Measurement of Prompt D0 Meson Azimuthal Anisotropy in Pb-Pb Collisions at ffiffiffiffiffiffiffiffi sNN p = 5.02 TeV A.M. Sirunyan et al. * (CMS Collaboration) (Received 11 August 2017; revised manuscript received 6 March 2018; published 16 May 2018) The prompt D0 meson azimuthal anisotropy coefficients, v2 and v3, are measured at midrapidity (jyj < 1.0) in Pb-Pb collisions at a center-of-mass energy ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV per nucleon pair with data collected by the CMS experiment. The measurement is performed in the transverse momentum (pT) range of 1 to 40 GeV=c, for central and midcentral collisions. The v2 coefficient is found to be positive throughout the pT range studied. The first measurement of the prompt D0 meson v3 coefficient is performed, and values up to 0.07 are observed for pT around 4 GeV=c. Compared to measurements of charged particles, a similar pT dependence, but smaller magnitude for pT < 6 GeV=c, is found for promptD0 meson v2 and v3 coefficients. The results are consistent with the presence of collective motion of charm quarks at low pT and a path length dependence of charm quark energy loss at high pT , thereby providing new constraints on the theoretical description of the interactions between charm quarks and the quark-gluon plasma. DOI: 10.1103/PhysRevLett.120.202301 The formation of a strongly coupled quark-gluon plasma (QGP), a state of matter comprising deconfined quarks and gluons and exhibiting near-perfect liquid behavior, was established first in experiments performed at the Relativistic Heavy Ion Collider (RHIC) [1–4] and then later confirmed at the CERN Large Hadron Collider (LHC) [5,6]. The azimuthal anisotropy of produced light flavor particles, one of the key signatures for the QGP formation, can be characterized by the Fourier coefficients vn in the azimuthal angle (ϕ) distribution of the hadron yield, dN=dϕ ∝ 1þ 2 P nvn cos½nðϕ −ΨnÞ�, where Ψn is the azimuthal angle of the direction of the maximum particle density of the nth harmonic in the transverse plane [7]. Heavy quarks (charm and bottom) are primarily produced via initial hard scatterings because of their large masses, and thus carry information about the early stages of the QGP [8,9]. Detailed measurements of the azimuthal anisotropy of the final-state charm and bottom hadrons can supply crucial information for understanding the properties of the QGPmedium and the interactions between heavy quarks and the medium [10]. At low transverse momentum (pT), the charm hadron vn coefficient can help quantify the extent to which charm quarks flow with the medium, which is a good measure of their interaction strength. The measurements can also help explore the coalescence production mechanism for charm hadrons where charm quarks recombine with light quarks from the medium, which could also lead to positive charm hadron vn [11,12]. At high pT , the charm hadron vn coefficient can constrain the path length dependence of charm quark energy loss [13,14], complementing the measurement of the nuclear modification factor [15–17]. The charm hadron v2 coefficient has been studied indirectly by measuring the v2 of leptons from heavy- flavor hadron decays [18–22]. The D meson v2 coefficient, which can provide cleaner information on the interactions between charm quarks and the medium, has also been measured [23–25]. The D0 meson v2 results from STAR suggest that the charm quarks have achieved local thermal equilibrium with the QGP medium in the hydrodynamic picture [23]. The D meson v2 values measured by ALICE are similar to those of light hadrons [24,25]. These results indicate that low-pT charm quarks take part in the collec- tive motion of the system. The D meson v3 coefficient, which is predicted to be more sensitive to the interaction strength between charm quarks and the medium [26], has not been measured previously. In general, a precise measurement of the D meson vn coefficient over a wide momentum range is expected to provide valuable insight into the QGP properties and can further constrain theo- retical models. In this Letter, we report the measurements of the azimuthal anisotropy coefficients, v2 and v3, of prompt D0 mesons in lead-lead (PbPb) collisions at a center-of- mass energy ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV per nucleon pair with *Full author list given at the end of the article. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. PHYSICAL REVIEW LETTERS 120, 202301 (2018) 0031-9007=18=120(20)=202301(17) 202301-1 © 2018 CERN, for the CMS Collaboration https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.202301&domain=pdf&date_stamp=2018-05-16 https://doi.org/10.1103/PhysRevLett.120.202301 https://doi.org/10.1103/PhysRevLett.120.202301 https://doi.org/10.1103/PhysRevLett.120.202301 https://doi.org/10.1103/PhysRevLett.120.202301 https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/ the CMS experiment at the LHC. The coefficients are determined at midrapidity (jyj < 1.0) over a wide range in pT (1 to 40 GeV=c) using the scalar product (SP) method [27,28]. Results are presented for the centrality (i.e. the degree of overlap of the two colliding nuclei) classes 0%–10%, 10%–30%, and 30%–50%, where the centrality class of 0%–10% corresponds to the 10% of collisions with the largest overlap of the two nuclei. The central feature of the CMS apparatus is a super- conducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Iron and quartz-fiber Cherenkov hadron forward (HF) calorimeters cover the pseudorapidity range 3.0 < jηj < 5.2 on either side of the interaction region. The granularity of the HF towers is Δη × Δϕ ¼ 0.175 × 0.175 radians, allowing an accurate reconstruction of the heavy ion collision event planes. The silicon tracker measures charged particles within the pseudorapidity range jηj < 2.5. Reconstructed tracks with 1 < pT < 10 GeV=c typically have resolutions of 1.5%–3.0% in pT and 25–90 ð45–150Þ μm in the transverse (longitudinal) impact parameter [29]. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [30]. The PbPb data used in this analysis are selected by a minimum bias trigger and a 30%–100% centrality trigger. The collision centrality is determined from the transverse energy (ET) deposited in both HF calorimeters. The minimum bias trigger requires energy deposits in both HF calorimeters above a predefined threshold of approx- imately 1 GeV. Furthermore, to increase the data sample in the 30%–50% centrality range, a dedicated trigger is used to select events in the 30%–100% centrality range. In the offline analysis, an additional selection of hadronic colli- sions is applied by requiring at least three towers in each of the HF detectors with energy deposits of greater than 3 GeV per tower. Events are required to have at least one reconstructed primary vertex, formed by two or more associated tracks and required to have a distance from the nominal interaction region of less than 15 cm along the beam axis. The numbers of events used in the 0%–10%, 10%–30%, and 30%–50% centrality ranges are 32 × 106, 64 × 106, and 151 × 106, respectively. The D0 mesons (including both the D0 and D̄0 states) are reconstructed through the hadronic decay channel D0 → K−πþ, which has a branching fraction of (3.93� 0.04%) [31]. The D0 candidates are formed by combining pairs of oppositely charged tracks and requiring an invariant mass within a �200 MeV=c2 window of the nominal D0 mass of 1864.83 MeV=c2 [31]. Tracks are required to pass kinematic selections of pT > 0.7 GeV=c and jηj < 1.5, and must satisfy high-purity track quality criteria [29] to reduce the fraction of misreconstructed tracks. For each pair of selected tracks, two D0 candidates are considered by assuming one of the tracks has the pion mass while the other track has the kaon mass, and vice versa. Kinematic vertex fits [32] are performed to recon- struct the secondary vertices of D0 candidates. Several selections related to the topology of the decay are applied in order to reduce the combinatorial background. In particular, the selections are applied to the three-dimensional (3D) decay length significance [Lxyz=σðLxyzÞ], defined as the 3D distance between the secondary and primary vertices divided by its uncertainty, the pointing angle (θp), defined as the angle between the total momentum vector of the two tracks and the vector connecting the primary and secondary vertices, the χ2 probability of the secondary vertex fit, and the distance of the closest approach (DCA) of the total momentum vector to the primary vertex. The signal-to- background ratios are pT dependent; thus pT-dependent selection criteria are applied to Lxyz=σðLxyzÞ and the vertex probability, ranging from 6.0 to 3.0 and 0.25 to 0.05 for low to high pT , respectively. In the selection, θp < 0.12 radians and DCA < 0.008 cm is required. The selection on DCA not only increases the signal significance but also sup- presses the fraction of nonprompt D0 (D0 mesons from decays of b hadrons) significantly, which reduces the systematic uncertainties from the nonprompt D0 meson contribution, as discussed later. The event plane angles corresponding to the nth harmonic can be expressed in terms of Q vectors, Qn ¼ P M k¼1 ωkeinϕk , where M represents the subevent multiplicity, ϕk is the azimuthal angle of the kth particle, and ωk is a weighting factor. In this analysis, event planes determined from the two HF calorimeters covering the range 3 < jηj < 5, and from the tracker using tracks within jηj < 0.75 are used. For the HF (tracker) event planes,M is the number of towers (tracks), and ωk is the ET deposited in each HF tower (pT of each track). The Q vector of each D0 candidate is defined as Qn;D0 ¼ einϕ, where ϕ is the azimuthal angle of the D0 candidate. In the SP method, vn coefficient can be expressed in terms of the Q vectors as vnfSPg ¼ hQn;D0Q� nAiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihQnAQ� nBihQnAQ� nCi hQnBQ� nCi q ; ð1Þ where the subscripts A and B refer to the HF event planes, the subscript C refers to the tracker event plane, and the hi in denominator (numerator) indicates an average over all events (all D0 candidates). The denominator of Eq. (1) corrects for the finite resolution of the event plane A. To avoid few-particle correlations, such as those induced by high-pT dijets and particle decays, the η gap between D0 candidates and the correlated event plane A is required to be PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-2 at least three units. Thus, if the D0 candidate comes from the positive-η side, QnA (QnB) is calculated using the negative-η (positive-η) side of HF, and vice versa. The real part is taken for all averages of Q-vector products. To account for asymmetries that arise from acceptance and other detector-related effects, the Q vectors of event planes are recentered [7,33]. These corrections and their effects on the results are found to be negligible. To extract vn (n ¼ 2, 3) values of the D0 signal (vSn), a simultaneous fit to the invariant mass spectrum of D0 candidates and their vn distribution as a function of the invariant mass [vSþB n ðminvÞ] is performed in each pT interval. The mass spectrum fit function is composed of three components: two Gaussian functions with the same mean but different widths for the D0 signal [SðminvÞ], an additional Gaussian function to describe the invariant mass shape of D0 candidates with an incorrect mass assignment from the exchange of the pion and kaon designations [SWðminvÞ], and a third-order polynomial to model the combinatorial background [BðminvÞ]. The width of SWðminvÞ is fixed according to PYTHIA+HYDJET simu- lations, in which the D0 signal events from PYTHIA 8.209 [34,35] are embedded into the minimum bias PbPb events from HYDJET 1.9 [36]. Furthermore, the ratio of the yields of SWðminvÞ and SðminvÞ is fixed to the value extracted from simulations. The vSþB n ðminvÞ distribution is fit with vSþB n ðminvÞ ¼ αðminvÞvSn þ ½1 − αðminvÞ�vBn ðminvÞ; where αðminvÞ ¼½SðminvÞþSWðminvÞ�=½SðminvÞþSWðminvÞþBðminvÞ�: Here vBn ðminvÞ is the vn value of background D0 candidates and is modeled as a linear function of the invariant mass, and αðminvÞ is the D0 signal fraction as a function of the invariant mass. The K-π swapped component is included in the signal fraction because these candidates are from genuine D0 mesons and should have the same vn value as that of the trueD0 signal. Figure 1 shows an example of a simultaneous fit to the mass spectrum and vSþB 2 ðminvÞ in the pT interval 4–5 GeV=c for the centrality class 10%–30%. The D0 signal in data is a mixture of prompt and nonprompt D0 components; thus, the vSn is a combination of the vn coefficients of promptD0 (vprompt n ) and nonprompt D0 (vnonprompt n ) components, vSn ¼ fpromptv prompt n þ ð1 − fpromptÞvnonprompt n ; where fprompt is the fraction of prompt D0 mesons. Besides the measurement of vn of D0 mesons with all analysis selections applied (vSn), the vn of D0 mesons obtained by removing the DCA < 0.008 cm requirement (vSn;�) and the corresponding prompt D0 fraction (fprompt;�) are also measured. The prompt D0 fractions are evaluated from data by fitting the DCA distribution using the probability distribution functions for prompt and nonprompt D0 derived from the PYTHIA+HYDJET simulations. The DCA distributions of the D0 signal in data are obtained with fits to mass spectra in bins of DCA. The discrimination between prompt and nonprompt D0 mesons lies mainly in the large DCA region; thus, the fit is performed on the entire range. The fprompt and fprompt;� are then evaluated from the fit. It is found that the DCA < 0.008 cm require- ment can suppress the fraction of nonprompt D0 mesons by approximately 50%. The fprompt ranges between 75% and 95%, depending on pT and centrality. The vprompt n can then be expressed as vprompt n ¼ vSn þ 1 − fprompt fprompt − fprompt;� ðvSn − vSn;�Þ: ð2Þ The second term, 1 − fprompt fprompt − fprompt;� ðvSn − vSn;�Þ; is a correction factor to account for the remaining non- prompt D0 mesons after all analysis selections. Taking the uncertainties in fprompt and fprompt;� into account, the FIG. 1. Example of simultaneous fit to the invariant mass spectrum and vSþB 2 ðminvÞ in the pT interval 4–5 GeV=c for the centrality class 10%–30%. PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-3 second term on the right of Eq. (2) is found to lie approximately between −0.02 and þ0.02. In this analysis, the vSn values are kept as the central values of the measured prompt D0 meson vn, while the second term of Eq. (2) is taken as a source of systematic uncertainty. Apart from the systematic uncertainties from the remaining nonprompt D0 mesons discussed above, other sources of systematic uncertainty in this analysis include the background mass probability distribution function (PDF), the D0 meson yield correction (acceptance and efficiency), the track selections, and the background vn PDF. In this Letter, the quoted uncertainties in vn are absolute values. The systematic uncertainties from the background mass PDF (0.001 for both v2 and v3) are evaluated by the variations of vn while changing the background mass PDF to a second-order polynomial or an exponential function. Both the D0 meson yield correction, and the values of vn are functions of the D0 meson pT , so there will be systematic uncertainties arising from the correction. To evaluate these uncertain- ties (0.002–0.003 for v2 and 0.004–0.005 for v3), the yield correction is applied, and then vn values are extracted from the corrected distributions and compared with the default vn values. The track selections are also varied and systematic uncertainties from track selections (0.005–0.02 for v2 and 0.01–0.02 for v3) are assigned based on the variations of vn. The systematic uncertain- ties from the background vn PDF (mostly 0.001–0.01 for v2 and 0.005–0.015 for v3) are evaluated by changing vBn ðminvÞ to a second-order polynomial function of the invariant mass. The effects from few-particle correlations are also studied by varying the η gap and are found to be negligible. Figure 2 shows the prompt D0 meson v2 (upper) and v3 (lower) coefficients at midrapidity (jyj < 1.0) for the centrality classes 0%–10% (left), 10%–30% (middle), and 30%–50% (right), and compares them to those of charged particles (dominated by light flavor hadrons) at midpseudor- apidity (jηj < 1.0) [37]. The D0 meson v2 and v3 coef- ficients increase with pT to significant positive values in the low-pT region, and then decrease for higher pT. Compared to those of charged particles, the D0 meson v2 and v3 coefficients exhibit a similar pT dependence. As has been observed for charged particles, the D0 meson v2 coefficient increases with decreasing centrality in the 0%–50% centrality range, while the v3 coefficient shows little centrality dependence. This is consistent with an increas- ing elliptical eccentricity with decreasing centrality [38], FIG. 2. Prompt D0 meson v2 (upper) and v3 (lower) coefficients at midrapidity (jyj < 1.0) for the centrality classes 0%–10% (left), 10%–30% (middle), and 30%–50% (right). The vertical bars represent statistical uncertainties, grey bands represent systematic uncertainties from nonprompt D0 mesons, and open boxes represent other systematic uncertainties. The measured vn coefficient of charged particles at midpseudorapidity (jηj < 1.0) [37] and theoretical calculations for prompt D meson vn coefficient [26,40–43] are also plotted for comparison. PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-4 and an approximately constant triangularity stemming from geometry fluctuations [39]. For pT < 6 GeV=c, the magnitudes of D0 meson v2 and v3 coefficients are smaller than those for charged particles in the centrality classes 10%–30% and 30%–50%. Further study may determine whether it is a pure mass ordering or whether other effects, such as the degree of charm quark thermalization, coalescence, and the path length depend- ence of energy loss, are at play. The comparison between the D0 meson results and theoretical calculations in this low-pT region (see discussion below) suggests a collective motion of charm quarks. For pT > 6 GeV=c, theD0 meson v2 values remain positive, suggesting a path length dependence of the charm quark energy loss; the D0 meson v3 precision is limited by the available data. The D0 meson v2 values are consistent with those of charged particles, suggesting that the path length dependence of charm quark energy loss is similar to that of light quarks. Figure 2 also compares calculations from theoretical models [26,40–43] to the prompt D0 meson v2 and v3 experimental results. The calculations from LBT [40], CUJET 3.0 [43], and SUBATECH [26] include collisional and radiative energy losses, while those fromTAMU [42] and PHSD [41] include only collisional energy loss. Initial-state fluctua- tions [44] are included in the calculations from LBT, SUBATECH, and PHSD; thus calculations for the v3 coefficient are only available from these three models. For pT < 6 GeV=c, LBT, SUBATECH, TAMU, and PHSD can qualitatively describe the shapes of themeasuredv2,while theTAMUmodel underestimates the v2 values. Thismay suggest that the heavy quark potential in the TAMU model needs to be tuned [45] or that the addition of radiative energy loss is needed. The calculations from LBT and SUBATECH are in reasonable agreement with the v3 results, while the PHSD calculations are systematically below the measured v3 for centrality class 10%–30%. In the calculations from LBT, SUBATECH, TAMU, and PHSD, the charm quarks have acquired significant elliptic and triangular flow through the interactions with the medium constituents, and the coalescence mechanism is incorporated. Without including the interactions between charm quarks and the medium, these models will significantly under- estimate the data [26,40–42]. Thus, the fact that the calculated vn values are close to or even lower than the measured results suggests that the charm quarks take part in the collective motion of the system. Whether and how well the D0 anisotropy can be described by hydrodynamics and thermal- ization requires further investigation. For pT > 6 GeV=c, PHSD and CUJET can generally describe the v2 results. LBT and SUBATECH predict lower and higher v2 values than in data, respectively, indicating that improvements of the energy loss mechanisms in the two models are necessary. In summary, measurements of prompt D0 meson azimu- thal anisotropy coefficients, v2 and v3, using the scalar product method in PbPb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV have been presented. The v2 values are found to be positive in the pT range of 1 to 40 GeV=c. The v3 coefficient is measured for the first time, and values up to 0.07 are observed for pT around 4 GeV=c. The v2 coefficient is observed to be centrality dependent, while the v3 coef- ficient shows little centrality dependence. Compared with those of charged particles, the measured D0 meson v2 and v3 coefficients are found to be smaller for pT < 6 GeV=c but to have similar pT dependence. Through the compari- son with theoretical calculations, the v2 and v3 results at low pT suggest that the charm quarks take part in the collective motion of the system. The v2 values for pT > 6 GeV=c, which are consistent with those of charged particles, suggest that the path length dependence of charm quark energy loss is similar to that of light quarks. The results provide new constraints on models of the inter- actions between charm quarks and the quark-gluon plasma, and the charm quark energy loss mechanisms. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. We thank E. Bratkovskaya, S. Cao, M. He, J. Liao, M. Nahrgang, R. Rapp, T. Song, and J. Xu for the inputs in comparing our measurements with their calcula- tions. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastruc- ture essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFWand FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). [1] J. Adams et al. (STAR Collaboration), Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR collaboration’s critical assessment of the PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-5 evidence from RHIC collisions, Nucl. Phys. A757, 102 (2005). [2] K. Adcox et al. (PHENIX Collaboration), Formation of dense partonic matter in relativistic nucleus-nucleus colli- sions at RHIC: Experimental evaluation by the PHENIX collaboration, Nucl. Phys. A757, 184 (2005). [3] I. Arsene et al. (BRAHMS Collaboration), Quark gluon plasma and color glass condensate at RHIC? The perspec- tive from the BRAHMS experiment, Nucl. Phys. A757, 1 (2005). [4] B. B. Back et al. (PHOBOS Collaboration), The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A757, 28 (2005). [5] B. Muller, J. Schukraft, and B. Wyslouch, First results from Pbþ Pb collisions at the LHC, Annu. Rev. Nucl. Part. Sci. 62, 361 (2012). [6] N. Armesto and E. Scomparin, Heavy-ion collisions at the Large Hadron Collider: a review of the results from Run 1, Eur. Phys. J. Plus 131, 52 (2016). [7] Arthur M. Poskanzer and S. A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions, Phys. Rev. C 58, 1671 (1998). [8] P. Braun-Munzinger, Quarkonium production in ultra- relativistic nuclear collisions: Suppression versus enhance- ment, J. Phys. G 34, S471 (2007). [9] F.-M. Liu and S.-X. Liu, Quark-gluon plasma formation time and direct photons from heavy ion collisions, Phys. Rev. C 89, 034906 (2014). [10] A. Andronic et al., Heavy-flavour and quarkonium pro- duction in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J. C 76, 107 (2016). [11] D. Molnar and S. A. Voloshin, Elliptic Flow at Large Transverse Momenta from Quark Coalescence, Phys. Rev. Lett. 91, 092301 (2003). [12] V. Greco, C. M. Ko, and P. Lévai, Parton Coalescence and Antiproton/Pion Anomaly at RHIC, Phys. Rev. Lett. 90, 202302 (2003). [13] M. Gyulassy, I. Vitev, and X. N. Wang, High pT Azimuthal Asymmetry in Noncentral Aþ A at RHIC, Phys. Rev. Lett. 86, 2537 (2001). [14] E. V. Shuryak, Azimuthal asymmetry at large pt seem to be too large for a “jet quenching”, Phys. Rev. C 66, 027902 (2002). [15] L. Adamczyk et al. (STAR Collaboration), Observation of D0 Meson Nuclear Modifications in Auþ Au Collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 200 GeV, Phys. Rev. Lett. 113, 142301 (2014). [16] ALICE Collaboration, Transverse momentum dependence of D-meson production in Pb-Pb collisions atffiffiffiffiffiffiffiffi sNN p ¼ 2.76 TeV, J. High Energy Phys. 03 (2016) 081. [17] CMS Collaboration, Nuclear modification factor of D0 mesons in PbPb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV, arXiv: 1708.04962. [18] A. Adare et al. (PHENIX Collaboration), Energy Loss and Flow of Heavy Quarks in Auþ Au Collisions atffiffiffiffiffiffiffiffi sNN p ¼ 200 GeV, Phys. Rev. Lett. 98, 172301 (2007). [19] A. Adare et al. (PHENIX Collaboration), Heavy quark production in pþ p and energy loss and flow of heavy quarks in Auþ Au collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 200 GeV, Phys. Rev. C 84, 044905 (2011). [20] L. Adamczyk et al. (STAR Collaboration), Elliptic flow of electrons from heavy-flavor hadron decays in Auþ Au collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 200, 62.4, and 39 GeV, Phys. Rev. C 95, 034907 (2017). [21] ALICE Collaboration, Elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity in PbPb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 2.76 TeV, J. High Energy Phys. 09 (2016) 028. [22] ALICE Collaboration, Elliptic flow of muons from heavy- flavour hadron decays at forward rapidity in PbPb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 2.76 TeV, Phys. Lett. B 753, 41 (2016). [23] L. Adamczyk et al. (STAR Collaboration), Measurement of D0 Azimuthal Anisotropy at Midrapidity in Auþ Au Collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 200 GeV, Phys. Rev. Lett. 118, 212301 (2017). [24] ALICE Collaboration, Azimuthal anisotropy of D meson production in Pb-Pb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 2.76 TeV, Phys. Rev. C 90, 034904 (2014). [25] ALICE Collaboration, D-meson Azimuthal Anisotropy in Mid-Central Pb-Pb Collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV, Phys. Rev. Lett. 120, 102301 (2018). [26] M. Nahrgang, J. Aichelin, S. Bass, P. B. Gossiaux, and K. Werner, Elliptic and triangular flow of heavy flavor in heavy-ion collisions, Phys. Rev. C 91, 014904 (2015). [27] C. Adler et al. (STAR Collaboration), Elliptic flow from two and four particle correlations in Auþ Au collisions atffiffiffiffiffiffiffiffi sNN p ¼ 130 GeV, Phys. Rev. C 66, 034904 (2002). [28] M. Luzum and J.-Y. Ollitrault, Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions, Phys. Rev. C 87, 044907 (2013). [29] CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, J. Instrum. 9, P10009 (2014). [30] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008). [31] C. Patrignani et al. (Particle Data Group), Review of particle physics, Chin. Phys. C 40, 100001 (2016). [32] G. E. Forden and D. H. Saxon, Improving vertex position determination by using a kinematic fit, Nucl. Instrum. Methods Phys. Res., Sect. A 248, 439 (1986). [33] C. Alt et al. (NA49), Directed and elliptic flow of charged pions and protons in Pbþ Pb collisions at 40-A-GeV and 158-A-GeV, Phys. Rev. C 68, 034903 (2003). [34] T. Sjöstrand, S. Mrenna, and P. Z. Skands, A brief intro- duction to PYTHIA 8.1, Comput. Phys. Commun. 178, 852 (2008). [35] CMS Collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76, 155 (2016). [36] I. P. Lokhtin and A. M. Snigirev, A model of jet quenching in ultrarelativistic heavy ion collisions and high-pT hadron spectra at RHIC, Eur. Phys. J. C 45, 211 (2006). [37] CMS Collaboration, Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV=c in PbPb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 5.02 TeV, Phys. Lett. B 776, 195 (2018). [38] CMS Collaboration, Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions atffiffiffiffiffiffiffiffi sNN p ¼ 2.76 TeV, Phys. Rev. C 87, 014902 (2013). PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-6 https://doi.org/10.1016/j.nuclphysa.2005.03.085 https://doi.org/10.1016/j.nuclphysa.2005.03.085 https://doi.org/10.1016/j.nuclphysa.2005.03.086 https://doi.org/10.1016/j.nuclphysa.2005.02.130 https://doi.org/10.1016/j.nuclphysa.2005.02.130 https://doi.org/10.1016/j.nuclphysa.2005.03.084 https://doi.org/10.1016/j.nuclphysa.2005.03.084 https://doi.org/10.1146/annurev-nucl-102711-094910 https://doi.org/10.1146/annurev-nucl-102711-094910 https://doi.org/10.1140/epjp/i2016-16052-4 https://doi.org/10.1103/PhysRevC.58.1671 https://doi.org/10.1088/0954-3899/34/8/S36 https://doi.org/10.1103/PhysRevC.89.034906 https://doi.org/10.1103/PhysRevC.89.034906 https://doi.org/10.1140/epjc/s10052-015-3819-5 https://doi.org/10.1103/PhysRevLett.91.092301 https://doi.org/10.1103/PhysRevLett.91.092301 https://doi.org/10.1103/PhysRevLett.90.202302 https://doi.org/10.1103/PhysRevLett.90.202302 https://doi.org/10.1103/PhysRevLett.86.2537 https://doi.org/10.1103/PhysRevLett.86.2537 https://doi.org/10.1103/PhysRevC.66.027902 https://doi.org/10.1103/PhysRevC.66.027902 https://doi.org/10.1103/PhysRevLett.113.142301 https://doi.org/10.1103/PhysRevLett.113.142301 https://doi.org/10.1007/JHEP03(2016)081 http://arXiv.org/abs/1708.04962 http://arXiv.org/abs/1708.04962 https://doi.org/10.1103/PhysRevLett.98.172301 https://doi.org/10.1103/PhysRevC.84.044905 https://doi.org/10.1103/PhysRevC.84.044905 https://doi.org/10.1103/PhysRevC.95.034907 https://doi.org/10.1103/PhysRevC.95.034907 https://doi.org/10.1007/JHEP09(2016)028 https://doi.org/10.1007/JHEP09(2016)028 https://doi.org/10.1016/j.physletb.2015.11.059 https://doi.org/10.1103/PhysRevLett.118.212301 https://doi.org/10.1103/PhysRevLett.118.212301 https://doi.org/10.1103/PhysRevC.90.034904 https://doi.org/10.1103/PhysRevC.90.034904 https://doi.org/10.1103/PhysRevLett.120.102301 https://doi.org/10.1103/PhysRevLett.120.102301 https://doi.org/10.1103/PhysRevC.91.014904 https://doi.org/10.1103/PhysRevC.91.014904 https://doi.org/10.1103/PhysRevC.66.034904 https://doi.org/10.1103/PhysRevC.87.044907 https://doi.org/10.1088/1748-0221/9/10/P10009 https://doi.org/10.1088/1748-0221/3/08/S08004 https://doi.org/10.1088/1674-1137/40/10/100001 https://doi.org/10.1016/0168-9002(86)91031-4 https://doi.org/10.1016/0168-9002(86)91031-4 https://doi.org/10.1103/PhysRevC.68.034903 https://doi.org/10.1016/j.cpc.2008.01.036 https://doi.org/10.1016/j.cpc.2008.01.036 https://doi.org/10.1140/epjc/s10052-016-3988-x https://doi.org/10.1140/epjc/s2005-02426-3 https://doi.org/10.1016/j.physletb.2017.11.041 https://doi.org/10.1016/j.physletb.2017.11.041 https://doi.org/10.1103/PhysRevC.87.014902 [39] CMS Collaboration, Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 2.76 TeV, Phys. Rev. C 89, 044906 (2014). [40] S. Cao, T. Luo, G.-Y. Qin, and X.-N. Wang, Linearized Boltzmann transport model for jet propagation in the quark- gluon plasma: Heavy quark evolution, Phys. Rev. C 94, 014909 (2016). [41] T. Song, H. Berrehrah, D. Cabrera, W. Cassing, and E. Bratkovskaya, Charm production in Pbþ Pb collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 93, 034906 (2016). [42] M. He, R. J. Fries, and R. Rapp, Heavy flavor at the large hadron collider in a strong coupling approach, Phys. Lett. B 735, 445 (2014). [43] J. Xu, J. Liao, and M. Gyulassy, Bridging soft-hard transport properties of quark-gluon plasmas with CUJET3.0, J. High Energy Phys. 02 (2016) 169. [44] B. Alver and G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions, Phys. Rev. C 81, 054905 (2010); Erratum, Phys. Rev. C 82, 039903 (2010). [45] S. Y. F. Liu and R. Rapp, An in-medium heavy-quark poten- tial from theQQ̄ free energy, Nucl. Phys. A941, 179 (2015). A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 F. Ambrogi,2 E. Asilar,2 T. Bergauer,2 J. Brandstetter,2 E. Brondolin,2 M. Dragicevic,2 J. Erö,2 M. Flechl,2 M. Friedl,2 R. Frühwirth,2,b V. M. Ghete,2 J. Grossmann,2 J. Hrubec,2 M. Jeitler,2,b A. König,2 N. Krammer,2 I. Krätschmer,2 D. Liko,2 T. Madlener,2 I. Mikulec,2 E. Pree,2 D. Rabady,2 N. Rad,2 H. Rohringer,2 J. Schieck,2,b R. Schöfbeck,2 M. Spanring,2 D. Spitzbart,2 W. Waltenberger,2 J. Wittmann,2 C.-E. Wulz,2,b M. Zarucki,2 V. Chekhovsky,3 V. Mossolov,3 J. Suarez Gonzalez,3 E. A. De Wolf,4 D. Di Croce,4 X. Janssen,4 J. Lauwers,4 H. Van Haevermaet,4 P. Van Mechelen,4 N. Van Remortel,4 S. Abu Zeid,5 F. Blekman,5 J. D’Hondt,5 I. De Bruyn,5 J. De Clercq,5 K. Deroover,5 G. Flouris,5 D. Lontkovskyi,5 S. Lowette,5 S. Moortgat,5 L. Moreels,5 Q. Python,5 K. Skovpen,5 S. Tavernier,5 W. Van Doninck,5 P. Van Mulders,5 I. Van Parijs,5 H. Brun,6 B. Clerbaux,6 G. De Lentdecker,6 H. Delannoy,6 G. Fasanella,6 L. Favart,6 R. Goldouzian,6 A. Grebenyuk,6 G. Karapostoli,6 T. Lenzi,6 J. Luetic,6 T. Maerschalk,6 A. Marinov,6 A. Randle-conde,6 T. Seva,6 C. Vander Velde,6 P. Vanlaer,6 D. Vannerom,6 R. Yonamine,6 F. Zenoni,6 F. Zhang,6,c A. Cimmino,7 T. Cornelis,7 D. Dobur,7 A. Fagot,7 M. Gul,7 I. Khvastunov,7 D. Poyraz,7 C. Roskas,7 S. Salva,7 M. Tytgat,7 W. Verbeke,7 N. Zaganidis,7 H. Bakhshiansohi,8 O. Bondu,8 S. Brochet,8 G. Bruno,8 A. Caudron,8 S. De Visscher,8 C. Delaere,8 M. Delcourt,8 B. Francois,8 A. Giammanco,8 A. Jafari,8 M. Komm,8 G. Krintiras,8 V. Lemaitre,8 A. Magitteri,8 A. Mertens,8 M. Musich,8 K. Piotrzkowski,8 L. Quertenmont,8 M. Vidal Marono,8 S. Wertz,8 N. Beliy,9 W. L. Aldá Júnior,10 F. L. Alves,10 G. A. Alves,10 L. Brito,10 M. Correa Martins Junior,10 C. Hensel,10 A. Moraes,10 M. E. Pol,10 P. Rebello Teles,10 E. Belchior Batista Das Chagas,11 W. Carvalho,11 J. Chinellato,11,d A. Custódio,11 E. M. Da Costa,11 G. G. Da Silveira,11,e D. De Jesus Damiao,11 S. Fonseca De Souza,11 L. M. Huertas Guativa,11 H. Malbouisson,11 M. Melo De Almeida,11 C. Mora Herrera,11 L. Mundim,11 H. Nogima,11 A. Santoro,11 A. Sznajder,11 E. J. Tonelli Manganote,11,d F. Torres Da Silva De Araujo,11 A. Vilela Pereira,11 S. Ahuja,12a C. A. Bernardes,12a T. R. Fernandez Perez Tomei,12a E. M. Gregores,12b P. G. Mercadante,12b S. F. Novaes,12a Sandra S. Padula,12a D. Romero Abad,12b J. C. Ruiz Vargas,12a A. Aleksandrov,13 R. Hadjiiska,13 P. Iaydjiev,13 M. Misheva,13 M. Rodozov,13 M. Shopova,13 S. Stoykova,13 G. Sultanov,13 A. Dimitrov,14 I. Glushkov,14 L. Litov,14 B. Pavlov,14 P. Petkov,14 W. Fang,15,f X. Gao,15,f M. Ahmad,16 J. G. Bian,16 G. M. Chen,16 H. S. Chen,16 M. Chen,16 Y. Chen,16 C. H. Jiang,16 D. Leggat,16 H. Liao,16 Z. Liu,16 F. Romeo,16 S. M. Shaheen,16 A. Spiezia,16 J. Tao,16 C. Wang,16 Z. Wang,16 E. Yazgan,16 H. Zhang,16 J. Zhao,16 Y. Ban,17 G. Chen,17 Q. Li,17 S. Liu,17 Y. Mao,17 S. J. Qian,17 D. Wang,17 Z. Xu,17 C. Avila,18 A. Cabrera,18 L. F. Chaparro Sierra,18 C. Florez,18 C. F. González Hernández,18 J. D. Ruiz Alvarez,18 B. Courbon,19 N. Godinovic,19 D. Lelas,19 I. Puljak,19 P. M. Ribeiro Cipriano,19 T. Sculac,19 Z. Antunovic,20 M. Kovac,20 V. Brigljevic,21 D. Ferencek,21 K. Kadija,21 B. Mesic,21 A. Starodumov,21,g T. Susa,21 M.W. Ather,22 A. Attikis,22 G. Mavromanolakis,22 J. Mousa,22 C. Nicolaou,22 F. Ptochos,22 P. A. Razis,22 H. Rykaczewski,22 M. Finger,23,h M. Finger Jr.,23,h E. Carrera Jarrin,24 E. El-khateeb,25,i S. Elgammal,25,j A. Ellithi Kamel,25,k R. K. Dewanjee,26 M. Kadastik,26 L. Perrini,26 M. Raidal,26 A. Tiko,26 C. Veelken,26 P. Eerola,27 J. Pekkanen,27 M. Voutilainen,27 J. Härkönen,28 T. Järvinen,28 V. Karimäki,28 R. Kinnunen,28 T. Lampén,28 K. Lassila-Perini,28 S. Lehti,28 T. Lindén,28 P. Luukka,28 E. Tuominen,28 J. Tuominiemi,28 E. Tuovinen,28 J. Talvitie,29 T. Tuuva,29 M. Besancon,30 F. Couderc,30 M. Dejardin,30 D. Denegri,30 J. L. Faure,30 F. Ferri,30 S. Ganjour,30 S. Ghosh,30 A. Givernaud,30 P. Gras,30 G. Hamel de Monchenault,30 P. Jarry,30 I. Kucher,30 E. Locci,30 M. Machet,30 J. Malcles,30 G. Negro,30 J. Rander,30 A. Rosowsky,30 M. Ö. Sahin,30 M. Titov,30 A. Abdulsalam,31 I. Antropov,31 S. Baffioni,31 F. Beaudette,31 P. Busson,31 PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-7 https://doi.org/10.1103/PhysRevC.89.044906 https://doi.org/10.1103/PhysRevC.94.014909 https://doi.org/10.1103/PhysRevC.94.014909 https://doi.org/10.1103/PhysRevC.93.034906 https://doi.org/10.1016/j.physletb.2014.05.050 https://doi.org/10.1016/j.physletb.2014.05.050 https://doi.org/10.1007/JHEP02(2016)169 https://doi.org/10.1007/JHEP02(2016)169 https://doi.org/10.1103/PhysRevC.81.054905 https://doi.org/10.1103/PhysRevC.81.054905 https://doi.org/10.1103/PhysRevC.82.039903 https://doi.org/10.1016/j.nuclphysa.2015.07.001 L. Cadamuro,31 C. Charlot,31 R. Granier de Cassagnac,31 M. Jo,31 S. Lisniak,31 A. Lobanov,31 J. Martin Blanco,31 M. Nguyen,31 C. Ochando,31 G. Ortona,31 P. Paganini,31 P. Pigard,31 S. Regnard,31 R. Salerno,31 J. B. Sauvan,31 Y. Sirois,31 A. G. Stahl Leiton,31 T. Strebler,31 Y. Yilmaz,31 A. Zabi,31 A. Zghiche,31 J.-L. Agram,32,l J. Andrea,32 D. Bloch,32 J.-M. Brom,32 M. Buttignol,32 E. C. Chabert,32 N. Chanon,32 C. Collard,32 E. Conte,32,l X. Coubez,32 J.-C. Fontaine,32,l D. Gelé,32 U. Goerlach,32 M. Jansová,32 A.-C. Le Bihan,32 N. Tonon,32 P. Van Hove,32 S. Gadrat,33 S. Beauceron,34 C. Bernet,34 G. Boudoul,34 R. Chierici,34 D. Contardo,34 P. Depasse,34 H. El Mamouni,34 J. Fay,34 L. Finco,34 S. Gascon,34 M. Gouzevitch,34 G. Grenier,34 B. Ille,34 F. Lagarde,34 I. B. Laktineh,34 M. Lethuillier,34 L. Mirabito,34 A. L. Pequegnot,34 S. Perries,34 A. Popov,34,m V. Sordini,34 M. Vander Donckt,34 S. Viret,34 A. Khvedelidze,35,h I. Bagaturia,36,n C. Autermann,37 S. Beranek,37 L. Feld,37 M. K. Kiesel,37 K. Klein,37 M. Lipinski,37 M. Preuten,37 C. Schomakers,37 J. Schulz,37 T. Verlage,37 A. Albert,38 E. Dietz-Laursonn,38 D. Duchardt,38 M. Endres,38 M. Erdmann,38 S. Erdweg,38 T. Esch,38 R. Fischer,38 A. Güth,38 M. Hamer,38 T. Hebbeker,38 C. Heidemann,38 K. Hoepfner,38 S. Knutzen,38 M. Merschmeyer,38 A. Meyer,38 P. Millet,38 S. Mukherjee,38 M. Olschewski,38 K. Padeken,38 T. Pook,38 M. Radziej,38 H. Reithler,38 M. Rieger,38 F. Scheuch,38 D. Teyssier,38 S. Thüer,38 G. Flügge,39 B. Kargoll,39 T. Kress,39 A. Künsken,39 J. Lingemann,39 T. Müller,39 A. Nehrkorn,39 A. Nowack,39 C. Pistone,39 O. Pooth,39 A. Stahl,39,o M. Aldaya Martin,40 T. Arndt,40 C. Asawatangtrakuldee,40 K. Beernaert,40 O. Behnke,40 U. Behrens,40 A. Bermúdez Martínez,40 A. A. Bin Anuar,40 K. Borras,40,p V. Botta,40 A. Campbell,40 P. Connor,40 C. Contreras-Campana,40 F. Costanza,40 C. Diez Pardos,40 G. Eckerlin,40 D. Eckstein,40 T. Eichhorn,40 E. Eren,40 E. Gallo,40,q J. Garay Garcia,40 A. Geiser,40 A. Gizhko,40 J. M. Grados Luyando,40 A. Grohsjean,40 P. Gunnellini,40 A. Harb,40 J. Hauk,40 M. Hempel,40,r H. Jung,40 A. Kalogeropoulos,40 M. Kasemann,40 J. Keaveney,40 C. Kleinwort,40 I. Korol,40 D. Krücker,40 W. Lange,40 A. Lelek,40 T. Lenz,40 J. Leonard,40 K. Lipka,40 W. Lohmann,40,r R. Mankel,40 I.-A. Melzer-Pellmann,40 A. B. Meyer,40 G. Mittag,40 J. Mnich,40 A. Mussgiller,40 E. Ntomari,40 D. Pitzl,40 A. Raspereza,40 B. Roland,40 M. Savitskyi,40 P. Saxena,40 R. Shevchenko,40 S. Spannagel,40 N. Stefaniuk,40 G. P. Van Onsem,40 R. Walsh,40 Y. Wen,40 K. Wichmann,40 C. Wissing,40 O. Zenaiev,40 S. Bein,41 V. Blobel,41 M. Centis Vignali,41 T. Dreyer,41 E. Garutti,41 D. Gonzalez,41 J. Haller,41 A. Hinzmann,41 M. Hoffmann,41 A. Karavdina,41 R. Klanner,41 R. Kogler,41 N. Kovalchuk,41 S. Kurz,41 T. Lapsien,41 I. Marchesini,41 D. Marconi,41 M. Meyer,41 M. Niedziela,41 D. Nowatschin,41 F. Pantaleo,41,o T. Peiffer,41 A. Perieanu,41 C. Scharf,41 P. Schleper,41 A. Schmidt,41 S. Schumann,41 J. Schwandt,41 J. Sonneveld,41 H. Stadie,41 G. Steinbrück,41 F. M. Stober,41 M. Stöver,41 H. Tholen,41 D. Troendle,41 E. Usai,41 L. Vanelderen,41 A. Vanhoefer,41 B. Vormwald,41 M. Akbiyik,42 C. Barth,42 S. Baur,42 E. Butz,42 R. Caspart,42 T. Chwalek,42 F. Colombo,42 W. De Boer,42 A. Dierlamm,42 B. Freund,42 R. Friese,42 M. Giffels,42 A. Gilbert,42 D. Haitz,42 F. Hartmann,42,o S. M. Heindl,42 U. Husemann,42 F. Kassel,42,o S. Kudella,42 H. Mildner,42 M. U. Mozer,42 Th. Müller,42 M. Plagge,42 G. Quast,42 K. Rabbertz,42 M. Schröder,42 I. Shvetsov,42 G. Sieber,42 H. J. Simonis,42 R. Ulrich,42 S. Wayand,42 M. Weber,42 T. Weiler,42 S. Williamson,42 C. Wöhrmann,42 R. Wolf,42 G. Anagnostou,43 G. Daskalakis,43 T. Geralis,43 V. A. Giakoumopoulou,43 A. Kyriakis,43 D. Loukas,43 I. Topsis-Giotis,43 G. Karathanasis,44 S. Kesisoglou,44 A. Panagiotou,44 N. Saoulidou,44 I. Evangelou,45 C. Foudas,45 P. Kokkas,45 S. Mallios,45 N. Manthos,45 I. Papadopoulos,45 E. Paradas,45 J. Strologas,45 F. A. Triantis,45 M. Csanad,46 N. Filipovic,46 G. Pasztor,46 G. Bencze,47 C. Hajdu,47 D. Horvath,47,s Á. Hunyadi,47 F. Sikler,47 V. Veszpremi,47 G. Vesztergombi,47,t A. J. Zsigmond,47 N. Beni,48 S. Czellar,48 J. Karancsi,48,u A. Makovec,48 J. Molnar,48 Z. Szillasi,48 M. Bartók,49,t P. Raics,49 Z. L. Trocsanyi,49 B. Ujvari,49 S. Choudhury,50 J. R. Komaragiri,50 S. Bahinipati,51,v S. Bhowmik,51 P. Mal,51 K. Mandal,51 A. Nayak,51,w D. K. Sahoo,51,v N. Sahoo,51 S. K. Swain,51 S. Bansal,52 S. B. Beri,52 V. Bhatnagar,52 R. Chawla,52 N. Dhingra,52 A. K. Kalsi,52 A. Kaur,52 M. Kaur,52 R. Kumar,52 P. Kumari,52 A. Mehta,52 J. B. Singh,52 G. Walia,52 Ashok Kumar,53 Aashaq Shah,53 A. Bhardwaj,53 S. Chauhan,53 B. C. Choudhary,53 R. B. Garg,53 S. Keshri,53 A. Kumar,53 S. Malhotra,53 M. Naimuddin,53 K. Ranjan,53 R. Sharma,53 V. Sharma,53 R. Bhardwaj,54 R. Bhattacharya,54 S. Bhattacharya,54 U. Bhawandeep,54 S. Dey,54 S. Dutt,54 S. Dutta,54 S. Ghosh,54 N. Majumdar,54 A. Modak,54 K. Mondal,54 S. Mukhopadhyay,54 S. Nandan,54 A. Purohit,54 A. Roy,54 D. Roy,54 S. Roy Chowdhury,54 S. Sarkar,54 M. Sharan,54 S. Thakur,54 P. K. Behera,55 R. Chudasama,56 D. Dutta,56 V. Jha,56 V. Kumar,56 A. K. Mohanty,56,o P. K. Netrakanti,56 L. M. Pant,56 P. Shukla,56 A. Topkar,56 T. Aziz,57 S. Dugad,57 B. Mahakud,57 S. Mitra,57 G. B. Mohanty,57 N. Sur,57 B. Sutar,57 S. Banerjee,58 S. Bhattacharya,58 S. Chatterjee,58 P. Das,58 M. Guchait,58 Sa. Jain,58 S. Kumar,58 M. Maity,58,x G. Majumder,58 K. Mazumdar,58 T. Sarkar,58,x N. Wickramage,58,y S. Chauhan,59 S. Dube,59 V. Hegde,59 A. Kapoor,59 K. Kothekar,59 S. Pandey,59 A. Rane,59 S. Sharma,59 S. Chenarani,60,z E. Eskandari Tadavani,60 S. M. Etesami,60,z M. Khakzad,60 M. Mohammadi Najafabadi,60 M. Naseri,60 S. Paktinat Mehdiabadi,60,aa PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-8 F. Rezaei Hosseinabadi,60 B. Safarzadeh,60,bb M. Zeinali,60 M. Felcini,61 M. Grunewald,61 M. Abbrescia,62a,62b C. Calabria,62a,62b C. Caputo,62a,62b A. Colaleo,62a D. Creanza,62a,62c L. Cristella,62a,62b N. De Filippis,62a,62c M. De Palma,62a,62b F. Errico,62a,62b L. Fiore,62a G. Iaselli,62a,62c S. Lezki,62a,62b G. Maggi,62a,62c M. Maggi,62a G. Miniello,62a,62b S. My,62a,62b S. Nuzzo,62a,62b A. Pompili,62a,62b G. Pugliese,62a,62c R. Radogna,62a,62b A. Ranieri,62a G. Selvaggi,62a,62b A. Sharma,62a L. Silvestris,62a,o R. Venditti,62a P. Verwilligen,62a G. Abbiendi,63a C. Battilana,63a,63b D. Bonacorsi,63a,63b S. Braibant-Giacomelli,63a,63b R. Campanini,63a,63b P. Capiluppi,63a,63b A. Castro,63a,63b F. R. Cavallo,63a S. S. Chhibra,63a G. Codispoti,63a,63b M. Cuffiani,63a,63b G. M. Dallavalle,63a F. Fabbri,63a A. Fanfani,63a,63b D. Fasanella,63a,63b P. Giacomelli,63a C. Grandi,63a L. Guiducci,63a,63b S. Marcellini,63a G. Masetti,63a A. Montanari,63a F. L. Navarria,63a,63b A. Perrotta,63a A. M. Rossi,63a,63b T. Rovelli,63a,63b G. P. Siroli,63a,63b N. Tosi,63a S. Albergo,64a,64b S. Costa,64a,64b A. Di Mattia,64a F. Giordano,64a,64b R. Potenza,64a,64b A. Tricomi,64a,64b C. Tuve,64a,64b G. Barbagli,65a K. Chatterjee,65a,65b V. Ciulli,65a,65b C. Civinini,65a R. D’Alessandro,65a,65b E. Focardi,65a,65b P. Lenzi,65a,65b M. Meschini,65a S. Paoletti,65a L. Russo,65a,cc G. Sguazzoni,65a D. Strom,65a L. Viliani,65a,65b,o L. Benussi,66 S. Bianco,66 F. Fabbri,66 D. Piccolo,66 F. Primavera,66,o V. Calvelli,67a,67b F. Ferro,67a E. Robutti,67a S. Tosi,67a,67b L. Brianza,68a,68b F. Brivio,68a,68b V. Ciriolo,68a,68b M. E. Dinardo,68a,68b S. Fiorendi,68a,68b S. Gennai,68a A. Ghezzi,68a,68b P. Govoni,68a,68b M. Malberti,68a,68b S. Malvezzi,68a R. A. Manzoni,68a,68b D. Menasce,68a L. Moroni,68a M. Paganoni,68a,68b K. Pauwels,68a,68b D. Pedrini,68a S. Pigazzini,68a,68b,dd S. Ragazzi,68a,68b T. Tabarelli de Fatis,68a,68b S. Buontempo,69a N. Cavallo,69a,69c S. Di Guida,69a,69d,o F. Fabozzi,69a,69c F. Fienga,69a,69b A. O. M. Iorio,69a,69b W. A. Khan,69a L. Lista,69a S. Meola,69a,69d,o P. Paolucci,69a,o C. Sciacca,69a,69b F. Thyssen,69a P. Azzi,70a,o N. Bacchetta,70a L. Benato,70a,70b D. Bisello,70a,70b A. Boletti,70a,70b R. Carlin,70a,70b A. Carvalho Antunes De Oliveira,70a,70b P. Checchia,70a P. De Castro Manzano,70a T. Dorigo,70a U. Dosselli,70a F. Gasparini,70a,70b U. Gasparini,70a,70b A. Gozzelino,70a S. Lacaprara,70a M. Margoni,70a,70b A. T. Meneguzzo,70a,70b N. Pozzobon,70a,70b P. Ronchese,70a,70b R. Rossin,70a,70b F. Simonetto,70a,70b E. Torassa,70a M. Zanetti,70a,70b P. Zotto,70a,70b G. Zumerle,70a,70b A. Braghieri,71a F. Fallavollita,71a,71b A. Magnani,71a,71b P. Montagna,71a,71b S. P. Ratti,71a,71b V. Re,71a M. Ressegotti,71a C. Riccardi,71a,71b P. Salvini,71a I. Vai,71a,71b P. Vitulo,71a,71b L. Alunni Solestizi,72a,72b M. Biasini,72a,72b G. M. Bilei,72a C. Cecchi,72a,72b D. Ciangottini,72a,72b L. Fanò,72a,72b P. Lariccia,72a,72b R. Leonardi,72a,72b E. Manoni,72a G. Mantovani,72a,72b V. Mariani,72a,72b M. Menichelli,72a A. Rossi,72a,72b A. Santocchia,72a,72b D. Spiga,72a K. Androsov,73a P. Azzurri,73a,o G. Bagliesi,73a J. Bernardini,73a T. Boccali,73a L. Borrello,73a R. Castaldi,73a M. A. Ciocci,73a,73b R. Dell’Orso,73a G. Fedi,73a L. Giannini,73a,73c A. Giassi,73a M. T. Grippo,73a,cc F. Ligabue,73a,73c T. Lomtadze,73a E. Manca,73a,73c G. Mandorli,73a,73c L. Martini,73a,73b A. Messineo,73a,73b F. Palla,73a A. Rizzi,73a,73b A. Savoy-Navarro,73a,ee P. Spagnolo,73a R. Tenchini,73a G. Tonelli,73a,73b A. Venturi,73a P. G. Verdini,73a L. Barone,74a,74b F. Cavallari,74a M. Cipriani,74a,74b N. Daci,74a D. Del Re,74a,74b,o M. Diemoz,74a S. Gelli,74a,74b E. Longo,74a,74b F. Margaroli,74a,74b B. Marzocchi,74a,74b P. Meridiani,74a G. Organtini,74a,74b R. Paramatti,74a,74b F. Preiato,74a,74b S. Rahatlou,74a,74b C. Rovelli,74a F. Santanastasio,74a,74b N. Amapane,75a,75b R. Arcidiacono,75a,75c S. Argiro,75a,75b M. Arneodo,75a,75c N. Bartosik,75a R. Bellan,75a,75b C. Biino,75a N. Cartiglia,75a F. Cenna,75a,75b M. Costa,75a,75b R. Covarelli,75a,75b A. Degano,75a,75b N. Demaria,75a B. Kiani,75a,75b C. Mariotti,75a S. Maselli,75a E. Migliore,75a,75b V. Monaco,75a,75b E. Monteil,75a,75b M. Monteno,75a M. M. Obertino,75a,75b L. Pacher,75a,75b N. Pastrone,75a M. Pelliccioni,75a G. L. Pinna Angioni,75a,75b F. Ravera,75a,75b A. Romero,75a,75b M. Ruspa,75a,75c R. Sacchi,75a,75b K. Shchelina,75a,75b V. Sola,75a A. Solano,75a,75b A. Staiano,75a P. Traczyk,75a,75b S. Belforte,76a M. Casarsa,76a F. Cossutti,76a G. Della Ricca,76a,76b A. Zanetti,76a D. H. Kim,77 G. N. Kim,77 M. S. Kim,77 J. Lee,77 S. Lee,77 S.W. Lee,77 C. S. Moon,77 Y. D. Oh,77 S. Sekmen,77 D. C. Son,77 Y. C. Yang,77 A. Lee,78 H. Kim,79 D. H. Moon,79 G. Oh,79 J. A. Brochero Cifuentes,80 J. Goh,80 T. J. Kim,80 S. Cho,81 S. Choi,81 Y. Go,81 D. Gyun,81 S. Ha,81 B. Hong,81 Y. Jo,81 Y. Kim,81 K. Lee,81 K. S. Lee,81 S. Lee,81 J. Lim,81 S. K. Park,81 Y. Roh,81 J. Almond,82 J. Kim,82 J. S. Kim,82 H. Lee,82 K. Lee,82 K. Nam,82 S. B. Oh,82 B. C. Radburn-Smith,82 S. h. Seo,82 U. K. Yang,82 H. D. Yoo,82 G. B. Yu,82 M. Choi,83 H. Kim,83 J. H. Kim,83 J. S. H. Lee,83 I. C. Park,83 G. Ryu,83 Y. Choi,84 C. Hwang,84 J. Lee,84 I. Yu,84 V. Dudenas,85 A. Juodagalvis,85 J. Vaitkus,85 I. Ahmed,86 Z. A. Ibrahim,86 M. A. B. Md Ali,86,ff F. Mohamad Idris,86,gg W. A. T. Wan Abdullah,86 M. N. Yusli,86 Z. Zolkapli,86 R Reyes-Almanza,87 G. Ramirez-Sanchez,87 M. C. Duran-Osuna,87 H. Castilla-Valdez,87 E. De La Cruz-Burelo,87 I. Heredia-De La Cruz,87,hh R. I. Rabadan-Trejo,87 R. Lopez-Fernandez,87 J. Mejia Guisao,87 A. Sanchez-Hernandez,87 S. Carrillo Moreno,88 C. Oropeza Barrera,88 F. Vazquez Valencia,88 I. Pedraza,89 H. A. Salazar Ibarguen,89 C. Uribe Estrada,89 A. Morelos Pineda,90 D. Krofcheck,91 P. H. Butler,92 A. Ahmad,93 M. Ahmad,93 Q. Hassan,93 H. R. Hoorani,93 A. Saddique,93 M. A. Shah,93 M. Shoaib,93 M. Waqas,93 H. Bialkowska,94 M. Bluj,94 B. Boimska,94 T. Frueboes,94 M. Górski,94 M. Kazana,94 K. Nawrocki,94 PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-9 K. Romanowska-Rybinska,94 M. Szleper,94 P. Zalewski,94 K. Bunkowski,95 A. Byszuk,95,ii K. Doroba,95 A. Kalinowski,95 M. Konecki,95 J. Krolikowski,95 M. Misiura,95 M. Olszewski,95 A. Pyskir,95 M. Walczak,95 P. Bargassa,96 C. Beirão Da Cruz E Silva,96 B. Calpas,96,jj A. Di Francesco,96 P. Faccioli,96 M. Gallinaro,96 J. Hollar,96 N. Leonardo,96 L. Lloret Iglesias,96 M. V. Nemallapudi,96 J. Seixas,96 O. Toldaiev,96 D. Vadruccio,96 J. Varela,96 S. Afanasiev,97 P. Bunin,97 M. Gavrilenko,97 I. Golutvin,97 I. Gorbunov,97 A. Kamenev,97 V. Karjavin,97 A. Lanev,97 A. Malakhov,97 V. Matveev,97,kk,ll V. Palichik,97 V. Perelygin,97 S. Shmatov,97 S. Shulha,97 N. Skatchkov,97 V. Smirnov,97 N. Voytishin,97 A. Zarubin,97 Y. Ivanov,98 V. Kim,98,mm E. Kuznetsova,98,nn P. Levchenko,98 V. Murzin,98 V. Oreshkin,98 I. Smirnov,98 V. Sulimov,98 L. Uvarov,98 S. Vavilov,98 A. Vorobyev,98 Yu. Andreev,99 A. Dermenev,99 S. Gninenko,99 N. Golubev,99 A. Karneyeu,99 M. Kirsanov,99 N. Krasnikov,99 A. Pashenkov,99 D. Tlisov,99 A. Toropin,99 V. Epshteyn,100 V. Gavrilov,100 N. Lychkovskaya,100 V. Popov,100 I. Pozdnyakov,100 G. Safronov,100 A. Spiridonov,100 A. Stepennov,100 M. Toms,100 E. Vlasov,100 A. Zhokin,100 T. Aushev,101 A. Bylinkin,101,ll M. Chadeeva,102,oo P. Parygin,102 D. Philippov,102 S. Polikarpov,102 E. Popova,102 V. Rusinov,102 V. Andreev,103 M. Azarkin,103,ll I. Dremin,103,ll M. Kirakosyan,103,ll A. Terkulov,103 A. Baskakov,104 A. Belyaev,104 E. Boos,104 A. Ershov,104 A. Gribushin,104 A. Kaminskiy,104,pp O. Kodolova,104 V. Korotkikh,104 I. Lokhtin,104 I. Miagkov,104 S. Obraztsov,104 S. Petrushanko,104 V. Savrin,104 A. Snigirev,104 I. Vardanyan,104 V. Blinov,105,qq Y. Skovpen,105,qq D. Shtol,105,qq I. Azhgirey,106 I. Bayshev,106 S. Bitioukov,106 D. Elumakhov,106 V. Kachanov,106 A. Kalinin,106 D. Konstantinov,106 V. Krychkine,106 V. Petrov,106 R. Ryutin,106 A. Sobol,106 S. Troshin,106 N. Tyurin,106 A. Uzunian,106 A. Volkov,106 P. Adzic,107,rr P. Cirkovic,107 D. Devetak,107 M. Dordevic,107 J. Milosevic,107 V. Rekovic,107 J. Alcaraz Maestre,108 M. Barrio Luna,108 M. Cerrada,108 N. Colino,108 B. De La Cruz,108 A. Delgado Peris,108 A. Escalante Del Valle,108 C. Fernandez Bedoya,108 J. P. Fernández Ramos,108 J. Flix,108 M. C. Fouz,108 P. Garcia-Abia,108 O. Gonzalez Lopez,108 S. Goy Lopez,108 J. M. Hernandez,108 M. I. Josa,108 A. Pérez-Calero Yzquierdo,108 J. Puerta Pelayo,108 A. Quintario Olmeda,108 I. Redondo,108 L. Romero,108 M. S. Soares,108 A. Álvarez Fernández,108 J. F. de Trocóniz,109 M. Missiroli,109 D. Moran,109 J. Cuevas,110 C. Erice,110 J. Fernandez Menendez,110 I. Gonzalez Caballero,110 J. R. González Fernández,110 E. Palencia Cortezon,110 S. Sanchez Cruz,110 I. Suárez Andrés,110 P. Vischia,110 J. M. Vizan Garcia,110 I. J. Cabrillo,111 A. Calderon,111 B. Chazin Quero,111 E. Curras,111 J. Duarte Campderros,111 M. Fernandez,111 J. Garcia-Ferrero,111 G. Gomez,111 A. Lopez Virto,111 J. Marco,111 C. Martinez Rivero,111 P. Martinez Ruiz del Arbol,111 F. Matorras,111 J. Piedra Gomez,111 T. Rodrigo,111 A. Ruiz-Jimeno,111 L. Scodellaro,111 N. Trevisani,111 I. Vila,111 R. Vilar Cortabitarte,111 D. Abbaneo,112 E. Auffray,112 P. Baillon,112 A. H. Ball,112 D. Barney,112 M. Bianco,112 P. Bloch,112 A. Bocci,112 C. Botta,112 T. Camporesi,112 R. Castello,112 M. Cepeda,112 G. Cerminara,112 E. Chapon,112 Y. Chen,112 D. d’Enterria,112 A. Dabrowski,112 V. Daponte,112 A. David,112 M. De Gruttola,112 A. De Roeck,112 E. Di Marco,112,ss M. Dobson,112 B. Dorney,112 T. du Pree,112 M. Dünser,112 N. Dupont,112 A. Elliott-Peisert,112 P. Everaerts,112 G. Franzoni,112 J. Fulcher,112 W. Funk,112 D. Gigi,112 K. Gill,112 F. Glege,112 D. Gulhan,112 S. Gundacker,112 M. Guthoff,112 P. Harris,112 J. Hegeman,112 V. Innocente,112 P. Janot,112 O. Karacheban,112,r J. Kieseler,112 H. Kirschenmann,112 V. Knünz,112 A. Kornmayer,112,o M. J. Kortelainen,112 M. Krammer,112,b C. Lange,112 P. Lecoq,112 C. Lourenço,112 M. T. Lucchini,112 L. Malgeri,112 M. Mannelli,112 A. Martelli,112 F. Meijers,112 J. A. Merlin,112 S. Mersi,112 E. Meschi,112 P. Milenovic,112,tt F. Moortgat,112 M. Mulders,112 H. Neugebauer,112 S. Orfanelli,112 L. Orsini,112 L. Pape,112 E. Perez,112 M. Peruzzi,112 A. Petrilli,112 G. Petrucciani,112 A. Pfeiffer,112 M. Pierini,112 A. Racz,112 T. Reis,112 G. Rolandi,112,uu M. Rovere,112 H. Sakulin,112 C. Schäfer,112 C. Schwick,112 M. Seidel,112 M. Selvaggi,112 A. Sharma,112 P. Silva,112 P. Sphicas,112,vv A. Stakia,112 J. Steggemann,112 M. Stoye,112 M. Tosi,112 D. Treille,112 A. Triossi,112 A. Tsirou,112 V. Veckalns,112,ww G. I. Veres,112,t M. Verweij,112 N. Wardle,112 W. D. Zeuner,112 W. Bertl,113,a L. Caminada,113,xx K. Deiters,113 W. Erdmann,113 R. Horisberger,113 Q. Ingram,113 H. C. Kaestli,113 D. Kotlinski,113 U. Langenegger,113 T. Rohe,113 S. A. Wiederkehr,113 F. Bachmair,114 L. Bäni,114 P. Berger,114 L. Bianchini,114 B. Casal,114 G. Dissertori,114 M. Dittmar,114 M. Donegà,114 C. Grab,114 C. Heidegger,114 D. Hits,114 J. Hoss,114 G. Kasieczka,114 T. Klijnsma,114 W. Lustermann,114 B. Mangano,114 M. Marionneau,114 M. T. Meinhard,114 D. Meister,114 F. Micheli,114 P. Musella,114 F. Nessi-Tedaldi,114 F. Pandolfi,114 J. Pata,114 F. Pauss,114 G. Perrin,114 L. Perrozzi,114 M. Quittnat,114 M. Reichmann,114 M. Schönenberger,114 L. Shchutska,114 V. R. Tavolaro,114 K. Theofilatos,114 M. L. Vesterbacka Olsson,114 R. Wallny,114 D. H. Zhu,114 T. K. Aarrestad,115 C. Amsler,115,yy M. F. Canelli,115 A. De Cosa,115 R. Del Burgo,115 S. Donato,115 C. Galloni,115 T. Hreus,115 B. Kilminster,115 J. Ngadiuba,115 D. Pinna,115 G. Rauco,115 P. Robmann,115 D. Salerno,115 C. Seitz,115 Y. Takahashi,115 A. Zucchetta,115 V. Candelise,116 T. H. Doan,116 Sh. Jain,116 R. Khurana,116 C. M. Kuo,116 W. Lin,116 A. Pozdnyakov,116 S. S. Yu,116 PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-10 Arun Kumar,117 P. Chang,117 Y. Chao,117 K. F. Chen,117 P. H. Chen,117 F. Fiori,117 W.-S. Hou,117 Y. Hsiung,117 Y. F. Liu,117 R.-S. Lu,117 E. Paganis,117 A. Psallidas,117 A. Steen,117 J. f. Tsai,117 B. Asavapibhop,118 K. Kovitanggoon,118 G. Singh,118 N. Srimanobhas,118 A. Adiguzel,119,zz F. Boran,119 S. Cerci,119,aaa S. Damarseckin,119 Z. S. Demiroglu,119 C. Dozen,119 I. Dumanoglu,119 S. Girgis,119 G. Gokbulut,119 Y. Guler,119 I. Hos,119,bbb E. E. Kangal,119,ccc O. Kara,119 A. Kayis Topaksu,119 U. Kiminsu,119 M. Oglakci,119 G. Onengut,119,ddd K. Ozdemir,119,eee D. Sunar Cerci,119,aaa B. Tali,119,aaa S. Turkcapar,119 I. S. Zorbakir,119 C. Zorbilmez,119 B. Bilin,120 G. Karapinar,120,fff K. Ocalan,120,ggg M. Yalvac,120 M. Zeyrek,120 E. Gülmez,121 M. Kaya,121,hhh O. Kaya,121,iii S. Tekten,121 E. A. Yetkin,121,jjj M. N. Agaras,122 S. Atay,122 A. Cakir,122 K. Cankocak,122 B. Grynyov,123 L. Levchuk,124 P. Sorokin,124 R. Aggleton,125 F. Ball,125 L. Beck,125 J. J. Brooke,125 D. Burns,125 E. Clement,125 D. Cussans,125 O. Davignon,125 H. Flacher,125 J. Goldstein,125 M. Grimes,125 G. P. Heath,125 H. F. Heath,125 J. Jacob,125 L. Kreczko,125 C. Lucas,125 D. M. Newbold,125,kkk S. Paramesvaran,125 A. Poll,125 T. Sakuma,125 S. Seif El Nasr-storey,125 D. Smith,125 V. J. Smith,125 A. Belyaev,126,lll C. Brew,126 R. M. Brown,126 L. Calligaris,126 D. Cieri,126 D. J. A. Cockerill,126 J. A. Coughlan,126 K. Harder,126 S. Harper,126 E. Olaiya,126 D. Petyt,126 C. H. Shepherd-Themistocleous,126 A. Thea,126 I. R. Tomalin,126 T. Williams,126 G. Auzinger,127 R. Bainbridge,127 S. Breeze,127 O. Buchmuller,127 A. Bundock,127 S. Casasso,127 M. Citron,127 D. Colling,127 L. Corpe,127 P. Dauncey,127 G. Davies,127 A. De Wit,127 M. Della Negra,127 R. Di Maria,127 A. Elwood,127 Y. Haddad,127 G. Hall,127 G. Iles,127 T. James,127 R. Lane,127 C. Laner,127 L. Lyons,127 A.-M. Magnan,127 S. Malik,127 L. Mastrolorenzo,127 T. Matsushita,127 J. Nash,127 A. Nikitenko,127,g V. Palladino,127 M. Pesaresi,127 D. M. Raymond,127 A. Richards,127 A. Rose,127 E. Scott,127 C. Seez,127 A. Shtipliyski,127 S. Summers,127 A. Tapper,127 K. Uchida,127 M. Vazquez Acosta,127,mmm T. Virdee,127,o D. Winterbottom,127 J. Wright,127 S. C. Zenz,127 J. E. Cole,128 P. R. Hobson,128 A. Khan,128 P. Kyberd,128 I. D. Reid,128 P. Symonds,128 L. Teodorescu,128 M. Turner,128 A. Borzou,129 K. Call,129 J. Dittmann,129 K. Hatakeyama,129 H. Liu,129 N. Pastika,129 C. Smith,129 R. Bartek,130 A. Dominguez,130 A. Buccilli,131 S. I. Cooper,131 C. Henderson,131 P. Rumerio,131 C. West,131 D. Arcaro,132 A. Avetisyan,132 T. Bose,132 D. Gastler,132 D. Rankin,132 C. Richardson,132 J. Rohlf,132 L. Sulak,132 D. Zou,132 G. Benelli,133 D. Cutts,133 A. Garabedian,133 J. Hakala,133 U. Heintz,133 J. M. Hogan,133 K. H. M. Kwok,133 E. Laird,133 G. Landsberg,133 Z. Mao,133 M. Narain,133 J. Pazzini,133 S. Piperov,133 S. Sagir,133 R. Syarif,133 D. Yu,133 R. Band,134 C. Brainerd,134 D. Burns,134 M. Calderon De La Barca Sanchez,134 M. Chertok,134 J. Conway,134 R. Conway,134 P. T. Cox,134 R. Erbacher,134 C. Flores,134 G. Funk,134 M. Gardner,134 W. Ko,134 R. Lander,134 C. Mclean,134 M. Mulhearn,134 D. Pellett,134 J. Pilot,134 S. Shalhout,134 M. Shi,134 J. Smith,134 M. Squires,134 D. Stolp,134 K. Tos,134 M. Tripathi,134 Z. Wang,134 M. Bachtis,135 C. Bravo,135 R. Cousins,135 A. Dasgupta,135 A. Florent,135 J. Hauser,135 M. Ignatenko,135 N. Mccoll,135 D. Saltzberg,135 C. Schnaible,135 V. Valuev,135 E. Bouvier,136 K. Burt,136 R. Clare,136 J. Ellison,136 J. W. Gary,136 S. M. A. Ghiasi Shirazi,136 G. Hanson,136 J. Heilman,136 P. Jandir,136 E. Kennedy,136 F. Lacroix,136 O. R. Long,136 M. Olmedo Negrete,136 M. I. Paneva,136 A. Shrinivas,136 W. Si,136 L. Wang,136 H. Wei,136 S. Wimpenny,136 B. R. Yates,136 J. G. Branson,137 S. Cittolin,137 M. Derdzinski,137 R. Gerosa,137 B. Hashemi,137 A. Holzner,137 D. Klein,137 G. Kole,137 V. Krutelyov,137 J. Letts,137 I. Macneill,137 M. Masciovecchio,137 D. Olivito,137 S. Padhi,137 M. Pieri,137 M. Sani,137 V. Sharma,137 S. Simon,137 M. Tadel,137 A. Vartak,137 S. Wasserbaech,137,nnn J. Wood,137 F. Würthwein,137 A. Yagil,137 G. Zevi Della Porta,137 N. Amin,138 R. Bhandari,138 J. Bradmiller-Feld,138 C. Campagnari,138 A. Dishaw,138 V. Dutta,138 M. Franco Sevilla,138 C. George,138 F. Golf,138 L. Gouskos,138 J. Gran,138 R. Heller,138 J. Incandela,138 S. D. Mullin,138 A. Ovcharova,138 H. Qu,138 J. Richman,138 D. Stuart,138 I. Suarez,138 J. Yoo,138 D. Anderson,139 J. Bendavid,139 A. Bornheim,139 J. M. Lawhorn,139 H. B. Newman,139 T. Nguyen,139 C. Pena,139 M. Spiropulu,139 J. R. Vlimant,139 S. Xie,139 Z. Zhang,139 R. Y. Zhu,139 M. B. Andrews,140 T. Ferguson,140 T. Mudholkar,140 M. Paulini,140 J. Russ,140 M. Sun,140 H. Vogel,140 I. Vorobiev,140 M. Weinberg,140 J. P. Cumalat,141 W. T. Ford,141 F. Jensen,141 A. Johnson,141 M. Krohn,141 S. Leontsinis,141 T. Mulholland,141 K. Stenson,141 S. R. Wagner,141 J. Alexander,142 J. Chaves,142 J. Chu,142 S. Dittmer,142 K. Mcdermott,142 N. Mirman,142 J. R. Patterson,142 A. Rinkevicius,142 A. Ryd,142 L. Skinnari,142 L. Soffi,142 S. M. Tan,142 Z. Tao,142 J. Thom,142 J. Tucker,142 P. Wittich,142 M. Zientek,142 S. Abdullin,143 M. Albrow,143 G. Apollinari,143 A. Apresyan,143 A. Apyan,143 S. Banerjee,143 L. A. T. Bauerdick,143 A. Beretvas,143 J. Berryhill,143 P. C. Bhat,143 G. Bolla,143 K. Burkett,143 J. N. Butler,143 A. Canepa,143 G. B. Cerati,143 H.W. K. Cheung,143 F. Chlebana,143 M. Cremonesi,143 J. Duarte,143 V. D. Elvira,143 J. Freeman,143 Z. Gecse,143 E. Gottschalk,143 L. Gray,143 D. Green,143 S. Grünendahl,143 O. Gutsche,143 R. M. Harris,143 S. Hasegawa,143 J. Hirschauer,143 Z. Hu,143 B. Jayatilaka,143 S. Jindariani,143 M. Johnson,143 U. Joshi,143 B. Klima,143 B. Kreis,143 S. Lammel,143 D. Lincoln,143 R. Lipton,143 M. Liu,143 T. Liu,143 R. Lopes De Sá,143 J. Lykken,143 K. Maeshima,143 N. Magini,143 J. M. Marraffino,143 S. Maruyama,143 PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-11 D. Mason,143 P. McBride,143 P. Merkel,143 S. Mrenna,143 S. Nahn,143 V. O’Dell,143 K. Pedro,143 O. Prokofyev,143 G. Rakness,143 L. Ristori,143 B. Schneider,143 E. Sexton-Kennedy,143 A. Soha,143 W. J. Spalding,143 L. Spiegel,143 S. Stoynev,143 J. Strait,143 N. Strobbe,143 L. Taylor,143 S. Tkaczyk,143 N. V. Tran,143 L. Uplegger,143 E. W. Vaandering,143 C. Vernieri,143 M. Verzocchi,143 R. Vidal,143 M. Wang,143 H. A. Weber,143 A. Whitbeck,143 D. Acosta,144 P. Avery,144 P. Bortignon,144 D. Bourilkov,144 A. Brinkerhoff,144 A. Carnes,144 M. Carver,144 D. Curry,144 R. D. Field,144 I. K. Furic,144 J. Konigsberg,144 A. Korytov,144 K. Kotov,144 P. Ma,144 K. Matchev,144 H. Mei,144 G. Mitselmakher,144 D. Rank,144 D. Sperka,144 N. Terentyev,144 L. Thomas,144 J. Wang,144 S. Wang,144 J. Yelton,144 Y. R. Joshi,145 S. Linn,145 P. Markowitz,145 J. L. Rodriguez,145 A. Ackert,146 T. Adams,146 A. Askew,146 S. Hagopian,146 V. Hagopian,146 K. F. Johnson,146 T. Kolberg,146 G. Martinez,146 T. Perry,146 H. Prosper,146 A. Saha,146 A. Santra,146 R. Yohay,146 M.M. Baarmand,147 V. Bhopatkar,147 S. Colafranceschi,147 M. Hohlmann,147 D. Noonan,147 T. Roy,147 F. Yumiceva,147 M. R. Adams,148 L. Apanasevich,148 D. Berry,148 R. R. Betts,148 R. Cavanaugh,148 X. Chen,148 O. Evdokimov,148 C. E. Gerber,148 D. A. Hangal,148 D. J. Hofman,148 K. Jung,148 J. Kamin,148 I. D. Sandoval Gonzalez,148 M. B. Tonjes,148 H. Trauger,148 N. Varelas,148 H. Wang,148 Z. Wu,148 J. Zhang,148 B. Bilki,149,ooo W. Clarida,149 K. Dilsiz,149,ppp S. Durgut,149 R. P. Gandrajula,149 M. Haytmyradov,149 V. Khristenko,149 J.-P. Merlo,149 H. Mermerkaya,149,qqq A. Mestvirishvili,149 A. Moeller,149 J. Nachtman,149 H. Ogul,149,rrr Y. Onel,149 F. Ozok,149,sss A. Penzo,149 C. Snyder,149 E. Tiras,149 J. Wetzel,149 K. Yi,149 B. Blumenfeld,150 A. Cocoros,150 N. Eminizer,150 D. Fehling,150 L. Feng,150 A. V. Gritsan,150 P. Maksimovic,150 J. Roskes,150 U. Sarica,150 M. Swartz,150 M. Xiao,150 C. You,150 A. Al-bataineh,151 P. Baringer,151 A. Bean,151 S. Boren,151 J. Bowen,151 J. Castle,151 S. Khalil,151 A. Kropivnitskaya,151 D. Majumder,151 W. Mcbrayer,151 M. Murray,151 C. Royon,151 S. Sanders,151 E. Schmitz,151 R. Stringer,151 J. D. Tapia Takaki,151 Q. Wang,151 A. Ivanov,152 K. Kaadze,152 Y. Maravin,152 A. Mohammadi,152 L. K. Saini,152 N. Skhirtladze,152 S. Toda,152 F. Rebassoo,153 D. Wright,153 C. Anelli,154 A. Baden,154 O. Baron,154 A. Belloni,154 B. Calvert,154 S. C. Eno,154 C. Ferraioli,154 N. J. Hadley,154 S. Jabeen,154 G. Y. Jeng,154 R. G. Kellogg,154 J. Kunkle,154 A. C. Mignerey,154 F. Ricci-Tam,154 Y. H. Shin,154 A. Skuja,154 S. C. Tonwar,154 D. Abercrombie,155 B. Allen,155 V. Azzolini,155 R. Barbieri,155 A. Baty,155 R. Bi,155 S. Brandt,155 W. Busza,155 I. A. Cali,155 M. D’Alfonso,155 Z. Demiragli,155 G. Gomez Ceballos,155 M. Goncharov,155 D. Hsu,155 Y. Iiyama,155 G. M. Innocenti,155 M. Klute,155 D. Kovalskyi,155 Y. S. Lai,155 Y.-J. Lee,155 A. Levin,155 P. D. Luckey,155 B. Maier,155 A. C. Marini,155 C. Mcginn,155 C. Mironov,155 S. Narayanan,155 X. Niu,155 C. Paus,155 C. Roland,155 G. Roland,155 J. Salfeld-Nebgen,155 G. S. F. Stephans,155 K. Tatar,155 D. Velicanu,155 J. Wang,155 T. W. Wang,155 B. Wyslouch,155 A. C. Benvenuti,156 R. M. Chatterjee,156 A. Evans,156 P. Hansen,156 S. Kalafut,156 Y. Kubota,156 Z. Lesko,156 J. Mans,156 S. Nourbakhsh,156 N. Ruckstuhl,156 R. Rusack,156 J. Turkewitz,156 J. G. Acosta,157 S. Oliveros,157 E. Avdeeva,158 K. Bloom,158 D. R. Claes,158 C. Fangmeier,158 R. Gonzalez Suarez,158 R. Kamalieddin,158 I. Kravchenko,158 J. Monroy,158 J. E. Siado,158 G. R. Snow,158 B. Stieger,158 M. Alyari,159 J. Dolen,159 A. Godshalk,159 C. Harrington,159 I. Iashvili,159 D. Nguyen,159 A. Parker,159 S. Rappoccio,159 B. Roozbahani,159 G. Alverson,160 E. Barberis,160 A. Hortiangtham,160 A. Massironi,160 D. M. Morse,160 D. Nash,160 T. Orimoto,160 R. Teixeira De Lima,160 D. Trocino,160 D. Wood,160 S. Bhattacharya,161 O. Charaf,161 K. A. Hahn,161 N. Mucia,161 N. Odell,161 B. Pollack,161 M. H. Schmitt,161 K. Sung,161 M. Trovato,161 M. Velasco,161 N. Dev,162 M. Hildreth,162 K. Hurtado Anampa,162 C. Jessop,162 D. J. Karmgard,162 N. Kellams,162 K. Lannon,162 N. Loukas,162 N. Marinelli,162 F. Meng,162 C. Mueller,162 Y. Musienko,162,kk M. Planer,162 A. Reinsvold,162 R. Ruchti,162 G. Smith,162 S. Taroni,162 M. Wayne,162 M. Wolf,162 A. Woodard,162 J. Alimena,163 L. Antonelli,163 B. Bylsma,163 L. S. Durkin,163 S. Flowers,163 B. Francis,163 A. Hart,163 C. Hill,163 W. Ji,163 B. Liu,163 W. Luo,163 D. Puigh,163 B. L. Winer,163 H.W. Wulsin,163 A. Benaglia,164 S. Cooperstein,164 O. Driga,164 P. Elmer,164 J. Hardenbrook,164 P. Hebda,164 S. Higginbotham,164 D. Lange,164 J. Luo,164 D. Marlow,164 K. Mei,164 I. Ojalvo,164 J. Olsen,164 C. Palmer,164 P. Piroué,164 D. Stickland,164 C. Tully,164 S. Malik,165 S. Norberg,165 A. Barker,166 V. E. Barnes,166 S. Das,166 S. Folgueras,166 L. Gutay,166 M. K. Jha,166 M. Jones,166 A.W. Jung,166 A. Khatiwada,166 D. H. Miller,166 N. Neumeister,166 C. C. Peng,166 H. Qiu,166 J. F. Schulte,166 J. Sun,166 F. Wang,166 W. Xie,166 T. Cheng,167 N. Parashar,167 J. Stupak,167 A. Adair,168 B. Akgun,168 Z. Chen,168 K. M. Ecklund,168 F. J. M. Geurts,168 M. Guilbaud,168 W. Li,168 B. Michlin,168 M. Northup,168 B. P. Padley,168 J. Roberts,168 J. Rorie,168 Z. Tu,168 J. Zabel,168 A. Bodek,169 P. de Barbaro,169 R. Demina,169 Y. t. Duh,169 T. Ferbel,169 M. Galanti,169 A. Garcia-Bellido,169 J. Han,169 O. Hindrichs,169 A. Khukhunaishvili,169 K. H. Lo,169 P. Tan,169 M. Verzetti,169 R. Ciesielski,170 K. Goulianos,170 C. Mesropian,170 A. Agapitos,171 J. P. Chou,171 Y. Gershtein,171 T. A. Gómez Espinosa,171 E. Halkiadakis,171 M. Heindl,171 E. Hughes,171 S. Kaplan,171 R. Kunnawalkam Elayavalli,171 S. Kyriacou,171 A. Lath,171 R. Montalvo,171 K. Nash,171 M. Osherson,171 H. Saka,171 S. Salur,171 S. Schnetzer,171 D. Sheffield,171 S. Somalwar,171 PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-12 R. Stone,171 S. Thomas,171 P. Thomassen,171 M. Walker,171 A. G. Delannoy,172 M. Foerster,172 J. Heideman,172 G. Riley,172 K. Rose,172 S. Spanier,172 K. Thapa,172 O. Bouhali,173,ttt A. Castaneda Hernandez,173,ttt A. Celik,173 M. Dalchenko,173 M. De Mattia,173 A. Delgado,173 S. Dildick,173 R. Eusebi,173 J. Gilmore,173 T. Huang,173 T. Kamon,173,uuu R. Mueller,173 Y. Pakhotin,173 R. Patel,173 A. Perloff,173 L. Perniè,173 D. Rathjens,173 A. Safonov,173 A. Tatarinov,173 K. A. Ulmer,173 N. Akchurin,174 J. Damgov,174 F. De Guio,174 P. R. Dudero,174 J. Faulkner,174 E. Gurpinar,174 S. Kunori,174 K. Lamichhane,174 S. W. Lee,174 T. Libeiro,174 T. Peltola,174 S. Undleeb,174 I. Volobouev,174 Z. Wang,174 S. Greene,175 A. Gurrola,175 R. Janjam,175 W. Johns,175 C. Maguire,175 A. Melo,175 H. Ni,175 P. Sheldon,175 S. Tuo,175 J. Velkovska,175 Q. Xu,175 M.W. Arenton,176 P. Barria,176 B. Cox,176 R. Hirosky,176 A. Ledovskoy,176 H. Li,176 C. Neu,176 T. Sinthuprasith,176 X. Sun,176 Y. Wang,176 E. Wolfe,176 F. Xia,176 R. Harr,177 P. E. Karchin,177 J. Sturdy,177 S. Zaleski,177 M. Brodski,178 J. Buchanan,178 C. Caillol,178 S. Dasu,178 L. Dodd,178 S. Duric,178 B. Gomber,178 M. Grothe,178 M. Herndon,178 A. Hervé,178 U. Hussain,178 P. Klabbers,178 A. Lanaro,178 A. Levine,178 K. Long,178 R. Loveless,178 G. A. Pierro,178 G. Polese,178 T. Ruggles,178 A. Savin,178 N. Smith,178 W. H. Smith,178 D. Taylor,178 and N. Woods178 (CMS Collaboration) 1Yerevan Physics Institute, Yerevan, Armenia 2Institut für Hochenergiephysik, Wien, Austria 3Institute for Nuclear Problems, Minsk, Belarus 4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Université Libre de Bruxelles, Bruxelles, Belgium 7Ghent University, Ghent, Belgium 8Université Catholique de Louvain, Louvain-la-Neuve, Belgium 9Université de Mons, Mons, Belgium 10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12aUniversidade Estadual Paulista, São Paulo, Brazil 12bUniversidade Federal do ABC, São Paulo, Brazil 13Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria 15Beihang University, Beijing, China 16Institute of High Energy Physics, Beijing, China 17State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 18Universidad de Los Andes, Bogota, Colombia 19University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia 20University of Split, Faculty of Science, Split, Croatia 21Institute Rudjer Boskovic, Zagreb, Croatia 22University of Cyprus, Nicosia, Cyprus 23Charles University, Prague, Czech Republic 24Universidad San Francisco de Quito, Quito, Ecuador 25Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt 26National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 27Department of Physics, University of Helsinki, Helsinki, Finland 28Helsinki Institute of Physics, Helsinki, Finland 29Lappeenranta University of Technology, Lappeenranta, Finland 30IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France 31Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France 32Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France 33Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France 34Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France 35Georgian Technical University, Tbilisi, Georgia 36Tbilisi State University, Tbilisi, Georgia 37RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 38RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 39RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-13 40Deutsches Elektronen-Synchrotron, Hamburg, Germany 41University of Hamburg, Hamburg, Germany 42Institut für Experimentelle Kernphysik, Karlsruhe, Germany 43Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 44National and Kapodistrian University of Athens, Athens, Greece 45University of Ioánnina, Ioánnina, Greece 46MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary 47Wigner Research Centre for Physics, Budapest, Hungary 48Institute of Nuclear Research ATOMKI, Debrecen, Hungary 49Institute of Physics, University of Debrecen, Debrecen, Hungary 50Indian Institute of Science (IISc), Bangalore, India 51National Institute of Science Education and Research, Bhubaneswar, India 52Panjab University, Chandigarh, India 53University of Delhi, Delhi, India 54Saha Institute of Nuclear Physics, HBNI, Kolkata,India 55Indian Institute of Technology Madras, India 56Bhabha Atomic Research Centre, Mumbai, India 57Tata Institute of Fundamental Research-A, Mumbai, India 58Tata Institute of Fundamental Research-B, Mumbai, India 59Indian Institute of Science Education and Research (IISER), Pune, India 60Institute for Research in Fundamental Sciences (IPM), Tehran, Iran 61University College Dublin, Dublin, Ireland 62aINFN Sezione di Bari, Politecnico di Bari, Bari, Italy 62bUniversità di Bari, Politecnico di Bari, Bari, Italy 62cPolitecnico di Bari, Politecnico di Bari, Bari, Italy 63aINFN Sezione di Bologna, Bologna, Italy 63bUniversità di Bologna, Bologna, Italy 64aINFN Sezione di Catania, Catania, Italy 64bUniversità di Catania, Catania, Italy 65aINFN Sezione di Firenze, Firenze, Italy 65bUniversità di Firenze, Firenze, Italy 66INFN Laboratori Nazionali di Frascati, Frascati, Italy 67aINFN Sezione di Genova, Genova, Italy 67bUniversità di Genova, Genova, Italy 68aINFN Sezione di Milano-Bicocca, Milano, Italy 68bUniversità di Milano-Bicocca, Milano, Italy 69aINFN Sezione di Napoli, Napoli, Italy 69bUniversità di Napoli ’Federico II’, Napoli, Italy 69cUniversità della Basilicata, Potenza, Italy 69dUniversità G. Marconi, Roma, Italy 70aINFN Sezione di Padova, Padova, Italy 70bUniversità di Padova, Padova, Italy 70cUniversità di Trento, Trento, Italy 71aINFN Sezione di Pavia, Pavia, Italy 71bUniversità di Pavia, Pavia, Italy 72aINFN Sezione di Perugia, Perugia, Italy 72bUniversità di Perugia, Perugia, Italy 73aINFN Sezione di Pisa, Pisa, Italy 73bUniversità di Pisa, Pisa, Italy 73cScuola Normale Superiore di Pisa, Pisa, Italy 74aINFN Sezione di Roma, Rome, Italy 74bSapienza Università di Roma, Rome, Italy 75aINFN Sezione di Torino, Novara, Italy 75bUniversità di Torino, Novara, Italy 75cUniversità del Piemonte Orientale, Novara, Italy 76aINFN Sezione di Trieste, Trieste, Italy 76bUniversità di Trieste, Trieste, Italy 77Kyungpook National University, Daegu, Korea 78Chonbuk National University, Jeonju, Korea 79Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-14 80Hanyang University, Seoul, Korea 81Korea University, Seoul, Korea 82Seoul National University, Seoul, Korea 83University of Seoul, Seoul, Korea 84Sungkyunkwan University, Suwon, Korea 85Vilnius University, Vilnius, Lithuania 86National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia 87Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 88Universidad Iberoamericana, Mexico City, Mexico 89Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 90Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico 91University of Auckland, Auckland, New Zealand 92University of Canterbury, Christchurch, New Zealand 93National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 94National Centre for Nuclear Research, Swierk, Poland 95Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 96Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal 97Joint Institute for Nuclear Research, Dubna, Russia 98Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 99Institute for Nuclear Research, Moscow, Russia 100Institute for Theoretical and Experimental Physics, Moscow, Russia 101Moscow Institute of Physics and Technology, Moscow, Russia 102National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia 103P.N. Lebedev Physical Institute, Moscow, Russia 104Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 105Novosibirsk State University (NSU), Novosibirsk, Russia 106State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 107University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 108Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 109Universidad Autónoma de Madrid, Madrid, Spain 110Universidad de Oviedo, Oviedo, Spain 111Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 112CERN, European Organization for Nuclear Research, Geneva, Switzerland 113Paul Scherrer Institut, Villigen, Switzerland 114Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 115Universität Zürich, Zurich, Switzerland 116National Central University, Chung-Li, Taiwan 117National Taiwan University (NTU), Taipei, Taiwan 118Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand 119Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey 120Middle East Technical University, Physics Department, Ankara, Turkey 121Bogazici University, Istanbul, Turkey 122Istanbul Technical University, Istanbul, Turkey 123Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine 124National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 125University of Bristol, Bristol, United Kingdom 126Rutherford Appleton Laboratory, Didcot, United Kingdom 127Imperial College, London, United Kingdom 128Brunel University, Uxbridge, United Kingdom 129Baylor University, Waco, Texas 76798, USA 130Catholic University of America, Washington DC 20064, USA 131The University of Alabama, Tuscaloosa, Alabama 35487, USA 132Boston University, Boston, Massachusetts 02215, USA 133Brown University, Providence, Rhode Island 02912, USA 134University of California, Davis, California 95616, USA 135University of California, Los Angeles, California 90095, USA 136University of California, Riverside, California 92521, USA 137University of California, San Diego, La Jolla, California 92093, USA 138University of California, Santa Barbara—Department of Physics, Santa Barbara, California 93106, USA 139California Institute of Technology, Pasadena, California 91125, USA PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-15 140Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 141University of Colorado Boulder, Boulder, Colorado 80309, USA 142Cornell University, Ithaca, New York 14853, USA 143Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA 144University of Florida, Gainesville, Florida 32611, USA 145Florida International University, Miami, Florida 33199, USA 146Florida State University, Tallahassee, Florida 32306, USA 147Florida Institute of Technology, Melbourne, Florida 32901, USA 148University of Illinois at Chicago (UIC), Chicago, Illinois 60607, USA 149The University of Iowa, Iowa City, Iowa 52242, USA 150Johns Hopkins University, Baltimore, Maryland 21218, USA 151The University of Kansas, Lawrence, Kansas 66045, USA 152Kansas State University, Manhattan, Kansas 66506, USA 153Lawrence Livermore National Laboratory, Livermore, California 94551, USA 154University of Maryland, College Park, Maryland 20742, USA 155Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 156University of Minnesota, Minneapolis, Minnesota 55455, USA 157University of Mississippi, Oxford, Mississippi 38677, USA 158University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA 159State University of New York at Buffalo, Buffalo, New York 14260, USA 160Northeastern University, Boston, Massachusetts 02115, USA 161Northwestern University, Evanston, Illinois 60208, USA 162University of Notre Dame, Notre Dame, Indiana 46556, USA 163The Ohio State University, Columbus, Ohio 43210, USA 164Princeton University, Princeton, New Jersey 08542, USA 165University of Puerto Rico, Mayaguez, Puerto Rico 00681, USA 166Purdue University, West Lafayette, Indiana 47907, USA 167Purdue University Northwest, Hammond, Indiana 46323, USA 168Rice University, Houston, Texas 77251, USA 169University of Rochester, Rochester, New York 14627, USA 170The Rockefeller University, New York, New York 10021, USA 171Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA 172University of Tennessee, Knoxville, Tennessee 37996, USA 173Texas A&M University, College Station, Texas 77843, USA 174Texas Tech University, Lubbock, Texas 79409, USA 175Vanderbilt University, Nashville, Tennessee 37235, USA 176University of Virginia, Charlottesville, Virginia 22904, USA 177Wayne State University, Detroit, Michigan 48202, USA 178University of Wisconsin—Madison, Madison, Wisconsin 53706, USA aDeceased. bAlso at Vienna University of Technology, Vienna, Austria. cAlso at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China. dAlso at Universidade Estadual de Campinas, Campinas, Brazil. eAlso at Universidade Federal de Pelotas, Pelotas, Brazil. fAlso at Université Libre de Bruxelles, Bruxelles, Belgium. gAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. hAlso at Joint Institute for Nuclear Research, Dubna, Russia. iAlso at Ain Shams University, Cairo, Egypt. jAlso at British University in Egypt, Cairo, Egypt. kAlso at Cairo University, Cairo, Egypt. lAlso at Université de Haute Alsace, Mulhouse, France. mAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia. nAlso at Ilia State University, Tbilisi, Georgia. oAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. pAlso at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany. qAlso at University of Hamburg, Hamburg, Germany. rAlso at Brandenburg University of Technology, Cottbus, Germany. sAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. tAlso at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary. PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-16 uAlso at Institute of Physics, University of Debrecen, Debrecen, Hungary. vAlso at IIT Bhubaneswar, Bhubaneswar, India. wAlso at Institute of Physics, Bhubaneswar, India. xAlso at University of Visva-Bharati, Santiniketan, India. yAlso at University of Ruhuna, Matara, Sri Lanka. zAlso at Isfahan University of Technology, Isfahan, Iran. aaAlso at Yazd University, Yazd, Iran. bbAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. ccAlso at Università degli Studi di Siena, Siena, Italy. ddAlso at INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy. eeAlso at Purdue University, West Lafayette, USA. ffAlso at International Islamic University of Malaysia, Kuala Lumpur, Malaysia. ggAlso at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia. hhAlso at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico. iiAlso at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland. jjAlso at Czech Technical University, Praha, Czech Republic. kkAlso at Institute for Nuclear Research, Moscow, Russia. llAlso at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia. mmAlso at St. Petersburg State Polytechnical University, St. Petersburg, Russia. nnAlso at University of Florida, Gainesville, USA. ooAlso at P.N. Lebedev Physical Institute, Moscow, Russia. ppAlso at INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy. qqAlso at Budker Institute of Nuclear Physics, Novosibirsk, Russia. rrAlso at Faculty of Physics, University of Belgrade, Belgrade, Serbia. ssAlso at INFN Sezione di Roma, Sapienza Università di Roma, Rome, Italy. ttAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. uuAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy. vvAlso at National and Kapodistrian University of Athens, Athens, Greece. wwAlso at Riga Technical University, Riga, Latvia. xxAlso at Universität Zürich, Zurich, Switzerland. yyAlso at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria. zzAlso at Istanbul University, Faculty of Science, Istanbul, Turkey. aaaAlso at Adiyaman University, Adiyaman, Turkey. bbbAlso at Istanbul Aydin University, Istanbul, Turkey. cccAlso at Mersin University, Mersin, Turkey. dddAlso at Cag University, Mersin, Turkey. eeeAlso at Piri Reis University, Istanbul, Turkey. fffAlso at Izmir Institute of Technology, Izmir, Turkey. gggAlso at Necmettin Erbakan University, Konya, Turkey. hhhAlso at Marmara University, Istanbul, Turkey. iiiAlso at Kafkas University, Kars, Turkey. jjjAlso at Istanbul Bilgi University, Istanbul, Turkey. kkkAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. lllAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. mmmAlso at Instituto de Astrofísica de Canarias, La Laguna, Spain. nnnAlso at Utah Valley University, Orem, USA. oooAlso at Beykent University, Istanbul, Turkey. pppAlso at Bingol University, Bingol, Turkey. qqqAlso at Erzincan University, Erzincan, Turkey. rrrAlso at Sinop University, Sinop, Turkey. sssAlso at Mimar Sinan University, Istanbul, Istanbul, Turkey. tttAlso at Texas A&M University at Qatar, Doha, Qatar. uuuAlso at Kyungpook National University, Daegu, Korea. PHYSICAL REVIEW LETTERS 120, 202301 (2018) 202301-17