T a M L C I a A R R A A K G V A A M 1 r i u b i i c t e p o w c h 0 Catalysis Today 289 (2017) 20–28 Contents lists available at ScienceDirect Catalysis Today j o ur na l ho me page: www.elsev ier .com/ locate /ca t tod he multiple benefits of glycerol conversion to acrolein and acrylic cid catalyzed by vanadium oxides supported on micro-mesoporous FI zeolites uiz G. Possato, Thiago F. Chaves, Wellington H. Cassinelli, Sandra H. Pulcinelli, elso V. Santilli, Leandro Martins ∗ nstituto de Química, UNESP − Univ. Estadual Paulista, Rua Prof. Francisco Degni 55, 14800-060, Araraquara, SP, Brazil r t i c l e i n f o rticle history: eceived 12 April 2016 eceived in revised form 20 July 2016 ccepted 2 August 2016 vailable online 16 August 2016 eywords: lycerol oxidehydration 2O5/MFI catalyst crolein a b s t r a c t The ZSM-5 zeolite (MFI structure, Si/Al = 40) was treated using NaOH and either oxalic acid or HCl to obtain hierarchical materials with different characteristics, followed by impregnation with vanadium oxides (V2O5) to generate redox-active sites. The impact of the multiple treatments on the efficiency and stability of the catalysts in the conversion of glycerol to acrolein and acrylic acid was investigated and correlated with catalyst porosity, acidity, and chemical composition. The treated and impregnated V2O5 catalysts were subjected to XRD, 27Al NMR, nitrogen physisorption, TPD-NH3, TG, and UV–Vis analyses, in order to associate the properties of the catalysts with their activities. The studies showed that the catalytic performance of the materials depended on the acidic and textural properties of the zeolites, which influenced both the dispersion of V2O5 and its interaction with the acid sites of the supporting crylic acid icro-mesoporous zeolites zeolites. All the catalysts provided conversion values exceeding 65%, even after 6 h on glycerol stream. The distribution of products strongly reflected the effects of pore formation, acid treatment with oxalic acid or HCl, and the presence of vanadium oxide. The effects of these modifications resulted in higher selectivity to acrolein and acrylic acid, a reduced rate of coke accumulation in the zeolite, and a longer catalyst lifetime. © 2016 Elsevier B.V. All rights reserved. . Introduction The growth of greenhouse gas emissions and the limited eserves of easily extracted fossil fuels have led researchers and ndustry to pursue new alternatives to replace, even partially, the se of fossil fuels. As a result, the use of compounds derived from iomass, such as biogas, ethanol from sugarcane, and biodiesel has ncreased in recent years. In the case of biodiesel, production has ncreased and consequently there has been an increase in the con- omitant formation of coproduced glycerol [1–3]. Glycerol is a focus of green catalytic processes, because his molecule offers interesting chemical versatility that can be xploited for the formation of compounds that are currently rovided by the petrochemical industry. An example of glycerol val- rization is the synthesis of 1,2-propanediol and 1,3-propanediol, hich are used as antifreeze fluids in automobiles. In industry, both ompounds are obtained from the hydration of propene. However, ∗ Corresponding author. E-mail address: leandro@iq.unesp.br (L. Martins). ttp://dx.doi.org/10.1016/j.cattod.2016.08.005 920-5861/© 2016 Elsevier B.V. All rights reserved. a high conversion and selectivity to glycols has been obtained by glycerol hydrogenolysis using catalysts based on metallic Ni, Ru, and Cu [4–7]. Another important conversion of glycerol into petrochemical- type compounds is the formation of acrolein and acrylic acid, which are used in the manufacture of resins. Acrolein can be obtained by gas phase glycerol dehydration on acid catalysts such as heteropolyacids [8], impregnated phosphate groups on metal oxides [9], sulfated zirconia [10], Nb2O5 [11], mixed oxides [12], zeolites [13–15], functionalized mesoporous silica [16,17], and vanadium-silicates [18]. The glycerol can also be dehydrated in liquid phase [19,20]. Acrylic acid is obtained from the oxidation of acrolein. The one-step conversion of glycerol into acrylic acid using bifunctional catalysts with acid and redox sites occurs accord- ing to Scheme 1 [21–26]. An interesting aspect of coupling the two reactions is the mutually supporting endothermic dehydra- tion of glycerol (�H0 = 3.04 kcal/mol) and exothermic oxidation of acrolein (�H0 = − 61.02 kcal/mol). For glycerol dehydration using zeolites, maximum performance of the catalyst is achieved by combining Brønsted acid sites of medium strength (strong acid sites lead to severe coke formation, dx.doi.org/10.1016/j.cattod.2016.08.005 http://www.sciencedirect.com/science/journal/09205861 http://www.elsevier.com/locate/cattod http://crossmark.crossref.org/dialog/?doi=10.1016/j.cattod.2016.08.005&domain=pdf mailto:leandro@iq.unesp.br dx.doi.org/10.1016/j.cattod.2016.08.005 L.G. Possato et al. / Catalysis T OH OHHO glycerol acrolein O acrylic acid OH O - H 2 O + ½ O2OH 3-hyd rox ypropanal O - H 2 O acid sites redox s ites S b w p a F i I [ t m c e a A t t a c d c t t a o d l s u t a o f s i b a b a t ( s i t r a c o m c [ o t w z cheme 1. Glycerol oxidehydration (dehydration combined with oxidation) on ifunctional acid and redox active sites. hile weak acid sites are less capable of converting glycerol) [27], orosity (which enhances the diffusion of glycerol and acrolein), nd high specific area (which increases access to catalytic sites). or instance, members of the lamellar MWW zeolite family, which ncludes microporous MCM-22, pillared MCM-36, and delaminated TQ-2, offer advantageous characteristics for glycerol dehydration 22]. Following pillarization and delamination of the MWW struc- ure, the strengths of acid sites decrease, but the increases in esopores and specific area raise the overall performance of the atalyst [28]. Despite the attraction of lamellar zeolites for use in glyc- rol dehydration, the laborious multiple steps and the expense ssociated with catalyst preparation are notable disadvantages. lternatively, the desilication of commercially available zeolites by reatment with sodium hydroxide solution seems to be more prac- ical [29,30]. The alkaline process is simple, with hydroxyl groups ttacking and removing silicon atoms from the zeolite structure, reating randomly distributed pores in the zeolite crystals. The iameter and volume of the pores can be tuned by adjusting the oncentration of the alkaline solution and by varying the exposure ime of the zeolite (usually a few minutes) and the desilication emperature (which normally ranges from room temperature to few tens of degrees Celsius) [31–37]. The broad distribution f mesopore families results in catalytic performance in glycerol ehydration similar to that of the MWW zeolites. A disadvantage of the desilication method is that during the zeo- ite treatment process, aluminum atoms are removed as well as ilicon atoms. Silicon species are mostly found in the alkaline liq- id phase, but aluminum tends to form insoluble oligomeric species hat can precipitate on the catalyst surface as extra-framework luminum atoms (EFA). Consequently, the mesopores created are bstructed due to an alkali-induced alumination of the external sur- aces of the crystals, and the nature of the acid sites of the zeolite hifts from Brønsted to Lewis acid sites. This catalytic acid behav- or must be considered in the design of catalysts by desilication, ecause EFA sites are selective in converting glycerol into undesir- ble byproducts. However, the EFA can be removed from the zeolite y acid leaching; as a result, the selectivity to acrolein is enhanced nd the diffusion of chemicals through the pores is increased due o the removal of aluminum species. In the second step of glycerol conversion to acrylic acid Scheme 1), redox active sites are required. Vanadium oxides are trong candidates for this purpose because they possess a very mportant redox characteristic, namely the capacity to adopt mul- iple oxidation states. On these catalysts, acrolein is oxidized by emoving a surface oxygen atom from V2O5, giving rise to acrylic cid and an oxygen vacancy in V2O5-x. In a subsequent step, the atalytic site is oxidized and reestablished by feeding an excess f molecular O2 in the stream (V2O5-x +1/2O2 → V2O5). This redox echanism and the changes in V5+/V4+ oxidation states during the atalytic reaction are known as the Mars-Van Krevelen mechanism 38]. In a recent publication, we described additional useful features f the V2O5/zeolite catalytic system [20]. Besides the advan- ages mentioned above, vanadium oxides supported on zeolites ere much less susceptible to deactivation, compared to the bare eolites. Several parallel and unknown reactions occur simultane- oday 289 (2017) 20–28 21 ously with glycerol dehydration to acrolein. Byproducts include acetaldehyde, acetol, and acetic acid, as well as very harmful and deactivating coke molecules. After catalytic experiments with bare zeolites, the polymerization of bulky molecules on the surfaces of the catalysts led to coke formation and a characteristic black appearance. However, in the previous work it was found that when a V2O5/zeolite catalyst was used, the coke was continuously oxi- dized due to the presence of well-dispersed vanadium oxides on the zeolite surface, which maintained the catalytic sites active for longer periods. The aim of the present work was to explore further the multi- ple benefits of porous V2O5/MFI catalysts in the one-step glycerol conversion to acrylic acid. The work focused on zeolite supports prepared by sequential processes of desilication (in NaOH solu- tion) and dealumination (in HCl or oxalic acid solutions) in order to tailor the pores and the quality of acid sites derived from either aluminum in tetrahedral coordination in the zeolite or from EFA. Improved transformation of glycerol was achieved on the micro- mesoporous V2O5/MFI zeolites, due to higher catalytic conversion, improved selectivity to acrolein and acrylic acid, extended catalyst stability, and decreased coke formation. 2. Experimental 2.1. Preparation of zeolite supports Zeolite of MFI structure (Si/Al mole ratio of 40) was kindly provided by Zeolyst (USA). The sample was submitted to alka- line treatment at 60 ◦C for 1 h using an aqueous solution of NaOH (0.6 mol/L). Detailed information concerning the desilication proce- dure is provided elsewhere [30,39]. The desilicated zeolite was then submitted to two different acid treatments using aqueous solu- tions of hydrochloric or oxalic acids. The acidic treatments were performed under reflux using 0.1 mol/L acid solution. The MFI sup- ports were denoted A (parent and untreated MFI zeolite), B (after alkaline treatment), C (after treatment using H2C2O4), and D (after treatment using HCl). After the sequential alkaline and acidic treat- ments, all the supports (A, B, C, and D) were ion exchanged three times with NH4NO3 solution, at room temperature. The exchanged NH4 + cations were thermally decomposed by heating the samples for 3 h in a conventional muffle furnace, in air atmosphere, from 25 ◦C to 500 ◦C at a heating rate of 10 ◦C/min. 2.2. Preparation of the catalysts V-MFI catalysts were obtained by incipient wetness impregna- tion of the supports using an aqueous solution of vanadyl sulfate (0.05 mol/L). Approximately 50 mL slurry of vanadyl sulfate solu- tion and zeolite was stirred for 1 h at 25 ◦C. The water was allowed to evaporate under vacuum at 40 ◦C, and the samples were dried overnight at 100 ◦C. Finally, the catalysts were subjected to a ther- mal treatment for 2 h in an air atmosphere, with heating from 25 ◦C to 500 ◦C at a rate of 5 ◦C/min. The contents of V2O5 in all the sam- ples was 10 wt.%. 2.3. Characterization of samples X-ray diffractograms of the supports and catalysts were obtained at the XPD beamline of the Brazilian Synchrotron Light Laboratory (LNLS), using a Huber 4 + 2 circle diffractometer equipped with an Eulerian cradle (model 513) placed approx- imately 13 m from the double-bounce Si(111) monochromator (� = 1.377494 Å) [40]. The data were collected in high-resolution mode, employing a Si(111) analyzer crystal and a Mythen detec- tor. Structural parameters were determined by the Rietveld profile method, using GSAS-EXPGUI software [41,42]. The scale factors, 2 lysis T z t C t l i i T a u t B s T a o s s e t 1 w 1 1 s m X w d t v f t fl t 1 p fl t o 2 e p a e a fl h w T d l c i e s p c the same protocol as glycerol dehydration, but with the reaction temperature shifted to 350 ◦C and with 20% of oxygen fed into the stream (6 mL/min of O2 and 24 mL/min of N2). The O2/glycerol mole ratio of 4.5 ensured that an excess of oxygen was used. 2 L.G. Possato et al. / Cata ero shifts, and backgrounds of the peak profiles, together with he lattice parameters, were refined by fitting with a sixth order hebyshev polynomial. Pseudo-Voigt functions were employed for he peak profile refinements. Other parameters were not refined. The textural properties of the supports and impregnated cata- ysts were determined by means of nitrogen adsorption-desorption sotherms obtained at −196 ◦C with a Micromeritics ASAP 2010 nstrument, using a relative pressure (P/P0) interval of 0.001-0.998. he samples were previously decontaminated by degassing for 12 h t 100 ◦C under a vacuum of 1 × 10−5 Pa. The t-plot method was sed to distinguish between the micro- and mesopore contribu- ions. Finally, the mesopore distribution was estimated using the JH method [24]. The 27Al NMR spectra were acquired using a Varian INOVA 500 pectrometer equipped with a 7 mm probe and operated at 4.5 kHz. he experiments were performed using a spinning rate of 78.2 MHz, cquisition time of 15.4 ms, pulse width of 2.4 �s, and recycle delay f 0.1 s. The 27Al chemical shifts were referenced to an aqueous olution of Al(NO3)3 (1 mol/L). Each spectrum was the result of 256 cans. Thermogravimetric analyses of the used catalysts (after the glyc- rol reaction) were performed with a TA Instruments SDT Q600 hermobalance. The samples were heated from 30 to 900 ◦C, at 0 ◦C/min, under a 100 mL/min flow of synthetic air. Scanning electron microscopy (SEM) analyses of the samples ere performed using an Inspect S50 microscope (FEI) operated at 0 kV, with a secondary electron detector and working distance of 0 mm. After 1 h in an ultrasonic bath, a suspension consisting of the ample and acetone was deposited on an aluminum stub specimen ount. The Si/Al mole ratio was determined by energy dispersive -ray spectroscopy (EDS), using the same microscope. The spectra ere measured in five different regions, and the composition was etermined by averaging the results obtained for each sample. The acid sites of the calcined catalysts were determined by emperature programmed desorption of ammonia (TPD-NH3). Pre- iously, a 200 mg portion of each sample was degassed at 300 ◦C or 1 h under a 60 mL/min flow of helium. The temperature was hen decreased to 100 ◦C and the sample was exposed for 1 h to a ow of 1% ammonia in helium (60 mL/min). After surface satura- ion, the sample was submitted to helium treatment at 100 ◦C for h to remove physisorbed ammonia. The TPD-NH3 analysis was erformed from 100 ◦C to 600 ◦C (at 10 ◦C/min), under a 60 mL/min ow of helium. The desorbed ammonia was monitored and quan- ified with a Pfeiffer vacuum mass spectrometer connected to the utlet stream of the tubular reactor. .4. Catalytic tests The bare zeolite and V-MFI catalysts were tested for glyc- rol dehydration and oxidehydration, respectively, at atmospheric ressure. Previously, 100 mg portions of the samples were heated t 300 ◦C for 15 min, under a 30 mL/min flow of nitrogen. The glyc- rol dehydration reaction was performed in a fixed-bed reactor t 300 ◦C for 6 h, using a solution of 10 wt.% glycerol in water. A ow of 0.05 mL/min of this liquid solution was introduced to a eated line using a syringe pump (KD Scientific), and the glycerol as transported to the reactor using a 30 mL/min flow of nitrogen. he unconverted glycerol and the reaction products were con- ensed continuously in a gas-liquid separator kept at 1 ◦C. The iquid was periodically collected, weighed, and injected into a gas hromatograph (Model GC-2014, Shimadzu) equipped with a cap- llary column (Rtx-1, 30 m, 0.32 mm, 1 �m) and a FID detector. For ach injection, a known mass of n-butanol was used as internal tandard. Four drops of standardized solution was diluted in iso- ropanol (1 mL) to prevent excess water from the chromatographic olumn. The GC analyses were performed in triplicate, and the oday 289 (2017) 20–28 retention times of all the compounds were compared with those of authentic standards. The glycerol conversions (Xglycerol) and prod- uct selectivities (S) were calculated using the following equations: Xglycerol(%) = nGl input − nGl output nGl input × 100 S(%) = ni nGl input − nGl output × Zi ZGl × 100 where: nGI input and nGl output are the input and output flows of glycerol; ni is the flow of the products i (mol/min); ZGl = 3 (the number of carbon atoms in the glycerol molecule); Zi = number of carbon atoms in the products. The deactivation (D) of the catalysts used in the glycerol dehy- dration was calculated using: D(%) = (Xglycerol)at time zero − (Xglycerol)after 6h (Xglycerol)at time zero × 100 The glycerol oxidehydration reaction was conducted following Fig. 1. Rietveld plots of samples A (parent MFI), B (NaOH), C (H2C2O4), and D (HCl), using � = 1.3775 Å: experimental (black line), calculated (red line), and difference plot (blue line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) lysis T 3 3 p t t ( i c M t p c T 0 a c T e t p p v t p s s c s a E a a N t s n p f s B o t p T C L.G. Possato et al. / Cata . Results and discussion .1. Characterization of the zeolite supports The XRD patterns of the MFI zeolites before treatment (sam- le A in Fig. 1), after the alkaline treatment (sample B), and after he acidic treatments (samples C and D) revealed the presence of he main reflections related to the MFI structure: (011), (200), and 051). The samples submitted to the treatments showed decreases n peak intensity, consistent with the reduction of long-range order aused by the extraction of silicon and aluminum atoms from the FI structure [35]. The oxalic acid and HCl treatments also affected he crystallinity of the samples, as clearly shown in the diffraction atterns of catalysts C and D, respectively. The results of structural analysis by Rietveld refinement indi- ated unit cell expansion after the alkaline treatment [43] (Table 1). he removal of silicon (which has a mean Si-O bond length of .162 nm) and the consequent increase in the concentration of luminum in the structure (mean Al-O bond length of 0.175 nm) aused unit cell expansion from 5236.9 nm3 to 5258.1 nm3 [44,45]. he unit cell expansion was additionally influenced by the pres- nce of aluminum atoms that remained in oligomeric form inside he pores of the zeolites. The subsequent acid treatments caused artial leaching of the EFA, and the structural analyses of these sam- les indicated changes in unit cell volume. The decreased unit cell olumes of the acid treated samples (C and D) revealed that the reatments were effective. The global chemical analyses of the sup- orts showed growth in the aluminum fraction from sample A to ample B (Si/Al ratios of 40 and 18, respectively), and growth in the ilicon fraction from sample B to samples C and D. Samples C and D were (Table 1) dissimilar in terms of both unit ell volume and aluminum fraction, due to the differences in the trengths of the acids used (the pKa values of hydrochloric acid nd oxalic acid are −6.3 and 1.2, respectively) and the mechanism of FA leaching. The action of HCl involved solubilization of oligomeric luminum oxide species, while oxalic acid acted as both an acid and chelating agent. The formation and leaching of EFA was followed using 27Al MAS- MR (Fig. 2). The chemical shift peak centered at 54 ppm was due o tetrahedral aluminum atoms in the zeolite structure, while the ignal between 0 and −20 ppm was due to the octahedrally coordi- ated aluminum of EFA [46]. As mentioned before, the desilication rocess was not only responsible for the extraction of silicon atoms rom the structure, but also for aluminum removal, as is clearly hown in the detail of the decomposed lines for desilicated sample . In contrast, the parent zeolite contained only a minor amount f EFA. A rigorous comparison of the NMR spectra showed that he peak at 54 ppm became slightly broadened after the chemical rocesses, because the tetrahedral arrangement of the aluminum able 1 hemical and textural properties of the bare and impregnated zeolite samples. Samples Vmicro (cm3/g) Vmeso (cm3/g) �mo NH3 A 0.33 0 388 B − NaOH 0.23 0.41 464 C − H2C2O4 0.21 1.25 406 D − HCl 0.18 1.30 529 Reference Al2O3 0 0.89 110 V-A 0.26 0 579 V-B 0.18 0.21 545 V-C 0.21 0.24 427 V-D 0.20 0.24 581 a Silicon to aluminum mole ratio determined by EDX (global chemical composition). b % EFA determined by deconvolution of the 27Al NMR spectrum (contribution of tetrah c Not applicable. oday 289 (2017) 20–28 23 atoms in the structure tended to distort. The same effect led to reduced crystallinity of samples B, C, and D. The relative intensities of the peaks in the NMR spectra were used for approximate calculation of the amounts of EFA (Table 1). Comparison of the results for Si/Alglobal and the percentage of EFA showed that the oxalic acid treatment provided greater selectivity in removal of EFA without severely affecting the aluminum frame- work. The micropore volume only changed slightly, from 0.23 to 0.21 cm3/g, while the mesopore volume showed a more signifi- cant change, from 0.41 to 1.25 cm3/g (Table 1). The reactivity of HCl was evidenced by a more pronounced reduction of the micro- pore volume to 0.18 cm3/g. Dealumination of zeolites with oxalic acid occurs because oxalic acid acts as a hydrolyzing agent by both solubilizing and removing aluminum oxohydroxide species, and forming aluminum oxalate complexes [47]. These complexes have a maximum size of around 0.64 nm, which is compatible with the pore dimensions of zeolites and enables mobility of the complexes within the pores [44]. The N2 adsorption-desorption isotherms of the MFI zeolites are shown in Fig. 3a. Sample A exhibited a Type I isotherm typical of a pure MFI microporous structure [48]. After the alkaline treatment, a hysteresis loop appeared and the capacity of this sample to adsorb N2 increased, especially at relative pressure (P/P0) above 0.8, due to the creation of intra-crystalline mesopores. Additionally, the dis- ruption of the micropore structure of the zeolite in alkaline solution led to a decrease of the adsorption plateau at low P/P0 characteris- tic of nitrogen adsorption limited by the micropore size. Analyses of the BJH pore size distribution (Fig. 3b) showed the creation of mesoporosity in the supports submitted to alkaline and acidic treat- ments. The pore size distributions broadened after use of the acid treatments to clean the zeolite surface, giving rise to additional porosity. The acid sites of the samples were characterized by temperature-programmed desorption, using ammonia as a basic probe molecule. The TPD-NH3 curves obtained for the bare and impregnated zeolites are shown in Fig. 4. The bare zeolite showed well-resolved NH3 desorption peaks, one in the low temperature (LT) region at around 200 ◦C, and one in the high temperature (HT) region at around 420 ◦C (Fig. 4a). The reference sample (�-Al2O3) presented a low amount of desorbed NH3 and a wide desorption temperature range, characteristic of the presence of Lewis acid sites. The amounts of NH3 desorbed from the samples are given in Table 1. The NaOH treatment resulted in increased NH3 desorption, due to the decrease in the Si/Al ratio (Table 1), in agreement with the results of the 27Al NMR and chemical analyses. Treatment of zeolite sample B with oxalic acid led to a decrease in the quantity of acidic sites, due to the removal of EFA, as found in the 27Al NMR analyses. The treatment with HCl was less effective in removing the EFA, so the acidity was greater than for the sample treated with oxalic acid [49]. l of /g Si/Alglobal a % EFAb Unit cell volume (nm3) 40 12 5236.9 18 29 5258.1 24 5 5250.0 26 11 5236.6 n/ac n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a edral aluminum species in the zeolite framework). 24 L.G. Possato et al. / Catalysis Today 289 (2017) 20–28 80 60 40 20 0 -20 D C B A In te ns it y (a rb . u ni t) Chemical Shift (ppm) a 80 60 40 20 0 -20 Chemical Shift (ppm) Sam ple B -13 ppm -1 ppm 54 ppm In te ns it y (a rb . u ni t) b Fig. 2. (a) 27Al NMR spectra of the parent and treated zeolites, and (b) deconvolution of the sample B spectrum. 0.0 0.2 0. 4 0.6 0. 8 1.0 500 a A ds or be d vo l. (c m 3 /g ) Relative pressure (P/ P0) A B C D 1 10 100 0.0 0.5 1.0 1.5 2.0 b Pore dia meter (nm) dV /d lo g( D ) (c m ³/ g) Fig. 3. (a) Nitrogen adsorption-desorption isotherms (filled and empty points correspond to nitrogen adsorption and desorption, respectively), and (b) BJH mesopore size distributions from the desorption branches. NH3) c s o l H o t d o Fig. 4. Temperature-programmed desorption of ammonia (TPD- The TPD-NH3 curve profiles of the vanadium oxide-impregnated amples (Fig. 4b) were significantly different, compared to those f the bare zeolites (Fig. 4a), with the LT and HT peaks shifted to ower temperatures. The LT peak increased in intensity, while the T peak ended at around 450 ◦C, instead of at the value of ca. 550 ◦C bserved for the bare zeolite. This could be explained by coverage of he strongest acid sites by vanadium oxide species. The quantities of esorbed NH3 were higher for all the samples containing vanadium xide, reflecting a predominance of weak Lewis acid sites [50,51]. urves for (a) the bare zeolites, and (b) the impregnated zeolites. 3.2. Characterization of the vanadium oxide-impregnated zeolites Quantitative phase analyses of the diffraction patterns for the impregnated VA, VB, VC, and VD catalysts (Fig. S1) revealed small quantities of crystalline V2O5 species. In terms of zeolite crys- tallinity, the XRD patterns were similar to those for the bare zeolites. In the treatment of the XRD data, the crystallography infor- mation file (CIF) from the International Zeolite Association (IZA) was adopted for the MFI zeolite, while the 29140 standard from the ICSD database was used for V2O5. From comparison of the samples, a crystalline V2O5 mass fraction of 9.0% was obtained for the parent L.G. Possato et al. / Catalysis T 200 30 0 40 0 50 0 335 nm 373 nm f( R ) (a rb . u ni t) Wavelenght (n m) VD VC VB VA F c p a T c m w o p d U s b s f i 2 T i a m h v s i t decomposition was related to contact of the glycerol molecule and F 3 ig. 5. UV–Vis diffuse reflectance spectra of samples containing vanadium oxide. atalyst, which was very close to the 10% mass percentage used in reparation of the samples, while V2O5 mass fractions between 4% nd 6.5% were obtained for the desilicated and acid treated samples. his effect of dispersion on the support, with production of poorly rystallized V2O5 particles, could be attributed to the creation of esopores and the capacity to cover the zeolite surface during the et impregnation process. Comparison of the mesopore volumes f the bare and impregnated zeolites (Table 1) confirmed the dis- ersion of V2O5 in the mesopores. The important influence of V2O5 ispersion on catalytic activity is discussed below. The diffuse reflectance spectroscopy measurements in the V–Vis region (Fig. 5) showed distinct results for the impregnated amples. The shapes of the spectra in this region were influenced y the local structures of the vanadium atoms. For example, the pectral range 333–500 nm provides information about the trans- er of low energy electrons between O and V5+ for vanadium atoms n octahedral coordination [52,53]. On the other hand, the range 85–333 nm is related to vanadium in tetrahedral coordination. he green dashed rectangle highlighted in Fig. 5 indicates a region nfluenced by the vanadium oxide environment. Bands at 335 nm nd 373 nm were due to electron charge transfer of V5+ with ter- inal or bridging oxygen anions, respectively. In other words, the ighlighted region was associated with terminal and supported anadium oxides. The main peak occurred at 384 nm, although hifts to higher energy (or lower wavelength) could occur, depend- ng on the degree of vanadium oxide coordination by water. Hence, he systematic increase in intensity of this band complemented Glycerol dehy dration 0 1 2 3 4 5 6 0 20 40 60 80 100 A B C D Al2O3 G ly ce ro l C on ve rs io n (% ) Time (h) ig. 6. Glycerol dehydration and oxidehydration of samples without (left plot) and with .0 mL/h and 6.0 mL/h of glycerol solution, respectively. oday 289 (2017) 20–28 25 the previous finding of greater dispersion of V2O5 on the porous zeolites. 3.3. Catalytic activity 3.3.1. Step 1 − glycerol dehydration The glycerol dehydration reaction occurs in two sequen- tial reactions. In the first reaction step, glycerol dehydrates on acid sites, giving rise to a water molecule and a very reactive 3-hydroxypropene intermediate that rapidly isomerizes via a keto- enol rearrangement to 3-hydroxypropanal. The 3-hydroxypropanal molecule then dehydrates, releasing water and acrolein. This reac- tion sequence occurs at protonic Brønsted acid sites [12,30,54]. In contrast to the performance of the acid sites of the zeolites, a plot obtained using a reference alumina (which mainly contained Lewis acid sites) as catalyst reflected low levels of activity and stability in the reaction (Fig. 6, Table 2). The catalytic results obtained for samples A, B, C, and D are summarized in Fig. 6. Regardless of the sample or the reaction time, the main product of glycerol dehydration was acrolein. Glyc- erol conversions of 88% and 87% were achieved using sample A and desilicated sample B, respectively. The beneficial effect of the micro-mesoporosity of sample B was shown by a decrease in cata- lyst deactivation from 19% to 7%. The acid treated samples (C and D) both showed glycerol con- version exceeding 90% during the first hour of reaction. However, there was more pronounced deactivation of the sample treated with hydrochloric acid (sample D), with deactivation values of 5.2% and 18.4% for samples C and D, respectively. These findings indi- cated that both acids caused leaching of EFA (Table 1), and that HCl was less selective than oxalic acid, because it also removed part of the structural aluminum, damaging the zeolite structure and consequently affecting the activity of the catalyst in the reaction. As mentioned before, all the samples were more selec- tive to acrolein, compared to other reaction products such as acetaldehyde, 3-hydroxypropanal, and acetol (Fig. 7). The prod- uct distributions obtained for sample A after 1 and 6 h (Fig. S2) were indicative of decreased selectivity to acetaldehyde (2 carbon atoms) and increased selectivity to 3-hydroxypropanal (3 carbon atoms). This suggested that decomposition of the primary molecule occurred at the beginning of the reaction, and that this decomposi- tion was associated with coke formation and COx release [30]. The products with strong acid sites on the catalyst surface that became progressively covered with coke, resulting in deactivation of the strong acid sites. This was also reflected in the lower selectivity to Glycerol oxidehydrati on 0 1 2 3 4 5 6 0 20 40 60 80 100 VA Time (h ) VB G ly ce ro l C on ve rs io n (% ) VC VA - 3 mL/h VD vanadium oxide (right plot). The filled and empty symbols correspond to flows of 26 L.G. Possato et al. / Catalysis Today 289 (2017) 20–28 Table 2 Reactant flow, conversion at time zero, catalyst deactivation, and %wt. of coke after 6 h on glycerol stream: (1) glycerol dehydration, and (2) glycerol oxidehydration. Reaction Catalyst 10 wt.% glycerol solution flow (mL/h) Conversion at time zero (%) Catalyst deactivation (%) % wt. of coke (1) A 3 90 19.4 12.6 B 89 7.0 15.5 C 100 5.2 17.8 D 100 18.4 14.1 Al2O3 65 68.5 55.5 (2) V-A 6 100 42.4 (0.0)a 12.8 (4.7) V-B 89 22.4 (0.0) 12.2 V-C 93 20.9 (0.0) 10.4 V-D a In brackets are indicated the results of catalyst deactivation under a flow of 3.0 mL/h 0 10 20 30 40 50 60 S el ec . C on de ns . P ro du c. ( % ) A B C D 3- hyd ro xy pro pan al Acr ole in Acr yli c A cid Pro pan al Ace ta ld eh yd e Ace tic A cid Ace to l Ally l A l. Pro pan oic A c. Car bon B ala nce 0 10 20 30 40 50 60 S el ec . C on de ns . P ro du c. ( % ) VA VB VC VD Fig. 7. Selectivity towards condensable products and carbon balance in dehydration (top) and oxidehydration (bottom) of the catalysts during 1 h of reaction at 300 ◦C a ◦ a u i g t g e t l s s o m z ments applied to the samples (Fig. 7 and S3). Use of sample VA resulted in 5% of acrylic acid after the first hour on stream, with nd 350 C, respectively. cetic acid after 6 h of reaction (Fig. S2), since acetic acid is a prod- ct formed from acetaldehyde oxidation. Furthermore, and most mportantly, there was increased selectivity to acrolein. Different behavior was observed for samples B, C, and D, with reater amounts of carbonaceous deposits detected, compared o the parent zeolite, despite lower deactivation. The thermo- ravimetric analyses of the spent catalysts (Fig. S3) enabled stablishment of relationships between the mesopore volumes and he amounts of carbonaceous compounds deposited on the cata- ysts, based on the weight loss. In the case of the purely microporous ample A, the coke was mainly deposited within straight and sinu- oidal micropores, or in the entrances of pores, blocking the access f new glycerol molecules. The effect of coke on catalytic perfor- ance was more noticeable, even for low coke contents. In porous eolites, the coke is preferentially located in the intra-crystalline 100 20.9 (0.0) 14.4 of glycerol solution. pockets created by desilication with NaOH and acid leaching, main- taining the micropores available for glycerol [24]. 3.3.2. Steps 1 and 2 − glycerol oxidehydration As mentioned before, the two steps of glycerol oxidehydration are (i) the dehydration of glycerol to acrolein on acid sites [2,30], and (ii) the conversion of acrolein to acrylic acid on redox sites [55]. Therefore, in the impregnated catalysts, the catalytic sites respon- sible for glycerol dehydration were the Brønsted acid sites, while V2O5 (better represented as V2O5-x) was responsible for acrylic acid formation. The V2O5 impregnation affected the acid sites of the catalysts, increasing the contribution of the Lewis acid sites and covering the strong Brønsted acid sites, as observed from the TPD-NH3 analyses. As reported previously, the amount of impreg- nated V2O5 significantly affected the proportions of acid and redox sites, leading to substantial alterations in catalyst activity [26]. The main difference between the two groups of samples concerned cat- alyst stability. No deactivation at all was observed for the samples impregnated with vanadium oxide. In order to be able to observe the deactivation and compare samples B, C, and D, the flow of glyc- erol fed to the reactor was increased from 3 to 6 mL/h (see VA results in Fig. 6, open and closed symbols). This change enabled detection of 42.4% deactivation of the VA catalyst. Despite the deactivation under this new experimental condition, the presence of vanadium oxide reduced the loss of catalytic activity, compared to the bare zeolites, demonstrating the multifunctional characteristics of these catalysts in promoting conversion, with selectivity to acrylic acid and stability of catalytic activity over longer periods. The desilicated and impregnated sample (VB) showed decreased deactivation in the dehydration reaction, compared to the VA cat- alyst, similar to the behavior observed for the bare zeolites. The coke was deposited in the formed mesopores, avoiding obstruction of the micropores. In addition, the removal of EFA by the action of oxalic acid, followed by impregnation (catalyst VC), resulted in a further small reduction in deactivation, which decreased to 20.9%. An interesting result was obtained for the sample treated with hydrochloric acid and impregnated with V2O5 (sample VD). This zeolite and the reference alumina showed the highest levels of deactivation in the dehydration of glycerol. However, in the oxide- hydration reaction, the VD catalyst presented deactivation very close to that of the VC catalyst, because the action of vanadium oxide helped to reduce coke formation by oxidizing smaller coke molecules before oligomerization. Furthermore, the mesoporosity helped in dispersing vanadium oxide on the surface of the zeolite, as confirmed by the UV–vis analysis that showed an increase in the signal at 335–373 nm. The distribution of the products was also affected by the treat- selectivity to acrylic acid increasing to 25% after 6 h. These sam- ples contained an average of 12 wt.% coke, so the shift in the acrylic L.G. Possato et al. / Catalysis Today 289 (2017) 20–28 27 mpreg a d s n i p i t a c g C h l 6 s t e w t t a a f t v t m i i o s z n a v p o t a [ s t p Fig. 8. TG (a) and DTA (b) curves of the catalysts i cid yield could be explained by the coverage by coke of the more eactivating sites. It should be noted that the acrylic acid selectivity howed a dependence on the glycerol flow. A flow of 3.0 mL/h was ot only beneficial to catalyst stability, but also enabled selectiv- ty to acrylic acid of 17% to be achieved in the first hour. Conditions roviding greater selectivity could therefore be obtained by adjust- ng the glycerol contact time. The initial acrylic acid selectivity of he VB catalyst (14%) was higher than obtained for the VA sample. Other products of glycerol oxidehydration are acetic acid and cetaldehyde, which both arise from the bifunctional nature of the atalyst. The acid sites crack the initial three carbon atoms of the lycerol molecule, resulting in acetaldehyde and one molecule of Ox. The presence of O2 then leads to the oxidation of acetalde- yde to acetic acid. The selectivities to these two products were ower than 10% in the first hour of reaction, and decreased after h due to deactivation of the sites. This behavior was the oppo- ite of that observed for the acrylic acid selectivity, suggesting that he same sites were involved. The carbon balance between the glyc- rol feed and the outflowing condensable liquid products increased ith the glycerol flow and in the presence of V2O5. At glycerol solu- ion flow rates of 3.0 mL/h (for the bare zeolites) and 6.0 mL/h (for he impregnated samples), the average carbon balances were 30% nd 55%, respectively. The activity results showed that the mesopores in the catalysts ssisted the mass transport of reactant and products, and there- ore promoted the catalytic activity. In addition, the formation of he extra porosity assisted in accommodation of the much less olatile polymeric coke molecules, which remained deposited in he intra-crystalline pockets within the zeolite mesopores, hence aintaining access to the micropores. Two types of coke are formed n glycerol reactions: (1) polyaromatic compounds formed in rad- cal reactions, and (2) polyglycols formed by the condensation f neighboring glycerol molecules [26]. Previous characterization tudies [20–22] have shown that both types are present in bare eolites, while the polyglycol type is suppressed following impreg- ation with V2O5. The results of the thermogravimetric analyses of the spent cat- lysts are shown in Fig. 8. The DTA curves of the catalysts with anadium oxide showed two exothermic peaks (Fig. 8b). The first eak, at lower temperature (∼350 ◦C), was associated with the re- xidation (exothermic event) of vanadium species (V4+ to V5+) in he case of the spent V2O5/ZSM-5 catalysts [20]. The second peak, at bout 500 ◦C, was due to polyaromatics (known as stubborn coke) 8,56,57]. In the first temperature region, some samples showed a light increase in mass (Fig. 8a), associated with the oxidation of V4+ o V5+ (highlighted in Fig. 8b) [26]. The VD sample showed a small eak near 200 ◦C, which could have been related to the decom- nated with vanadium oxide after 6 h of reaction. position of carbonaceous species on the catalyst surface. The high porosity of this sample (Table 1) was likely to have contributed to the oxidation of coke precursors at low temperatures. For com- parison, the thermogram of the most coked sample A is present in Fig. 8a . The largest DTA signal (Fig. 8b) represents the two species of coke formed. As mentioned, despite the Lewis acid sites are formed in large amounts after V2O5 impregnation, condition that could damage the catalytic activity as shown for �-Al2O3, the maintenance of Brønsted acid sites with the coverage of the strong Brønsted acid sites by the impregnation was an important aspect for maintaining catalytic activity for a prolonged time. 4. Conclusions The alkaline treatment of ZSM-5 zeolite with NaOH was effec- tive for obtaining a micro-mesoporous zeolite by partial disruption of the crystalline framework due to silicon removal. A portion of the framework aluminum atoms in tetrahedral coordination was also removed, but due to their low solubility, these atoms remained on the zeolite as EFA (extra-framework aluminum). The removal of EFA was achieved by subsequent acid treatment using either hydrochloric acid or oxalic acid. The latter was more effective, because although hydrochloric acid acted to dissolve oligomeric aluminum oxide species, it also attacked the crystalline zeolite structure, while oxalic acid additionally acted as a chelating agent. The micro-mesoporous zeolites were subsequently impregnated with vanadyl sulfate solution and calcined to form supported V2O5. Spectroscopic measurements in the UV–Vis region indicated that V2O5 was well dispersed on the porous zeolites, due to the high pore volumes. The dispersion of V2O5 increased the quantity of acid sites on the zeolites. The beneficial effects of micro-mesoporosity and V2O5 dispersion could be seen in the performance of the cat- alysts during glycerol conversion. The selectivities to acrolein and acrylic acid were enhanced, and the smaller amounts of coke led to reduced deactivation. Acknowledgements This work was supported by the Brazilian agencies CNPq (grants 473456/2012-5 and 401679/2013-6) and FAPESP (grants 2013/10204-2, 2013/50023-7 and 2014/11952-5). The authors also thank the Brazilian Synchrotron Light Laboratory (LNLS) in Camp- inas for use of the XPD beamline (proposal XPD-17839). 2 lysis T A i 0 R [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Dumeignil, Green Chem. 12 (2010) 1922–1925. 8 L.G. Possato et al. / Cata ppendix A. Supplementary data Supplementary data associated with this article can be found, n the online version, at http://dx.doi.org/10.1016/j.cattod.2016.08. 05. eferences [1] B. Katryniok, S. Paul, V. Belliere-Baca, P. Rey, F. Dumeignil, Green Chem. 12 (2010) 2079–2098. [2] B. Katryniok, S. Paul, F. Dumeignil, ACS Catal. 3 (2013) 1819–1834. [3] C.A.G. Quispe, C.J.R. Coronado, J.A. Carvalho Jr., Renew. Sustainable Energy Rev. 27 (2013) 475–493. [4] M.A. Dasari, P.P. Kiatsimkul, W.R. Sutterlin, G.J. Suppes, Appl.Catal. A-Gen. 281 (2005) 225–231. [5] T. Miyazawa, Y. Kusunoki, K. Kunimori, K. Tomishige, J. Catal. 240 (2006) 213–221. [6] J. Chaminand, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel, C. Rosier, Green Chem. 6 (2004) 359–361. [7] P.K. Vanama, A. Kumar, S.R. Ginjupalli, V.R.C. Komandur, Catal. Today 250 (2015) 226–238. [8] H. Atia, U. Armbruster, A. Martin, J. Catal. 258 (2008) 71–82. [9] F. Wang, J.-L. Dubois, W. Ueda, Appl. Catal. A-Gen. 376 (2010) 25–32. 10] F. Cavani, S. Guidetti, L. Marinelli, M. Piccinini, E. Ghedini, M. Signoretto, Appl. Catal. B-Environ. 100 (2010) 197–204. 11] N.R. Shiju, D.R. Brown, K. Wilson, G. Rothenberg, Top. Catal. 53 (2010) 1217–1223. 12] J. Deleplanque, J.L. Dubois, J.F. Devaux, W. Ueda, Catal. Today 157 (2010) 351–358. 13] Y.T. Kim, K.-D. Jung, E.D. Park, Appl. Catal. A-Gen. 393 (2011) 275–287. 14] C.S. Carriç o, F.T. Cruz, M.B. Santos, D.S. Oliveira, H.O. Pastore, H.M.C. Andrade, A.J.S. Mascarenhas, J. Catal. 334 (2016) 34–41. 15] W.Y. Pan, L. Huang, F. Qin, Y. Zhuang, X.M. Li, J.X. Ma, W. Shen, H.L. Xu, Acta Phys. Chim. Sin. 31 (2015) 965–972. 16] J.P. Lourenco, M.I. Macedo, A. Fernandes, Catal. Commun. 19 (2012) 105–109. 17] J.A. Cecilia, C. Garcia-Sancho, J.M. Merida-Robles, J.S. González, R. Moreno-Tost, P. Maireles-Torres, Appl. Catal. A-Gen. 516 (2016) 30–40. 18] A.S. Paula, L.G. Possato, D.R. Ratero, J. Contro, K. Keinan-Adamsky, R.R. Soares, G. Goobes, L. Martins, J.G. Nery, Microporous Mesoporous Mater. 232 (2016) 151–160. 19] L. Shen, H. Yin, A. Wang, Y. Feng, Y. Shen, Z. Wu, T. Jiang, Chem. Eng. J. 180 (2012) 277–283. 20] L. Shen, H. Yin, A. Wang, X. Lu, C. Zhang, F. Chen, Y. Wang, H. Chen, J. Ind. Eng. Chem. 20 (2014) 759–766. 21] M. Dolores Soriano, P. Concepcion, J.M. Lopez Nieto, F. Cavani, S. Guidetti, C. Trevisanut, Green Chem. 13 (2011) 2954–2962. 22] A. Chieregato, F. Basile, P. Concepcion, S. Guidetti, G. Liosi, M. Dolores Soriano, C. Trevisanut, F. Cavani, J.M. Lopez Nietoc, Catal. Today 197 (2012) 58–65. 23] A. Chieregato, M. Dolores Soriano, F. Basile, G. Liosi, S. Zamora, P. Concepcion, F. Cavani, J.M. Lopez Nieto, Appl. Catal. B-Environ. 150 (2014) 37–46. 24] L. Shen, H. Yin, A. Wang, X. Lu, C. Zhang, Chem. Eng. J. 244 (2014) 168–177. 25] A. Chieregato, M.D. Soriano, E. Garcia-Gonzalez, G. Puglia, F. Basile, P. Concepcion, C. Bandinelli, J.M.L. Nieto, F. Cavani, ChemSusChem 8 (2015) 398–406. [ [ [ oday 289 (2017) 20–28 26] L.G. Possato, W.H. Cassinelli, T. Garetto, S.H. Pulcinelli, C.V. Santilli, L. Martins, Appl. Catal. A: Gen. 492 (2015) 243–251. 27] L.H. Vieira, K.T. Carvalho, E.A. Urquieta-González, S.H. Pulcinelli, C.V. Santilli, L. Martins, J. Mol. Catal. A: Chem. (2015), http://dx.doi.org/10.1016/j.molcata. 2015.12.019 (in press). 28] M.V. Rodrigues, C. Vignatti, T. Garetto, S.H. Pulcinelli, C.V. Santilli, L. Martins, Appl. Catal. A: Gen. 495 (2015) 84–91. 29] H. Decolatti, B. Dalla Costa, C. Querini, Microporous Mesoporous Mat. 204 (2015) 180–189. 30] L.G. Possato, R.N. Diniz, T. Garetto, S.H. Pulcinelli, C.V. Santilli, L. Martins, J. Catal. 300 (2013) 102–112. 31] J.C. Groen, J.C. Jansen, J.A. Moulijn, J. Perez-Ramirez, J. Phys. Chem. B 108 (2004) 13062–13065. 32] J.C. Groen, L.A.A. Peffer, J.A. Moulijn, J. Perez-Ramirez, Microporous Mesoporous Mat. 69 (2004) 29–34. 33] J.C. Groen, T. Bach, U. Ziese, A. Donk, K.P. de Jong, J.A. Moulijn, J. Perez-Ramirez, J. Am. Chem. Soc. 127 (2005) 10792–10793. 34] J.C. Groen, L.A.A. Peffer, J.A. Moulijn, J. Perez-Ramirez, Chem. A Eur. J. 11 (2005) 4983–4994. 35] J.C. Groen, J.A. Moulijn, J. Perez-Ramirez, J. Mater. Chem. 16 (2006) 2121–2131. 36] J.C. Groen, W. Zhu, S. Brouwer, S.J. Huynink, F. Kapteijn, J.A. Moulijn, J. Perez-Ramirez, J. Am. Chem. Soc. 129 (2007) 355–360. 37] J. Perez-Ramirez, C.H. Christensen, K. Egeblad, C.H. Christensen, J.C. Groen, Chem. Soc. Rev. 37 (2008) 2530–2542. 38] P. Mars, D.W. Van Krevelen, Chem. Eng. Sci. 3 (1954) 41–59. 39] D. Verboekend, S. Mitchell, M. Milina, J.C. Groen, J. Perez-Ramirez, J. Phys. Chem. C 115 (2011) 14193–14203. 40] H. Canova, A. Fontoura, R. Neuenschwander, B. Diaz, C. Rodella, Upgrades to the XRD1 beamline optics and endstation at the LNLS, J. Phys. Conf. Series IOP Publ. (2014) (p. 012004). 41] B. Toby, J. Appl. Crystallogr. 34 (2001) 210–213. 42] A.F. Gualtieri, S. Ferrari, M. Leoni, G. Grathoff, R. Hugo, M. Shatnawi, G. Paglia, S. Billinge, J. Appl. Crystallogr. 41 (2008) 402–415. 43] V. Paixao, R. Monteiro, M. Andrade, A. Fernandes, J. Rocha, A.P. Carvalho, A. Martins, Appl. Catal. A-Gen. 402 (2011) 59–68. 44] R. Giudici, H.W. Kouwenhoven, R. Prins, Appl. Catal. A-Gen. 203 (2000) 101–110. 45] J.T. Smith, S. Bailey, Acta Crystallogr. 16 (1963) 801–811. 46] Z.M. Yan, M.A. Ding, J.Q. Zhuang, X.C. Liu, X.M. Liu, X.W. Han, X.H. Bao, F.X. Chang, L. Xu, Z.M. Liu, J. Mol. Catal. A-Chem. 194 (2003) 153–167. 47] M.R. Apelian, A.S. Fung, G.J. Kennedy, T.F. Degnan, J. Phys. Chem. 100 (1996) 16577–16583. 48] S. Storck, H. Bretinger, W.F. Maier, Appl. Catal. A-Gen. 174 (1998) 137–146. 49] A.W. Chester, E.G. Derouane, Zeolite Charact. Catal. A Tutorial (2009). 50] M. Petras, B. Wichterlova, J. Phys. Chem. 96 (1992) 1805–1809. 51] S.S.R. Putluru, A. Riisager, R. Fehrmann, Appl. Catal. B-Environ. 97 (2010) 333–339. 52] X.T. Gao, I.E. Wachs, J. Phys. Chem. B 104 (2000) 1261–1268. 53] L.J. Burcham, G. Deo, X.T. Gao, I.E. Wachs, Top. Catal. 11 (2000) 85–100. 54] B. Katryniok, S. Paul, M. Capron, C. Lancelot, V. Belliere-Baca, P. Rey, F. 55] D. Vitry, Y. Morikawa, J.L. Dubois, W. Ueda, Appl. Catal. A-Gen. 251 (2003) 411–424. 56] C.-J. Jia, Y. Liu, W. Schmidt, A.-H. Lu, F. Schueth, J. Catal. 269 (2010) 71–79. 57] Y.T. Kim, K.-D. Jung, E.D. Park, Appl. Catal. B-Environ. 107 (2011) 177–187. http://dx.doi.org/10.1016/j.cattod.2016.08.005 http://dx.doi.org/10.1016/j.cattod.2016.08.005 http://dx.doi.org/10.1016/j.cattod.2016.08.005 http://dx.doi.org/10.1016/j.cattod.2016.08.005 http://dx.doi.org/10.1016/j.cattod.2016.08.005 http://dx.doi.org/10.1016/j.cattod.2016.08.005 http://dx.doi.org/10.1016/j.cattod.2016.08.005 http://dx.doi.org/10.1016/j.cattod.2016.08.005 http://dx.doi.org/10.1016/j.cattod.2016.08.005 http://dx.doi.org/10.1016/j.cattod.2016.08.005 http://dx.doi.org/10.1016/j.cattod.2016.08.005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0005 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0010 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0010 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0010 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0010 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0010 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0010 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0010 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0010 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0010 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0010 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0010 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0010 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0010 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0015 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0020 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0020 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0020 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0020 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0020 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0020 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0020 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0020 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0020 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0020 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0020 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0020 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0020 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0020 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0020 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0025 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0025 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0025 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0025 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0025 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0025 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0025 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0025 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0025 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0025 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0025 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0025 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0025 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0025 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0025 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0030 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0035 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0035 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0035 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0035 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0035 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0035 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0035 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0035 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0035 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0035 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0035 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0035 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0035 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0035 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0035 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0040 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0040 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0040 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0040 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0040 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0040 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0040 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0040 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0040 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0040 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0040 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0040 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0040 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0045 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0045 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0045 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0045 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0045 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0045 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0045 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0045 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0045 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0045 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0045 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0045 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0045 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0045 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0050 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0055 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0055 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0055 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0055 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0055 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0055 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0055 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0055 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0055 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0055 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0055 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0055 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0055 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0055 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0055 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0060 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0060 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0060 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0060 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0060 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0060 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0060 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0060 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0060 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0060 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0060 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0060 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0060 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0060 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0060 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0065 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0065 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0065 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0065 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0065 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0065 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0065 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0065 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0065 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0065 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0065 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0065 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0065 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0065 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0070 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0075 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0080 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0080 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0080 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0080 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0080 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0080 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0080 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0080 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0080 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0080 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0080 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0080 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0080 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0085 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0090 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0095 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0100 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0105 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0110 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0115 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0120 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0125 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0130 dx.doi.org/10.1016/j.molcata.2015.12.019 dx.doi.org/10.1016/j.molcata.2015.12.019 dx.doi.org/10.1016/j.molcata.2015.12.019 dx.doi.org/10.1016/j.molcata.2015.12.019 dx.doi.org/10.1016/j.molcata.2015.12.019 dx.doi.org/10.1016/j.molcata.2015.12.019 dx.doi.org/10.1016/j.molcata.2015.12.019 dx.doi.org/10.1016/j.molcata.2015.12.019 dx.doi.org/10.1016/j.molcata.2015.12.019 dx.doi.org/10.1016/j.molcata.2015.12.019 dx.doi.org/10.1016/j.molcata.2015.12.019 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0140 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0145 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0145 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0145 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0145 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0145 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0145 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0145 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0145 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0145 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0145 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0145 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0145 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0145 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0145 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0145 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0150 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0155 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0160 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0165 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0170 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0175 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0175 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0175 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0175 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0175 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0175 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0175 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0175 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0175 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0175 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0175 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0175 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0175 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0175 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0180 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0185 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0190 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0190 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0190 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0190 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0190 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0190 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0190 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0190 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0190 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0190 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0190 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0190 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0190 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0195 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0200 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0205 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0205 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0205 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0205 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0205 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0205 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0205 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0205 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0205 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0205 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0210 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0215 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0220 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0220 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0220 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0220 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0220 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0220 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0220 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0220 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0220 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0220 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0220 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0220 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0220 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0220 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0225 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0225 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0225 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0225 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0225 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0225 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0225 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0225 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0225 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0225 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0225 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0230 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0230 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0230 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0230 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0230 http://refhub.elsevier.com/S0920-5861(16)30510-7/sbref0230 http://refhub.elsevie