RESSALVA Atendendo solicitação do(a) autor(a), o texto completo desta dissertação será disponibilizado somente a partir de 29/03/2020. 1 Guilherme Silva Torrezan Uso do glicerol, glicerol bruto da produção do biodiesel e outros solventes próticos na síntese de cetonas (E)-α,β-insaturadas São José do Rio Preto 2018 2 Uso do glicerol, glicerol bruto da produção do biodiesel e outros solventes próticos na síntese de cetonas (E)-α,β-insaturadas Orientador: Prof. Dr. Luis Octavio Regasini Co-orientador: Prof. Dr. Marcelo Freitas Lima São José do Rio Preto 2018 Dissertação apresentada como parte dos requisitos para obtenção do título de Mestre em Química, junto ao Programa de Pós-Graduação em Química, do Instituto de Biociências, Letras e Ciências Exatas da Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de São José do Rio Preto. Guilherme Silva Torrezan 3 Uso do glicerol, glicerol bruto da produção do biodiesel e outros solventes próticos na síntese de cetonas (E)- α,β-insaturadas BANCA EXAMINADORA Prof. Dr. Luis Octavio Regasini Universidade Estadual Paulista “Júlio de Mesquita Filho” – UNESP Prof. Dr. Luiz Carlos da Silva Filho Universidade Estadual Paulista “Júlio de Mesquita Filho” – UNESP, Campus Bauru Profa. Dr. Daniel Rinaldo Universidade Estadual Paulista “Júlio de Mesquita Filho” – UNESP, Campus Bauru São José do Rio Preto 29 de março de 2018 Dissertação apresentada como parte dos requisitos para obtenção do título de Mestre em Química, junto ao Programa de Pós-Graduação em Química, do Instituto de Biociências, Letras e Ciências Exatas da Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de São José do Rio Preto. Guilherme Silva Torrezan AGRADECIMENTOS Agradeço a Deus, primeiramente, pela vida, pela saúde, por tantas outras bênçãos recebidas. Também pelas oportunidades que me concedeu, pelos amigos que colocou em meu caminho e por nunca me desamparar. A meus pais, Jácomo e Débora, e a minha irmã, Ingrid, que, mesmo em meio a lutas e dificuldades, sempre me apoiaram. Agradeço especialmente pela paciência, pelos conselhos, pelo apoio, e por todo amor. Essa vitória também é de vocês. A meu querido mestre, “pai científico” e amigo Prof. Dr. Luis Octavio Regasini, também pela paciência, pelos ensinamentos, pelas correções na vida e na ciência e por sempre acreditar e confiar em mim e no meu trabalho. Serei sempre grato pelas lições de química e da vida. Obrigado por tudo. A meu grande amigo e co-orientador do meu trabalho, Prof. Dr. Marcelo Freitas Lima, também pelos ensinamentos da vida, da ciência e colaboração. Sem você este trabalho não iria ser completo. A minha Namorada Ester Paula que me ajudou e me aconselhou nos momentos bons e ruins dessa caminhada. Essa vitória também é sua. A meu grande amigo Carlos Roberto Polaquini, também pelos ensinamentos da vida e da ciência. A minha grande amiga Mariana Bastos, também pelos ensinamentos da vida e da ciência. Aos meus grandes amigos do Laboratório de Química Verde & Medicinal por tornar o ambiente de trabalho um dos melhores lugares em que eu poderia estar. Obrigado pela amizade, pelos conselhos, pelos momentos de descontração e pelo auxílio com o trabalho. Ao Laboratório de bioquímica e microbiologia aplicada – Instituto de Biociências, Letras e Ciências Exatas - UNESP/São José do Rio Preto e ao Diego Alves Monteiro, pela colaboração. Ao Laboratório de Análise Térmica Ivo Giolito – Instituto de Química – UNESP/Araraquara e ao José Augusto Teixeira, pela colaboração. Aos meus queridos amigos Diogo, Matheus, Luís Felipe, Afonso, Fernando, Rodolfo, Cézar, Nicolas, Vitor, Renan, Caio, Leonardo, Erick, Fagner, Guilherme Neves, Luciano, Gabriel e Hugo por se tornarem como uma família para mim, me ajudando com palavras de carinho, com momentos de diversão e por estarem sempre presentes. E, por fim, agradeço a todos que, direta ou indiretamente, contribuíram para o bom andamento desse trabalho e também a todos que estiveram presentes e me ajudaram de alguma forma a chegar até aqui. Resumo O glicerol é o principal co-produto da produção de biodiesel e vem sendo considerado como um solvente verde. Neste trabalho, utilizamos o glicerol e o glicerol bruto proveniente da produção de biodiesel para a síntese das cetonas α,β-insaturadas (2E, 4E) -1,5-difenilpenta-2,4-dien-1-ona (1) e (2E, 6E) -2,6-dibenzilidenociclohexanona (2), utilizando reações aldólicas mono- e dicondensadas, respectivamente. As cetonas 1 e 2 sintetizadas em glicerol e glicerol bruto forneceram rendimentos superiores aos outros solventes próticos, incluindo etanol, metanol, PEG-400 e água. Para investigar as razões que justificariam a eficiência do glicerol, foram realizados os cálculos computacionais usando a teoria do funcional da densidade, que validou o mecanismo E1cB, assim como uma barreira de energia de ativação que favorece a rota sintética usando o glicerol. Além disso, o glicerol bruto de óleo de milho e girassol foram utilizados na síntese de 1 e 2 durante quatro reciclos, demonstrando rendimentos finais de 59,0 e 48,2%, respectivamente. Palavras-chave: glicerol, solventes próticos, cetonas, Condensação aldólica, Biodiesel, Química Verde 6 Abstract Glycerol is main co-product from biodiesel production and has been recognized as green solvent. Herein, we used glycerol and crude glycerol for synthesis of α,β-unsaturated ketones: (2E,4E)-1,5-diphenylpenta-2,4-dien-1-one (1) and (2E,6E)-2,6- dibenzylidenecyclohexanone (2), using mono- and dicondensation aldol reactions, respectively. Glycerol and crude glycerol were able to furnish 1 and 2 in yields higher than other protic solvents, including ethanol, methanol, PEG-400 and water. In order to investigate reasons for efficiency glycerol, we performed computational calculations using Density Functional Theory, which has validated E1cB mechanism, as well as favorable enegy barrier using glycerol. In addition, crude glycerol from corn and sunflower oils were used in synthesis of 1 and 2 for four recycles, displaying final yields of 59.0 and 48.2%, respectively. Keywords: glycerol, protic solvents, ketones, Aldol condensation, Biodiesel ,Green chemistry 7 LISTA DE FIGURAS Figure 1. Structures of ketones 1 and 2…………………………………………….13 Figure 2. Synthesis of reference samples of ketones 1 and 2……………………...16 Figure 3. Simultaneous TG-DSC curves in dynamic dry air atmosphere of reference samples of ketones 1 and 2…………………………………………………………21 Figure 4. Free energy (kcal mol -1) of determining step of synthesis of ketone 1 via E1cB mechanism in water and glycerol…………………………………………………..23 Figure 5. Gravimetry and Chromatography yields of re-use investigations............ 25 8 LISTA DE TABELAS Table 1. Gravimetry and chromatography yields of synthesis of ketones 1 and 2 in glycerol and other protic solvents …………………………………………….22 Table 2. Gravimetry and chromatography yields of synthesis of ketones 1, 2 and 2.a in crude glycerol from oils ……………………....................................................24 9 SUPPLEMENTARY MATERIALS (Lista de Anexos) Anexo 1. 1H NMR Spectrum of reference sample of ketone 1…………………..........32 Anexo 2. Expansion of 1H NMR spectrum of reference sample of ketone 1………...32 Anexo 3. 13C NMR spectrum of reference sample of ketone 1……………………….33 Anexo 4. Expansion of 13C NMR spectrum of reference sample of ketone 1………...33 Anexo 5. 1H NMR spectrum of reference sample of ketone 2………………………..34 Anexo 6. Expansion of 1H NMR spectrum of reference sample of ketone 2…………34 Anexo 7. 13C NMR spectrum of reference sample of ketone 2……………………….35 Anexo 8. Expansion of 13C NMR spectrum of reference sample of ketone 2………..35 Anexo 9. Mass spectrum (MS) of reference sample of ketone 1……………………..36 Anexo 10. Mass spectrum (MS/MS), precursor ion m/z 235.04 [M + H]+ of reference sample of ketone 1………………………………………………………………….....36 Anexo 11. Mass spectrum (MS) of reference sample of ketone 2…………………….37 Anexo 12. Mass spectrum (MS/MS), precursor ion m/z 275.09 [M + H]+ of reference sample of ketone 2…………………………………………………………………….37 Anexo 13. Chromatogram of reference sample of ketone 1…………………………..38 Anexo 14. Chromatogram of reference sample of ketone 2…………………………..38 Anexo 15. Analytical curve of reference sample of ketone 1…………………………39 Anexo 16. Analytical curve of reference sample of ketone 2…………………………39 Anexo 17. UV-Vis spectra of reference samples of ketones 1 e 2 from HPLC-PAD experiment………………………………………………………………………….....40 Anexo 18. Expansion of 1H NMR spectrum of ketone 1 synthesized in glycerol……41 Anexo 19. Chromatogram of ketone 1 synthesized in glycerol……………………....41 Anexo 20. Expansion of 1H NMR spectrum of ketone 1 synthesized in ethanol….....42 Anexo 21. Chromatogram of ketone 1 synthesized in ethanol………………………42 Anexo 22. Expansion of 1H NMR spectrum of ketone 1 synthesized in methanol.....43 Anexo 23. Chromatogram of ketone 1 synthesized in methanol………………….....43 Anexo 24. Expansion of 1H NMR spectrum of ketone 1 synthesized in PEG-400.....44 Anexo 25. Chromatogram of ketone 1 synthesized in PEG-400………………….....44 Anexo 26. Expansion of 1H NMR spectrum of ketone 1 synthesized in water……...45 Anexo 27. Chromatogram of ketone 1 synthesized in water…………………….......45 Anexo 28. Expansion of 1H NMR spectrum of ketone 2 synthesized in glycerol…..46 Anexo 29. Chromatogram of ketone 2 synthesized in glycerol……………………..46 Anexo 30. Expansion of 1H NMR spectrum of ketone 2 synthesized in ethanol…...47 10 Anexo 31. Chromatogram of ketone 2 synthesized in ethanol…………………....47 Anexo 32. Expansion of 1H NMR spectrum of ketone 2 synthesized in methanol..48 Anexo 33. Chromatogram of ketone 2 synthesized in methanol………………......48 Anexo 34. Expansion of 1H NMR spectrum of ketone 2 synthesized in PEG-400....49 Anexo 35. Chromatogram of ketone 2 synthesized in PEG-400…………………..49 Anexo 36. Expansion of 1H NMR spectrum of ketone 2 synthesized in water…....50 Anexo 37. Chromatogram of ketone 2 synthesized in water……………………....50 Anexo 38. Expansion of 1H NMR spectrum of ketone 1 synthesized in crude glycerol from castor oil……………………………………………………………………...51 Anexo 39. Chromatogram of ketone 1 synthesized in crude glycerol from castor oil…………………………………………………………………………………..51 Anexo 40. Expansion of 1H NMR spectrum of ketone 1 synthesized in crude glycerol from corn oil……………………………………………………………………….52 Anexo 41. Chromatogram of ketone 1 synthesized in crude glycerol from corn oil…………………………………………………………………………………..52 Anexo 42. Expansion of 1H NMR spectrum of ketone 1 synthesized in crude glycerol from soybean oil…………………………………………………………………...53 Anexo 43. Chromatogram of ketone 1 synthesized in crude glycerol from soybean oil…………………………………………………………………………………..53 Anexo 44. Expansion of 1H NMR spectrum of ketone 1 synthesized in crude glycerol from sunflower oil……………………………………………………………….....54 Anexo 45. Chromatogram of ketone 1 synthesized in crude glycerol from sunflower oil…………………………………………………………………………………...54 Anexo 46. Expansion of 1H NMR spectrum of ketone 2 synthesized in crude glycerol from castor oil……………………………………………………………………...55 Anexo 47. Chromatogram of ketone 2 synthesized in crude glycerol from castor oil…………………………………………………………………………………..55 Anexo 48. Expansion of 1H NMR spectrum of ketone 2 synthesized in crude glycerol from corn oil…………………………………………………………………….....56 Anexo 49. Chromatogram of ketone 2 synthesized in crude glycerol from corn oil…………………………………………………………………………………..56 Anexo 50. Expansion of 1H NMR spectrum of ketone 2 synthesized in crude glycerol from soybean oil…………………………………………………………………....57 11 Anexo 51. Chromatogram of ketone 2 synthesized in crude glycerol from soybean oil…………………………………………………………………………………..57 Anexo 52. Expansion of 1H NMR spectrum of ketone 2 synthesized in crude glycerol from sunflower oil…………………………………………………………………58 Anexo 53. Chromatogram of ketone 2 synthesized in crude glycerol from sunflower oil………………………………………………………………………………….58 Anexo 54. Chromatogram of ketone 1 synthesized in crude glycerol from corn oil (Cycle 1, 344 nm)………………………………………………………………………….59 Anexo 55. Chromatogram of ketone 1 synthesized in crude glycerol from corn oil (Cycle 2, 344 nm)…………………………………………………………………………..59 Anexo 56. Chromatogram of ketone 1 synthesized in crude glycerol from corn oil (Cycle 3, 344 nm)…………………………………………………………………………..60 Anexo 57. Chromatogram of ketone 1 synthesized in crude glycerol from corn oil (Cycle 4, 344 nm)…………………………………………………………………………..60 Anexo 58. Chromatogram of ketone 1 synthesized in crude glycerol from corn oil (Cycle 5, 344 nm)…………………………………………………………………………..61 Anexo 59. Chromatogram of ketone 2 synthesized in crude glycerol from corn oil (Cycle 1, 328 nm)…………………………………………………………………………..61 Anexo 60. Chromatogram of ketone 2 synthesized in crude glycerol from corn oil (Cycle 2, 328 nm)…………………………………………………………………………..62 Anexo 61. Chromatogram of ketone 2 synthesized in crude glycerol from corn oil (Cycle 3, 328 nm)…………………………………………………………………………..62 Anexo 62. Chromatogram of ketone 2 synthesized in crude glycerol from corn oil (Cycle 4, 328 nm)…………………………………………………………………………..63 Anexo 63. Chromatogram of ketone 2 synthesized in crude glycerol from corn oil (Cycle 5, 328 nm)…………………………………………………………………………..63 Anexo 64. Proposed mechanism of aldol reaction for synthesis of 1 via carbanion elimination (E1cB)………………………………………………………………….64 Anexo 65. Chromatogram of ketones 2 and 2.a from soybean, obtained from HPLC-MS experiment……………………………………………………………………..........65 Anexo 66. Mass Spectrum of ketone 2.a……………………………………............65 Anexo 67. Mass Spectrum of ketone 2……………………………………………...66 Anexo 68. UV-Vis spectrum of by-product 2.a from HPLC-PAD experiment…….66 12 Sumário INTRODUCTION ..................................................................................................................... 13 2. EXPERIMENTAL .............................................................................................................. 15 2.1. Materials and reagents .................................................................................................. 15 2.2. Instrumentation and methods ....................................................................................... 15 2.3. Synthesis, identity and purity of reference samples of ketones 1 and 2 .................... 16 2.4. Synthesis of ketones 1 and 2 using glycerol and other protic solvents ..................... 16 2.5. Theoretical calculations ................................................................................................. 17 2.6. Synthesis of ketones 1 and 2 using crude glycerol ....................................................... 18 3. RESULTS AND DISCUSSION ............................................................................................ 19 3.1. Synthesis, identity and purity of reference samples of ketones 1 and 2 .................... 19 3.2. Synthesis of ketones 1 and 2 using glycerol and other protic solvents ...................... 21 3.3. Synthesis of ketones 1 and 2 using crude glycerol ....................................................... 24 4. CONCLUSION ...................................................................................................................... 27 5. AKNOWLEDGMENTS ....................................................................................................... 28 6. REFERENCES ...................................................................................................................... 28 SUPLEMENTARY MATERIALS .......................................................................................... 32 13 INTRODUCTION α,β-Unsaturated ketones are versatile structural subunits useful to heterocycle synthesis, due to reactivity of carbonyl and its behavior as Michael’s acceptors, undergoing 1,2- and 1,4- nucleophilic additions, respectively (AGARWAL et al., 2009; MARZINZIK; FELDER, 1998; SAMSHUDDIN; NARAYANA; KUNHANNA, 2012). Furthermore, these ketones are present in bioactive natural and synthetic products. Among these, compounds containing (2E,4E)-1,5-diphenylpenta-2,4-dien-1-one (1) and (2E,6E)-2,6-dibenzylidenecyclohexanone (2) skeletons have demonstrated several bioactivities: antibacterial, antitubercular, antiviral, anti-cancer, and anti-helmintic (AGUILERA et al., 2016; GE et al., 2013; LAMBERT et al., 2013; MOHD FAUDZI et al., 2015; POLAQUINI et al., 2017; WEI et al., 2012; WELDON et al., 2014) (Figure 1). Figure 1. Structures of ketones 1 and 2 OO 1 2 Aldol reactions have been extensively used for (E)-α,β-unsaturated ketones synthesis, which involves condensation between aldehydes and ketones, under acid or basis catalysis as well as protic solvents. Although, required use of solvents possess disadvantages, including flammability, low biodegrability and toxicity (MESTRES, 2004), the selection by suitable solvent is a crucial step for organic synthesis procedures. Several solvents has been developed, which are related to principles of green chemistry (or suitanable chemistry), including water, liquid ionics, polyethylenoglycol (PEG), perfluorinated solvents and glycerol (JESSOP, 2011; LENARDÃO et al., 2003). Glycerol (or 1,2,3-propanetriol) is a versatile solvent and has been used in organic reactions due to several properties, including high boiling point, negligible vapor pressure, high polarity (able to solve organic and inorganic solutes), low-toxicity, high avaibility, biodegradability and biocompatibility (WOLFSON; DLUGY; SHOTLAND, 2007). It has been used in condensation reactions for synthesis of several compounds, including sulfanyl ketones (PERIN et al., 2014), bis(indolyl)methanes and n- 14 valeraldehyde (SILVEIRA et al., 2009; WOLFSON et al., 2009). Furthermore, glycerol has been studied as recyclable solvent by green procedures due to immiscibility in hydrophobic solvents, allowing removal of products by simple liquid-liquid extraction and successive reactions (PERIN et al., 2010; SILVEIRA et al., 2009). Glycerol is the main co-product from transesterification reactions of acylglicerides from oils and fats (UMPIERRE; MACHADO, 2013). This reaction has been extensively used by biodiesel production, which displays rapid development, generating tremendous ammount of waste glycerol (million tons per year). Thus, reasonable solutions for utilization of waste glycerol are urgent topics from an environmental, social and economical point of view (QUISPE; CORONADO; CARVALHO JR., 2013; TAN; ABDUL AZIZ; AROUA, 2013). Herein, we investigated effects of glycerol, crude glycerol from biodiesel production and other protic solvents, including ethanol, methanol, PEG-400 and water in synthesis of ketones 1 and 2. Yields of aldol condensation reactions were calculated by gravimetry and chromatography measurements. In order to investigate comparisons between glycerol and water yields, theoretical investigations on mechanism of aldol condensation for synthesis of 1 were proposed using density functional theory calculations. In addition, crude glycerol from corn and sunflower oils were selected for re-use studies for synthesis of 1 and 2, respectively. 27 4. CONCLUSION In conclusion, glycerol and crude glycerol from biodiesel production have proved to be an efficient and ecologically preferable reaction medium for synthesis of α,β-unsaturated ketones 1 and 2, complying with the requirements of green chemistry, such as safe synthesis and the use of source renewable raw materials. Gravimetry and chromatography yields in glycerol and crude glycerol were higher than other protic solvents, including ethanol, methanol, PEG-400 and water. Theoretical investigations were able to suggest the mechanism of aldol reaction as E1cB, as well as make a detailed energetic comparison between glycerol and water role as a solvent on determining step of reactions. In addition, crude glycerol from corn and sunflower oils can be easily recovered and used for further mono- and dicondensation reactions and is notably relevant to green chemistry concept. 28 5. AKNOWLEDGMENTS We would like to thank National Institute for Science and Technology of Biodiversity and Natural Products (INCT-BioNat) for MS experiments, as well as Center for Scientific Computing (NCC/GridUNESP) of São Paulo State University (UNESP) for theoretical calculations. 6. REFERENCES AGARWAL, P. K. et al. Application of the Pictet – Spengler reaction to aryl amine-based substrates having pyrimidine as a p -nucleophile: synthesis of pyrimidoquinolines with structural analogy to benzonaphthyridines present in alkaloids. Tetrahedron, v. 65, n. 6, p. 1153–1161, 2009. AGUILERA, E. et al. Potent and Selective Inhibitors of Trypanosoma cruzi Triosephosphate Isomerase with Concomitant Inhibition of Cruzipain: Inhibition of Parasite Growth through Multitarget Activity. ChemMedChem, v. 11, n. 12, p. 1328– 1338, 2016. BARONE, V.; COSSI, M. Quantum Calculation of Molecular Energies and Energy Gradients in solution by a Conductor Solvent Model. J. Phys. Chem, v. 102, n. 97, p. 1995–2001, 2001. CAMPOS, F. X. et al. Synthesis, characterization, and antioxidant evaluation of solid- state mefenamates of some bivalent metals. Journal of Thermal Analysis and Calorimetry, v. 115, n. 1, p. 167–176, 2014. COSSI, M. et al. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chemical Physics Letters, v. 255, n. 4–6, p. 327–335, 1996. GE, H.-X. et al. Inhibitory effect of curcumin analogs on tissue factor procoagulant activity and their preliminary structure–activity relationships. Medicinal Chemistry 29 Research, v. 22, n. 7, p. 3242–3246, 2013. GU, Y.; JÉRÔME, F. Glycerol as a sustainable solvent for green chemistry. Green Chemistry, v. 12, n. 7, p. 1127–1138 , 2010. JESSOP, P. G. Green Chemistry Searching for green solvents. Green Chemistry, v. 13, n. 1, p. 1391–1398, 2011. LAMBERT, A. A. et al. Dendritic Cell Immunoreceptor Is a New Target for Anti-AIDS Drug Development: Identification of DCIR/HIV-1 Inhibitors. PLoS ONE, v. 8, n. 7, p. e67873, 2013. LENARDÃO, E. J. et al. “Green chemistry”: os 12 princípios da química verde e sua inserção nas atividades de ensino e pesquisa. Química Nova, v. 26, n. 1, p. 123–129, 2003. MARZINZIK, A. L.; FELDER, E. R. Key Intermediates in Combinatorial Chemistry : Access to Various Heterocycles from r , -Unsaturated Ketones on the Solid Phase. Journal organic Chemistry, v. 3263, n. 9, p. 723–727, 1998. MESTRES, R. A green look at the aldol reaction. Green Chemistry, v. 6, n. 12, p. 583– 603, 2004. MOHD FAUDZI, S. M. et al. Synthesis, biological evaluation and QSAR studies of diarylpentanoid analogues as potential nitric oxideinhibitors. MedChemComm, v. 6, n. 6, p. 1069–1080, 2015. PERIN, G. et al. Green, catalyst-free thioacetalization of carbonyl compounds using glycerol as recyclable solvent. Tetrahedron Letters, v. 51, n. 33, p. 4354–4356, 2010. PERIN, G. et al. Synthesis of β-aryl-β-sulfanyl ketones by a sequential one-pot reaction using KF/Al2O3 in glycerol. Synthetic Communications, v. 44, n. 1, p. 37–41, 2014. PERRIN, C. L.; CHANG, K. The Complete Mechanism of an Aldol Condensation The Complete Mechanism of an Aldol Condensation. The journal of Organic Chemistry, v. 81, p. 5631–5635, 2016. PEVERATI, R.; TRUHLAR, D. G. Improving the Accuracy of Hybrid Meta-GGA Density Functionals by. The Journal of Physical Chemistry Letters, v. 2, p. 2810– 2817, 2011. 30 POLAQUINI, C. R. et al. Antibacterial and Antiturbercular Activities of Cinnamylideneacetophenones. Molecules, v. 22, p. 1–12, 2017. QUISPE, C. A. G.; CORONADO, C. J. R.; CARVALHO JR., J. A. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, v. 27, p. 475–493, 2013. RADATZ, C. S. et al. Catalyst-free synthesis of benzodiazepines and benzimidazoles using glycerol as recyclable solvent. Tetrahedron Letters, v. 52, n. 32, p. 4132–4136, 2011. SAMSHUDDIN, S.; NARAYANA, B.; KUNHANNA, B. CHEMISTRY Antimicrobial , analgesic, DPPH scavenging activities and molecular docking study of some 1, 3, 5- triaryl-2-pyrazolines. Medicinal Chemistry Research, v. 21, n. 1, p. 2012–2022, 2012. SCHMIDT, M. W. et al. General Atomic and Molecular Electronic Structure System. Journal of Computational Chemistry, v. 14, n. 11, p. 1347–1363, 1993. SILVEIRA, C. C. et al. Glycerin and CeCl3·7H2O: a new and efficient recyclable medium for the synthesis of bis(indolyl)methanes. Tetrahedron Letters, v. 50, n. 44, p. 6060–6063, 2009. TAN, H. W.; ABDUL AZIZ, A. R.; AROUA, M. K. Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, v. 27, p. 118–127, 2013. TEIXEIRA, J. A. et al. Thermal and spectroscopic study to investigate p- aminobenzoic acid , sodium p- aminobenzoate and its compounds with some lighter trivalent lanthanides. Thermochimica Acta, v. 624, p. 59–68, 2016. TEIXEIRA, J. A.; SIQUEIRA, A. B. Thermal and spectroscopic characterization , antioxidant evaluation and pyrolysis of losartan with some bivalent metals. Journal of Analytical and Applied Pyrolysis, v. 117, p. 17–24, 2016. TOMASI, J.; MENNUCCI, B.; CAMMI, R. Quantum Mechanical Continuum Solvation Models. Chemical Reviews, v. 105, n. 8, p. 2999–3093, 2005. UMPIERRE, A. P.; MACHADO, F. Gliceroquímica e Valorização do Glicerol. Revista Virtual de Química, v. 5, n. 1, p. 106–116, 2013. 31 WEI, X. et al. Effects of cyclohexanone analogues of curcumin on growth, apoptosis and NF-kB activity in PC-3 human prostate cancer cells. Oncology Letters, v. 4, n. 2, p. 279– 284, 2012. WELDON, D. J. et al. One-pot synthesis of cinnamylideneacetophenones and their in vitro cytotoxicity in breast cancer cells. Bioorganic & Medicinal Chemistry Letters, v. 24, n. 15, p. 3381–3384, 2014. WOLFSON, A. et al. Employing crude glycerol from biodiesel production as an alternative green reaction medium. Industrial Crops and Products, v. 30, n. 1, p. 78– 81, 2009. WOLFSON, A.; DLUGY, C.; SHOTLAND, Y. Glycerol as a green solvent for high product yields and selectivities. Environmental Chemistry Letters, v. 5, n. 2, p. 67–71, 2007. XU, X. et al. An extended hybrid density functional ( X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems The Journal of Chemical Physics, v. 122, p. 014105, 2012.