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Abstract

We present an analytic study of the finite size effects in sine-Gordon model, based on the
classical quantization of an appropriate kink background defined on a cylindrical geometr
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1. Introduction

Quantum field theory on a finite volume is a subject of both theoretical and practic
interest. It almost invariably enters the extrapolation procedure of numerical simula
limited in general to rather small samples, butit is also intimately related to quantum fie
theory at finite temperature. It is therefore important to increase our ability in treating
size effects by developing efficient analytic means. In the last years, a considerable prog
has been registered in particular on the study of finite size behaviour of two-dimen
systems. Also for these models, however, an exact treatment of their finite size effects h
been obtained only in particular situations, namely, when the systems are at critica
if they correspond to integrable field theories. At criticality, in fact, methods of finite si
scaling and conformal field theory[1,2] permit to determine many universal amplitud
and to extract as well useful information on the entire spectrum of the transfer matr
Away from criticality, exact results can be obtained only for those integrable theorie
scribed by a factorized and elastic scattering matrix[3,4] which, on a finite volume, ca
be further analysed by means of thermodynamical Bethe ansatz[5–9]. This technique pro
vides integral equations for the energy levels, mostly solved numerically. In all other
the control of finite size effects in two-dimensional QFT has been reached up to now ei
by conformal perturbation theory or numerical methods as, for instance, the one pro
in [11].

The aim of this paper is to study the finite size effects of a two-dimensional massive
by using a different approach, i.e., the non-perturbative semiclassical expansion
lated in the infinite volume case by Dashen, Hasslacher, Neveu[12] and by Goldstone an
Jackiw[13]. Apart from some issues which make such an analysis an interesting sub
itself, the main theoretical motivation of this work consists in the possibility of obtai
analytic results for the form factors and the energy levels at a finite geometry. In inte
cases, this adds to the above techniques (see also[10]), whereas for non-integrable mode
it is an efficient alternative to perturbative or numerical studies. As a matter of fact,
infinite volume case, semiclassical methods have proved to be, together with form
perturbation theory[18], ideal tools in the analysis of non-integrable quantum field theo
(see, for instance, Ref.[19]).

Form factors at a finite volume of local operators in both integrable and non-integ
theories have been studied in one of our previous papers[20]. These quantities enter th
spectral density representation of correlation functions which need, however, anothe
data for their complete determination, precisely the energies of the intermediate sta
finite volume. This paper is mainly devoted to fill this gap, that is, to face the problem
semiclassical computation of the energiesEi(R) of vacua and excited states as functions
the circumferenceR of a cylindrical geometry. Notice that, isolating a factor 1/R in front
of the Ei(R)s (simply due to their dimensionality), the remaining quantities arescaling
functionsof the variabler = mR, wherem is the lowest mass of the considered QFT.

It is worth to underline an important feature that has come out from the study o
semiclassical form factors in infinite volume. As we will discuss later, their accuracy see
to extend, somehow, beyond the regime in which they were supposed to be valid. To

with the known fast convergency properties of the spectral series and the information that
can be extracted on energy levels, the above result suggests that the semiclassical method
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may provide a rather precise estimate of finite volume correlation functions, an ou
which may be useful for many applications.

For methodological reasons, we have decided to present the semiclassical comp
of finite volume energies for a system that admits one of the simplest analysis, the
Gordon (SG) model. As we will see, this model is particularly appealing for its simp
semiclassical results whereby the significant physical effects we are looking for will n
masked by other additional complications. Moreover, due to the integrable nature
theory, its finite size effects have been previously studied by means of thermodyn
Bethe ansatz[8,9], and it would be interesting to perform a quantitative comparison
tween these results and the semiclassical ones, in order to directly control their ra
validity. However, as already pointed out, semiclassical methods apply not only to
grable theories and this opens the way to describe analytically the finite size effects also in
non-integrable models[21].

The paper is organized as follows: in Section2 we briefly recall the main ideas an
results of the semiclassical approach. We also discuss the simplest scaling functi
finite volume in order to clarify the nature of divergencies encountered in such com
tions. Section3 is devoted to the complete semiclassical analysis of the energies
quantum states in the kink sector of the SG model on a cylinder. In general, this
sis passes through the solution of a Schrödinger type equation for a particle in a p
potential and, for the SG model, this corresponds to a Lamé differential equation.
section we also discuss how to select the proper eigenvalues inside the band stru
the spectrum in order to determine the energy levelsEi(R). In Section4 we compute the
form factors of local operators by using the semiclassical methods and we comm
their properties. Our conclusions and further directions are discussed in Section5. There
are also several appendices:Appendix Apresents the quantization of a free bosonic the
in a finite volume and a comparison of finite-volume and finite-temperature comput
of the simplest one-point correlation function.Appendix Bcollects relevant mathematic
properties of the elliptic functions used in the text whereasAppendix Cdisplays the main
properties of the Lamé equation.

2. Semiclassical quantization

In this section, after recalling the basic equations of the semiclassical quantizatio
will present the simplest example of a scaling function on a cylindrical geometry, i.e
ground state energyEvac

0 (R) of a free massive bosonic field. In a semiclassical quantiza
Evac

0 (R) is the lowest energy level in the vacuum sector of the theory. This example
show, in particular, how to handle the divergencies usually encountered in the calcu
of the scaling functions.

2.1. DHN method

The main feature of a large class of 2D field theories with non-linear interaction

discrete degenerate minima is that they admit non-perturbative finite-energy classical so-
lutions (called kinks or solitons) carrying topological chargesQ±

top = ±1. In this paper
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we will concentrate our attention, in particular, on a specific model of this kind, i.e
sine-Gordon (SG), defined by the potential

(2.1)VSG(φ) = m2

β2
(1− cosβφ).

In such theories, the kinks generally interpolate between two next neighbouring m
of the potential (vacua) which are constant solutions of the equation of motion (i
exampleφSG= 2πs/β, s = 0,1), and they exhibit certain particle properties. For instan
they are localized and topological stable objects, i.e., they do not decay into mesons w
Qtop = 0. Moreover, in integrable theories as SG model, their scattering is dispersio
and, in the collision processes,they preserve their form simply passing through each o

The kinks are static solutions of the equation of motion, i.e., they are time indepe
in their rest frame, and they can be simply obtained by integrating the first order differ
equation

(2.2)
1

2

(
∂φcl

∂x

)2

= V (φcl) + A,

further imposing thatφcl(x) reaches two different minima of the potentialV (φ) at x →
±∞. These boundary conditions, which describe the infinite volume case, require the v
ishing of the integration constantA. As we will see in the next section, the kink solutio
in a finite volume correspond instead to a non-zero value ofA, related to the sizeR of the
system.

All the above properties of the kink solutions are an indication that they can surviv
quantization, giving rise to the quantum states in one-particle sector of the corresp
QFT. A direct correspondence among the kink states and the corresponding classic
tion has been established by Goldstone and Jackiw who have shown in Ref.[13] that the
matrix element of the fieldφ between kink states is given, at leading order in the semic
sical limit, by the Fourier transform of the kink background. We will discuss this resul
its applications in Section4.

At the moment we are mainly concerned with the semiclassical quantization o
small fluctuations around kink backgrounds. As it is well known, one cannot apply dir
to them the standard perturbative methods of quantization around the free field theor
the kinks are entirely non-perturbative solutions of the interacting theory. Their cla
mass, for instance, is usually inversely proportional to the coupling constant (in th
model one hasMcl = 8m/β2). In an infinite volume, an effective method for the semicl
sical quantization of such kink solutions (as well as of the vacua ones) has been dev
in a series of papers by Dashen, Hasslacher and Neveu (DHN)[12] by using an appropriat
generalization of the WKB approximation in quantum mechanics. Further develop
were achieved with complementary techniques by Callan and Gross[14], Gervais, Jevick
and Sakita[15], Faddeev and Korepin[16] (see also[17] for a review and complete refe
ences).
The DHN method consists in initially splitting the fieldφ(x, t) in terms of its classical
static solution of the equation of motion (which can be either one of the vacua or the kink
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configuration) and its quantum fluctuations, i.e.,

(2.3)φ(x, t) = φcl(x) + η(x, t), η(x, t) =
∑

k

eiωktηk(x),

and in further expanding the Hamiltonian of the theory in powers ofη, by keeping only the
quadratic terms. As a result of this procedure,ηk(x) satisfies the Schrödinger equation

(2.4)

[
− d2

dx2
+ V ′′(φcl)

]
ηk(x) = ω2

kηk(x),

together with certain boundary conditions. Thesemiclassical energy levels in each s
tor are then built in terms of the energy of the corresponding classical solution an
eigenvaluesωi of the stability equation(2.4), i.e.,

(2.5)E{ni } = Ecl + h̄
∑

k

(
nk + 1

2

)
ωk + O

(
h̄2),

wherenk are non-negative integers. In particular, the ground state energy in each se
obtained by choosing allnk = 0 and it is therefore given by2

(2.6)E0 = Ecl + h̄

2

∑
k

ωk + O
(
h̄2).

In summary, to each static finite energy solution of(2.2)corresponds a tower of qua
tum energy eigenstates(2.5) representing the 0-particle (vacua) and 1-particle (kink),
their excitations. The construction of thecomplete Hilbert space, including then-particle
sectors (forn � 2), requires to consider time-dependent multi-kink and breather solu
with finite energy. Their semiclassical quantization can be performed with an appropria
modification of the DHN method[12].

As we have mentioned in the Introduction, the analytic form of the semiclassical sc
functions for the 2D QFTs admitting static kink solutions can be achieved by DHN me
suitably adapted to finite size geometry. In the following we will discuss in details
results of sine-Gordon model on a cylindrical geometry which, as we shall see, adm
simplest technical analysis. On this geometry—described by a space variable compactifi
on a circle of circumferenceR and by a time variablet running on an infinite interval—th
SG model admits quasi-periodic boundary conditions (b.c.)

(2.7)φ(x + R, t) = φ(x, t) + 2nπ

β
,

where the arbitrary winding numbern ∈ Z originates from the invariance of the potent
(2.1)underφ → φ + 2nπ/β. In particular, since we are interested in the one-kink se
which is defined byn = 1, we will impose the b.c.,

(2.8)φ(x + R, t) = φ(x, t) + 2π

β
.

2 From now on we will fixh̄ = 1, since it is well known that the semiclassical expansion inh̄ is equivalent to
the expansion in the interaction coupling.
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The first step for applying the semiclassical method to this problem is to find the
size analog of the kink solution, satisfying now the b.c.s(2.8). However, the success in co
structing the scaling functions depends on whether one is able to solve the correspond
Schrödinger equation(2.4)and to derive an analytical expression for its frequenciesωk . It
turns out that the semiclassical finite size effects in SG model are intrinsically rela
the simplest (N = 1) Lamé equation, which admits a complete analytical study.

2.2. SG in infinite volume

The semiclassical quantization of the sine-Gordon soliton in infinite volume has
performed in[12]. We report here the basic results in order to show how the semicla
technique works in the simplest example andalso to introduce the quantities that should
obtained in the IR limit of the forthcoming finite volume results.

The classical (anti)soliton

(2.9)φcl(x) = 4

β
arctan

(
e±m(x−x0)

)
,

is solution of Eq.(2.2) with A = 0. It connects the two degenerate vacuaφ = 0 andφ =
2π/β and its classical mass is given byMcl = 8m/β2. Plugging the above expressio
in (2.4), this equation can be cast in the hypergeometric form by using the variablz =
1/2(1+ tanhmx), and its solution is expressed as

(2.10)η(x) = 1

β
z

1
2

√
1− ω2

m2
(1− z)

− 1
2

√
1− ω2

m2
F

(
2,−1,1+

√
1− ω2

m2 , z

)
.

The corresponding spectrum is given by the discrete valueω2
0 = 0 (i.e., the zero mode ass

ciated to the translation invariance of the theory) and by the continuous partω2
q = m2(1+

q2), characterized by the absence of reflection and by the phase shiftδ(q) = 2 arctan(1/q).
The semiclassical correction to the mass is given by the difference between the

state energy of the soliton and the one of the vacuum, with the addition of a mass counte
erm due to normal ordering of the interaction term in the Hamiltonian

(2.11)

M − Mcl = 1

2

∑
n

[
m

√
1+ q2

n −
√

k2
n + m2

]
− δµ2

β2

∞∫
−∞

dx
[
1− cosβφcl(x)

]
,

with

(2.12)δµ2 = −m2β2

8π

∞∫
−∞

dk√
k2 + m2

.

The discrete valuesqn andkn are obtained by defining the system in a large finite volu
of sizeR with periodic boundary conditions
(2.13)2nπ = knR = mqnR + δ(qn).
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SendingR → ∞ and computing the integrals, one finally obtains the semiclassical q
tum correction to the mass of the kink

(2.14)M = 8m

β2
− m

π
.

As it is well known, the exact solution of the quantum sine-Gordon model shows th
coupling constantβ2 renormalises as[22]

(2.15)β2 → γ = β2

1− β2/8π
.

Moreover, the exact quantum mass of the soliton is given byM = 8m/γ , which coincides
with the above expression(2.14). The equality of the semiclassical and the exact resul
the soliton mass is a remarkable property of the SG model, on which we will come b
the following sections.

2.3. Ground state energy regularization in finite volume

As shown by Eq.(2.6), quantum corrections to energy levels are given by the s
on the frequenciesωn. However, this series is generally divergent (this is the usual
divergence in field theory) and a criterion is needed to regularize it. It is quite instruct
consider the simplest example where such divergence occur, i.e., in the calculation of t
ground state energyEvac

0 (R) of the vacuum sector of the theory on a cylindrical geom
of circumferenceR. This can be constructed by implementing the DHN procedure for
of the constant solutions, for instanceφvac

cl = 0, imposing periodic boundary condition
for the corresponding fluctuationsηvac(x). Obviously, what comes out is nothing else b
the Casimir energy of a free bosonic fieldφ(x, t) with massm. In this case the frequenc
eigenvalues are fixed to be

(2.16)ωn =
√

p2
n + m2,

with pn = 2πn/R andn = 0,±1,±2, . . . .
The ground state energy has to be regularized by subtracting its infinite-volume c

uous limit: this ensures in fact the proper normalization of this quantity, expressed by

(2.17)lim
R→∞Evac

0 (R) = 0.

The ground state energy at a finite volume is therefore defined by

(2.18)Evac
0 (R) = 1

2

∞∑
n=−∞

√(
2πn

R

)2

+ m2 − 1

2

∞∫
−∞

dn

√(
2πn

R

)2

+ m2.

Isolating the zero mode, it can be conveniently rewritten as

(2.19)Evac(R) = m + 2π
∞∑√

n2 +
(

r
)2

− 2π
∞∫

dn

√
n2 +

(
r

)2

,
0 2 R
n=1

2π R
0

2π
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wherer ≡ mR. Since the divergence of the series is due to the largen behaviour of the firs
two terms in the expansion

(2.20)

√
n2 +

(
r

2π

)2

� n + 1

2

(
r

2π

)2 1

n
+O

(
1

n2

)
,

we begin our calculation by subtracting and adding these divergent terms to it

S(r) ≡
∞∑

n=1

√
n2 +

(
r

2π

)2

(2.21)

=
∞∑

n=1

{√
n2 +

(
r

2π

)2

− n − 1

2

(
r

2π

)2 1

n

}
+

∞∑
n=1

n + 1

2

(
r

2π

)2 ∞∑
n=1

1

n
.

The first series in the right-hand side of the above expression is now convergent, w
the last two terms should be coupled to the analogous ones coming from the integral,
divergencies have to be handled in strict correspondence with those coming from the
Hence, by subtracting and adding the leading divergence to the integral

(2.22)I (r) ≡
∞∫

0

dn

√
n2 +

(
r

2π

)2

=
∞∫

0

dn

{√
n2 +

(
r

2π

)2

− n

}
+

∞∫
0

dnn,

we can combine the last term in this expression with the one in(2.21)and implement the
well-known regularization

(2.23)
∞∑

n=0

n −
∞∫

0

ndn = lim
α→0

[ ∞∑
n=0

ne−αn −
∞∫

0

ne−αndn

]
= − 1

12
.

However, the first term in(2.22)still contains a subleading logarithmic divergence, a
can be seen by explicitly computing the integral by using a cut-offΛ, in the limit Λ → ∞

(2.24)

Λ∫
0

dn

{√
n2 +

(
r

2π

)2

− n

}
= 1

2

(
r

2π

)2

ln2Λ + 1

4

(
r

2π

)2

− 1

2

(
r

2π

)2

ln
r

2π
.

This divergence can be cured by subtracting and adding the term1
2( r

2π
)2 lnΛ. By combin-

ing this last term with its analogous in the series we have

(2.25)lim
Λ→∞

(
Λ∑

n=1

1

n
− lnΛ

)
= γE,
whereγE is the Euler–Mascheroni constant, while the remaining part of(2.24)with the
above subtraction is now finite.
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Collecting the above results, the finite expression of the ground state energy on a
der is then given by

Evac
0 (R) = 1

R

[
−π

6
+ r

2
+ r2

4π

(
ln

r

4π
+ γE − 1

2

)

(2.26)+
∞∑

n=1

(√
(2πn)2 + r2 − 2πn − r2

4πn

)]
.

It is now easy to see that(2.26)fulfills the requirement of modular invariance of the theo
which imposes its equality with the TBA expression[7]

(2.27)Evac
0 (R) = −πc(r)

6R
,

where

(2.28)c(r) = − 6r

π2

∞∫
0

dθ coshθ ln
(
1− e−r coshθ ).

In fact, this integral formula can be expressed in terms of Bessel functions, which a
series representation that directly leads to(2.26)(see Ref.[7]). For this theory we obviousl
havec(0) = 1. Moreover, one can also check that the above regularization scheme ensu
the agreement between theR andL channel calculations of the finite expression of
one-point functions〈φ2k〉 [23]. The interested reader can find the simplest exampl
these calculations inAppendix A.

Finally, it is worth to note that the result(2.26)can also be obtained by using a simp
prescription which automatically includes the subtraction of the various divergencies, fa
tening the calculation. This consists in ignoring the divergent part of the integral, ke
only its finite part, and in regularizing the divergent series as

(2.29)
∞∑

n=1

n

∣∣∣∣
reg

= − 1

12
,

(2.30)
∞∑

n=1

1

n

∣∣∣∣
reg

= γE + ln
r

2π
.

Formula(2.29)is the standard regularization of the Riemann zeta functionζ(−1), where
ζ(s) = ∑∞

n=1 1/ns , and usually corresponds to normal ordering with respect to the in
volume vacuum (see, for instance,[24, Chapter 4]). On the contrary, the regularization
the second series is a priori ambiguous due to its logarithmic divergence, and its finite
(2.30)was chosen according to the above discussion.

3. Scaling functions on the cylinder

We will now develop a complete semiclassical scheme to analyse the energy

quantum state in SG model containing one soliton on the cylinder. This can be achieved by
applying the DHN method to an appropriate kink background.
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3.1. Properties of the periodic kink solution

In order to identify a kink on the cylinder, we have to look for a static finite ene
solution of the SG model satisfying the quasi-periodic boundary condition(2.8). For the
first order equation

(3.1)
1

2

(
∂φcl

∂x

)2

= m2

β2 (1− cosβφcl + A),

a solution which has this property can be found forA > 0. It can be expressed as

(3.2)φcl(x) = π

β
+ 2

β
am

(
m(x − x0)

k
, k2

)
, k2 = 2

2+ A
,

provided the circumferenceR of the cylinder is identified with

(3.3)R = 2

m
kK

(
k2),

whereK(k2) denotes the complete elliptic integral of the first kind.3 The parameterx0
in (3.2) represents the kink’s center of mass position, and its arbitrariness is due
translational invariance of the theory around the cylinder axis. The behaviour of(3.2)as a
function of the real variablex is shown inFig. 1.

The function(3.2)has been first proposed in[25] and interpreted as a crystal of solito
in the sine-Gordon theory in infinite volume. In our finite volume case, instead,(3.2)has
to be seen as a single soliton defined on a cylinder of circumferenceR (given by Eq.(3.3)),
while its quasi-periodic oscillations represent winding around the cylinder. As shown
Eq. (3.3), there is an explicit relation between the size of the system and the integ
constantA. It is easy to see that the infinite volume solution(2.9)is consistently recovere
from (3.2)in the limit A → 0, i.e., whenR goes to infinity.

Fig. 1. Solution of Eq.(3.1)with A > 0 andx0 = 0.
3 The definition and basic properties ofK(k2) and the Jacobi elliptic amplitude am(u, k2) can be found in
Appendix B.
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The classical energy of the kink on the cylinder is given by

Ecl(R) =
R/2∫

−R/2

dx

[
1

2

(
∂φcl

∂x

)2

+ m2

β2
(1− cosβφcl)

]

(3.4)= 8m

β2

[
E(k2)

k
+ k

2

(
1− 1

k2

)
K

(
k2)],

whereE(k2) is the complete elliptic integral of the second kind. In theR → ∞ limit (which
corresponds tok′ → 0, with (k′)2 ≡ 1 − k2), Ecl(R) approaches exponentially the corre
valueM∞ = 8m/β2. This can be seen expandingE andK for smallk′ (seeAppendix B),
and expressing the result in terms ofmR, which can be itself expanded ink′ in virtue of
the relation(3.3)

e−mR = 1

16
(k′)2 + · · · .

Hence the largeR expansion of the classical energy is

(3.5)Ecl(R) = M∞ + 32

β2me−mR + O
(
e−2mR

)
.

We will comment more on the interpretation of this result in Section3.3.
Similarly, one can derive the behaviour ofEcl(R) for smallr = mR, which correspond

to the limit A → ∞ (or k2 → 0):

(3.6)Ecl(R) = 2π

R

π

β2 + m
r

β2 − m

(
r

2π

)3 π

2β2 + · · · .
This formula will be relevant in the discussion of the UV properties of the scaling func
presented in Section3.3.

Before moving to the quantization of the kink-background(3.2), it is worth to mention
that another simple kind of elliptic function, which solves Eq.(3.1) for −2 < A < 0, was
also proposed in[25] and interpreted as a crystal of solitons and antisolitons in the infi
volume SG. This background corresponds as well to a kink on the cylinder geomet
satisfying theantiperiodicboundary conditions

φ(x + R, t) = 2π

β
− φ(x, t).

The associated form factors were obtained in[20]. Although the quantization of this se
ond kink solution is technically similar to the one of(3.2) presented in the next sectio
it displays however some different interpretative features that justify its discussion
separate publication[21].

3.2. Semiclassical quantization in finite volume

The application of the DHN method to the periodic kink(3.2) requires the solution o
Eq.(2.4)for the quantum fluctuationsηω, which in this case takes the form{ }
(3.7)
d2

dx̄2
+ k2(ω̄2 + 1

) − 2k2sn2(x̄, k2) ηω̄(x̄) = 0,
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where sn(x̄, k2) is the Jacobi elliptic function defined inAppendix B, and we have intro
duced the rescaled variables

(3.8)x̄ = mx

k
, ω̄ = ω

m
.

Due to the periodic properties ofφcl(x) expressed by Eq.(3.2), the boundarycondition
(2.8)translates in the requirement forηω̄(x̄)

(3.9)ηω̄

(
x̄ + mR

k

)
= ηω̄(x̄).

Eq.(3.7)can be cast in the so-called Lamé form, which admits the two linearly indepe
solutions

(3.10)η±a(x̄) = σ(x̄ + iK′ ± a)

σ(x̄ + iK′)
e∓x̄ζ(a),

where the auxiliary parametera is defined as a root of the equation

(3.11)P(a) = 2− k2

3
− k2ω̄2.

The Weierstrass functionsP(u), ζ(u) andσ(u) are defined inAppendix C, where the Lamé
equation and its relation with(3.7)are discussed in detail.

As it is usually the case for a Schrödinger-like equation with periodic potentia
spectrum of Eq.(3.7) has a band structure, determined by the properties of the Flo
exponent

(3.12)F(a) = 2i
[
Kζ(a) − aζ(K)

]
,

which is defined as the phase acquired byη±a in circling once the cylinder

η±a(x̄ + 2K) = e±iF (a)η±a(x̄).

We have two allowed bands for realF(a), i.e.,

(3.13)0 < ω̄2 <
1

k2 − 1 and ω̄2 >
1

k2 ,

and two forbidden bands forF(a) complex, i.e.,

(3.14)ω̄2 < 0 and
1

k2 − 1 < ω̄2 <
1

k2 .

The band 0< ω̄2 < 1−k2

k2 is described bya = K+ iy, wherey varies between 0 andK′ and,

correspondingly,F(a) goes from 0 toπ . The other allowed band̄ω2 > 1/k2 corresponds
instead toa = iy and, by varyingy, F(a) goes fromπ to infinity, as it is shown inFig. 2.

By imposing the periodic boundary conditions(3.9)on the fluctuationη(x̄), one selects
the values ofω̄2 for which the Floquet exponent is an even multiple ofπ , thus making

the spectrum of Eq.(3.7)discrete. These eigenvalues areω̄2

0 = 0, which is the zero mode
associated with translational invariance and has multiplicity one, and the infinite series of
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Fig. 2. Spectrum of Eq.(3.7).

points

(3.15)ω̄2
n ≡ 1

k2

[
2− k2

3
−P(iyn)

]

with multiplicity two, placed in the band̄ω2 > 1/k2, with yn determined by the equation

(3.16)F(iyn) = 2Kiζ(iyn) + 2ynζ(K) = 2nπ, n = 1,2, . . . .

In the IR limit (A → 0) the above spectrum goes to the one related to the stan
background(2.9): the allowed band 0< ω̄2 < 1/k2 − 1, in fact, shrinks to the eigenvalu
ω̄2

0 = 0, while the other allowed band̄ω2 > 1/k2 merges in the continuous part of th
spectrumω̄2

q = 1+ q2.
It is useful to note that, although theR dependence of the frequencies(3.15)is quite

implicit, since it passes through the inversion of Eq.(3.3), nevertheless these are analy
functions ofR and it is extremely simple to plot them. The corresponding curves, sh
in Fig. 3, provide an important piece of information, since they are nothing else bu
energies of the excited states with respect to their ground stateE0(R).

To complete the analysis, it remains then to determine the finite volume ground
energyE0(R) of the kink sector. In analogy with the infinite volume case (see Eq.(2.11)),
this is defined by

(3.17)E0(R) = Ecl(R) +
∞∑

n=1

ωn(R) − δµ2

β2

R/2∫
−R/2

dx [1− cosβφcl] − Evac
0 (R).

Before commenting in detail each of these terms, let us focus first on the main problem
deriving a closed expression forE0(R), which consists in the evaluation of the infinite su
on the frequenciesωn(R) or, better, in isolating its finite part. We need therefore a met
for solving the transcendental equation(3.16)for yn(k

2) in order to make the expressio

(3.15)for the frequenciesωn(k

2) explicit. As we have already seen for the classical energy,
two kinds of expansion are possible, one in the elliptic modulusk and the other in the
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Fig. 3. The first few levels defined in(3.15).

complementary modulusk′, which are efficient approximation schemes in the small an
larger regimes, respectively. Here for simplicity we only present the smallr expansion.
By taking into account the series expansion ink for K, ζ(u) andP(u) (seeAppendices B
and C), we are led to look for a solution of Eq.(3.16)in the form

(3.18)yn

(
k2) =

∞∑
s=0

(
k2)sy(s)

n .

Here we give the result for the first few coefficientsy
(s)
n , s = 0,1,2

y(0)
n = arctanh

1

2n
, y(1)

n = 1

4
y(0)
n ,

(3.19)y(2)
n = 9

64
y(0)
n − n

16(4n2 − 1)2 ,

which are those relevant in the analysis of the UV properties of the scaling function in
tion 3.3. As a consequence, we obtain the following simple expression for the freque

(3.20)
ωn

m
= 2n

k

[
1− k2

4
− k4

64

20n2 − 9

4n2 − 1
+ O

(
k6)].

Comparing it order by order with the small-k expansion of Eq.(3.3)

(3.21)r = mR = πk

[
1+ k2

4
+ 9

64
k4 + O

(
k6)],

we finally obtain the explicitR-dependence

(3.22)
ωn(R)

m
= 2π

r
n +

(
r

2π

)3
n

4n2 − 1
+ · · · .

It is worth noting that this series expansion inr, which can be easily extended up to desi

accuracy, efficiently approximates the exact energy levels also for rather large values of the
scaling variable.Fig. 4shows a numerical comparison between the first energy level given
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Fig. 4. Comparison between the exact energy levelω1/m given by(3.15)(continuous line) and the approxima
expression(3.22)(dotted line).

by (3.15)and its approximate expression(3.22), and for the higher levels it is possible
see that the agreement is even better.

With the above analysis, the sum over frequencies in the ground state energy(3.17)
takes the form

(3.23)
∞∑

n=1

ωn(R)

m
= 2π

r

∞∑
n=1

n +
(

r

2π

)3 ∞∑
n=1

n

4n2 − 1
+ · · · .

As we will see below, the subtraction of counterterm and vacuum energy in(3.17)leads to
the cancellation of all the divergencies, producing a finite expression for the ground
energy in the kink sector.

Moving now to the analysis of the remaining terms in(3.17), a similar series expansio
can be easily performed on each of them. The classical energyEcl(R), given in Eq.(3.4),
has already be treated in this way in Eq.(3.6). The finite volume counterterm (C.T.), whe
the one-loop mass renormalisation is given by

(3.24)δµ2 = −m2β2

8π

2π

R

∞∑
n=−∞

1√
m2 + (2nπ)2

R2

,

andφcl is given by(3.2), takes the explicit form

(3.25)C.T. = m

[
kK

(
k2) − K(k2) − E(k2)

k

] ∞∑
n=−∞

1√
(2nπ)2 + r2

.

The first terms of its expansion inR are then

(3.26)
C.T.

m
= 1

4
+ r

4π

∞∑
n=1

1

n
− r2

32π2
− 1

4

(
r

2π

)3 ∞∑
n=1

(
1

n
+ 1

n3

)
+ · · · .

Finally, the vacuum energyEvac
0 (R) is the one precisely computed in Section2.3. Since
its role is to cancel certain divergencies present in the other terms ofE0(R), in complete
analogy with the infinite volume case (see Eq.(2.11)), we will now consider its “naive”



resent
ut, and

of the

-
lues
the
ote
f the
to
aling
560 G. Mussardo et al. / Nuclear Physics B 699 [FS] (2004) 545–574

formulation, given by

Evac
0 (R)

m
= 1

2m

∞∑
n=−∞

√(
2nπ

R

)2

+ m2

(3.27)= 1

2
+ 2π

r

∞∑
n=1

n + r

4π

∞∑
n=1

1

n
− 1

8

(
r

2π

)3 ∞∑
n=1

1

n3 + · · · .

Hence, in the final expression for the ground state energy all the divergent series p
in the sum over frequencies, in the counterterm and in the vacuum energy cancel o
one obtains

E0(R)

m
= 2π

r

π

β2 − 1

4
+ 1

β2 r − 1

8

(
r

2π

)2

(3.28)−
(

r

2π

)3[1

8
ζ(3) − 1

4
(2 log2− 1) − π

2β2

]
+ · · · ,

where we have used[32]
∞∑

n=1

2n2 − 1

8n3(4n2 − 1)
= 1

8
ζ(3) − 1

4
(2 log2− 1)

in order to evaluate explicitly the coefficient of ther3 term.
Repeating the above calculations, one can also easily write the finite expressions

excited energy levels(2.5), whose series expansion inr is given by

E{kn}(R)

m
= 2π

r

(
π

β2
+

∑
n

knn

)
− 1

4
+ 1

β2
r − 1

8

(
r

2π

)2

(3.29)

−
(

r

2π

)3[1

8
ζ(3) − 1

4
(2 log2− 1) − π

2β2 +
∑
n

kn
n

4n2 − 1

]
+ · · · ,

where{kn} is a set of integers defining a particular excited state of the kink.

3.3. UV–IR correspondence

The semiclassical quantization of the periodic kink(3.2)provides us with analytic ex
pressions, albeit implicit, for the scaling functions in the kink sector for arbitrary va
of the scaler = mR. These quantities control analytically the interpolation between
Hilbert spaces of the ultraviolet (UV) and infrared (IR) limiting theories. It is worth to n
that, although we obtain them in the framework of a particle-like description proper o
IR limit, the kink background(3.2) is intrinsically formulated on a finite size, leading
the possibility of extracting UV data. Hence, it is important to check whether our sc
functions reproduce both the expected results for the IR (r → ∞) and UV (r → 0) limits.

Concerning the IR behaviour, we have seen in the previous sections that in theR → ∞

limit all the quantities in exam, i.e., the classical solution, its classical energy and the sta-
bility frequencies, correctly reach their asymptotic values. In addition, it is also possible to
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perform a simple and interesting analysis of the first correction to the kink mass for laR.
According to Lüscher’s analysis[26], the mass of a particle in a large but finite volume
to approach exponentially its asymptotic value, in a way controlled by the scatterin
of the infinite volume theory. Restricting for simplicity our analysis to the leading termβ
in the kink mass (which, in our approch, is simply given by the classical energy), we
then to compare the expansion presented in(3.5) with the term that dominates Lüsche
formula for smallβ . This is given by[26,27]

(3.30)M(R) − M∞ = −mb sinuk
kbRkbke

−mb sinuk
kbR + · · · ,

whereRkbk is the residue (multiplied by−i) of the kink-breatherS-matrix on the pole a
θ = iuk

kb, i.e.,

(3.31)Rkbk = −i ResSkb

(
θ = iuk

kb

)
.

Using the kink-breatherS-matrix [3]

(3.32)Skb(θ) = sinhθ + i cos γ
16

sinhθ − i cos γ
16

, γ = β2

1− β2/8π

and selecting itss-channel poleθ∗ = iuk
kb = i(π/2+ γ /16), we find

(3.33)Rkbk = −2cotg
γ

16
.

Substituting in(3.30), for smallβ2 we have

(3.34)M(R) − M∞ = m
32

β2e−r + · · · ,
which therefore reproduces Eq.(3.5). It is a remarkable fact that the classical energy alo
being the leading term in the mass forβ2 → 0, contains the IR scattering informatio
which controls the large-distance behaviour ofE0(R).

The UV behaviour forr → 0 of the ground state energyE0(R) of a given off-critical
theory is known to be related instead to the Conformal Field Theory (CFT) data(∆, ∆̄, c)

of the corresponding critical theory and to the bulk energy term as[2]

(3.35)E0(R) � 2π

R

(
∆ + ∆̄ − c

12

)
+ BR + · · · ,

wherec is the central charge,∆ + ∆̄ is the lowest anomalous dimension in a given se
of the theory andB the bulk coefficient.

For the sine-Gordon model the bulk energy term is given by[8,28]

(3.36)B = 16
m2

γ 2 tan
γ

16
,

while its UV limit is described by the CFT given by the Gaussian action withc = 1∫

(3.37)ACFT = 1

2
g d2x ∂µφ∂µφ,
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where the free bosonic field is compactified on a circle of radiusR. The various sectors o
this CFT are labelled by two integers,s andn: s is the momentum index, whilen is the
winding number, related to the boundary condition imposed onφ

(3.38)φ(x + R, t) = φ(x, t) + 2πnR.

Let |s, n〉 be the states carrying the lowest anomalous dimension in each sector. They
created by the vertex operators[29]

Vs,n(z, z̄) = :exp
[
iα+

s,nϕ(z) + iα−
s,nϕ̄(z̄)

]:,
i.e.,

(3.39)|s, n〉 = Vs,n(0,0)|vac〉,
where

α±
s,n = s

R ± 2πgnR, φ(x, t) = ϕ(z) + ϕ̄(z̄).

Their conformal dimensions are given by

(3.40)∆s,n = 2πg

(
s

4πgR + 1

2
nR

)2

, ∆̄s,n = 2πg

(
s

4πgR − 1

2
nR

)2

.

The vacuum sector is described bys = n = 0, with ∆vac + ∆̄vac = 0. If we now define
R = 1√

gβ
and fix the normalization constant to the value4 g = 1, then the kink sector in SG

defined by the boundary condition(2.8), naturally corresponds to the sector character
by s = 0, n = 1, in which the lowest anomalous dimension is

(3.41)∆0,1 + ∆̄0,1 = π

β2 .

The conformal vertex operatorV0,1 has been put in exact correspondence with the soli
creating operator of SG in Ref.[30].

The question to be addressed now is whether the smallr expansion ofEvac
0 (R) and

E0(R) given by Eqs.(2.26) and (3.28)reproduces, in semiclassical approximation,
above data controlling the UV limit of SG model.

For the vacuum sector, comparing(2.26) with (3.35), we correctly obtainc = 1 and
∆vac = ∆̄vac = 0. We do not expect, however, to obtain the bulk termB relative to SG
model by looking at(2.26), simply because the semiclassical expression of the gr
state energy in the vacuum sector applies equally well to any theory which has a qu
expansion near the vacuum state. Namely, apart from the value of the massm, Eq.(2.26)
is a universal expression that does not refer then to SG model.

The kink scaling function(3.28) has instead a richer structure. The obtained sca
dimension

(3.42)∆ + ∆̄ = π

β2
4 Note that the usual normalization adopted in the CFT literature is insteadg = 1
4π

.
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is the expected one for the soliton-creating operator in sine-Gordon while the central
contributionc = 1 is absent, simply because in(3.28) we have subtracted the vacuu
ground state energy from the kink one.5 Moreover, the bulk coefficientB = m2/β2 present
in (3.28)correctly reproduces the semiclassical limit of the exact one, given in Eq.(3.36).
In principle, this bulk term should be present in all the energy levels, included the g
state energy in the vacuum sector, but its non-perturbative nature makes impossibl
it in the semiclassical expansion around the vacuum solution, which is in fact purel
turbative. Hence it is not surprising that to extract the bulk energy term we have to lo
the kink ground state energy, in virtue of the non-perturbative nature of the correspo
classical solution.

Finally, the expression(3.29)for the excited energy levels explicitly show their cor
spondence with the conformal descendants of the kink ground state. In fact, their
alous dimension is given by

(3.43)∆{kn} + ∆̄{kn} = π

β2 +
∑
n

knn.

The successful check with known UV and IR asymptotic behaviours confirms the a
of the semiclassical results to describe analytically the scaling functions of SG mode
one-kink sector. It would be interesting to further test them at arbitrary values ofr through
a numerical comparison with the results of[8,9] in an appropriate range of parameters. T
was not pursued here because the results presently available in the literature were o
for values ofβ which are beyond the semiclassical regime and moreover the energy
were plotted as functions of a different scaling variable, i.e., the one defined in terms
kink mass. We hope however to come back to this problem in the future.

4. Form factors and correlation functions

The semiclassical scaling functions, derived in Section3, provide an important informa
tion about the finite size effects in SG model. As in the infinite volume case, howeve
complete description of the finite volume QFT requires to find, in addition to the en
eigenvalues(3.29), the kink form factors and the correlation functions of local operat
This section is devoted to the analysis of this problem, i.e., to the determination of the
volume form factors and the corresponding spectral functions.

4.1. Infinite volume form factors

It is useful to initially recall some basic definitions and results concerning semicla
form factors for the SG model in infinite volume. As mentioned in Section2, the rela-
tion between kink solutions and form factors was established by Goldstone and J
[13], who showed that the matrix element of the fieldφ between two asymptotic one-kin
5 The valuec = 1, coming out from the regularization of the leading term of the series on the frequencies
(3.22), is in fact exactly cancelled by the same term in the vacuum energy.
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states is given, at leading order in the semiclassical regime, by the Fourier transf
the classical solution describing the kink itself (see also[15] for further developments)
This remarkable result, however, had the drawback of being formulated non-covaria
terms of the kink space-momenta. It was refined in[20] with a covariant formulation in
terms of the rapidity variableθ of the kink, defined in terms of its energy and moment
asE = M coshθ , p = M sinhθ . In the semiclassical regime, there are moreover fur
simplifications: in fact, the mass of the kinkcan be approximated by its classical ene
M � Mcl = 8m/β2 whereas its rapidity can be assumed to be very small, i.e.,θ = O(β2),
thus obtainingE � Mcl, p � Mclθ . Hence, the refined form of Goldstone and Jackiw re
is given by

(4.1)〈θ1|φ(0)|θ2〉 = Mcl

∞∫
−∞

da e−iMcl(θ1−θ2)aφcl(a),

where|θi〉 are asymptotic one-kink states. Moreover, it is also possible to prove th
form factor of an operator expressible as a function ofφ is given by the Fourier transform
of the same function ofφcl. For instance, the form factor of the energy density oper
ε can be computed performing the Fourier transform ofεcl(x) = 1

2(dφcl/dx)2 + V [φcl].
With this covariant formulation, the matrix element(4.1)can be continued to the cross
channel, and from its pole structure one can easily extract the spectrum of the boun
of the theory, even in non-integrable cases, as discussed in[19,20].

In [20] we have checked that the form factor(4.1) obtained from the infinite volum
kink (2.9) reproduces the semiclassical limit of the exact one, derived in[31]. Here we
would like to present a more quantitative comparison which permits to conclude tha
mula(4.1), though proven under the semiclassical assumption of small coupling and
rapidities, remarkably extends its validityto finite values of the coupling and to a lar
range of the rapidities. Consider, for instance, the form factor of the energy operator
a normalizationN ) F(θ) = N〈θ2|ε(0)|θ1〉, whose semiclassical and exact expressions
given, respectively, by

(4.2)Fsemicl.(θ) = θ

2

1

sinh[4π

β2 θ ] ,

(4.3)Fexact(θ) = sinh
θ

2

1

sinh θ
2ξ

G(θ),

whereξ = γ /8π and

(4.4)G(θ) = exp

[ ∞∫
0

dt

t

sinh t
2(1− ξ)

sinh t
2ξ cosht

2

sin2 θt
2π

sinht

]
.

Fig. 5 shows how, for small values of the coupling, the agreement between the two
tions is very precise for the whole range of the rapidity. Furthermore, the discre
between exact and semiclassical formulas at larger values ofβ can be simply cured, in ou

example, by substituting the bare couplingβ2 with its renormalized expressionγ into the
semiclassical result(4.2), as shown inFig. 6. Hence we can conclude that the monodromy
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Fig. 5. Comparison between the exact functionF given by(4.3) (continuous line) and its semiclassical appro
mation(4.2) (dotted line), atβ = 0.1 andβ = 0.5.

Fig. 6. Comparison, atβ = 1, between (a) the exact functionF given by(4.3) (continuous line) and its sem
classical approximation(4.2) (dotted line), (b) the exact functionF given by (4.3) (continuous line) and its
semiclassical approximation(4.2)with the substitutionβ2 → γ (dotted line).

factor (4.4), which is the relevant quantity missing in our approximation, does not
a significant role in the quantitative evaluation of the form factor even for certain
values of the coupling.6

As we have already mentioned, the exactness(or very high accuracy, as in this case)
the semiclassical results is a peculiar feature of SG model in infinite volume, obtaine
the “dressing”β2 → γ . An interesting problem to be studied is whether similar phenom
take place for the semiclassical scaling functions and form factors in finite volume as we
An indication on this issue could be found by extending to finite volume the analys
higher loop quantum corrections which, in the semiclassical approach, are obtain
keeping cubic (and higher) powers ofη in the expansion ofV (φcl + η) [15].

6 It is easy to understand the reason of this conclusion in the above example: at small values ofθ we have

G(θ) � 1, whereas forθ → ∞, whenG(θ) may contribute, the whole form factor goes anyway to zero. Similar
conclusion can be reached for all other form factors which vanish atθ → ∞.
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4.2. Semiclassical spectral functions on the cylinder

The generalization of the above construction to the case of finite volume has been p
posed in[20], where we have shown how to estimate the leading semiclassical beh
of the spectral function on the cylinder under the same hypotheses of the infinite v
case. In fact, the matrix element

(4.5)f (θn) = 〈pn2|φ(0)|pn1〉,
of the basic fieldφ between two kink eigenstates of the finite volume Hamiltonian ca
expressed, at leading order, as the Fourier transform of the corresponding classical s

(4.6)f (θn) ≡ M(R)

R/2∫
−R/2

da eiM(R)θnaφcl(a),

(4.7)φcl(a) ≡ 1

RM(R)

∞∑
n=−∞

e−iM(R)θnaf (θn).

Here we have denoted the states by the so-called “quasi-momentum” variablepn, which
corresponds to the eigenvalues of the translation operator on the cylinder (even multipl
of π/R), and we have definedθn as the “quasi-rapidity” of the kink states

(4.8)
2nπ

R
= pn = M(R)sinhθn � M(R)θn,

whereM(R) is the classical mass of the finite-volume kink. As shown in[20], the crossed
channel form factor can be obtained at leading order via the change of variableθ → iπ − θ

(4.9)F2(θn) = 〈0|φ(0)|p̄n2pn1〉 = f (iπ − θn),

and the leading terms in the spectral function on the cylinder are given by

(4.10)

ρ̂(Ek,pk) = 2πδ(Ek)δ(pk)
∣∣〈0|φ(0)|0〉∣∣2 + π

4

δ(Ek/M − 2)

M2

∣∣∣∣F2

(
iπ − pk

M

)∣∣∣∣
2

.

The procedure describedabove has been introduced in[20] for the construction of form
factors for the kink backgrounds in the SG model and the brokenφ4 field theory, both de
fined on a cylindrical geometry withantiperiodicboundary conditions. In what follows w
will apply it instead to the case of SG model withperiodicboundary conditions. The corre
sponding finite volume form factor(4.6)can be written in terms of the soliton backgrou
(3.2)

f (θn) = M

R/2∫
−R/2

da eiMθna

[
π

β
+ 2

β
am

(
mx

k
, k2

)]

= 2π

β

{
M

2
RδMθn,0 − i

1− δMθn,0

θn

[
cos(MθnR/2) − sin(MθnR/2)

MθnR/2

]
}

(4.11)+ i
1

θn cosh(kK′ M
m

θn)
.
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In order to obtain this result one has to compare the inverse Fourier transform(4.7) with
the expansion[32]

(4.12)am(u) = πu

2K
+

∞∑
n=1

1

ncosh[nπ K′
K ] sin

[
nπ

u

K

]
.

The form factor(4.11)has the correct IR limit,7 and leads to the following expressio
for F2(θ) and for the spectral function:8

(4.13)

F2(θn) = 4πi

βθ̂n

{
1

cosh[kK′ M
m

θ̂n]
− (1− δ

θ̂n,0)

[
cos(Mθ̂nR/2) − sin(Mθ̂nR/2)

Mθ̂nR/2

]}
,

ρ̂(En,pn) = 4π3δ

(
En

M
− 2

)
1

β2(pn)2

{
1

cosh[ kK′
m

pn]

(4.14)− (1− δpn,0)

[
cos(pnR/2) − sin(pnR/2)

pnR/2

]}2

,

whereθ̂ = iπ − θ . Note that the finite volume dependence of both the form factor(4.13)
and the spectral function(4.14)is not restricted to the second term only. ThekK′(k2)M(R)

factor in the first term carries the mainR-dependence, although it is not manifest but
plicitly defined by Eq.(3.3).

Another quantity of interest is the two-point function〈0|ε(x)ε(0)|0〉 of the energy den
sity operator. One can calculate it by evaluating its spectral function

(4.15)ρε

(
p2) =

R/2∫
−R/2

dx〈0|ε(x)ε(0)|0〉e−ip·x

in terms of the form factors ofε(x), similarly to what we have done for the SG fieldφ
above. In order to find the semiclassical form factor

(4.16)fε(θn) = 〈pn2|ε(0)|pn1〉,
we need to compute the Fourier transform of

(4.17)ε(φcl) = 2m2

β2k2

(
1+ k2) − 4m2

β2 sn2
(

mx

k

)
.

This can be easily obtained from the following expansion

(4.18)sn2u = 1

k2K

{
K − E − π2

K

∞∑
n=1

ncosnπu
K

sinhnπK′
K

}
,

7 cos(xR/2) sin(xR/2)
The functions x and
x2R/2

can be shown to tend to zero in the distributional sense forR → ∞.
8 Here we are considering the matrix elements on the antisymmetric combinations of kink and antikink.
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and we finally have

(4.19)fε(θn) = M2
{
δMθn,0 + 4π

β2

θn

sinh(kK′ M
m

θn)

}
.

The corresponding semiclassical spectral function is thus given by

(4.20)ρ̂ε(En,pn) = 4π3

β4 δ

(
En

M
− 2

)
p2

n

sinh2( kK′
m

pn)
.

It is worth to mention that it is also possible to obtain the two-point functions of
tain vertex operatorsV ±

b (x, t) = e±iβbφ(x,t) (for b = 1/2,1,3/2,2, . . .), since the required
Fourier expansion formulas of the type(4.18)are known in these cases[33].

5. Further directions

In this paper we have shown how the semiclassical methods can provide an a
description of finite size effects in two-dimensional quantum field theories displayin
generate vacua. In particular, we have applied these techniques to study the SG
quantizing its kink solution on the cylinder. The scaling functions of the ground (an
cited) states, as well as the form factors and two-point functions of different oper
allowed us to build the one-kink sector (i.e.,Qtop = ±1) of the corresponding Hilber
space of states.

The next step in this program is the extension of the DHN method to describe the
kink states (Qtop = ±2,±3, . . .) as well as the non-vacua (“breather”-like) part of t
Qtop = 0 sector. These states are related to certain time-dependent solutions of SG
on the cylinder, i.e., to the finite volume analog of soliton–soliton, soliton–antisoliton an
breather solutions. Although more complicated from the technical point of view, th
termination of these classical solutions and the study of their scaling functions and
factors is a well stated open problem in the semiclassical framework, which deserv
ther attention.

One of the advantages of the semiclassical method is that it works equally well fo
integrable and non-integrable models, if they admit kink-type solutions. In fact, we
chosen to test the efficiency of the semiclassical quantization on the example of SG
mainly because it leads to the simplestN = 1 Lamé equation. Static elliptic solutions f
other models can be easily obtained by integrating equation(2.2) with A �= 0 and appro-
priate boundary conditions. This was done, for instance, in[20], where we have derive
the form factors between kink states in the brokenφ4 model on the cylinder with twiste
boundary conditions. In this case, the quantization of the finite volume kink involv
Lamé equation withN = 2. Lamé equations withN > 2 are also expected to enter t
quantization of other theories.

Finally, the semiclassical method seems to be suited also for the description o
geometries with boundaries, say with Dirichlet or Neumann boundary conditions. Due
the physical significance of this kind of systems, an interesting problem is the semicla

computation of the relative energy levels, a subject that will be discussed in a forthcoming
publication[21].
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Appendix A. Free theory quantization on a finite geometry

Let us consider a free bosonic fieldφ(x, t) of massm defined on a cylinder of circum
ferenceR, i.e., satisfying the periodic boundary condition

(A.1)φ(x + R, t) = φ(x, t).

Imposing the equation of motion and the commutation relation

(A.2)
[
φ(x, t),Π(y, t)

] = iδP (x − y),

whereΠ(x, t) = ∂φ
∂t

(x, t) is the conjugate momentum of the field whereas

δP (x) = 1

R

∞∑
n=−∞

e
2πin
R x, δP (x + R) = δP (x),

is the periodic version of the Dirac delta function, we obtain the mode expansion
field φ(x, t). This is given by

(A.3)φ(x, t) =
∞∑

n=−∞

1

2ωnR

[
Ane

i(pnx−ωnt) + A†e−i(pnx−ωnt)
]
,

where[
An,A

†
m

] = δn,m,

and

(A.4)ωn =
√

p2
n + m2, pn = 2πn

R
, n = 0,±1, . . . .

Using the above expansion together with the commutation relation ofA andA†, it is easy
to compute the propagator of the field, given by

(A.5)∆F (x − x ′, t − t ′) = 〈
φ(x, t)φ(x ′, t ′)

〉 = ∞∑
n=−∞

1

2ωnR
e−i[ωn(t−t ′)−pn(x−x ′)].

The vacuum expectation value of the operatorφ2(x, t) is then formally given by
(A.6)
〈
φ2(x, t)

〉 = ∆F(0)
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and, by translation invariance, is independent fromx and t . However, this expression
divergent and needs therefore to be regularized. Analogously to what has been don
text for the ground state energyEvac

0 (R), we need to subtract the corresponding expres
in the infinite volume, so that the finite quantity, simply denoted byφ2

0(R), satisfies the
usual normalization condition

lim
R→∞φ2

0(R) = 0.

Hence we define

(A.7)φ2
0(R) = 1

2R

∞∑
n=−∞

1√
(2πn

R
)2 + m2

− 1

2R

∞∫
−∞

dn
1√

(2πn
R

)2 + m2
.

Isolating its zero mode, the series needs just one subtraction, i.e.,

(A.8)S(r) ≡
∞∑

n=1

1√
n2 + ( r

2π
)2

=
∞∑

n=1

{
1√

n2 + ( r
2π

)2
− 1

n

}
+

∞∑
n=1

1

n

(r = mR). In the above expression, the first series is now convergent whereas the
series, which is divergent, has to be combined with a divergence coming from the in
Indeed we have

I(r) ≡
∞∫

0

dn
1√

n2 + ( r
2π

)2

(A.9)= lim
Λ→∞

{
ln2Λ − ln

r

2π

}
− lim

Λ→∞ lnΛ + lim
Λ→∞ lnΛ,

and the last term can be used to compose(2.25). Collecting the above expressions, it is n
easy to see thatφ2

0(R) coincides with the one obtained doing the calculation in the o
channel, i.e., at a finite temperature. In fact, using the results of Ref.[23], this quantity can
be expressed as

(A.10)φ2
0(R) =

∞∫
−∞

dθ

2π

1

er coshθ − 1
,

whose expansion inr is given by

(A.11)

φ2
0(R) = 1

2r
+ 1

2π

(
log

r

2π
+ γE − log2

)
+

∞∑
n=1

(
1√

(2nπ)2 + r2
− 1

2nπ

)
.

Also this result could have been directly obtained computing only the finite part of the
integral and using the prescription(2.30).
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Appendix B. Elliptic integrals and Jacobi’s elliptic functions

In this appendix we collect the definitions and basic properties of the elliptic inte
and functions used in the text. Exhaustive details can be found in[32].

The complete elliptic integrals of the first and second kind, respectively, are defin

(B.1)K
(
k2) =

π/2∫
0

dα√
1− k2 sin2 α

, E
(
k2) =

π/2∫
0

dα
√

1− k2 sin2 α.

The parameterk, called elliptic modulus, has to be bounded byk2 < 1. It turns out that
the elliptic integrals are nothing but specifichypergeometric functions, which can be eas
expanded for smallk:

K
(
k2) = π

2
F

(
1

2
,

1

2
,1; k2

)

= π

2

{
1+ 1

4
k2 + 9

64
k4 + · · · +

[
(2n − 1)!!

2nn!
]2

k2n + · · ·
}
,

E
(
k2) = π

2
F

(
−1

2
,

1

2
,1; k2

)

(B.2)= π

2

{
1− 1

4
k2 − 3

64
k4 + · · · −

[
(2n − 1)!!

2nn!
]2

k2n

2n − 1
+ · · ·

}
.

Furthermore, fork2 → 1, they admit the following expansion in the so-called complem
tary modulusk′ = √

1− k2

K
(
k2) = log

4

k′ +
(

log
4

k′ − 1

)
k′2

4
+ · · · ,

(B.3)E
(
k2) = 1+

(
log

4

k′ − 1

2

)
k′2

2
+ · · · .

Note that the complementary elliptic integral of the first kind is defined as

(B.4)K′(k2) = K
(
k′2).

The function am(u, k2), depending on the parameterk, and called Jacobi’s elliptic am
plitude, is defined through the first order differential equation

(B.5)

(
d am(u)

du

)2

= 1− k2 sin2[am(u)
]
,

and it is doubly quasi-periodic in the variableu

am(u + 2nK + 2imK′) = nπ + am(u).

The Jacobi’s elliptic function sn(u, k2), defined through the equation( )

(B.6)

d snu

du

2

= (
1− sn2 u

)(
1− k2 sn2 u

)
,
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is related to the amplitude by snu = sin(amu), and it is doubly periodic

sn(u + 4nK + 2imK′) = sn(u).

Appendix C. Lamé equation

The second order differential equation

(C.1)

{
d2

du2
− E − N(N + 1)P(u)

}
f (u) = 0,

whereE is a real quantity,N is a positive integer andP(u) denotes the Weierstrass fun
tion, is known under the name ofN th Lamé equation. The functionP(u) is a doubly
periodic solution of the first order equation (see[32])

(C.2)

(
dP
du

)2

= 4(P − e1)(P − e2)(P − e3),

whose characteristic rootse1, e2, e3 uniquely determine the half-periodsω andω′, defined
by

P(u + 2nω + 2mω′) =P(u).

The stability equation(3.7)can be identified with Eq.(C.1)for N = 1, u = x̄ + iK′ and

E = 2−k2

3 − k2ω̄2 in virtue of the relation betweenP(u) and the Jacobi elliptic functio
sn(u, k) (see formulas (8.151) and (8.169) of[32]):

(C.3)k2 sn2(x̄, k) =P(x̄ + iK′) + k2 + 1

3
.

Relation(C.3)holds if the characteristic roots ofP(u) are expressed in terms ofk2 as

(C.4)e1 = 2− k2

3
, e2 = 2k2 − 1

3
, e3 = −1+ k2

3
,

and, as a consequence, the real and imaginary half periods ofP(u) are given by the elliptic
integrals of the first kind

(C.5)ω = K(k), ω′ = iK′(k).

All the properties of Weierstrass functions that we will use in the following are spec
to the case when this identification holds.

In the caseN = 1 the two linearly independent solutions of(C.1)are given by (see[33])

(C.6)f±a(u) = σ(u ± a)

σ(u)
e∓uζ(a),

wherea is an auxiliary parameter defined throughP(a) = E, andσ(u) andζ(u) are other
kinds of Weierstrass functions
(C.7)
dζ(u)

du
= −P(u),

d logσ(u)

du
= ζ(u),
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with the properties

(C.8)ζ(u + 2K) = ζ(u) + 2ζ(K), σ (u + 2K) = −e2(u+K)ζ(K)σ (u).

As a consequence of Eq.(C.8)one obtains the Floquet exponent off±a(u), defined as

(C.9)f (u + 2K) = f (u)eiF (a),

in the form

(C.10)F(±a) = ±2i
[
Kζ(a) − aζ(K)

]
.

The spectrum in the variableE of Eq. (C.1) with N = 1 is divided in allowed/forbidden
bands depending on whetherF(a) is real or complex for the corresponding values ofa.
We have thatE < e3 ande2 < E < e1 correspond to allowed bands, whilee3 < E < e2 and
E > e1 are forbidden bands. Note that if we exploit the periodicity ofP(a) and redefine
a → a′ = a + 2nω + 2mω′, this only shiftsF to F ′ = F + 2mπ .

The functionζ(u) admits a series representation[34] that will be very useful for our
purposes in Section3.2

(C.11)ζ(u) = π

2K
cot

(
πu

2K

)
+

(
E
K

+ k2 − 2

3

)
u + 2π

K

∞∑
n=1

h2n

1− h2n
sin

(
nπu

K

)
,

whereh = e−πK′/K. The small-k expansion of this expression gives

ζ(u) =
(

cotu + u

3

)
+ k2

12

(
u − 3 cotu + 3ucot2 u

)
(C.12)+ k4

64

(−3u + (
4u2 − 5

)
cotu + ucot2 u + 4u2 cot3 u + sin2u

) + · · ·
(note thath ≈ (k/4)2 + O(k4)). A similar expression takes place forP(u), by noting that
P(u) = −dζ(u)/du.
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