSM) for the charged lepton-neutrino production with transverse masses exceeding Mmin T . The results for the electron, the muon channel, as well as for both channels combined are presented. The one (two) sigma uncertainty bands are shown in green (yellow). – 11 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 1/R [TeV] 0 0.5 1 1.5 2 [T eV ] µ -110 1 10 Excluded Electron channel Muon channel Combined channels CMS = 7 TeVs -1 L dt = 5.0 fb∫ Figure 5. 95% confidence limits on the split-UED parameters µ and R derived from the W ′ mass limits taking into account the corresponding width of the W2 KK. The colored areas correspond to the W2 KK exclusion regions with the same final state as the SM-like W ′ . Results are shown for the electron and muon channels, as well as for both channels combined. The W2 KK is the lowest state that can couple to SM fermions. Since it has even parity it can be produced singly. produced resonance, using the detector acceptance and selection efficiency outlined in sec- tion 4. Note that the Mmin T threshold is on an experimentally-measured quantity affected by detector resolution. These exclusion limits on the cross-section can be translated to excluded W ′ masses within the context of a given model, such as constructive or destructive W′ L, W′ R or some- thing else. The observed limits illustrated in figure 3 can be reinterpreted in terms of the W2 KK mass, as shown in the same figure for values of the bulk mass parameters µ = 0.05 TeV and µ = 10 TeV. For these parameters the second Kaluza-Klein excitation W2 KK has been excluded for masses below 1.4 TeV (µ = 0.05 TeV) or 2.9 TeV (µ = 10 TeV), respectively. The corresponding widths (eq. (2.4)) are taken into account in the calculation of the cross section times the branching fraction of W2 KK. These lower limits on the mass can be directly translated to bounds on the split-UED parameter space [1/R, µ] with µ being the mass parameter for bulk fermions and R the radius of the extra dimension. The results are displayed in figure 5, using the relations between R, µ and the W2 KK mass, and the couplings to SM fermions described by expressions (2.1), (2.2) and (2.3). The split-UED model also allows for W-W ′ interference. When the constructive case is considered, it has a comparable sensitivity to the no-interference case. – 12 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 8 Summary A search for an excess of events with a final state consisting of a charged lepton (electron or muon) and significant missing transverse momentum has been performed, using 5.0 fb−1 of√ s = 7 TeV pp collision data. No significant excess over the SM expectation was observed in the distribution of transverse mass. A W′ R in the SSM with a mass of less than 2.5 TeV has been excluded at 95% CL. For the first time in such a study, W-W ′ interference effects have been taken into account, and mass exclusion limits have been determined as 2.63 TeV and 2.43 TeV for constructive and destructive interference respectively. These are the most stringent limits yet published. An interpretation of the search results has also been made in a specific framework of universal extra dimensions with bulk mass fermions. The second Kaluza-Klein excitation W2 KK has been excluded for masses below 1.4 TeV, assuming a bulk mass parameter µ of 0.05 TeV or masses below 2.9 TeV for µ=10 TeV. Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); I± (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONA- CYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Founda- tion; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Council of Science and Industrial Research, India; and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund. Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. References [1] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004. – 13 – http://dx.doi.org/10.1088/1748-0221/3/08/S08004 J H E P 0 8 ( 2 0 1 2 ) 0 2 3 [2] CMS collaboration, Absolute calibration of the luminosity measurement at CMS: winter 2012 update, PAS-SMP-12-008 (2012). [3] G. Altarelli, B. Mele and M. Ruiz-Altaba, Searching for new heavy vector bosons in pp̄ colliders, Z. Phys. C 45 (1989) 109 [Erratum ibid. C 47 (1990) 676] [INSPIRE]. [4] CDF collaboration, T. Aaltonen et al., Search for a new heavy gauge boson W ′ with electron + missing ET event signature in pp̄ collisions at √ s = 1.96 TeV, Phys. Rev. D 83 (2011) 031102 [arXiv:1012.5145] [INSPIRE]. [5] D0 collaboration, V. Abazov et al., Search for W ′ bosons decaying to an electron and a neutrino with the D0 detector, Phys. Rev. Lett. 100 (2008) 031804 [arXiv:0710.2966] [INSPIRE]. [6] CMS collaboration, V. Khachatryan et al., Search for a heavy gauge boson W’ in the final state with an electron and large missing transverse energy in pp collisions at √ s = 7 TeV, Phys. Lett. B 698 (2011) 21 [arXiv:1012.5945] [INSPIRE]. [7] CMS collaboration, S. Chatrchyan et al., Search for a W ′ boson decaying to a muon and a neutrino in pp collisions at √ s = 7 TeV, Phys. Lett. B 701 (2011) 160 [arXiv:1103.0030] [INSPIRE]. [8] ATLAS collaboration, G. Aad et al., Search for high-mass states with one lepton plus missing transverse momentum in proton-proton collisions at √ s = 7 TeV with the ATLAS detector, Phys. Lett. B 701 (2011) 50 [arXiv:1103.1391] [INSPIRE]. [9] ATLAS collaboration, G. Aad et al., Search for a heavy gauge boson decaying to a charged lepton and a neutrino in 1 fb−1 of pp collisions at √ s = 7 TeV using the ATLAS detector, Phys. Lett. B 705 (2011) 28 [arXiv:1108.1316] [INSPIRE]. [10] J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703-703] [INSPIRE]. [11] R. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE]. [12] G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE]. [13] G. Senjanović, Spontaneous breakdown of parity in a class of gauge theories, Nucl. Phys. B 153 (1979) 334 [INSPIRE]. [14] P. Minkowski, µ→ eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE]. [15] R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE]. [16] R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE]. [17] E. Accomando et al., Interference effects in heavy W’-boson searches at the LHC, Phys. Rev. D 85 (2012) 115017 [arXiv:1110.0713] [INSPIRE]. [18] T.G. Rizzo, The determination of the helicity of W ′ boson couplings at the LHC, JHEP 05 (2007) 037 [arXiv:0704.0235] [INSPIRE]. [19] E. Boos, V. Bunichev, L. Dudko and M. Perfilov, Interference between W ′ and W in single-top quark production processes, Phys. Lett. B 655 (2007) 245 [hep-ph/0610080] [INSPIRE]. – 14 – http://cdsweb.cern.ch/record/1434360 http://dx.doi.org/10.1007/BF01556677 http://inspirehep.net/search?p=find+J+Z.Physik,C45,109 http://dx.doi.org/10.1103/PhysRevD.83.031102 http://dx.doi.org/10.1103/PhysRevD.83.031102 http://arxiv.org/abs/1012.5145 http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.5145 http://dx.doi.org/10.1103/PhysRevLett.100.031804 http://arxiv.org/abs/0710.2966 http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.2966 http://dx.doi.org/10.1016/j.physletb.2011.02.048 http://arxiv.org/abs/1012.5945 http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.5945 http://dx.doi.org/10.1016/j.physletb.2011.05.048 http://arxiv.org/abs/1103.0030 http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.0030 http://dx.doi.org/10.1016/j.physletb.2011.05.043 http://arxiv.org/abs/1103.1391 http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.1391 http://dx.doi.org/10.1016/j.physletb.2011.09.093 http://arxiv.org/abs/1108.1316 http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.1316 http://dx.doi.org/10.1103/PhysRevD.11.703 http://inspirehep.net/search?p=find+J+Phys.Rev.,D10,275 http://dx.doi.org/10.1103/PhysRevD.11.2558 http://inspirehep.net/search?p=find+J+Phys.Rev.,D11,2558 http://dx.doi.org/10.1103/PhysRevD.12.1502 http://inspirehep.net/search?p=find+J+Phys.Rev.,D12,1502 http://inspirehep.net/search?p=find+J+Nucl.Phys.,B153,334 http://dx.doi.org/10.1016/0370-2693(77)90435-X http://dx.doi.org/10.1016/0370-2693(77)90435-X http://inspirehep.net/search?p=find+J+Phys.Lett.,B67,421 http://dx.doi.org/10.1103/PhysRevLett.44.912 http://dx.doi.org/10.1103/PhysRevLett.44.912 http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,44,912 http://dx.doi.org/10.1103/PhysRevD.23.165 http://inspirehep.net/search?p=find+J+Phys.Rev.,D23,165 http://arxiv.org/abs/1110.0713 http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.0713 http://dx.doi.org/10.1088/1126-6708/2007/05/037 http://dx.doi.org/10.1088/1126-6708/2007/05/037 http://arxiv.org/abs/0704.0235 http://inspirehep.net/search?p=find+J+JHEP,0705,037 http://dx.doi.org/10.1016/j.physletb.2007.03.064 http://arxiv.org/abs/hep-ph/0610080 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0610080 J H E P 0 8 ( 2 0 1 2 ) 0 2 3 [20] D0 collaboration, V. Abazov et al., Search for W ′ boson resonances decaying to a top quark and a bottom quark, Phys. Rev. Lett. 100 (2008) 211803 [arXiv:0803.3256] [INSPIRE]. [21] C.-R. Chen, M.M. Nojiri, S.C. Park, J. Shu and M. Takeuchi, Dark matter and collider phenomenology of split-UED, JHEP 09 (2009) 078 [arXiv:0903.1971] [INSPIRE]. [22] K. Kong, S.C. Park and T.G. Rizzo, Collider phenomenology with split-UED, JHEP 04 (2010) 081 [arXiv:1002.0602] [INSPIRE]. [23] T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE]. [24] CMS collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus and MET, PAS-PFT-09-001 (2009). [25] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. [26] J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270. [27] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE]. [28] J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE]. [29] J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE]. [30] R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE]. [31] R. Gavin, Y. Li, F. Petriello and S. Quackenbush, W physics at the LHC with FEWZ 2.1, arXiv:1201.5896 [INSPIRE]. [32] CompHEP collaboration, E. Boos et al., CompHEP 4.4: automatic computations from Lagrangians to events, Nucl. Instrum. Meth. A 534 (2004) 250 [hep-ph/0403113] [INSPIRE]. [33] A. Pukhov et al., CompHEP: a package for evaluation of Feynman diagrams and integration over multiparticle phase space, hep-ph/9908288 [INSPIRE]. [34] N. Kidonakis and R. Vogt, The theoretical top quark cross section at the Tevatron and the LHC, Phys. Rev. D 78 (2008) 074005 [arXiv:0805.3844] [INSPIRE]. [35] CMS collaboration, Performance of CMS muon reconstruction in cosmic-ray events, 2009 JINST 5 T03022. [36] M. Botje et al., The PDF4LHC working group interim recommendations, arXiv:1101.0538 [INSPIRE]. [37] M. Whalley, D. Bourilkov and R. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE]. [38] A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE]. [39] P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE]. [40] S. Forte, L. Garrido, J.I. Latorre and A. Piccione, Neural network parametrization of deep inelastic structure functions, JHEP 05 (2002) 062 [hep-ph/0204232] [INSPIRE]. [41] Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE]. – 15 – http://dx.doi.org/10.1103/PhysRevLett.100.211803 http://arxiv.org/abs/0803.3256 http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3256 http://dx.doi.org/10.1088/1126-6708/2009/09/078 http://arxiv.org/abs/0903.1971 http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.1971 http://dx.doi.org/10.1007/JHEP04(2010)081 http://dx.doi.org/10.1007/JHEP04(2010)081 http://arxiv.org/abs/1002.0602 http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0602 http://dx.doi.org/10.1103/PhysRevD.64.035002 http://arxiv.org/abs/hep-ph/0012100 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0012100 http://cdsweb.cern.ch/record/1194487 http://dx.doi.org/10.1016/S0168-9002(03)01368-8 http://dx.doi.org/10.1016/S0168-9002(03)01368-8 http://inspirehep.net/search?p=find+J+Nucl.Instrum.Meth.,A506,250 http://dx.doi.org/10.1109/TNS.2006.869826 http://dx.doi.org/10.1109/TNS.2006.869826 http://dx.doi.org/10.1088/1126-6708/2006/05/026 http://dx.doi.org/10.1088/1126-6708/2006/05/026 http://arxiv.org/abs/hep-ph/0603175 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603175 http://dx.doi.org/10.1088/1126-6708/2007/09/028 http://arxiv.org/abs/0706.2334 http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.2334 http://dx.doi.org/10.1088/1126-6708/2002/07/012 http://arxiv.org/abs/hep-ph/0201195 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0201195 http://dx.doi.org/10.1016/j.cpc.2011.06.008 http://arxiv.org/abs/1011.3540 http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.3540 http://arxiv.org/abs/1201.5896 http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5896 http://dx.doi.org/10.1016/j.nima.2004.07.096 http://arxiv.org/abs/hep-ph/0403113 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0403113 http://arxiv.org/abs/hep-ph/9908288 http://inspirehep.net/search?p=find+EPRINT+hep-ph/9908288 http://dx.doi.org/10.1103/PhysRevD.78.074005 http://arxiv.org/abs/0805.3844 http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3844 http://dx.doi.org/10.1088/1748-0221/5/03/T03022 http://dx.doi.org/10.1088/1748-0221/5/03/T03022 http://arxiv.org/abs/1101.0538 http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0538 http://arxiv.org/abs/hep-ph/0508110 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508110 http://dx.doi.org/10.1140/epjc/s10052-009-1072-5 http://dx.doi.org/10.1140/epjc/s10052-009-1072-5 http://arxiv.org/abs/0901.0002 http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0002 http://dx.doi.org/10.1103/PhysRevD.78.013004 http://dx.doi.org/10.1103/PhysRevD.78.013004 http://arxiv.org/abs/0802.0007 http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.0007 http://dx.doi.org/10.1088/1126-6708/2002/05/062 http://arxiv.org/abs/hep-ph/0204232 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0204232 http://dx.doi.org/10.1088/0954-3899/37/7A/075021 http://dx.doi.org/10.1088/0954-3899/37/7A/075021 http://inspirehep.net/search?p=find+J.Phys.,G37,075021 J H E P 0 8 ( 2 0 1 2 ) 0 2 3 The CMS collaboration Yerevan Physics Institute, Yerevan, Armenia S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan Institut für Hochenergiephysik der OeAW, Wien, Austria W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, J. Hammer1, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, V. Knünz, M. Krammer, D. Liko, I. Mikulec, M. Pernicka†, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, F. Teischinger, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz National Centre for Particle and High Energy Physics, Minsk, Belarus V. Mossolov, N. Shumeiko, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium S. Bansal, K. Cerny, T. Cornelis, E.A. De Wolf, X. Janssen, S. Luyckx, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium F. Blekman, S. Blyweert, J. D’Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella Université Libre de Bruxelles, Bruxelles, Belgium O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, T. Reis, L. Thomas, C. Vander Velde, P. Vanlaer Ghent University, Ghent, Belgium V. Adler, K. Beernaert, A. Cimmino, S. Costantini, G. Garcia, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, N. Strobbe, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, E. Yazgan, N. Zaganidis Université Catholique de Louvain, Louvain-la-Neuve, Belgium S. Basegmez, G. Bruno, L. Ceard, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco2, J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul Université de Mons, Mons, Belgium N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil G.A. Alves, M. Correa Martins Junior, D. De Jesus Damiao, T. Martins, M.E. Pol, M.H.G. Souza Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil W.L. Aldá Júnior, W. Carvalho, A. Custódio, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, D. Matos Figueiredo, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, S.M. Silva Do Amaral, L. Soares Jorge, A. Sznajder – 16 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil T.S. Anjos3, C.A. Bernardes3, F.A. Dias4, T.R. Fernandez Perez Tomei, E. M. Gregores3, C. Lagana, F. Marinho, P.G. Mercadante3, S.F. Novaes, Sandra S. Padula Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria V. Genchev1, P. Iaydjiev1, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova University of Sofia, Sofia, Bulgaria A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov Institute of High Energy Physics, Beijing, China J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China C. Asawatangtrakuldee, Y. Ban, S. Guo, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, S. Wang, B. Zhu, W. Zou Universidad de Los Andes, Bogota, Colombia C. Avila, B. Gomez Moreno, A.F. Osorio Oliveros, J.C. Sanabria Technical University of Split, Split, Croatia N. Godinovic, D. Lelas, R. Plestina5, D. Polic, I. Puljak1 University of Split, Split, Croatia Z. Antunovic, M. Dzelalija, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic University of Cyprus, Nicosia, Cyprus A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis Charles University, Prague, Czech Republic M. Finger, M. Finger Jr. Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt Y. Assran6, S. Elgammal, A. Ellithi Kamel7, S. Khalil8, M.A. Mahmoud9, A. Radi8,10 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia M. Kadastik, M. Müntel, M. Raidal, L. Rebane, A. Tiko Department of Physics, University of Helsinki, Helsinki, Finland V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland – 17 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 Lappeenranta University of Technology, Lappeenranta, Finland K. Banzuzi, A. Korpela, T. Tuuva DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, L. Millischer, A. Nayak, J. Rander, A. Rosowsky, I. Shreyber, M. Titov Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj11, C. Broutin, P. Busson, C. Charlot, N. Daci, T. Dahms, L. Dobrzynski, R. Granier de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Veelken, A. Zabi Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Univer- sité de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France J.-L. Agram12, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte12, F. Drouhin12, C. Ferro, J.-C. Fontaine12, D. Gelé, U. Goerlach, P. Juillot, M. Karim12, A.-C. Le Bihan, P. Van Hove Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France F. Fassi, D. Mercier Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France S. Beauceron, N. Beaupere, O. Bondu, G. Boudoul, H. Brun, J. Chasserat, R. Chierici1, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, S. Tosi, Y. Tschudi, P. Verdier, S. Viret Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia Z. Tsamalaidze13 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany G. Anagnostou, S. Beranek, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen, K. Klein, J. Merz, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer, V. Zhukov14 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, T. Klimkovich, D. Klingebiel, P. Kreuzer, D. Lanske†, J. Lingemann, C. Magass, M. Merschmeyer, A. Meyer, M. Olschewski, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, J.F. Schulte, L. Sonnenschein, J. Steggemann, D. Teyssier, S. Thüer, M. Weber – 18 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany M. Bontenackels, V. Cherepanov, M. Davids, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Linn, A. Nowack, L. Perchalla, O. Pooth, J. Rennefeld, P. Sauerland, A. Stahl Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, J. Behr, W. Behrenhoff, U. Behrens, M. Bergholz15, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, E. Castro, F. Costanza, D. Dammann, G. Eckerlin, D. Eckstein, D. Fischer, G. Flucke, A. Geiser, I. Glushkov, S. Habib, J. Hauk, H. Jung1, M. Kasemann, P. Katsas, C. Kleinwort, H. Kluge, A. Knutsson, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange, W. Lohmann15, B. Lutz, R. Mankel, I. Marfin, M. Marienfeld, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme, J. Olzem, H. Perrey, A. Petrukhin, D. Pitzl, A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, M. Rosin, J. Salfeld-Nebgen, R. Schmidt15, T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany C. Autermann, V. Blobel, S. Bobrovskyi, J. Draeger, H. Enderle, J. Erfle, U. Gebbert, M. Görner, T. Hermanns, R.S. Höing, K. Kaschube, G. Kaussen, H. Kirschenmann, R. Klanner, J. Lange, B. Mura, F. Nowak, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Schröder, T. Schum, M. Seidel, H. Stadie, G. Steinbrück, J. Thomsen Institut für Experimentelle Kernphysik, Karlsruhe, Germany C. Barth, J. Berger, T. Chwalek, W. De Boer, A. Dierlamm, M. Feindt, M. Guthoff1, C. Hackstein, F. Hartmann, M. Heinrich, H. Held, K.H. Hoffmann, S. Honc, I. Katkov14, J.R. Komaragiri, D. Martschei, S. Mueller, Th. Müller, M. Niegel, A. Nürnberg, O. Oberst, A. Oehler, J. Ott, T. Peiffer, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, S. Röcker, C. Saout, A. Scheurer, F.-P. Schilling, M. Schmanau, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, R. Ulrich, J. Wagner-Kuhr, T. Weiler, M. Zeise, E.B. Ziebarth Institute of Nuclear Physics ”Demokritos”, Aghia Paraskevi, Greece G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari University of Athens, Athens, Greece L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou University of Ioánnina, Ioánnina, Greece I. Evangelou, C. Foudas1, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary G. Bencze, C. Hajdu1, P. Hidas, D. Horvath16, K. Krajczar17, B. Radics, F. Sikler1, V. Veszpremi, G. Vesztergombi17 Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi – 19 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 University of Debrecen, Debrecen, Hungary J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari Panjab University, Chandigarh, India S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Jindal, M. Kaur, J.M. Kohli, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, J. Singh, S.P. Singh University of Delhi, Delhi, India S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, A. Kumar, S. Malhotra, M. Naimud- din, K. Ranjan, V. Sharma, R.K. Shivpuri Saha Institute of Nuclear Physics, Kolkata, India S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, S. Sarkar Bhabha Atomic Research Centre, Mumbai, India A. Abdulsalam, R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty1, L.M. Pant, P. Shukla Tata Institute of Fundamental Research - EHEP, Mumbai, India T. Aziz, S. Ganguly, M. Guchait18, A. Gurtu19, M. Maity20, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage Tata Institute of Fundamental Research - HECR, Mumbai, India S. Banerjee, S. Dugad Institute for Research in Fundamental Sciences (IPM), Tehran, Iran H. Arfaei, H. Bakhshiansohi21, S.M. Etesami22, A. Fahim21, M. Hashemi, H. Hesari, A. Jafari21, M. Khakzad, A. Mohammadi23, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh24, M. Zeinali22 INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa,b, L. Barbonea,b, C. Calabriaa,b,1, S.S. Chhibraa,b, A. Colaleoa, D. Creanzaa,c, N. De Filippisa,c,1, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, L. Lusitoa,b, G. Maggia,c, M. Maggia, B. Marangellia,b, S. Mya,c, S. Nuzzoa,b, N. Pacificoa,b, A. Pompilia,b, G. Pugliesea,c, G. Selvaggia,b, L. Silvestrisa, G. Singha,b, G. Zitoa INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy G. Abbiendia, A.C. Benvenutia, D. Bonacorsia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, M. Cuffiania,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa,b,1, P. Giacomellia, C. Grandia, L. Guiducci, S. Marcellinia, G. Masettia, M. Meneghellia,b,1, A. Montanaria, F.L. Navarriaa,b, F. Odoricia, A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G. Sirolia,b, R. Travaglinia,b INFN Sezione di Catania a, Università di Catania b, Catania, Italy S. Albergoa,b, G. Cappelloa,b, M. Chiorbolia,b, S. Costaa,b, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b – 20 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, S. Frosalia,b, E. Galloa, S. Gonzia,b, M. Meschinia, S. Paolettia, G. Sguazzonia, A. Tropianoa,1 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, S. Colafranceschi25, F. Fabbri, D. Piccolo INFN Sezione di Genova, Genova, Italy P. Fabbricatore, R. Musenich INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy A. Benagliaa,b,1, F. De Guioa,b, L. Di Matteoa,b,1, S. Fiorendia,b, S. Gennaia,1, A. Ghezzia,b, S. Malvezzia, R.A. Manzonia,b, A. Martellia,b, A. Massironia,b,1, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, N. Redaellia, S. Salaa, T. Tabarelli de Fatisa,b INFN Sezione di Napoli a, Università di Napoli ”Federico II” b, Napoli, Italy S. Buontempoa, C.A. Carrillo Montoyaa,1, N. Cavalloa,26, A. De Cosaa,b, O. Doganguna,b, F. Fabozzia,26, A.O.M. Iorioa,1, L. Listaa, S. Meolaa,27, M. Merolaa,b, P. Paoluccia INFN Sezione di Padova a, Università di Padova b, Università di Trento (Trento) c, Padova, Italy P. Azzia, N. Bacchettaa,1, P. Bellana,b, D. Biselloa,b, A. Brancaa,1, R. Carlina,b, P. Checchiaa, T. Dorigoa, U. Dossellia, F. Gasparinia,b, A. Gozzelinoa, K. Kanishcheva,c, S. Lacapraraa, I. Lazzizzeraa,c, M. Margonia,b, A.T. Meneguzzoa,b, L. Perrozzia, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b,1, S. Vaninia,b, P. Zottoa,b, G. Zumerlea,b INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Torrea,b, P. Vituloa,b INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy G.M. Bileia, L. Fanòa,b, P. Laricciaa,b, A. Lucaronia,b,1, G. Mantovania,b, M. Menichellia, A. Nappia,b, F. Romeoa,b, A. Saha, A. Santocchiaa,b, S. Taronia,b,1 INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy P. Azzurria,c, G. Bagliesia, T. Boccalia, G. Broccoloa,c, R. Castaldia, R.T. D’Agnoloa,c, R. Dell’Orsoa, F. Fioria,b,1, L. Foàa,c, A. Giassia, A. Kraana, F. Ligabuea,c, T. Lomtadzea, L. Martinia,28, A. Messineoa,b, F. Pallaa, F. Palmonaria, A. Rizzia,b, A.T. Serbana,29, P. Spagnoloa, P. Squillacioti1, R. Tenchinia, G. Tonellia,b,1, A. Venturia,1, P.G. Verdinia INFN Sezione di Roma a, Università di Roma ”La Sapienza” b, Roma, Italy L. Baronea,b, F. Cavallaria, D. Del Rea,b,1, M. Diemoza, C. Fanellia,b, M. Grassia,1, E. Longoa,b, P. Meridiania,1, F. Michelia,b, S. Nourbakhsha, G. Organtinia,b, F. Pandolfia,b, R. Paramattia, S. Rahatloua,b, M. Sigamania, L. Soffia,b – 21 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, C. Bottaa,b, N. Cartigliaa, R. Castelloa,b, M. Costaa,b, N. Demariaa, A. Grazianoa,b, C. Mariottia,1, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha,1, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, V. Solaa,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy S. Belfortea, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b,1, D. Montaninoa,b,1, A. Penzoa, A. Schizzia,b Kangwon National University, Chunchon, Korea S.G. Heo, T.Y. Kim, S.K. Nam Kyungpook National University, Daegu, Korea S. Chang, J. Chung, D.H. Kim, G.N. Kim, D.J. Kong, H. Park, S.R. Ro, D.C. Son, T. Son Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea J.Y. Kim, Zero J. Kim, S. Song Konkuk University, Seoul, Korea H.Y. Jo Korea University, Seoul, Korea S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park, E. Seo University of Seoul, Seoul, Korea M. Choi, S. Kang, H. Kim, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu Sungkyunkwan University, Suwon, Korea Y. Cho, Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu Vilnius University, Vilnius, Lithuania M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magaña Villalba, J. Mart́ınez-Ortega, A. Sánchez-Hernández, L.M. Villasenor-Cendejas Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico H.A. Salazar Ibarguen – 22 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 Universidad Autónoma de San Luis Potośı, San Luis Potośı, Mexico E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos University of Auckland, Auckland, New Zealand D. Krofcheck University of Canterbury, Christchurch, New Zealand A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan M. Ahmad, M.I. Asghar, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski Soltan Institute for Nuclear Studies, Warsaw, Poland H. Bialkowska, B. Boimska, T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski Laboratório de Instrumentação e F́ısica Experimental de Part́ıculas, Lisboa, Portugal N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, P. Musella, J. Seixas, J. Varela, P. Vischia Joint Institute for Nuclear Research, Dubna, Russia I. Belotelov, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, A. Malakhov, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia S. Evstyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov1, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin Moscow State University, Moscow, Russia A. Belyaev, E. Boos, V. Bunichev, M. Dubinin4, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, A. Popov, L. Sarycheva†, V. Savrin – 23 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin1, V. Kachanov, D. Konstantinov, A. Korablev, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic30, M. Djordjevic, M. Ekmedzic, D. Krpic30, J. Milosevic Centro de Investigaciones Energéticas Medioambientales y Tec- nológicas (CIEMAT), Madrid, Spain M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, C. Diez Pardos, D. Domı́nguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott Universidad Autónoma de Madrid, Madrid, Spain C. Albajar, G. Codispoti, J.F. de Trocóniz Universidad de Oviedo, Oviedo, Spain J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez31, J.M. Vizan Garcia Instituto de F́ısica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini32, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jorda, P. Lobelle Pardo, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodŕıguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, C. Bernet5, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, D. D’Enterria, A. De Roeck, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Giunta, F. Glege, R. Gomez-Reino Garrido, P. Govoni, S. Gowdy, R. Guida, M. Hansen, P. Harris, C. Hartl, J. Harvey, B. Hegner, A. Hinzmann, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, K. Kousouris, P. Lecoq, P. Lenzi, C. Lourenço, T. Mäki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, – 24 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, E. Nesvold, M. Nguyen, T. Orimoto, L. Orsini, E. Palencia Cortezon, E. Perez, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes, G. Rolandi33, T. Rommerskirchen, C. Rovelli34, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwick, I. Segoni, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas35, D. Spiga, M. Spiropulu4, M. Stoye, A. Tsirou, G.I. Veres17, J.R. Vlimant, H.K. Wöhri, S.D. Worm36, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille37 Institute for Particle Physics, ETH Zurich, Zurich, Switzerland L. Bäni, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, Z. Chen, A. Deisher, G. Dissertori, M. Dittmar, M. Dünser, J. Eugster, K. Freudenreich, C. Grab, P. Lecomte, W. Lustermann, A.C. Marini, P. Martinez Ruiz del Arbol, N. Mohr, F. Moortgat, C. Nägeli38, P. Nef, F. Nessi-Tedaldi, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, A. Starodumov39, B. Stieger, M. Takahashi, L. Tauscher†, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, H.A. Weber, L. Wehrli Universität Zürich, Zurich, Switzerland E. Aguilo, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti National Central University, Chung-Li, Taiwan Y.H. Chang, K.H. Chen, A. Go, C.M. Kuo, S.W. Li, W. Lin, Z.K. Liu, Y.J. Lu, D. Mekterovic, A.P. Singh, R. Volpe, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, M. Wang Cukurova University, Adana, Turkey A. Adiguzel, M.N. Bakirci40, S. Cerci41, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, I. Hos, E.E. Kangal, G. Karapinar, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk42, A. Polatoz, K. Sogut43, D. Sunar Cerci41, B. Tali41, H. Topakli40, L.N. Vergili, M. Vergili Middle East Technical University, Physics Department, Ankara, Turkey I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, E. Yildirim, M. Zeyrek Bogazici University, Istanbul, Turkey M. Deliomeroglu, E. Gülmez, B. Isildak, M. Kaya44, O. Kaya44, S. Ozkorucuklu45, N. Sonmez46 – 25 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 Istanbul Technical University, Istanbul, Turkey K. Cankocak National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk University of Bristol, Bristol, United Kingdom F. Bostock, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold36, K. Nirun- pong, A. Poll, S. Senkin, V.J. Smith, T. Williams Rutherford Appleton Laboratory, Didcot, United Kingdom L. Basso47, K.W. Bell, A. Belyaev47, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Cough- lan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn- Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley Imperial College, London, United Kingdom R. Bainbridge, G. Ball, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko39, A. Papageorgiou, J. Pela1, M. Pesaresi, K. Petridis, M. Pioppi48, D.M. Raymond, S. Roger- son, N. Rompotis, A. Rose, M.J. Ryan, C. Seez, P. Sharp†, A. Sparrow, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, T. Whyntie Brunel University, Uxbridge, United Kingdom M. Barrett, M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, USA K. Hatakeyama, H. Liu, T. Scarborough The University of Alabama, Tuscaloosa, USA C. Henderson, P. Rumerio Boston University, Boston, USA A. Avetisyan, T. Bose, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak Brown University, Providence, USA J. Alimena, S. Bhattacharya, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer, K.V. Tsang University of California, Davis, Davis, USA R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, M. Gardner, R. Houtz, W. Ko, – 26 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 A. Kopecky, R. Lander, O. Mall, T. Miceli, R. Nelson, D. Pellett, B. Rutherford, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra University of California, Los Angeles, Los Angeles, USA V. Andreev, D. Cline, R. Cousins, J. Duris, S. Erhan, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, C. Plager, G. Rakness, P. Schlein†, J. Tucker, V. Valuev, M. Weber University of California, Riverside, Riverside, USA J. Babb, R. Clare, M.E. Dinardo, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng49, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny University of California, San Diego, La Jolla, USA W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, B. Mangano, J. Muelmenstaedt, S. Padhi, C. Palmer, G. Petrucciani, M. Pieri, R. Ranieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech50, F. Würthwein, A. Yagil, J. Yoo University of California, Santa Barbara, Santa Barbara, USA D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi1, V. Krutelyov, S. Lowette, N. Mccoll, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, C. West California Institute of Technology, Pasadena, USA A. Apresyan, A. Bornheim, Y. Chen, E. Di Marco, J. Duarte, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, V. Timciuc, P. Traczyk, J. Veverka, R. Wilkinson, Y. Yang, R.Y. Zhu Carnegie Mellon University, Pittsburgh, USA B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev University of Colorado at Boulder, Boulder, USA J.P. Cumalat, B.R. Drell, C.J. Edelmaier, W.T. Ford, A. Gaz, B. Heyburn, E. Luiggi Lopez, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner Cornell University, Ithaca, USA L. Agostino, J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, W. Hop- kins, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich Fairfield University, Fairfield, USA D. Winn Fermi National Accelerator Laboratory, Batavia, USA S. Abdullin, M. Albrow, J. Anderson, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, – 27 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, D. Green, O. Gutsche, A. Hahn, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Kilmin- ster, B. Klima, S. Kunori, S. Kwan, C. Leonidopoulos, D. Lincoln, R. Lipton, L. Lueking, J. Lykken, K. Maeshima, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko51, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton- Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, P. Tan, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun University of Florida, Gainesville, USA D. Acosta, P. Avery, D. Bourilkov, M. Chen, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic52, G. Mitselmakher, L. Muniz, R. Remington, A. Rinkevicius, P. Sellers, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria Florida International University, Miami, USA V. Gaultney, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, USA T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg Florida Institute of Technology, Melbourne, USA M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov University of Illinois at Chicago (UIC), Chicago, USA M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, J. Callner, R. Cavanaugh, C. Dragoiu, O. Evdokimov, E.J. Garcia-Solis, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, F. Lacroix, M. Malek, C. O’Brien, C. Silkworth, D. Strom, N. Varelas The University of Iowa, Iowa City, USA U. Akgun, E.A. Albayrak, B. Bilki53, K. Chung, W. Clarida, F. Duru, S. Griffiths, C.K. Lae, J.-P. Merlo, H. Mermerkaya54, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, J. Olson, Y. Onel, F. Ozok, S. Sen, E. Tiras, J. Wetzel, T. Yetkin, K. Yi Johns Hopkins University, Baltimore, USA B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, A. Whitbeck The University of Kansas, Lawrence, USA P. Baringer, A. Bean, G. Benelli, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan, V. Radicci, S. Sanders, R. Stringer, G. Tinti, J.S. Wood, V. Zhukova – 28 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 Kansas State University, Manhattan, USA A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze Lawrence Livermore National Laboratory, Livermore, USA J. Gronberg, D. Lange, D. Wright University of Maryland, College Park, USA A. Baden, M. Boutemeur, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, A. Peterman, K. Rossato, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt Massachusetts Institute of Technology, Cambridge, USA G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, Y. Kim, M. Klute, Y.-J. Lee, W. Li, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephans, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf, B. Wyslouch, S. Xie, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti University of Minnesota, Minneapolis, USA S.I. Cooper, P. Cushman, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, J. Haupt, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz University of Mississippi, University, USA L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders University of Nebraska-Lincoln, Lincoln, USA E. Avdeeva, K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, P. Jindal, J. Keller, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow State University of New York at Buffalo, Buffalo, USA U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S.P. Shipkowski, K. Smith Northeastern University, Boston, USA G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, D. Trocino, D. Wood, J. Zhang Northwestern University, Evanston, USA A. Anastassov, A. Kubik, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won University of Notre Dame, Notre Dame, USA L. Antonelli, D. Berry, A. Brinkerhoff, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, R. Ruchti, J. Slaunwhite, N. Valls, J. Warchol, M. Wayne, M. Wolf, J. Ziegler – 29 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 The Ohio State University, Columbus, USA B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, P. Killewald, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer Princeton University, Princeton, USA N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, E. Laird, D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski University of Puerto Rico, Mayaguez, USA J.G. Acosta, E. Brownson, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyaniy Purdue University, West Lafayette, USA E. Alagoz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, H.D. Yoo, J. Zablocki, Y. Zheng Purdue University Calumet, Hammond, USA S. Guragain, N. Parashar Rice University, Houston, USA A. Adair, C. Boulahouache, V. Cuplov, K.M. Ecklund, F.J.M. Geurts, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel University of Rochester, Rochester, USA B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, A. Garcia-Bellido, P. Goldenzweig, Y. Gotra, J. Han, A. Harel, S. Korjenevski, D.C. Miner, D. Vishnevskiy, M. Zielinski The Rockefeller University, New York, USA A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian Rutgers, the State University of New Jersey, Piscataway, USA S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Dug- gan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, D. Hits, C. Kilic55, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, A. Richards, J. Robles, K. Rose, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas University of Tennessee, Knoxville, USA G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York Texas A&M University, College Station, USA R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon56, V. Khotilovich, R. Montalvo, I. Os- ipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback – 30 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 Texas Tech University, Lubbock, USA N. Akchurin, J. Damgov, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev Vanderbilt University, Nashville, USA E. Appelt, D. Engh, C. Florez, S. Greene, A. Gurrola, W. Johns, P. Kurt, C. Maguire, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska University of Virginia, Charlottesville, USA M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood, R. Yohay Wayne State University, Detroit, USA S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov University of Wisconsin, Madison, USA M. Anderson, M. Bachtis, D. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, I. Ojalvo, G.A. Pierro, I. Ross, A. Savin, W.H. Smith, J. Swanson †: Deceased 1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 3: Also at Universidade Federal do ABC, Santo Andre, Brazil 4: Also at California Institute of Technology, Pasadena, USA 5: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 6: Also at Suez Canal University, Suez, Egypt 7: Also at Cairo University, Cairo, Egypt 8: Also at British University, Cairo, Egypt 9: Also at Fayoum University, El-Fayoum, Egypt 10: Now at Ain Shams University, Cairo, Egypt 11: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland 12: Also at Université de Haute-Alsace, Mulhouse, France 13: Now at Joint Institute for Nuclear Research, Dubna, Russia 14: Also at Moscow State University, Moscow, Russia 15: Also at Brandenburg University of Technology, Cottbus, Germany 16: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 17: Also at Eötvös Loránd University, Budapest, Hungary 18: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India 19: Now at King Abdulaziz University, Jeddah, Saudi Arabia 20: Also at University of Visva-Bharati, Santiniketan, India 21: Also at Sharif University of Technology, Tehran, Iran 22: Also at Isfahan University of Technology, Isfahan, Iran 23: Also at Shiraz University, Shiraz, Iran – 31 – J H E P 0 8 ( 2 0 1 2 ) 0 2 3 24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran 25: Also at Facoltà Ingegneria Università di Roma, Roma, Italy 26: Also at Università della Basilicata, Potenza, Italy 27: Also at Università degli Studi Guglielmo Marconi, Roma, Italy 28: Also at Università degli studi di Siena, Siena, Italy 29: Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania 30: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia 31: Also at University of Florida, Gainesville, USA 32: Also at University of California, Los Angeles, Los Angeles, USA 33: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy 34: Also at INFN Sezione di Roma; Università di Roma ”La Sapienza”, Roma, Italy 35: Also at University of Athens, Athens, Greece 36: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 37: Also at The University of Kansas, Lawrence, USA 38: Also at Paul Scherrer Institut, Villigen, Switzerland 39: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 40: Also at Gaziosmanpasa University, Tokat, Turkey 41: Also at Adiyaman University, Adiyaman, Turkey 42: Also at The University of Iowa, Iowa City, USA 43: Also at Mersin University, Mersin, Turkey 44: Also at Kafkas University, Kars, Turkey 45: Also at Suleyman Demirel University, Isparta, Turkey 46: Also at Ege University, Izmir, Turkey 47: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom 48: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy 49: Also at University of Sydney, Sydney, Australia 50: Also at Utah Valley University, Orem, USA 51: Also at Institute for Nuclear Research, Moscow, Russia 52: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 53: Also at Argonne National Laboratory, Argonne, USA 54: Also at Erzincan University, Erzincan, Turkey 55: Now at University of Texas at Austin, Austin, USA 56: Also at Kyungpook National University, Daegu, Korea – 32 – Introduction Physics models The CMS detector Event selection Signal and background simulation Systematic uncertainties Results and limits Summary The CMS collaboration