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Abstract

We present an analytic study of the finite size effects in sine-Gordon model, based on the semi-
classical quantization of an appropriate kink background defined on a cylindrical geometry. The
quasi-periodic kink is realized as an elliptic function with its real period related to the size of the
system. The stabilitgquation for the small quantum fluctiens around this elssical background
is of Lamé type and the corresponding energy eigenvalues are selected inside the allowed bands by
imposing periodic boundary conditis. We derive analytical exgssions for thground state and
excited states scaling functions, which provide an explicit description of the flow between the IR
and UV regimes of the model. Finally, the semiclassical form factors and two-point functions of the
basic field and of the energy operator are obtained, completing the semiclassical quantization of the
sine-Gordon model on the cylinder.
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1. Introduction

Quantum field theory on a finite volume is abgect of both theoretical and practical
interest. It almost invariably enters the extrapolation procedure of numerical simulations,
limited in general to rather small samples, ks also intimately related to quantum field
theory at finite temperature. It is therefore important to increase our ability in treating finite
size effects by developing efficient analytieams. In the last years, a considerable progress
has been registered in particular on the study of finite size behaviour of two-dimensional
systems. Also for these models, however, gace treatment of their finite size effects has
been obtained only in particular situations, namely, when the systems are at criticality or
if they correspond to integrébfield theories. At criticality, in fact, methods of finite size
scaling and conformal field theofiL,2] permit to determine many universal amplitudes
and to extract as well useful information dmetentire spectrum of the transfer matrix.
Away from criticality, exact results can be obtained only for those integrable theories de-
scribed by a factorized and elastic scattering mg8j4] which, on a finite volume, can
be further analysed by means of thermodynamical Bethe afs&¥ This technique pro-
vides integral equations for the energy levels, mostly solved numerically. In all other cases,
the control of finite size effects in two-diemsional QFT has been reached up to now either
by conformal perturbation theory or numerical methods as, for instance, the one proposed
in [11].

The aim of this paper is to study the finite size effects of a two-dimensional massive QFT
by using a different approach, i.e., the non-perturbative semiclassical expansion formu-
lated in the infinite volume case by Dashen, Hasslacher, Né&and by Goldstone and
Jackiw[13]. Apart from some issues which make such an analysis an interesting subject in
itself, the main theoretical motivation of this work consists in the possibility of obtaining
analytic results for the form factors and the energy levels at a finite geometry. In integrable
cases, this adds to the above techniques (se¢k0$p whereas for non-integrable models
it is an efficient alternative to perturbative or numerical studies. As a matter of fact, in the
infinite volume case, semiclassical methods have proved to be, together with form factor
perturbation theorf18], ideal tools in the analysis of non-integrable quantum field theories
(see, for instance, Ref19]).

Form factors at a finite volume of local operators in both integrable and non-integrable
theories have been studied in one of our previous pgdR6ls These quantities enter the
spectral density representation of correlation functions which need, however, another set of
data for their complete determination, precisely the energies of the intermediate states at a
finite volume. This paper is mainly devoted to fill this gap, that is, to face the problem of a
semiclassical computation of the energigsR) of vacua and excited states as functions of
the circumferenc® of a cylindrical geometry. Notice that, isolating a factgmRlin front
of the E;(R)s (simply due to their dimensionality), the remaining quantitiessagding
functionsof the variable- = m R, wherem is the lowest mass of the considered QFT.

It is worth to underline an important feature that has come out from the study of the
semiclassical form factors in infinite volumé&s we will discuss later, their accuracy seems
to extend, somehow, beyond the regime in which they were supposed to be valid. Together
with the known fast convergency properties of the spectral series and the information that
can be extracted on energy levels, the above result suggests that the semiclassical method
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may provide a rather precise estimate of finite volume correlation functions, an outcome
which may be useful for many applications.

For methodological reasons, we have decided to present the semiclassical computation
of finite volume energies for a system that admits one of the simplest analysis, the sine-
Gordon (SG) model. As we will see, this model is particularly appealing for its simplified
semiclassical results whereby the significant physical effects we are looking for will not be
masked by other additional complications. Moreover, due to the integrable nature of this
theory, its finite size effects have been previously studied by means of thermodynamical
Bethe ansat#8,9], and it would be interesting to perform a quantitative comparison be-
tween these results and the semiclassical ones, in order to directly control their range of
validity. However, as already pointed out, semiclassical methods apply not only to inte-
grable theories and this opens the way to déscainalytically the fitte size effects also in
non-integrable model21].

The paper is organized as follows: in Sect@nve briefly recall the main ideas and
results of the semiclassical approach. We also discuss the simplest scaling function in a
finite volume in order to clarify the nature of divergencies encountered in such computa-
tions. Sectior3 is devoted to the complete semiclassical analysis of the energies of the
guantum states in the kink sector of the SG model on a cylinder. In general, this analy-
sis passes through the solution of a Schrédinger type equation for a particle in a periodic
potential and, for the SG model, this corresponds to a Lamé differential equation. In this
section we also discuss how to select the proper eigenvalues inside the band structure of
the spectrum in order to determine the energy le¥gIsR). In Sectiond we compute the
form factors of local operators by using the semiclassical methods and we comment on
their properties. Our conclusions and further directions are discussed in Seclibare
are also several appendicégpendix Apresents the quantization of a free bosonic theory
in a finite volume and a comparison of finite-volume and finite-temperature computations
of the simplest one-point correlation functigkppendix Bcollects relevant mathematical
properties of the elliptic functions used in the text wherdppendix Cdisplays the main
properties of the Lamé equation.

2. Semiclassical quantization

In this section, after recalling the basic equations of the semiclassical quantization, we
will present the simplest example of a scaling function on a cylindrical geometry, i.e., the
ground state energ§?“(R) of a free massive bosonic field. In a semiclassical quantization,
ESZUR) is the lowest energy level in the vacuum sector of the theory. This example will
show, in particular, how to handle the divergencies usually encountered in the calculation
of the scaling functions.

2.1. DHN method
The main feature of a large class of 2D field theories with non-linear interaction and

discrete degenerate minima is that they admit non-perturbative finite-energy classical so-
lutions (called kinks or solitons) carrying topological chargﬁgp = 41. In this paper
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we will concentrate our attention, in particular, on a specific model of this kind, i.e., the
sine-Gordon (SG), defined by the potential

m2
Vse(¢) = ﬁ(l —CoSBe). (2.1)

In such theories, the kinks generally interpolate between two next neighbouring minima
of the potential (vacua) which are constant solutions of the equation of motion (in our
examplepsg = 27s/8, s =0, 1), and they exhibit certain particle properties. For instance,
they are localized and topological stable objece., they do not decay into mesons with
QOtop = 0. Moreover, in integrable theories as SG model, their scattering is dispersionless
and, in the collision processdhgey preserve their form simply passing through each other.

The kinks are static solutions of the equation of motion, i.e., they are time independent
in their rest frame, and they can be simply obtained by integrating the first order differential
equation

1/ 3¢c 2_
E(W) =V(ge) + A, (2.2)

further imposing thaty.(x) reaches two different minima of the potentla{¢) at x —
+o00. These boundary conditions, vehi describe the infinite volume case, require the van-
ishing of the integration constart As we will see in the next section, the kink solutions
in a finite volume correspond instead to a non-zero valué,otlated to the siz& of the
system.

All the above properties of the kink solutions are an indication that they can survive the
guantization, giving rise to the quantum states in one-particle sector of the corresponding
QFT. A direct correspondence among the kink states and the corresponding classical solu-
tion has been established by Goldstone and Jackiw who have shown i Rehat the
matrix element of the fielgp between kink states is given, at leading order in the semiclas-
sical limit, by the Fourier transform of the kink background. We will discuss this result and
its applications in Sectio4.

At the moment we are mainly concerned with the semiclassical quantization of the
small fluctuations around kink backgrounds. As it is well known, one cannot apply directly
to them the standard perturbative methods of quantization around the free field theory since
the kinks are entirely non-perturbative solutions of the interacting theory. Their classical
mass, for instance, is usually inversely proportional to the coupling constant (in the SG
model one had/ = 8m/,32). In an infinite volume, an effective method for the semiclas-
sical quantization of such kink solutions (as well as of the vacua ones) has been developed
in a series of papers by Dashen, Hasslacher and Neveu ([AR2N)y using an appropriate
generalization of the WKB approximation in quantum mechanics. Further developments
were achieved with complementary techniques by Callan and GrdksGervais, Jevicki
and Sakitd15], Faddeev and Korepii6] (see alsq17] for a review and complete refer-
ences).

The DHN method consists in initially splitting the fie¢elx, #) in terms of its classical
static solution of the equation of motion (which can be either one of the vacua or the kink
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configuration) and its quantum fluctuations, i.e.,

G 1) =da(x) +n(x, 1), nlx,0)=) M n(x), (2.3)
k
and in further expanding the Hamiltonian of the theory in powetg bfy keeping only the
guadratic terms. As a result of this procedusgx) satisfies the Schrodinger equation

d2
[—@ + V”<¢c|>]nk<x) = i (x), (2.9)

together with certain boundary conditions. Téemiclassical energy levels in each sec-
tor are then built in terms of the energy of the corresponding classical solution and the
eigenvalues; of the stability equatiori2.4), i.e.,

1
E{ni}:EC|+hZ<nk+§>Q)k+ o(n?), (2.5)
k

wheren; are non-negative integers. In particular, the ground state energy in each sector is
obtained by choosing all; = 0 and it is therefore given By

h
EO:EC|+§Xk:wk+ o(n?). (2.6)

In summary, to each static finite energy solutior(f) corresponds a tower of quan-
tum energy eigenstat¢®.5) representing the O-particle (vacua) and 1-particle (kink), and
their excitations. The construction of thtemplete Hilbert pace, including the-particle
sectors (fom > 2), requires to consider time-dependent multi-kink and breather solutions
with finite energy. Their semiclassical guemation can be performed with an appropriate
modification of the DHN methofil2].

As we have mentioned in the Introduction, the analytic form of the semiclassical scaling
functions for the 2D QFTs admitting static kink solutions can be achieved by DHN method
suitably adapted to finite size geometry. In the following we will discuss in details the
results of sine-Gordon model on a cylindrical geometry which, as we shall see, admits the
simplest technical analysis. On this georgetidescribed by a space variable compactified
on a circle of circumferenc® and by a time variablerunning on an infinite interval—the
SG model admits quasi-pedic boundary conditions (b.c.)

¢<x+R,r>=¢<x,r)+2”7”, 27)

where the arbitrary winding numbere Z originates from the invariance of the potential
(2.1)underp — ¢ + 2n7r/B. In particular, since we are interested in the one-kink sector,
which is defined by: = 1, we will impose the b.c.,

¢<x+R,r)=¢<x,z)+%”. 2.8)

2 From now on we will fixi = 1, since it is well known that the semiclassical expansioh i equivalent to
the expansion in the interaction coupling.
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The first step for applying the semiclassical method to this problem is to find the finite
size analog of the kink solution, satisfying now the b(2.8). However, the success in con-
structing the scaling functions depends orettter one is able to solve the corresponding
Schrédinger equatiof2.4)and to derive an analytical expression for its frequenejedt
turns out that the semiclassical finite size effects in SG model are intrinsically related to
the simplest § = 1) Lamé equation, which admits a complete analytical study.

2.2. SGin infinite volume

The semiclassical quantization of the sine-Gordon soliton in infinite volume has been
performed in[12]. We report here the basic results in order to show how the semiclassical
technique works in the simplest example atgb to introduce the quantities that should be
obtained in the IR limit of the forthcoming finite volume results.

The classical (anti)soliton

bei(x) = Earctar(ei’”(x *0)), (2.9)

is solution of Eq.(2.2)with A = 0. It connects the two degenerate vagua 0 and¢ =
27/B and its classical mass is given By = 8n/82. Plugging the above expression
in (2.4), this equation can be cast in the hypergeometric form by using the variable
1/2(1 4 tanhvnx), and its solution is expressed as

(1—z) F (2 11+\/1—7—2 ) (2.10)

The corresponding spectrum is given by the discrete \Lague 0(i.e., the zero mode asso-
ciated to the translation invariance of the theory) and by the continuou&j;aﬂmz(l +
g?), characterized by the absence of reflection and by the phasé@hift 2 arctaril/q).

The semiclassical correction to the mass is given by the difference between the ground
state energy of the soliton and the one @& #lacuum, with the addition of a mass countert-
erm due to normal ordering of the interaction term in the Hamiltonian

M= My = [ S [my1442- \/k2+m ——/dxl cospeu ()],

(2.11)
with

= 2.12
2_ _ .
Ly / PR ( )

The discrete valueg, andk, are obtained by defining the system in a large finite volume
of size R with periodic boundary conditions

2nw =ky, R =mgu R + 5(qn). (2.13)
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SendingR — oo and computing the integrals, one finally obtains the semiclassical quan-
tum correction to the mass of the kink

8
=" (2.14)
p? =«
As it is well known, the exact solution of the quantum sine-Gordon model shows that the
coupling constang? renormalises ag22]

ﬁZ
1-p2/87"
Moreover, the exact quantum mass of the soliton is givemby 8m/y, which coincides
with the above expressid2.14) The equality of the semiclassical and the exact result for

the soliton mass is a remarkable property of the SG model, on which we will come back in
the following sections.

B2y = (2.15)

2.3. Ground state energy regularization in finite volume

As shown by Eq(2.6), quantum corrections to energy levels are given by the series
on the frequencies, . However, this series is generally divergent (this is the usual UV
divergence in field theory) and a criterion is needed to regularize it. It is quite instructive to
consider the simplest example where suctedjence occur, i.e., in the calculation of the
ground state energ§?“(R) of the vacuum sector of the theory on a cylindrical geometry
of circumferenceR. This can be constructed by implementing the DHN procedure for one
of the constant solutions, for instangg™ = 0, imposing periodic boundary conditions
for the corresponding fluctuatiom$3(x). Obviously, what comes out is nothing else but
the Casimir energy of a free bosonic fieldx, ¢) with massn. In this case the frequency
eigenvalues are fixed to be

= Jpzim2, (2.16)

with p, =27n/R andn =0, +1,£+2,....
The ground state energy has to be regularized by subtracting its infinite-volume contin-
uous limit: this ensures in fact the proper n@lization of this quantity, expressed by

Jlim_&°(R) = 0. (2.17)

The ground state energy at a finite volume is therefore defined by

1 & 27n\? 1 T 21n\ 2
n=-—00 —o0

Isolating the zero mode, it can be conveniently rewritten as

2
EVYR) = — + - Z,/ - f dn,[n? + (2.19)
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wherer =mR. Since the divergence of the series is due to the lafdgehaviour of the first
two terms in the expansion

2 2
1/ r 1 1
2 Ty ~ - -
n +(2n) _n+2<2n) n+(’)<n2>, (2.20)

we begin our calculation by subtracting and adding these divergent terms to it
] ’ 2
Sr)= 2 —
() nZ:; ne+ (2n>
[e'e] 2 2 o] 2 o0

1/ r 1 1/ r 1

_ 2 (Y () 2 (= =

r;{ . +<27T> " 2(27r> n}+;n+2<2n> n:ln'

(2.21)

The first series in the right-hand side of the above expression is now convergent, whereas
the last two terms should be coupled to the analogous ones coming from the integral, whose
divergencies have to be handled in strict correspondence with those coming from the series.
Hence, by subtracting and adding the leading divergence to the integral

1(r)zfdn,/n2+(é)zzﬁzn{,/nu(é)z—n}Jrfdnn, (2.22)
0 0 0

we can combine the last term in this expression with the orf2.Ril)and implement the
well-known regularization

o 00 o 00 1
Zn —/ndn =o|l|Ln0|:Zne —/ne dn:| =—1 (2.23)
n=0 0 n=0 0

However, the first term irf2.22) still contains a subleading logarithmic divergence, as it
can be seen by explicitly computing the integral by using a cutdgfh the limit A — oo

A
/d 24 r\2 11’2|nZA+1r2 1r2|nr
ni.ln — | —np=—| — (=) — == —.
2 2\ 27 4\ 27 2\ 27 27
0
(2.24)

This divergence can be cured by subtracting and adding the%teggoz In A. By combin-
ing this last term with its analogous in the series we have

. |
A'i”oo<z ~—1In A) = E, (2.25)

n=1

whereyg is the Euler—-Mascheroni constant, while the remaining pat2d4)with the
above subtraction is now finite.
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Collecting the above results, the finite expression of the ground state energy on a cylin-
der is then given by

r 7'2

1 b4 r 1
VaCR — |- - - I - _ =
€0 (R) R|: 6+2+4n<n4n+”E 2)
o I"2
+ Z(x/(Znn)z +r2—2mn— —)] (2.26)
= dn

Itis now easy to see th&2.26)fulfills the requirement of modular invariance of the theory,
which imposes its equality with the TBA expressiaih

£vac(py — _ch(r)’ 2.27
AR =~ (2.27)
where
6 o0
c(r) = ——2/519 coshp In(1 — e~ 08!, (2.28)
T
0

In fact, this integral formula can be expressed in terms of Bessel functions, which admit a
series representation that directly lead&2@6)(see Ref[7]). For this theory we obviously
havec(0) = 1. Moreover, one can also check that thewee regularization scheme ensures
the agreement between tiReand L channel calculations of the finite expression of the
one-point functiong¢?) [23]. The interested reader can find the simplest example of
these calculations iAppendix A

Finally, it is worth to note that the resyf2.26)can also be obtained by using a simpler
prescription which automatically includes thebsraction of the various divergencies, fas-
tening the calculation. This consists in ignoring the divergent part of the integral, keeping
only its finite part, and in regularizing the divergent series as

o0

1
Zn S (2.29)
= lreg 12
ad r
- =ye+In—. (2.30)
= Nlreg 27

Formula(2.29)is the standard regularization of the Riemann zeta functienl), where

¢(s) =Y o241 1/n%, and usually corresponds to normal ordering with respect to the infinite
volume vacuum (see, for instang24, Chapter 4). On the contrary, the regularization of

the second series is a priori ambiguous due to its logarithmic divergence, and its finite value
(2.30)was chosen according to the above discussion.

3. Scaling functions on the cylinder
We will now develop a complete semiclassical scheme to analyse the energy of the

guantum state in SG model containing one soliton on the cylinder. This can be achieved by
applying the DHN method to an appropriate kink background.
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3.1. Properties of the periodic kink solution

In order to identify a kink on the cylinder, we have to look for a static finite energy
solution of the SG model satisfyinge quasi-periodic boundary conditi¢2.8). For the
first order equation

1(3ga\? _ m?
E(E)—x) = p(l—cosﬁff’cl + A), (3.1)
a solution which has this property can be found4os 0. It can be expressed as
T 2 m(x —x0) o 2 2
=—+4- —k k= —— 3.2
el (x) ﬂ+ﬂam< P ) 5T A (3.2)
provided the circumferencR of the cylinder is identified with
2
R = "kK(k?), (3.3)
m

whereK (k%) denotes the complete elliptic integral of the first kihdhe parametexg
in (3.2) represents the kink’s center of mass position, and its arbitrariness is due to the
translational invariance of the theory around the cylinder axis. The behavi¢3i2)as a
function of the real variable is shown inFig. 1

The function(3.2) has been first proposed[i®5] and interpreted as a crystal of solitons
in the sine-Gordon theory in infinite volume. In our finite volume case, ins{@a2) has
to be seen as a single soliton defined on a cylinder of circumferRifgeen by Eq(3.3)),
while its quasi-periodic oscillations represevinding around the cylinder. As shown in
Eq. (3.3), there is an explicit relation between the size of the system and the integration
constantA. It is easy to see that the infinite volume solut{@m®)is consistently recovered
from (3.2)in the limit A — 0, i.e., whenR goes to infinity.

/H ¢cl

21 +

K1) K(k2) ®

Fig. 1. Solution of Eq(3.1)with A > 0 andxg = 0.

3 The definition and basic properties Kf(k2) and the Jacobi elliptic amplitude am k2) can be found in
Appendix B
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The classical energy of the kink on the cylinder is given by

i 0ga\2 m?
Ea(R) = / dx[—(ﬂ) +m—2(1—008ﬁ¢c|)}
2

2\ ox B
8m[E®Kk?) k 1
:F[TjLE(l—k—z)K(kz)], (3.4)

whereE (k2) is the complete elliptic integral of the second kind. In the> oo limit (which
corresponds té’ — 0, with (k') = 1 — k?), £&(R) approaches exponentially the correct
value M, = 8m/pB2. This can be seen expandiBgndK for smallk’ (seeAppendix B,
and expressing the result in termsmR, which can be itself expanded i in virtue of
the relation(3.3)

1
—mR "2
-~ (k
e 16( )+
Hence the larg® expansion of the classical energy is

Ed(R) =My + z—sme_mR + 0(6_2”'R). (3.5)

We will comment more on the interpretation of this result in Sec8d

Similarly, one can derive the behaviour&i(R) for smallr =mR, which corresponds
to the limit A — oo (or k% — 0):

2 r r\°2

This formula will be relevant in the discussion of the UV properties of the scaling functions
presented in Sectid®.3.

Before moving to the quantization of the kink-backgro@8), it is worth to mention
that another simple kind of elliptic function, which solves Egj1)for —2 < A < 0, was
also proposed if25] and interpreted as a crystal of solitons and antisolitons in the infinite
volume SG. This background corresponds as well to a kink on the cylinder geometry but
satisfying theantiperiodicboundary conditions

27
¢(x+ R, t)= ? —¢(x,1).

The associated form factors were obtainefid]. Although the quantization of this sec-
ond kink solution is technically similar to the one &.2) presented in the next section,

it displays however some different interpretative features that justify its discussion in a
separate publicatiof21].

3.2. Semiclassical quantization in finite volume

The application of the DHN method to the periodic kif%2) requires the solution of
Eq.(2.4)for the quantum fluctuationg,, which in this case takes the form

2
{% +k%(@% + 1) — 2k>srP (%, k?) }nw@ =0, 3.7)
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where siix, k2) is the Jacobi elliptic function defined ippendix B and we have intro-
duced the rescaled variables
= =2 (3.8)
k m
Due to the periodic properties @k (x) expressed by Eq3.2), the boundarcondition
(2.8)translates in the requirement fgg (x)

R
N (JE + m7> =1p(X). (3.9)

Eq.(3.7)can be cast in the so-called Lamé form, which admits the two linearly independent
solutions
. o(x+iK' £a) +7(a)
= 3.10
ia (D) = = e, (3.10)
where the auxiliary parameteris defined as a root of the equation

2— k2

Pa) = — k@2, (3.11)

The Weierstrass functior®(u), ¢ (u) ando («) are defined ilppendix G where the Lamé
equation and its relation wit{8.7) are discussed in detail.

As it is usually the case for a Schrddinger-like equation with periodic potential, the
spectrum of Eq(3.7) has a band structure, determined by the properties of the Floquet
exponent

F(a) = 2i[K¢(a) —ag(K)], (3.12)
which is defined as the phase acquiredjpy in circling once the cylinder
Naa(X +2K) = Oy (3).

We have two allowed bands for re&la), i.e.,

1 1
0<5)2<k—2—1 and @2>ﬁ’ (3.13)
and two forbidden bands far(a) complex, i.e.,
1 1
@’ <0 and ﬁ—1<@2<ﬁ. (3.14)

The band 0< &2 < 1;—52 is described by = K +iy, wherey varies between 0 ari¢’ and,

correspondinglyF (a) goes from O tar. The other allowed ban@? > 1/k2 corresponds
instead tax = iy and, by varyingy, F(a) goes fromr to infinity, as it is shown irFig. 2

By imposing the peadic boundary condition.9)on the fluctuatiom (x), one selects
the values ofo? for which the Floquet exponent is an even multiplergfthus making
the spectrum of E((3.7) discrete. These eigenvalues a@: 0, which is the zero mode
associated with translational invariance and has multiplicity one, and the infinite series of
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o2
F=3r allowed band
1 F=2r
k2 F=m
forbidden band
klz -1 F =T
allowed band
0 F=0

forbidden band

Fig. 2. Spectrum of E(3.7).

points

1[2—k?
O =1z [T - P(iyn)} (3.15)

with multiplicity two, placed in the bané? > 1/, with y, determined by the equation

Fliyn) = 2Ki¢ (iyp) + 2ynC(K) =20, n=1,2,.... (3.16)

In the IR limit (A — 0) the above spectrum goes to the one related to the standard
background2.9). the allowed band & &2 < 1/k% — 1, in fact, shrinks to the eigenvalue
@ = 0, while the other allowed ban@? > 1/k? merges in the continuous part of the
spectrum? = 1+ ¢2.

It is useful to note that, although the dependence of the frequenci@15)is quite
implicit, since it passes through the inversion of E2}3), nevertheless these are analytic
functions of R and it is extremely simple to plot them. The corresponding curves, shown
in Fig. 3, provide an important piece of information, since they are nothing else but the
energies of the excited states with respect to their ground&sai.

To complete the analysis, it remains then to determine the finite volume ground state
energy&o(R) of the kink sector. In analogy with the infinite volume case (see(EG41)),
this is defined by

R/2

(k) =Ea(R)+ Y ou(R) T [ drli—cospoul — &R, (@.17)
n=1 —R/2

Before commenting in detail each of thesentsr let us focus first on the main problem in
deriving a closed expression f6§(R), which consists in the evaluation of the infinite sum
on the frequencies, (R) or, better, in isolating its finite part. We need therefore a method
for solving the transcendental equati@l6)for y, (k%) in order to make the expression
(3.15)for the frequencies, (k%) explicit. As we have already seen for the classical energy,
two kinds of expansion are possible, one in the elliptic modélasd the other in the
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Fig. 3. The first few levels defined {{3.15)

complementary modulus, which are efficient approxini@n schemes in the small and
larger regimes, respectively. Here for simplicity we only present the smakpansion.
By taking into account the series expansiot ifor K, ¢ («) andP (u) (seeAppendices B
and Q, we are led to look for a solution of E¢B.16)in the form

o]

(k%) = (k%) 5. (3.18)

s=0

Here we give the result for the first few coefficieryf,é), s=0,1,2

1 1
yIEO) = arctant |2n ’ Igl) = ZyIEO)’
9 n
(2 _ 0
Yn = = 64yn - 16(4712 _ 1)2’ (319)

which are those relevant in the analysis of the UV properties of the scaling function in Sec-
tion 3.3. As a consequence, we obtain the following simple expression for the frequencies

- e o) (3.20)

m k
Comparing it order by order with the smallexpansion of E¢(3.3)
r=mR=mk 1+k—2+3k4+0(k6) (3.21)
4 64 ’ '
we finally obtain the expliciR-dependence
o, (R) 27 r\° =n
_t _ 3.22
m rn+(2n> 4n2—1+ (3-22)

It is worth noting that this series expansiorrirwhich can be easily extended up to desired
accuracy, efficiently approximates the exact ggdevels also for rather large values of the
scaling variableFig. 4 shows a numerical comparison between the first energy level given
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wl/m
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Fig. 4. Comparison between the exact energy levglm given by(3.15)(continuous line) and the approximate
expressior(3.22)(dotted line).

by (3.15)and its approximate expressi¢®22) and for the higher levels it is possible to
see that the agreement is even better.

With the above analysis, the sum over frequencies in the ground state €Ber@y
takes the form
Z on(R) 27 & r\°& n
n=1 n=1 n=1
As we will see below, the subtraction of counterterm and vacuum enefgyliii)leads to
the cancellation of all the divergencies, producing a finite expression for the ground state
energy in the kink sector.

Moving now to the analysis of the remaining term¢3nl7) a similar series expansion
can be easily performed on each of them. The classical edgi@y), given in Eq.(3.4),
has already be treated in this way in E8.6). The finite volume counterterm (C.T.), where
the one-loop mass renormalisation is given by

2 22 S 1
o= P2 ) — (3.24)

87 R n=—0o0 ,/mz + —(2’11;;)2

andgg) is given by(3.2), takes the explicit form

K(kz)—E(kz)] ad 1
C.T.:m[kK k) - —~2  —— 7 E—— (3.25)
( ) k = /(27’L7T)2+7'2
The first terms of its expansion iR are then
CT. 1 r &1 72 1/r\3&/1 1
Ty N T D — 4+ = 3.26
m 4t —n 3272 4(271) ;<n+n3)+ (3.26)

Finally, the vacuum energg®“(R) is the one precisely computed in Sect2:3. Since
its role is to cancel certain divergencies present in the other terrfig(&, in complete
analogy with the infinite volume case (see E2.11), we will now consider its “naive”
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formulation, given by

vac 2
TW_1 ( >+m2

_}+2_”in+Li___< )Z y (3.27)
2 r = 4]Tn:ln = 3 ' .

Hence, in the final expression for the ground state energy all the divergent series present
in the sum over frequencies, in the counterterm and in the vacuum energy cancel out, and
one obtains

Eo(R) 2nnm 1 1 1( r )2
= —r _—

2w
r\°[1 1 b4
where we have usg82]
= 2?1
;W 5(3) (2|09 2-1)

in order to evaluate explicitly the coefficient of théterm.
Repeating the above calculations, one can also easily write the finite expressions of the
excited energy level@.5), whose series expansionins given by

5{kn}(R) 27 1 1 1/ r\?
m (/32 Zk”) 2t g 8(5)

r

3 b4 n
- (E) |:§§(3) - 4_1(2|ng_ - @-}-zn:knm] +---,

(3.29)
wherelk,} is a set of integers defining a particular excited state of the kink.

3.3. UV-IR correspondence

The semiclassical quantization of the periodic k{B8K2) provides us with analytic ex-
pressions, albeit implicit, for the scaling functions in the kink sector for arbitrary values
of the scaler = mR. These quantities control analytically the interpolation between the
Hilbert spaces of the ultraviolet (UV) and infrared (IR) limiting theories. It is worth to note
that, although we obtain them in the framework of a particle-like description proper of the
IR limit, the kink background3.2)is intrinsically formulated on a finite size, leading to
the possibility of extracting UV data. Hence, it is important to check whether our scaling
functions reproduce both the expected results for the: iR (co) and UV ¢ — 0) limits.

Concerning the IR behaviour, we have seen in the previous sections thatRn-theo
limit all the quantities in exam, i.e., the classical solution, its classical energy and the sta-
bility frequencies, correctly reach their asymptotic values. In addition, it is also possible to
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perform a simple and interesting analysis of the first correction to the kink mass foRlarge
According to Lischer’s analysj26], the mass of a particle in a large but finite volume has

to approach exponentially its asymptotic value, in a way controlled by the scattering data
of the infinite volume theory. Restricting for simplicity our analysis to the leading tegn in

in the kink mass (which, in our approch, is simply given by the classical energy), we have
then to compare the expansion presente(Bib) with the term that dominates Luscher’s
formula for smallg. This is given by[26,27]

M(R) — Moo = —my Sinuk, Repee ™ SN0 R 4. (3.30)

where Ry is the residue (multiplied by-i) of the kink-breathes-matrix on the pole at
6= iuib, i.e.,

Ripr = —i ResSkb(e = iu’,ib). (3.31)

Using the kink-breathe$-matrix [3]
sinhd + i cos{z B2
Skp(0) = —=>, = 3.32
kb (6) sinhd — i cos{z v 1-p2/87 (3.32)

and selecting its-channel pol&* = i“’/ﬁb =i(w/2+ y/16), we find

Ripk = —200tg-. (3.33)

16
Substituting in(3.30), for small 3% we have
32
MR)— Mo =m—e " +---, (3.34)

ﬁZ
which therefore reproduces H8.5). It is a remarkable fact that the classical energy alone,
being the leading term in the mass f6f — 0, contains the IR scattering information
which controls the large-distance behaviou€efR).
The UV behaviour forr — 0 of the ground state enerdip(R) of a given off-critical
theory is known to be related instead to the Conformal Field Theory (CFTYdata, c)
of the corresponding critical theory and to the bulk energy terf2las

2T - c
EoR)~ — A+ A— — BR+--- 3.35
o(R) = — ( + 12) +BR+---, (3.35)
wherec is the central charged + A is the lowest anomalous dimension in a given sector
of the theory and3 the bulk coefficient.

For the sine-Gordon model the bulk energy term is givefBh33]
2

m 14

— tan-—

y2 16’

while its UV limit is described by the CFT given by the Gaussian action withl

B =16 (3.36)

1
Acpr = Egfdzx 0Pt p, (3.37)
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where the free bosonic field is compactified on a circle of ra@u$he various sectors of
this CFT are labelled by two integersandn: s is the momentum index, while is the
winding number, related tdveé boundary conditimimposed orp

¢(x+R,t)=¢(x,1)+27nR. (3.38)

Let |s, n) be the states carrying the lowest aradaus dimension in each sector. They are
created by the vertex operat¢29]

Vin(z.2) = :expieg’, 0(2) +ia; ¢ (@)]-.

|S7 }’l> = ‘/S,l’l (07 0)|Vac>7 (339)

where
o, ==k 2mgnR. (1) =) + 5.

Their conformal dimensions are given by

K 1 2 - K 1 2
Agn=2 ——+-nR ), Agn=2 —— ——-nR ). 3.40

S ng<471g7€ + 2n ) S ng<471g7€ 2n ) ( )
The vacuum sector is described by= n = 0, with Ayac + Avac = 0. If we now define
R= ﬁ and fix the normalization constant to the velge= 1, then the kink sector in SG,
defined by the boundary conditi¢8.8), naturally corresponds to the sector characterized
by s =0,n =1, in which the lowest anomalous dimension is

Aox+ Agy= %. (3.41)
The conformal vertex operatdh 1 has been put in exact correspondence with the soliton-
creating operator of SG in R4BO0].

The question to be addressed now is whether the smeXpansion of£3?“(R) and
&Eo(R) given by Egs.(2.26) and (3.28)yeproduces, in semiclassical approximation, the
above data controlling the UV limit of SG model.

For the vacuum sector, comparif2.26) with (3.35) we correctly obtainr = 1 and
Avac = Avac = 0. We do not expect, however, to obtain the bulk teBrmelative to SG
model by looking at(2.26) simply because the semiclassical expression of the ground
state energy in the vacuum sector applies equally well to any theory which has a quadratic
expansion near the vacuum state. Namely, apart from the value of thexm&sg (2.26)
is a universal expression that does not refer then to SG model.

The kink scaling functior(3.28) has instead a richer structure. The obtained scaling
dimension

At A= % (3.42)

4 Note that the usual normalization adopted in the CFT literature is ingteaql?
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is the expected one for the soliton-creating operator in sine-Gordon while the central charge
contributionc = 1 is absent, simply because (8.28) we have subtracted the vacuum
ground state energy from the kink oh&loreover, the bulk coefficiert = m?2/2 present
in (3.28)correctly reproduces the semiclassical limit of the exact one, given i(3E2p)
In principle, this bulk term should be present in all the energy levels, included the ground
state energy in the vacuum sector, but its non-perturbative nature makes impossible to see
it in the semiclassical expansion around the vacuum solution, which is in fact purely per-
turbative. Hence it is not surprising that to extract the bulk energy term we have to look at
the kink ground state energy, in virtue of the non-perturbative nature of the corresponding
classical solution.

Finally, the expressio(B.29)for the excited energy levels explicitly show their corre-
spondence with the conformal descendants of the kink ground state. In fact, their anom-
alous dimension is given by

- T
Aty + Aty = 5 + > kan. (3.43)
n

The successful check with known UV and IR asymptotic behaviours confirms the ability
of the semiclassical results to describe analytically the scaling functions of SG model in the
one-kink sector. It would be interesting tarther test them at arbitrary valuesrathrough
a numerical comparison with the resultd®{]in an appropriate range of parameters. This
was not pursued here because the results presently available in the literature were obtained
for values ofg which are beyond the semiclassical regime and moreover the energy levels
were plotted as functions of a different scaling variable, i.e., the one defined in terms of the
kink mass. We hope however to come back to this problem in the future.

4. Form factorsand correlation functions

The semiclassical scaling functions, derived in Sec3iggrovide an importantinforma-
tion about the finite size effects in SG model. As in the infinite volume case, however, the
complete description of the finite volume QFT requires to find, in addition to the energy
eigenvalueg3.29) the kink form factors and the correlation functions of local operators.
This section is devoted to the analysis of this problem, i.e., to the determination of the finite
volume form factors and the corresponding spectral functions.

4.1. Infinite volume form factors

Itis useful to initially recall some basic definitions and results concerning semiclassical
form factors for the SG model in infinite volume. As mentioned in SecHpthe rela-
tion between kink solutions and form factors was established by Goldstone and Jackiw
[13], who showed that the matrix element of the figlthetween two asymptotic one-kink

5 The valuec = 1, coming out from the regularization of thealding term of the series on the frequencies
(3.22) is in fact exactly cancelled by the same term in the vacuum energy.
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states is given, at leading order in the semiclassical regime, by the Fourier transform of
the classical solution describing the kink itself (see 4lds) for further developments).

This remarkable result, however, had the drawback of being formulated non-covariantly in
terms of the kink space-momenta. It was refined2@] with a covariant formulation in
terms of the rapidity variable of the kink, defined in terms of its energy and momentum
asE = M coshp, p = M sinhd. In the semiclassical regime, there are moreover further
simplifications: in fact, the mass of the kiwlan be approximated by its classical energy

M ~ Mg = 8m/B? whereas its rapidity can be assumed to be very smallgie.0 (82),

thus obtaining >~ M, p >~ M 6. Hence, the refined form of Goldstone and Jackiw result

is given by

e¢]

(6116/(0)[62) = Moy f da e~ MeO-82ag (4), (4.1)

—00

where|0;) are asymptotic one-kink states. Moreover, it is also possible to prove that the
form factor of an operator expressible as a functiog @f given by the Fourier transform
of the same function of¢. For instance, the form factor of the energy density operator
¢ can be computed performing the Fourier transfornagfx) = %(a’q‘)d/dx)z + Vigal.
With this covariant formulation, the matrix eleme#@t1) can be continued to the crossed
channel, and from its pole structure one can easily extract the spectrum of the bound states
of the theory, even in non-integrable cases, as discusg&8,i20]

In [20] we have checked that the form fac{dr1) obtained from the infinite volume
kink (2.9) reproduces the semiclassical iirof the exact one, derived if81]. Here we
would like to present a more quantitative comparison which permits to conclude that for-
mula(4.1), though proven under the semiclassical assumption of small coupling and small
rapidities, remarkably extends its validity finite values of the coupling and to a large
range of the rapidities. Consider, for instance, the form factor of the energy operator (up to
a normalizationV) F(0) = N (62]€(0)|01), whose semiclassical and exact expressions are
given, respectively, by

0 1
Fsemicl(f) = =————, 4.2
semicl () Zsinf'[?;—g ] ( )
N 1
Fexac(f) = sinh~ .—QG(Q), (4.3)
2 sinhZ
where¢ =y /8r and
o0
dt sinhb(1—&) si? 4L
GO)= — <L | 4.4
©) exp|:/ t sinh& coshs sinhr (4.4)
0

Fig. 5shows how, for small values of the coupling, the agreement between the two func-
tions is very precise for the whole range of the rapidity. Furthermore, the discrepancy
between exact and semiclassical formulas at larger valugsah be simply cured, in our
example, by substituting the bare couplif@with its renormalized expressigninto the
semiclassical resufé.2), as shown irFig. 6. Hence we can conclude that the monodromy
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Fig. 5. Comparison between the exact functidrgiven by(4.3) (continuous line) and its semiclassical approxi-
mation(4.2) (dotted line), a3 = 0.1 andp = 0.5.

Fig. 6. Comparison, g8 = 1, between (a) the exact functidn given by (4.3) (continuous line) and its semi-
classical approximatiori4.2) (dotted line), (b) the exact functiof’ given by (4.3) (continuous line) and its
semiclassical approximatiofd.2) with the substitutiond? — y (dotted line).

factor (4.4), which is the relevant quantity missing in our approximation, does not play
a significant role in the quantitative evaluation of the form factor even for certain finite
values of the couplin§.

As we have already mentioned, the exactr{essery high accuracy, as in this case) of
the semiclassical results is a peculiar feature of SG model in infinite volume, obtained with
the “dressing’82 — y. An interesting problem to be studied is whether similar phenomena
take place for the semiclassical scaling flioies and form factors in finite volume as well.
An indication on this issue could be found by extending to finite volume the analysis of
higher loop quantum corrections which, in the semiclassical approach, are obtained by
keeping cubic (and higher) powers®in the expansion oV (¢l + 1) [15].

6tis easy to understand the reason of this conclusion in the above example: at small valuge bave
G(0) ~ 1, whereas fop — oo, whenG (9) may contribute, the whole form famt goes anyway to zero. Similar
conclusion can be reached for all other form factors which vanigh-atoo.
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4.2. Semiclassical spectral functions on the cylinder

The generalization of the above constrao to the case of finite volume has been pro-
posed in[20], where we have shown how to estimate the leading semiclassical behaviour
of the spectral function on the cylinder under the same hypotheses of the infinite volume
case. In fact, the matrix element

fOn) = (Pn2|¢(0)|]7n1>7 (4-5)

of the basic fieldp between two kink eigenstates of the finite volume Hamiltonian can be
expressed, at leading order, as the Fourier transform of the corresponding classical solution

R/2

f(6n) = M(R) / dae™M By (a), (4.6)
—R/2

bel(a) = RUE) n; e MRIa £y (4.7)

Here we have denoted the states by the so-called “quasi-momentum” varjabldich
corresponds to the eigenvalues of the traimsheoperator on the cylinder (even multiples
of 7/R), and we have defined}, as the “quasi-rapidity” of the kink states

2n
Tﬂ — pn = M(R)sinh6, ~ M(R)6,, (4.8)
whereM (R) is the classical mass of the finite-volume kink. As show[2, the crossed

channel form factor can be obtained at leading order via the change of variabler — 6

F2(0n) = (016 (0)| pnypny) = f (i — 6n), (4.9)
and the leading terms in the spectral function on the cylinder are given by

Z(S(Ek/M—Z) F2<,'n_ ﬁ>’2
_ i .

4 M?
(4.10)

The procedure describatbove has been introduced 0] for the construction of form
factors for the kink backgrounds in the SG model and the brgKeield theory, both de-
fined on a cylindrical geometry witantiperiodicboundary conditions. In what follows we
will apply it instead to the case of SG model wthriodicboundary conditions. The corre-
sponding finite volume form fact@#.6)can be written in terms of the soliton background
(3.2)

A(Ex, pr) = 278(EQS(pi)] (019 (0)0)° +

R/2

. T 2 mx
f6)=M / daelMe”“[——l——am(—,kZ)]
BB k
—R/2
27 (M 1—8mp,.0 sin(M6, R /2)
==1"Rs S el M6,R/2) - ———— =
5 { > Rowme,.0—i o |:COS( /2) MO, R)2
1
+i— 4.11
encosr(kK’%Gn)} (4.11)
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In order to obtain this result one has to compare the inverse Fourier tran@ofjavith
the expansiof32]

o0

Tu u

amu)=—+> ——sinjar— |. 4.12
) = ok Z;ncosr[mr%] [ K] (412)

n=

The form factor(4.11)has the correct IR limif,and leads to the following expressions
for F»(9) and for the spectral functioh:

F(Q)‘@{;—(l—& )[COS(Mé R/2)—W“
S i, Lcostikk 224, "o " Mé,R/2 1)
(4.13)
E 1 1
AEna n) =4 35 _n_2> { 7
Pl ) =5 (M BZ(pn)? | cosi®& p, |
sin(paR/2) 7|
_(1—apn,o)[cos(an/2)—W“ : (4.14)

whered = iz — 6. Note that the finite volume dependence of both the form fa@di3)
and the spectral functio@.14)is not restricted to the second term only. T (k%) M (R)
factor in the first term carries the maRrdependence, although it is not manifest but im-
plicitly defined by Eq(3.3).

Another quantity of interest is the two-point functid®je (x)e(0)|0) of the energy den-
sity operator. One can calculate it by evaluating its spectral function

R/2
o) = [ dxiOe0e s (4.15)
—R/2
in terms of the form factors of (x), similarly to what we have done for the SG fieid
above. In order to find the semiclassical form factor
JeOn) = (Pnz|e(0)| pny), (4.16)
we need to compute the Fourier transform of

2m? 2 4m? mx
e(gel) = W(Hk ) — ?s (7> (4.17)
This can be easily obtained from the following expansion
1 72 &, ncos’zt
sffu=——1K-E-—Y) —K_ 4.18
<R | (19

7 The functions®2XXR/2 ang Si;'(lef/zz) can be shown to tend to zero in the distributional sens&fer co.
8 Here we are considering the matrix elements on titssgmmetric combinations of kink and antikink.
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and we finally have

ar O } (4.19)

) = M2 8p0 0+ = —— "
Je(On) { M6,.0 + 53 SinhkK 224,

The corresponding semiclassical spectral function is thus given by

~ 43 (En ) p2
Eppp)= —8 -2 —2)—-"n 4.20

It is worth to mention that it is also possible to obtain the two-point functions of cer-
tain vertex operatorg;~ (x, r) = e=FP¢:0 (for b = 1/2,1,3/2, 2, ...), since the required
Fourier expansion formulas of the typg 18)are known in these casf&3].

5. Further directions

In this paper we have shown how the semiclassical methods can provide an analytic
description of finite size effects in two-dimensional quantum field theories displaying de-
generate vacua. In particular, we have applied these techniques to study the SG model,
guantizing its kink solution on the cylinder. The scaling functions of the ground (and ex-
cited) states, as well as the form factors and two-point functions of different operators,
allowed us to build the one-kink sector (i.€p = £1) of the corresponding Hilbert
space of states.

The next step in this program is the extension of the DHN method to describe the multi-
kink states Qwop = £2, £3,...) as well as the non-vacua (“breather’-like) part of the
Otop = 0 sector. These states are related to certain time-dependent solutions of SG model
on the cylinder, i.e., to the finite volume ang of soliton—soliton, soliton—antisoliton and
breather solutions. Although more complicated from the technical point of view, the de-
termination of these classical solutions and the study of their scaling functions and form
factors is a well stated open problem in the semiclassical framework, which deserves fur-
ther attention.

One of the advantages of the semiclassical method is that it works equally well for both
integrable and non-integrable models, if they admit kink-type solutions. In fact, we have
chosen to test the efficiency of the semiclassical quantization on the example of SG model,
mainly because it leads to the simplést= 1 Lamé equation. Static elliptic solutions for
other models can be easily obtained by integrating equé#@d) with A # 0 and appro-
priate boundary conditions. This was done, for instanc¢2@j), where we have derived
the form factors between kink states in the brokémodel on the cylinder with twisted
boundary conditions. In this case, the quantization of the finite volume kink involves a
Lamé equation withV = 2. Lamé equations wittN > 2 are also expected to enter the
guantization of other theories.

Finally, the semiclassical method seems to be suited also for the description of finite
geometries with boundariesaswith Dirichlet or Neumann boundary conditions. Due to
the physical significance of this kind of systems, an interesting problem is the semiclassical
computation of the relative energy levels, a subject that will be discussed in a forthcoming
publication[21].
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Appendix A. Freetheory quantization on a finite geometry

Let us consider a free bosonic fieidx, ) of massn defined on a cylinder of circum-
ferencer, i.e., satisfying the periodic boundary condition

d(x+ R, t)=¢(x,1). (A1)
Imposing the equation of motion and the commutation relation
[¢(x,t),n(yyt)]ZiSP(x_Y), (A2)

wherell (x, 1) = %(x, t) is the conjugate momentum of the field whereas

1 > 2rin
dp) =2 D e RN Sp(xt R)=8p(x),

n=—oo
is the periodic version of the Dirac delta function, we obtain the mode expansion of the
field ¢ (x, r). This is given by

o0
1 : .
px.)= ) zwR[A,,e’@"’“w"”+ATe*’<PHX*wn’>], (A3)
n

n=—0oo

where

[Al’la A;L] = an,ma

I —— 2mn
wy = p%—}—mz, Pn = T, VL:O,:l:l, . (A4)

Using the above expansion together with the commutation relatignasfd AT, it is easy
to compute the propagator of the field, given by

and

1

e ilon(t=1)=py(x—x")] A5
2w, R (A-5)

Ar(x—x' 1 =) ={p(x. 0" 1))=Y

n=—0o0

The vacuum expectation value of the operatdtx, 1) is then formally given by

(p%(x.0)) = Ap(0) (A.6)
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and, by translation invariance, is independent frorandz. However, this expression is
divergent and needs therefore to be regularized. Analogously to what has been done in the
text for the ground state energ}f?“(R), we need to subtract the corresponding expression

in the infinite volume, so that the finite quantity, simply denotedpﬁyR), satisfies the

usual normalization condition

. 2 _
Jim_@5(R) =0.

Hence we define

1
PE(R) = R (A7)

o
i 1 1 / J 1
—_—— — n——.
n:—oo,/(%)z-}-mz ZR_OO 1/(ZnTn)z—i-l’}’lz
Isolating its zero mode, the series needs just one subtraction, i.e.,

o0

1 ad 1 1 1
SH=y ————— = {7——}+ = (A.8)
nZ::l,/”lz'i‘(é)z Z=:1 Jnt+ (g2 " Zzzl”

(r =mR). In the above expression, the first series is now convergent whereas the second
series, which is divergent, has to be combined with a divergence coming from the integral.
Indeed we have

T 1
) E/dni
oV n? + ()

— lim {In2A—In L} — lim InA+ lim InA, (A.9)
A—00 2 A—00 A—00

and the last term can be used to comp@s25) Collecting the above expressions, it is now

easy to see thaxtg(R) coincides with the one obtained doing the calculation in the other

channel, i.e., at a finite temperaguin fact, using the results of R¢23], this quantity can

be expressed as

T 1
$3(R) = f i — (A.10)

27 ercoshv _ 1’
—0Q

whose expansion inis given by

62R) = — + i(logl e Iog2> +i<; - i)
0 2r 27 2 “\Jenm2+r2 22m)’
(A.11)
Also this result could have been directly obtained computing only the finite part of the
integral and using the prescripti¢?.30)
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Appendix B. Ellipticintegralsand Jacobi’séelliptic functions

In this appendix we collect the definitions and basic properties of the elliptic integrals
and functions used in the text. Exhaustive details can be foufB2jn
The complete elliptic integrals of the first and second kind, respectively, are defined as

/2 /2

o [ > %) = avV1—k2sinfa
K(k)_b/m, E(k°) /d V1-k2sirfa. (B.1)

0
The parametek, called elliptic modulus, has to be boundedAfy< 1. It turns out that
the elliptic integrals are nothing but specifigpergeometric functions, which can be easily
expanded for smak:

K (k2) = ZFG 1 k2>

2 \272
T 1 9 n—117? ,

= TP A | T 2y
2{ T3 e T +[ 2l } e

N T 11, 5

b 1 3 @n— NP k2

S Ry N T B.2
2{ 2" Teat T [ 21p) }2;1—14r (B2)

Furthermore, fokZ — 1, they admit the following expansion in the so-called complemen-
tary modulust’ = +/1 — k2

4 4 k'2
K(kz):logp—k(Iogp—1>—+-.-,

4
4 1\k'?
2\ _ — D) ...
E(k )_1+(Iogk, 2) > T (B.3)
Note that the complementary elliptic integral of the first kind is defined as
K’ (k%) =K (k'?). (B.4)

The function an, k%), depending on the parameterand called Jacobi’s elliptic am-
plitude, is defined through the first order differential equation

2
(d a;;”)) =1 2sirP[amw)]. (B.5)

and it is doubly quasi-periodic in the variable

am(u + 2nK + 2imK’) = nw + am(u).

The Jacobi’s elliptic function g, k2), defined through the equation

2
(dsn”) = (1- srfu)(1— k2srPu), (B.6)

du



572 G. Mussardo et al. / Nuclear Physics B 699 [FS] (2004) 545-574

is related to the amplitude by sn= sin(amu), and it is doubly periodic

sn(u + 4nK + 2imK’) = sn(u).

Appendix C. Lamé equation

The second order differential equation
d2
{—2 —E—N(N—}—l)P(u)}f(u):O, (C.1)
du

whereE is a real quantity)V is a positive integer an® () denotes the Weierstrass func-
tion, is known under the name dfth Lamé equation. The functioR(«) is a doubly
periodic solution of the first order equation (482])

du
whose characteristic roots, e2, e3 uniquely determine the half-periodsandw’, defined
by
Pu+2nw -+ 2me’) =Pu).

The stability equatioii3.7)can be identified with EqC.1)for N =1,u =k +iK’ and
E = Z_T"z — k&2 in virtue of the relation betweeR (1) and the Jacobi elliptic function
sN(u, k) (see formulas (8.151) and (8.169)[82]):

AP\ 2
(—P> =4(P —eD)(P — e2)(P — e3), (C.2)

k% +1
K2SIR(E. k) = PG +iK') + ;r . (C.3)
Relation(C.3)holds if the characteristic roots @f(x) are expressed in terms bf as
2 —k? k% -1 1+ k2
€1 = 3 ) €2 = 3 ) €3 = — 3 ) (C4)

and, as a consequence, the real and imaginary half perigelgfare given by the elliptic
integrals of the first kind

w=Kk), o =iK'k). (C.5)

All the properties of Weierstrass functions that we will use in the following are specified
to the case when this identification holds.
In the caseV = 1 the two linearly independent solutions(@f.1) are given by (sef83])
+
fra) = Me:l:”{(a)’ (C.6)
o(u)
wherea is an auxiliary parameter defined througku) = E, ando (1) and¢ (1) are other
kinds of Weierstrass functions
dc(u) dlogo (u)

dn —Pu), an ¢(u), (C.7)
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with the properties

C(u+2K) = ¢ (u) + 22 (K), o (u+ 2K) = —2utKe 5 . (C.8)
As a consequence of E(C.8) one obtains the Floquet exponentfaf, (1), defined as

fu+2K) = fu)e®, (C.9)
in the form

F(£a) = £2i[K¢(a) — ag (K)]. (C.10)

The spectrum in the variablg of Eq. (C.1)with N = 1 is divided in allowed/forbidden
bands depending on wheth&ia) is real or complex for the corresponding values:of
We have thaf: < ez andez < E < e1 correspond to allowed bands, whie< E < ¢ and
E > e are forbidden bands. Note that if we exploit the periodicity?gf:) and redefine
a—ad =a+ 2nw+ 2mao’, this only shiftsF to F' = F + 2mx.

The function¢ (u) admits a series representatii®4] that will be very useful for our
purposes in SectioB.2

T Tu E k2-2 21 o\ h . (nmu
= —cot| — — — ——F—SIN{ —— C.11
(=3¢ <2K>+<K T3 )H K 21— p2 ( K ) (€11

whereh = ¢~"K'/K_The smallk expansion of this expression gives

k2
c(u) = (cotu + =) + —(u — 3cotu + 3ucof u)
3 12
4

k .
+ 6—4(—3u + (4u® — 5) cotu + u cof u + 4u®cotu +sin2u) +--- (C.12)

(note thath ~ (k/4)2 4+ O (k*)). A similar expression takes place f8t(u), by noting that
Pu) =—d¢(u)/du.
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