UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” Instituto de Biociências Câmpus do Litoral Paulista FELIPE RODRIGUES BORGES PLÁSTICO NA BIOTA MARINHA: uma análise da costa brasileira São Vicente - SP 2024 1 UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” Instituto de Biociências Câmpus do Litoral Paulista FELIPE RODRIGUES BORGES PLÁSTICO NA BIOTA MARINHA: uma análise da costa brasileira Trabalho de conclusão de curso apresentado à Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus do Litoral Paulista, como parte dos requisitos para obtenção do Grau de bacharel em Ciências Biológicas, com habilitação em Gerenciamento Costeiro. Orientador: Prof. Dr. Teodoro Vaske Junior São Vicente - SP 2024 2 B732p Borges, Felipe Rodrigues Plástico na biota marinha : uma análise da costa brasileira / Felipe Rodrigues Borges. -- São Vicente, 2024 31 p. Trabalho de conclusão de curso (Bacharelado - Ciências Biológicas) - Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Vicente Orientador: Teodoro Vaske Júnior 1. Resíduos sólidos. 2. Poluição marinha. 3. Impacto ambiental. 4. Biodiversidade marinha. I. Título. Sistema de geração automática de fichas catalográficas da Unesp. Dados fornecidos pelo autor(a). 3 PLÁSTICO NA BIOTA MARINHA: UMA ANÁLISE DA COSTA BRASILEIRA Felipe Rodrigues Borges¹, Teodoro Vaske Júnior¹ ¹UNESP - Universidade Estadual Paulista, Câmpus do Litoral Paulista (CLP), Instituto de Biociências (IB), Departamento de Ciências Biológicas e Ambientais (DCBA), Laboratório de Biologia e Conservação de Organismos Pelágicos (LABCOP). Praça Infante Dom Henrique s/n Parque Bitaru, 11330900, São Vicente, SP, Brasil. Autor Correspondente: Felipe Rodrigues Borges (felipe.r.borges@unesp.br) O trabalho foi formatado segundo a revista Marine Pollution Bulletin São Vicente 2024 4 Resumo Os plásticos, resíduos sólidos antropogênicos, são uma das maiores ameaças à biodiversidade marinha, com impactos diretos e indiretos em diversas espécies. Este trabalho teve como objetivo realizar uma análise da literatura sobre a contaminação por plástico na biota marinha ao longo da costa brasileira. Foram analisados 69 artigos publicados entre 2001 e 2024, com foco em diferentes grupos, como aves marinhas, invertebrados, mamíferos marinhos, peixes e tartarugas-marinhas. Os resultados indicam um crescente aumento no número de artigos publicados por ano desde 2001 até 2024, além de indicar as regiões Sudeste e Sul do Brasil como as mais produtivas cientificamente, concentrando o maior número de publicações, com destaque para os estados do Rio Grande do Sul e São Paulo. Os peixes e as tartarugas-marinhas foram os grupos mais estudados, com 19 e 18 artigos publicados, respectivamente. Ao todo, foram identificadas 128 espécies de animais marinhos contaminados com plástico, sendo 50 espécies de peixes, 40 de aves marinhas, 18 de invertebrados, 15 de mamíferos marinhos e 5 de tartarugas-marinhas. Os resultados reforçam a necessidade de maior atenção e gestão destes resíduos para mitigar os impactos do plástico na biodiversidade marinha, além de destacar a importância da pesquisa científica para o monitoramento e compreensão desse problema ambiental cada vez mais presente. Palavras-chave: Resíduos sólidos, poluição, impactos ambientais, biodiversidade marinha 5 Abstract Plastics, anthropogenic solid waste, are one of the greatest threats to marine biodiversity, with both direct and indirect impacts on various species. This study aimed to conduct a literature review on plastic contamination in the marine biota along the Brazilian coast. A total of 69 articles published between 2001 and 2024 were analyzed, focusing on different groups such as seabirds, invertebrates, marine mammals, fish, and sea turtles. The results indicate a steady increase in the number of articles published annually from 2001 to 2024, and highlight the Southeast and South regions of Brazil as the most scientifically productive, concentrating the largest number of publications, with emphasis on the states of Rio Grande do Sul and São Paulo. Fish and sea turtles were the most studied groups, with 19 and 18 articles published, respectively. In total, 128 species of marine animals contaminated with plastic were identified, including 50 fish species, 40 seabird species, 18 invertebrate species, 15 marine mammal species, and 5 sea turtle species. The findings underscore the need for greater attention and management of these wastes to mitigate the impact of plastic on marine biodiversity, as well as emphasize the importance of scientific research for monitoring and understanding this increasingly prevalent environmental issue. Keywords: Solid waste, pollution, environmental impacts, marine biodiversity 6 1. Introdução Segundo a Organização das Nações Unidas (ONU), atualmente estamos diante da Triple Planetary Crisis, termo que se refere aos três principais problemas interligados que a humanidade e o planeta Terra enfrentam: as mudanças climáticas, a poluição e a perda sistêmica de biodiversidade (Almroth et al., 2022). No contexto da poluição, as zonas costeiras e marinhas têm sido intensamente afetadas pelo lançamento de substâncias químicas perigosas e resíduos em níveis nunca antes registrados na história. Esse cenário é, em grande parte, consequência do crescimento populacional, da urbanização desordenada e das mudanças nos padrões de consumo e estilo de vida desde a Revolução Industrial (Hoornweg et al., 2013). No centro do debate global sobre a poluição marinha estão os plásticos, que representam o principal tipo de resíduos sólidos de origem humana encontrados nos mares e oceanos (Andrades et al., 2020). Os plásticos são um grupo de materiais sintéticos, compostos por macromoléculas orgânicas conhecidas como polímeros. São materiais versáteis, moldáveis, duráveis, resistentes, de baixo custo de produção e amplamente utilizados em diferentes aplicações, desde embalagens até construção civil, tornando-os indispensáveis na sociedade atual. Nesse contexto, a comunidade científica internacional e os gestores públicos de diversos países têm se empenhado em compreender, dimensionar e mitigar os impactos causados pelo consumo generalizado de plástico nas sociedades contemporâneas (Thompson, 2022). Nos últimos 70 anos a produção de plástico sofreu um aumento extremamente significativo, passando de 2 milhões de toneladas produzidas na década de 50 para mais de 400 milhões de toneladas produzidas por ano atualmente (Ritchie et al., 2023). Esses materiais representam grande preocupação ambiental pois são materiais que apresentam uma elevada persistência ambiental, permanecendo por até séculos em ambientes naturais após seu descarte (Ward and Reddy, 2020). As estimativas mais recentes apontam que pelo menos 14 7 milhões de toneladas de plástico acabam nos oceanos anualmente, o que torna estes polímeros os resíduos mais abundantes nos oceanos, constituindo cerca de 80% de todos os detritos encontrados em diferentes matrizes ambientais marinhas (IUCN, 2024). Ao chegar nos ecossistemas costeiros e marinhos, os plásticos podem sofrer fragmentação mediada por diferentes processos físicos, químicos e biológicos (Auta et al., 2017; Cole et al., 2011) dando origem aos microplásticos (MPs). Os microplásticos podem ser classificados como primários, que são aqueles já produzidos e lançados no ambiente em pequenos tamanhos, como por exemplo pellets e microesferas utilizadas em diferentes produtos de cuidado pessoal (GESAMP, 2015; Lei et al., 2017) e secundários, que são resultado da degradação e fragmentação de polímeros plásticos maiores. Os MPs são partículas compostas por polímeros plásticos com diâmetro entre 1µm e 5mm, atualmente onipresentes nos oceanos e zonas costeiras, podendo persistir nos ambientes marinhos por centenas de anos devido às suas propriedades químicas estáveis (Duncan et al., 2019; Pandey et al., 2023). Os MPs presentes nos oceanos são transportados facilmente através de diversos processos hidrodinâmicos, fazendo com que sejam encontrados nos mais variados tipos de ambientes marinhos, desde as águas superficiais e rasas até em sedimentos do mar profundo (Andrady, 2011; Coyle et al., 2020; Van Cauwenberghe et al., 2013). Os plásticos estão presentes em praticamente todos os ambientes marinhos, desde Áreas Marinhas Protegidas (AMP), atingindo pelo menos 186 delas ao redor do mundo (B. Z. Nunes et al., 2023b, 2023a), até em diferentes zonas remotas, como no Ártico e na Antártica (Aves et al., 2022; Peeken et al., 2018), além de locais extremamente profundos, como a Fossa das Marianas (Peng et al., 2018). O Brasil é um país oceânico, contando com 17 estados, 443 municípios e 13 capitais costeiras distribuídos em uma linha de costa com mais de 10 mil km de extensão e uma área 8 marinha com 5,7 milhões de km², equivalente a cerca de dois terços do território continental (Sumário para tomadores de decisão do 1o Diagnóstico Brasileiro Marinho-Costeiro sobre Biodiversidade e Serviços Ecossistêmicos, 2023). A zona marinha-costeira do Brasil é caracterizada pela presença de variadas atividades importantes para a subsistência de diferentes grupos sociais e geradoras de riqueza econômica, tais quais a pesca, a aquicultura, a navegação, a mineração e o turismo, que são atividades que contribuem com cerca de 20% do Produto Interno Bruto (PIB) nacional. Além disso, o Brasil possui uma grande variedade de habitats e ecossistemas marinhos, como praias, dunas, restingas, manguezais, marismas, estuários, recifes de coral, costões rochosos, bancos vegetados submersos, bancos de algas calcárias, ilhas oceânicas e bancos de corais de mar profundo, que abrigam uma vasta diversidade de espécies e sustentam diversos serviços ecossistêmicos extremamente relevantes (Sumário para tomadores de decisão do 1o Diagnóstico Brasileiro Marinho-Costeiro sobre Biodiversidade e Serviços Ecossistêmicos, 2023). No contexto da poluição marinha e costeira por plástico, o Brasil se destaca como o oitavo maior poluidor de plástico no mundo e o maior poluidor da América Latina (Cottom et al., 2024), com aproximadamente 1,3 milhão de toneladas de resíduos plásticos sendo despejados pelo Brasil no oceano anualmente, representando cerca de 8% do plástico que chega aos oceanos no mundo todo (Oceana, 2024). Os plásticos representam uma grande ameaça para a vida marinha de diversas maneiras, desde a ingestão, onde os plásticos podem causar fome, desnutrição e morte, até enredamento em redes e destruição de habitat. Além disso, os polímeros plásticos sintéticos frequentemente possuem aditivos químicos para melhorar seu desempenho (Laskar and Kumar, 2019), estando associados a mais de 4 mil produtos químicos (Groh et al., 2019), dos quais muitos são prejudiciais tanto para a saúde marinha quanto para a saúde humana, como o bisfenol-A (BPA) e o di-(2-etilhexil) ftalato (DEHP) (Muncke, 2021). Além disso, os MPs menores podem ser ingeridos até mesmo pelo 9 zooplâncton, que é base da cadeia alimentar marinha, representando uma perigosa rota de entrada desse contaminante na cadeia alimentar marinha (Botterell et al., 2019). A contaminação por plástico nos oceanos atingiu níveis sem precedentes que tem levado à perda de biodiversidade marinha e costeira e, por consequência, reduzindo os serviços ecossistêmicos que os ecossistemas marinhos prestam. Dessa forma, este trabalho tem como objetivo realizar uma análise sobre a contaminação por plásticos na biota marinha da costa brasileira, abrangendo diferentes grupos de organismos marinhos, como aves marinhas, mamíferos marinhos, peixes, tartarugas marinhas e invertebrados. Para isso, foi realizada uma revisão da literatura científica na plataforma Scopus, considerando os anos de 2001 até 2024, com o intuito de compreender padrões temporais e lacunas para cada grande grupo marinho. 2. Metodologia 2.1. Pesquisa de artigos científicos Os dados obtidos neste estudo foram coletados em outubro de 2024 na base de dados Scopus (scopus.com) através do código de pesquisa “(TITLE-ABS-KEY (*plastic*) AND TITLE-ABS-KEY ( marin* OR coast* ) AND TITLE-ABS-KEY ( brazil OR brasil ) )”, que foi aplicado para a busca em título, resumo e palavras-chave. As palavras-chave *plastic*, marin* e coast* utilizaram o caractere “*” para ampliar os resultados obtidos na pesquisa através de uma busca mais ampla, abrangendo diferentes variações das palavras. Nesta etapa, 605 documentos foram selecionados como resultado da busca, que passaram por seleção manual através de diferentes critérios de inclusão e exclusão. 10 2.2. Critérios de inclusão e exclusão Foram incluídos apenas trabalhos publicados em revistas que passam por revisão por pares. Os artigos selecionados na busca foram verificados manualmente quanto à pertinência ao tema proposto como objetivo neste trabalho, portanto, foram excluídos da análise estudos que não foram realizados na costa brasileira e que realizaram pesquisa em matrizes ambientais como água e sedimento (já que o objetivo é analisar a contaminação por plástico apenas na biota). Também foram excluídos artigos que tratam de organismos de ecossistemas de água doce ou de ambientes que não sejam marinhos e costeiros. Por fim, estudos realizados em laboratório ou que tenham como objetivo avaliar a toxicidade, ou seja, os efeitos químicos ou danos causados pelo plástico foram também excluídos. Os artigos foram analisados manualmente retirando informações como ano, estado, região e espécies registradas contaminadas com plástico. 3. Resultados Após seleção manual seguindo os diferentes critérios de inclusão e exclusão acima detalhados, um total de 69 artigos descrevendo a contaminação por plástico na biota da costa brasileira foram selecionados, com trabalhos realizados em todas as quatro regiões costeiras do Brasil (Fig. 1) e 14 estados (Fig. 2). Vale destacar que destes 69 artigos, alguns fazem um estudo mais amplo, abordando mais de uma região em diferentes estados estudados e mais de um grupo marinho no mesmo estudo. 11 Figura 1 – Quantidades de trabalhos realizados sobre contaminação por plásticos em todas as quatro regiões costeiras do Brasil. 12 Figura 2 – Quantidades de trabalhos realizados sobre contaminação por plásticos por estados do Brasil. As regiões Sul e Sudeste se destacam entre as regiões mais produtivas cientificamente, resultado de maiores investimentos realizados nessas regiões. A região Nordeste possui também uma produtividade alta, com trabalhos realizados em sete estados dessa região. A região Norte possui apenas um trabalho realizado, evidenciando a baixa produtividade nesta região. Através de uma análise cienciométrica fica evidenciado um aumento no número de artigos registrando plástico em organismos marinhos do litoral brasileiro nas últimas décadas (Fig. 3). Figura 3 – Número de trabalhos realizados sobre contaminação por plásticos por estados do Brasil para os anos 2000. 13 O número de trabalhos publicados por grupo marinho separados neste trabalho ficou bastante equilibrado, com peixes tendo o maior número de artigos (19) e mamíferos marinhos tendo o menor (9) (Fig. 4). Figura 4 – Número de trabalhos realizados sobre contaminação por plásticos para os grandes grupos de organismos marinhos no Brasil. A contaminação por plástico na biota marinha do Brasil apresenta números alarmantes, com 128 espécies contaminadas registradas na literatura. Dessas 128, 50 são espécies de peixes, 40 de aves marinhas e costeiras, 18 de invertebrados, 15 de mamíferos marinhos e 5 de tartarugas (Fig. 5). 14 Figura 5 – Número de espécies marinhas impactadas por contaminação por plásticos nos grupos marinhos. 3.1. Aves marinhas As aves marinhas apresentam um elevado número de espécies contaminadas por plástico na costa brasileira, com registros para a região Sul e Sudeste. Na região Sul, o estado do Rio Grande do Sul apresenta o maior número de artigos (Colabuono et al., 2010, 2009; Petry et al., 2009, 2008, 2007; Petry and Benemann, 2017; Rossi et al., 2019; Tourinho et al., 2010), seguido de Santa Catarina e Paraná (Baes et al., 2024). Já para a região Sudeste, Rio de Janeiro apresenta o maior número de artigos (Baes et al., 2024; Brandão et al., 2011; Di Beneditto and Siciliano, 2017; Nascimento et al., 2023; Tavares et al., 2017), seguido de Espírito Santo (Nascimento et al., 2023; Tavares et al., 2017; Vanstreels et al., 2021) e São Paulo (Baes et al., 2024; Tavares et al., 2017). 15 As espécies contaminadas são apresentadas na Tabela 1, sendo destas 20 da ordem Procellariiformes, 10 da ordem Charadriiformes, 9 da ordem Pelecaniformes e 1 da ordem Sphenisciformes. Tabela 1 - Espécies de aves marinhas com registro de contaminação por plástico na costa brasileira. Para a ordem Procellariiformes, a pardela-preta (Procellaria aequinoctialis), o bobo-pequeno (Puffinus puffinus) e o albatroz-de-sobrancelha (Thalassarche melanophris) são os mais estudados. Dentre os Pelecaniformes, o mais estudado é o atobá (Sula leucogaster), enquanto para os Charadriiformes o mais estudado é o trinta-réis-boreal (Sterna hirundo). Por fim, o pinguim-de-magalhães (Spheniscus magellanicus), único representante da ordem Sphenisciformes, aparece em sete trabalhos publicados na costa brasileira. 3.2. Mamíferos marinhos Os mamíferos marinhos registrados contaminados por plástico são divididos em três ordens: Cetartiodactyla, Carnivora e Sirenia. A região Sudeste apresenta o maior número de trabalhos publicados, com registros para o Rio de Janeiro (Di Beneditto and Awabdi, 2014; 16 Di Beneditto and Oliveira, 2019; Di Beneditto and Ramos, 2014) e Espírito Santo (da Silva et al., 2024; Nascimento et al., 2023). Na região Sul, trabalhos foram realizados na costa gaúcha (Brentano and Petry, 2020; Denuncio et al., 2017; Padula et al., 2023). Já para a região Nordeste, apenas um trabalho envolvendo mamíferos marinhos foi registrado, envolvendo diferentes exemplares de peixe-boi-marinho (Trichechus manatus manatus) contaminados por plástico registrados nos estados da Bahia, Paraíba e Rio Grande do Norte (Attademo et al., 2015). Na Tabela 2 é apresentado as diferentes espécies de mamíferos marinhos registrados contaminados por plástico, com grande maioria sendo de cetáceos odontocetos. Tabela 2 - Espécies de mamíferos marinhos com registro de contaminação por plástico na costa brasileira. Para os cetáceos odontocetos da ordem Cetartiodactyla, as toninhas (Pontoporia blainvillei) e os botos-cinza (Sotalia guianensis) são os mais estudados. Já para a ordem Carnivora, registros de lobos-marinhos-do-sul (Arctocephalus australis) contaminados foram feitos no Rio Grande do Sul. 17 3.3. Peixes Os peixes foram o grupo com o maior número de espécies registradas contaminadas por plástico na costa brasileira, com 50 espécies, abrangendo quase toda a costa brasileira, com registros para a região Sul (Cardozo et al., 2018; Dantas et al., 2019; Neto et al., 2020), Sudeste (de Almeida et al., 2024; Di Beneditto and Oliveira, 2019; Gonçalves et al., 2023; Knoeller et al., 2022; Macieira et al., 2021; Neto et al., 2020; Sazima et al., 2002) e Nordeste (Amorim et al., 2020; Dantas et al., 2020; Justino et al., 2021; Menezes et al., 2019; Miranda and de Carvalho-Souza, 2016; L. S. Nunes et al., 2021; Pegado et al., 2021; Possatto et al., 2011; Ramos et al., 2012; Sampaio et al., 2018). O Nordeste foi a região com o maior número de artigos registrando a contaminação por plástico em peixes, com 10, seguido pelo Sudeste com 7 e Sul com 3. Das 50 espécies de peixes registradas, 47 são peixes ósseos da Ordem Teleostei e 3 são peixes cartilaginosos da Ordem Elasmobranchii (Tabela 3). Tabela 3 - Espécies de peixes marinhos com registro de contaminação por plástico na costa brasileira. 18 Dentre os peixes ósseos se destacam com o maior número de artigos o bagre-amarelo (Cathorops spixii), o bagre-guri (Aspistor luniscutis), a caratinga (Eugerres brasilianus) e o bagre-branco (Genidens barbus). Já para os peixes cartilaginosos, o cação-frango (Rhizoprionodon lalandii) foi o mais registrado. 3.4. Tartarugas-marinhas As tartarugas-marinhas são um grupo com poucas espécies, tendo apenas 7 espécies no mundo todo, das quais 5 ocorrem no litoral brasileiro (Tab. 4). Das 5 espécies presentes no litoral brasileiro, todas já foram registradas com plástico. Esses registros ocorreram nas regiões Sul (Bugoni et al., 2001; T. Y. Nunes et al., 2021; Petry et al., 2021; Rizzi et al., 2019; Santos et al., 2015; Tourinho et al., 2010), Sudeste (da Silva Mendes et al., 2015; de Carvalho et al., 2015; Di Beneditto and Awabdi, 2014; Gomes et al., 2024; Jerdy et al., 2017; Machovsky-Capuska et al., 2020; Nascimento et al., 2023; V. L. Nunes et al., 2023; Santos et al., 2015) e Nordeste (de Farias et al., 2023; Macedo et al., 2011; Mascarenhas et al., 2004; Poli et al., 2015; Santos et al., 2015). Tabela 4 - Espécies de tartarugas marinhas com registro de contaminação por plástico na costa brasileira. 19 As tartarugas-verde (Chelonia mydas) são as tartarugas com o maior número de registros e artigos no litoral brasileiro. 3.5. Invertebrados Os invertebrados marinhos registrados contaminados com plástico são representantes de 4 Filos (Filo Mollusca, Filo Arthropoda, Filo Cnidaria e Filo Porifera). Entre os moluscos temos representantes de 3 classes identificadas contaminadas (Bivalvia, Cephalopoda e Gastropoda). O Filo Arthropoda apresenta diferentes crustáceos contaminados, enquanto Cnidaria e Porifera possuem apenas um registro em duas espécies. As espécies de invertebrados contaminados por plástico no litoral brasileiro são apresentadas na Tabela 5. Tabela 5 - Espécies de invertebrados marinhos com registro de contaminação por plástico na costa brasileira. A região Sudeste apresenta o maior número de artigos publicados com registros de plástico em espécies de invertebrados marinhos (Costa et al., 2023, 2018; Gonçalves et al., 2023; Otegui et al., 2024; Ribeiro et al., 2023a, 2024b, 2024a; Santana et al., 2016; Schuab et al., 20 2023), seguido do Sul (Jankauskas et al., 2024; Saldaña-Serrano et al., 2022; Vieira et al., 2021), do Nordeste (Bruzaca et al., 2022; Ferreira et al., 2022) e do Norte (Morais et al., 2020). Dentre os invertebrados marinhos contaminados por plástico, os mais registrados são moluscos bivalves, como a ostra Crassostrea brasiliana, o mexilhão Perna perna e o berbigão Tivela mactroides. 4. Discussão A crescente preocupação com a contaminação por plástico nos oceanos tem ganhado destaque nos últimos anos. O uso indiscriminado de plástico no mundo todo, aliado à baixa taxa de reciclagem e ao descarte inadequado destes resíduos são responsáveis por gerar uma quantidade alarmante de resíduos plásticos nos oceanos. As pesquisas realizadas a fim de monitorar a contaminação por plástico na biota marinha vem aumentando continuamente no século 21 em todo o mundo, isso se deve bastante ao avanço das tecnologias de monitoramento e análise, que permitem aos cientistas entender melhor a extensão e a profundidade da contaminação por plásticos nos ambientes marinhos. No Brasil, fica evidenciado o crescente aumento no número de artigos publicados neste tema desde o início do século. Para o estudo da contaminação por plástico em tetrápodes marinhos (aves marinhas, mamíferos marinhos e tartarugas-marinhas) no Brasil, é importante destacar o Projeto de Monitoramento de Praias - PMP, que foi criado em atendimento às condicionantes ambientais de licenciamento de atividades de pesquisa e exploração de hidrocarbonetos da Petrobras. O monitoramento diário nas praias de diversos estados é responsável por gerar dados importantes para diferentes pesquisas, e, nesse contexto, os trabalhos com os maiores números de espécies de aves marinhas utilizaram dados gerados através dessa atividade do PMP (Baes et al., 2024; Nascimento et al., 2023; Tavares et al., 2017; Vanstreels et al., 21 2021). Nos estudos da contaminação por plástico nas tartarugas-marinhas temos também diferentes trabalhos que utilizaram dados gerados pelo PMP (de Farias et al., 2023; Gomes et al., 2024; Nascimento et al., 2023; V. L. Nunes et al., 2023). Para os mamíferos marinhos, trabalhos com cetáceos odontocetos também utilizaram dados do PMP (da Silva et al., 2024; Nascimento et al., 2023). A interação com plástico para os organismos marinhos pode ocorrer de maneira externa, como quando um animal entra em contato com estes resíduos, ou de maneira interna, quando há a ingestão destes materiais. Os animais marinhos podem ficar emaranhados em redes de pesca que são descartadas ou perdidas em barcos de pesca, que podem acidentalmente levar à morte diferentes espécies marinhas. A ingestão de plásticos pode ocorrer de maneira acidental, seja por erros durante o forrageio ou pela ingestão através da filtração, a depender do comportamento alimentar do animal. A ingestão de plástico nos organismos marinhos pode criar uma falsa sensação de saciedade e obstruir a passagem de alimentos no trato gastrointestinal (TGI) dos animais (Colferai et al., 2017), levando estes animais à uma perda significativa de massa muscular, gordura e densidade óssea. Para as tartarugas marinhas, a ingestão de plástico ocorre não apenas de maneira visual, com a tartaruga confundindo o plástico com outro alimento natural, mas também de maneira sensorial (Pfaller et al., 2020). A bioincrustação e formação de biofilme nos plásticos à deriva nos oceanos são capazes de gerar um odor atrativo para as tartarugas marinhas, que aliado à confusão visual geram condições que levam a um grande número de ingestão de plástico nas tartarugas. Os microplásticos são o tipo de plástico mais predominante em diferentes espécies de peixes e na grande maioria dos invertebrados. Os peixes ingerem os microplásticos de maneira acidental durante o forrageio ou através da ingestão de presas contaminadas (Sacco et al., 2024). A quantidade de microplásticos e as formas e tamanhos destes acumulados no 22 TGI dos peixes variam de acordo com o nível trófico desses peixes na cadeia alimentar. Além disso, os peixes, assim como os caranguejos e siris, são capazes de reter microplásticos nas suas brânquias através da ventilação respiratória (Li et al., 2021; Watts et al., 2014). Além dos microplásticos, a presença de plásticos maiores foi também registrada em peixes, como é o caso do tubarão-baleia (Rhincodon typus) encalhado no litoral baiano, onde os autores especularam que a presença de plástico no estômago contribuiu para o encalhe e consequente morte deste exemplar (Sampaio et al., 2018). Dentre os invertebrados, os moluscos são os mais frequentemente encontrados contaminados com microplástico. No caso dos bivalves, a ingestão ocorre através da filtração da água do ambiente em que estes animais se encontram, variando a concentração de microplásticos nos organismos a depender do grau de contaminação do ambiente (Ribeiro et al., 2023b). Além disso, moluscos cefalópodes que vivem em ambientes profundos, como a lula-vampiro-do-inferno (Vampyroteuthis infernalis), já foram registrados contaminados com microplástico (Ferreira et al., 2022), demonstrando que não apenas a região costeira está infestada por esses contaminantes, mas também as regiões mais oceânicas e profundas. Além dos danos físicos causados pelos plásticos, como a obstrução do TGI e o emaranhamento em redes, há também danos químicos causados à biota através da ingestão de plásticos. Os microplásticos, por exemplo, podem transportar diferentes tipos de contaminantes, como metais tóxicos, corantes e outros produtos químicos, servindo como uma via de exposição aos organismos marinhos ao entrar na cadeia trófica (Gola et al., 2021). Esses diferentes contaminantes podem estar presentes nos microplásticos desde a produção, através da adição de aditivos químicos, ou através da adsorção de contaminantes presentes no meio ambiente (Turner et al., 2020). A grande capacidade dos microplásticos de adsorver diferentes contaminantes é capaz de gerar efeitos toxicológicos graves em diferentes organismos. No caso dos mexilhões, por exemplo, a presença de aditivos e contaminantes 23 adsorvidos em pellets plásticos é capaz de impactar o desenvolvimento larval (Gandara e Silva et al., 2016). De maneira geral, houveram registros de animais marinhos contaminados por plásticos em 14 dos 17 estados brasileiros costeiros, faltando registros para Alagoas, Piauí e Amapá. Além disso, a região Norte possui apenas um registro de animal marinho contaminado por plástico, necessitando de maiores pesquisas na área. Os peixes e as tartarugas-marinhas foram o grupo com mais artigos publicados sobre contaminação por plástico no litoral brasileiro, seguido de invertebrados marinhos, aves marinhas e, por fim, mamíferos marinhos. O aumento no número de pesquisas sobre contaminação por plástico na biota marinha no Brasil vem aumentando nos últimos anos, uma tendência que também é vista de maneira global, já que a preocupação com a poluição por plásticos nos oceanos é tema constante em diversos congressos no mundo todo. 5. Conclusão A análise da contaminação por plásticos na biota marinha do litoral brasileiro revela um aumento significativo no número de registros desde 2001, o que reflete o crescente aumento da contaminação por plástico nos ecossistemas marinhos e costeiros, através do aumento na produção e descarte inadequado destes contaminantes. Os plásticos se tornaram um dos principais focos de preocupação ambiental no mundo todo, com os mares e oceanos já gravemente contaminados, afetando direta e indiretamente a biota marinha. Os plásticos, desde o macro ao microplástico, são ingeridos por diversas espécies de animais marinhos, desde pequenos invertebrados até grandes mamíferos, causando diferentes danos como obstruções intestinais e intoxicações, aumentando a mortalidade dessas espécies e podendo gerar diversos desequilíbrios ecológicos. Diante desse cenário, se demonstra urgente a adoção de medidas que reduzam o uso desnecessário e o descarte inadequado de plásticos, além de 24 promover a proteção e recuperação de ecossistemas marinhos e o incentivo de práticas mais sustentáveis. 6. Referências Almroth, B.C., Cornell, S.E., Diamond, M.L., Wit, C.A. de, Fantke, P., Wang, Z., 2022. Understanding and addressing the planetary crisis of chemicals and plastics. One Earth 5, 1070–1074. https://doi.org/10.1016/j.oneear.2022.09.012 Amorim, A.L.A. de, Ramos, J.A.A., Nogueira Júnior, M., 2020. Ingestion of microplastic by ontogenetic phases of Stellifer brasiliensis (Perciformes, Sciaenidae) from the surf zone of tropical beaches. Mar. Pollut. Bull. 158, 111214. https://doi.org/10.1016/j.marpolbul.2020.111214 Andrades, R., Pegado, T., Godoy, B.S., Reis-Filho, J.A., Nunes, J.L.S., Grillo, A.C., Machado, R.C., Santos, R.G., Dalcin, R.H., Freitas, M.O., Kuhnen, V.V., Barbosa, N.D., Adelir-Alves, J., Albuquerque, T., Bentes, B., Giarrizzo, T., 2020. Anthropogenic litter on Brazilian beaches: Baseline, trends and recommendations for future approaches. Mar. Pollut. Bull. 151, 110842. https://doi.org/10.1016/j.marpolbul.2019.110842 Andrady, A.L., 2011. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030 Attademo, F.L.N., Balensiefer, D.C., Freire, A.C. da B., de Sousa, G.P., da Cunha, F.A.G.C., Luna, F. de O., 2015. Debris ingestion by the Antillean Manatee (Trichechus manatus manatus). Mar. Pollut. Bull. 101, 284–287. https://doi.org/10.1016/j.marpolbul.2015.09.040 Auta, H.S., Emenike, C.U., Fauziah, S.H., 2017. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 102, 165–176. https://doi.org/10.1016/j.envint.2017.02.013 Aves, A.R., Revell, L.E., Gaw, S., Ruffell, H., Schuddeboom, A., Wotherspoon, N.E., LaRue, M., McDonald, A.J., 2022. First evidence of microplastics in Antarctic snow. The Cryosphere 16, 2127–2145. https://doi.org/10.5194/tc-16-2127-2022 Baes, L., Santiago, C.D., Roman, L., dos Santos Costa, P.C., Pugliesi, É., Reigada, C., 2024. Beached seabirds as plastic biomonitors in Brazil from the Beach Monitoring Project of the Santos Basin (PMP-BS). Mar. Pollut. Bull. 199, 115847. https://doi.org/10.1016/j.marpolbul.2023.115847 Botterell, Z.L.R., Beaumont, N., Dorrington, T., Steinke, M., Thompson, R.C., Lindeque, P.K., 2019. Bioavailability and effects of microplastics on marine zooplankton: A review. Environ. Pollut. 245, 98–110. https://doi.org/10.1016/j.envpol.2018.10.065 Brandão, M.L., Braga, K.M., Luque, J.L., 2011. Marine debris ingestion by Magellanic penguins, Spheniscus magellanicus (Aves: Sphenisciformes), from the Brazilian coastal zone. Mar. Pollut. Bull. 62, 2246–2249. https://doi.org/10.1016/j.marpolbul.2011.07.016 Brentano, R., Petry, M.V., 2020. Marine debris ingestion and human impacts on the Pygmy sperm whale (Kogia breviceps) in southern Brazil. Mar. Pollut. Bull. 150, 110595. https://doi.org/10.1016/j.marpolbul.2019.110595 Bruzaca, D.N.A., Justino, A.K.S., Mota, G.C.P., Costa, G.A., Lucena-Frédou, F., Gálvez, A.O., 2022. Occurrence of microplastics in bivalve molluscs Anomalocardia flexuosa captured in Pernambuco, Northeast Brazil. Mar. Pollut. Bull. 179, 113659. https://doi.org/10.1016/j.marpolbul.2022.113659 Bugoni, L., Krause, L., Virgı́nia Petry, M., 2001. Marine Debris and Human Impacts on Sea Turtles in Southern Brazil. Mar. Pollut. Bull. 42, 1330–1334. https://doi.org/10.1016/S0025-326X(01)00147-3 Cardozo, A.L.P., Farias, E.G.G., Rodrigues-Filho, J.L., Moteiro, I.B., Scandolo, T.M., Dantas, D.V., 2018. Feeding ecology and ingestion of plastic fragments by Priacanthus arenatus: What’s the fisheries contribution to the problem? Mar. Pollut. Bull. 130, 19–27. 25 https://doi.org/10.1016/j.marpolbul.2018.03.010 Colabuono, F.I., Barquete, V., Domingues, B.S., Montone, R.C., 2009. Plastic ingestion by Procellariiformes in Southern Brazil. Mar. Pollut. Bull. 58, 93–96. https://doi.org/10.1016/j.marpolbul.2008.08.020 Colabuono, F.I., Taniguchi, S., Montone, R.C., 2010. Polychlorinated biphenyls and organochlorine pesticides in plastics ingested by seabirds. Mar. Pollut. Bull. 60, 630–634. https://doi.org/10.1016/j.marpolbul.2010.01.018 Cole, M., Lindeque, P., Halsband, C., Galloway, T.S., 2011. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62, 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025 Colferai, A.S., Silva-Filho, R.P., Martins, A.M., Bugoni, L., 2017. Distribution pattern of anthropogenic marine debris along the gastrointestinal tract of green turtles (Chelonia mydas) as implications for rehabilitation. Mar. Pollut. Bull. 119, 231–237. https://doi.org/10.1016/j.marpolbul.2017.03.053 Costa, M.B. da, Otegui, M.B.P., Zamprogno, G.C., Caniçali, F.B., dos Reis Cozer, C., Pelletier, E., Graceli, J.B., 2023. Abundance, composition, and distribution of microplastics in intertidal sediment and soft tissues of four species of Bivalvia from Southeast Brazilian urban beaches. Sci. Total Environ. 857, 159352. https://doi.org/10.1016/j.scitotenv.2022.159352 Costa, L.L., Rangel, D.F., Zalmon, I.R., 2018. Evidence of marine debris usage by the ghost crab Ocypode quadrata (Fabricius, 1787). Mar. Pollut. Bull. 128, 438–445. https://doi.org/10.1016/j.marpolbul.2018.01.062 Cottom, J.W., Cook, E., Velis, C.A., 2024. A local-to-global emissions inventory of macroplastic pollution. Nature 633, 101–108. https://doi.org/10.1038/s41586-024-07758-6 Coyle, R., Hardiman, G., Driscoll, K.O., 2020. Microplastics in the marine environment: A review of their sources, distribution processes, uptake and exchange in ecosystems. Case Stud. Chem. Environ. Eng. 2, 100010. https://doi.org/10.1016/j.cscee.2020.100010 da Silva, L.V.G., de Oliveira Carvalho Demarque, I., Tostes, E.C.L., de Souza Araújo, M.A., de Carvalho, C.E.V., Canela, M.C., Barbosa, L.A., da Silveira, L.S., 2024. Identification and characterization of plastic debris in the gastrointestinal tract of Guiana dolphins (Sotalia guianensis) from Espírito Santo coast, Brazil. Mar. Pollut. Bull. 200, 116076. https://doi.org/10.1016/j.marpolbul.2024.116076 da Silva Mendes, S., de Carvalho, R.H., de Faria, A.F., de Sousa, B.M., 2015. Marine debris ingestion by Chelonia mydas (Testudines: Cheloniidae) on the Brazilian coast. Mar. Pollut. Bull. 92, 8–10. https://doi.org/10.1016/j.marpolbul.2015.01.010 Dantas, D.V., Ribeiro, C.I.R., Frischknecht, C. de C.A., Machado, R., Farias, E.G.G., 2019. Ingestion of plastic fragments by the Guri sea catfish Genidens genidens (Cuvier, 1829) in a subtropical coastal estuarine system. Environ. Sci. Pollut. Res. 26, 8344–8351. https://doi.org/10.1007/s11356-019-04244-9 Dantas, N.C.F.M., Duarte, O.S., Ferreira, W.C., Ayala, A.P., Rezende, C.F., Feitosa, C.V., 2020. Plastic intake does not depend on fish eating habits: Identification of microplastics in the stomach contents of fish on an urban beach in Brazil. Mar. Pollut. Bull. 153, 110959. https://doi.org/10.1016/j.marpolbul.2020.110959 de Almeida, A.B., Henrique, B.V.R., de Souza Azevedo, J., 2024. Stomach content analysis in ariids: Insights of three catfish species from a marine protected area. Reg. Stud. Mar. Sci. 75, 103573. https://doi.org/10.1016/j.rsma.2024.103573 de Carvalho, R.H., Lacerda, P.D., da Silva Mendes, S., Barbosa, B.C., Paschoalini, M., Prezoto, F., de Sousa, B.M., 2015. Marine debris ingestion by sea turtles (Testudines) on the Brazilian coast: an underestimated threat? Mar. Pollut. Bull. 101, 746–749. https://doi.org/10.1016/j.marpolbul.2015.10.002 de Farias, D.S.D., da Costa Bomfim Ventura, A., de Lima Silva, F.J., de Souza Cavalcante, R.M., Rossi, S., Gavilan, S.A., da Silva Santana, V.G., do Amaral, V.S., 2023. The use of an alimentary index to assess anthropogenic debris on green turtles (Chelonia mydas). Mar. Pollut. Bull. 193, 115184. https://doi.org/10.1016/j.marpolbul.2023.115184 Denuncio, P., Mandiola, M.A., Pérez Salles, S.B., Machado, R., Ott, P.H., De Oliveira, L.R., Rodriguez, D., 2017. Marine debris ingestion by the South American Fur Seal from the 26 Southwest Atlantic Ocean. Mar. Pollut. Bull. 122, 420–425. https://doi.org/10.1016/j.marpolbul.2017.07.013 Di Beneditto, A.P.M., Awabdi, D.R., 2014. How marine debris ingestion differs among megafauna species in a tropical coastal area. Mar. Pollut. Bull. 88, 86–90. https://doi.org/10.1016/j.marpolbul.2014.09.020 Di Beneditto, A.P.M., Oliveira, A. da S., 2019. Debris ingestion by carnivorous consumers: Does the position in the water column truly matter? Mar. Pollut. Bull. 144, 134–139. https://doi.org/10.1016/j.marpolbul.2019.04.074 Di Beneditto, A.P.M., Ramos, R.M.A., 2014. Marine debris ingestion by coastal dolphins: What drives differences between sympatric species? Mar. Pollut. Bull. 83, 298–301. https://doi.org/10.1016/j.marpolbul.2014.03.057 Di Beneditto, A.P.M., Siciliano, S., 2017. Marine debris boost in juvenile Magellanic penguins stranded in south-eastern Brazil in less than a decade: Insights into feeding habits and habitat use. Mar. Pollut. Bull. 125, 330–333. https://doi.org/10.1016/j.marpolbul.2017.09.044 Duncan, E.M., Broderick, A.C., Fuller, W.J., Galloway, T.S., Godfrey, M.H., Hamann, M., Limpus, C.J., Lindeque, P.K., Mayes, A.G., Omeyer, L.C.M., Santillo, D., Snape, R.T.E., Godley, B.J., 2019. Microplastic ingestion ubiquitous in marine turtles. Glob. Change Biol. 25, 744–752. https://doi.org/10.1111/gcb.14519 Ferreira, G.V.B., Justino, A.K.S., Eduardo, L.N., Lenoble, V., Fauvelle, V., Schmidt, N., Junior, T.V., Frédou, T., Lucena-Frédou, F., 2022. Plastic in the inferno: Microplastic contamination in deep-sea cephalopods (Vampyroteuthis infernalis and Abralia veranyi) from the southwestern Atlantic. Mar. Pollut. Bull. 174, 113309. https://doi.org/10.1016/j.marpolbul.2021.113309 Gandara e Silva, P.P., Nobre, C.R., Resaffe, P., Pereira, C.D.S., Gusmão, F., 2016. Leachate from microplastics impairs larval development in brown mussels. Water Res. 106, 364–370. https://doi.org/10.1016/j.watres.2016.10.016 GESAMP, 2015. Sources, fate and effects of microplastics in the marine environment (Part 1) [WWW Document]. GESAMP. URL http://www.gesamp.org/publications/reports-and-studies-no-90 (accessed 5.3.24). Gola, D., Kumar Tyagi, P., Arya, A., Chauhan, N., Agarwal, M., Singh, S.K., Gola, S., 2021. The impact of microplastics on marine environment: A review. Environ. Nanotechnol. Monit. Manag. 16, 100552. https://doi.org/10.1016/j.enmm.2021.100552 Gomes, B.G., Guimarães, S.M., Tagliolatto, A.B., Reis, E.C., Masi, B.P., Araújo, F.V. de, 2024. Assessment of the ingestion of anthropogenic debris by green turtles along the south-central coast of Rio de Janeiro, Brazil. Ocean Coast. Res. 72, e24042. https://doi.org/10.1590/2675-2824072.23086 Gonçalves, G.R.L., Sousa, A.N., Wolf, M.R., Soares, I.M., Castilho, A.L., 2023. Unravelling the stomach contents of fish and crab species from Cananéia, São Paulo: Are they eating plastic? Papéis Avulsos Zool. 63, e202363001–e202363001. https://doi.org/10.11606/1807-0205/2023.63.001 Groh, K.J., Backhaus, T., Carney-Almroth, B., Geueke, B., Inostroza, P.A., Lennquist, A., Leslie, H.A., Maffini, M., Slunge, D., Trasande, L., Warhurst, A.M., Muncke, J., 2019. Overview of known plastic packaging-associated chemicals and their hazards. Sci. Total Environ. 651, 3253–3268. https://doi.org/10.1016/j.scitotenv.2018.10.015 Hoornweg, D., Bhada-Tata, P., Kennedy, C., 2013. Environment: Waste production must peak this century. Nature 502, 615–617. https://doi.org/10.1038/502615a IUCN, 2024. Marine plastic pollution [WWW Document]. URL https://www.iucn.org/resources/issues-brief/marine-plastic-pollution (accessed 5.3.24). Jankauskas, L., Pinho, G.L.L., Sanz-Lazaro, C., Casado-Coy, N., Rangel, D.F., Ribeiro, V.V., Castro, Í.B., 2024. Microplastic in clams: An extensive spatial assessment in south Brazil. Mar. Pollut. Bull. 201, 116203. https://doi.org/10.1016/j.marpolbul.2024.116203 Jerdy, H., Werneck, M.R., da Silva, M.A., Ribeiro, R.B., Bianchi, M., Shimoda, E., de Carvalho, E.C.Q., 2017. Pathologies of the digestive system caused by marine debris in Chelonia mydas. Mar. Pollut. Bull. 116, 192–195. https://doi.org/10.1016/j.marpolbul.2017.01.009 Justino, A.K.S., Lenoble, V., Pelage, L., Ferreira, G.V.B., Passarone, R., Frédou, T., Lucena Frédou, F., 2021. Microplastic contamination in tropical fishes: An assessment of different feeding 27 habits. Reg. Stud. Mar. Sci. 45, 101857. https://doi.org/10.1016/j.rsma.2021.101857 Knoeller, J., Tomás, A.R.G., Junior, T.V., 2022. Diet of three juvenile fish species of the coastal zone of a Southwest Atlantic beach, Brazil. Acta Sci. Biol. Sci. 44, e53490–e53490. https://doi.org/10.4025/actascibiolsci.v44i1.53490 Laskar, N., Kumar, U., 2019. Plastics and microplastics: A threat to environment. Environ. Technol. Innov. 14, 100352. https://doi.org/10.1016/j.eti.2019.100352 Lei, K., Qiao, F., Liu, Q., Wei, Z., Qi, H., Cui, S., Yue, X., Deng, Y., An, L., 2017. Microplastics releasing from personal care and cosmetic products in China. Mar. Pollut. Bull. 123, 122–126. https://doi.org/10.1016/j.marpolbul.2017.09.016 Li, B., Liang, W., Liu, Q.-X., Fu, S., Ma, C., Chen, Q., Su, L., Craig, N.J., Shi, H., 2021. Fish Ingest Microplastics Unintentionally. Environ. Sci. Technol. 55, 10471–10479. https://doi.org/10.1021/acs.est.1c01753 Macedo, G.R., Pires, T.T., Rostán, G., Goldberg, D.W., Leal, D.C., Garcez Neto, A.F., Franke, C.R., 2011. Anthropogenic debris ingestion by sea turtles in the northern coast of Bahia, Brazil. Ciênc. Rural 41, 1938–1941. https://doi.org/10.1590/S0103-84782011001100015 Machovsky-Capuska, G.E., Andrades, R., Santos, R.G., 2020. Debris ingestion and nutritional niches in estuarine and reef green turtles. Mar. Pollut. Bull. 153, 110943. https://doi.org/10.1016/j.marpolbul.2020.110943 Macieira, R.M., Oliveira, L.A.S., Cardozo-Ferreira, G.C., Pimentel, C.R., Andrades, R., Gasparini, J.L., Sarti, F., Chelazzi, D., Cincinelli, A., Gomes, L.C., Giarrizzo, T., 2021. Microplastic and artificial cellulose microfibers ingestion by reef fishes in the Guarapari Islands, southwestern Atlantic. Mar. Pollut. Bull. 167, 112371. https://doi.org/10.1016/j.marpolbul.2021.112371 Mascarenhas, R., Santos, R., Zeppelini, D., 2004. Plastic debris ingestion by sea turtle in Paraı́ba, Brazil. Mar. Pollut. Bull. 49, 354–355. https://doi.org/10.1016/j.marpolbul.2004.05.006 Menezes, R., da Cunha-Neto, M.A., de Mesquita, G.C., da Silva, G.B., 2019. Ingestion of macroplastic debris by the common dolphinfish (Coryphaena hippurus) in the Western Equatorial Atlantic. Mar. Pollut. Bull. 141, 161–163. https://doi.org/10.1016/j.marpolbul.2019.02.026 Miranda, D. de A., de Carvalho-Souza, G.F., 2016. Are we eating plastic-ingesting fish? Mar. Pollut. Bull. 103, 109–114. https://doi.org/10.1016/j.marpolbul.2015.12.035 Morais, L.M.S., Sarti, F., Chelazzi, D., Cincinelli, A., Giarrizzo, T., Martinelli Filho, J.E., 2020. The sea anemone Bunodosoma cangicum as a potential biomonitor for microplastics contamination on the Brazilian Amazon coast. Environ. Pollut. 265, 114817. https://doi.org/10.1016/j.envpol.2020.114817 Muncke, J., 2021. Tackling the toxics in plastics packaging. PLOS Biol. 19, e3000961. https://doi.org/10.1371/journal.pbio.3000961 Nascimento, L.O. do, Barreto, J., de Oliveira Gomes, L.E., Bomfim, L.N.S., Martins, A.S., 2023. Solid waste ingestion by marine megafauna on Southeast Brazilian coast. Mar. Pollut. Bull. 190, 114821. https://doi.org/10.1016/j.marpolbul.2023.114821 Neto, J.G.B., Rodrigues, F.L., Ortega, I., Rodrigues, L. dos S., Lacerda, A.L. d. F., Coletto, J.L., Kessler, F., Cardoso, L.G., Madureira, L., Proietti, M.C., 2020. Ingestion of plastic debris by commercially important marine fish in southeast-south Brazil. Environ. Pollut. 267, 115508. https://doi.org/10.1016/j.envpol.2020.115508 Nunes, B.Z., Huang, Y., Ribeiro, V.V., Wu, S., Holbech, H., Moreira, L.B., Xu, E.G., Castro, I.B., 2023a. Microplastic contamination in seawater across global marine protected areas boundaries. Environ. Pollut. 316, 120692. https://doi.org/10.1016/j.envpol.2022.120692 Nunes, B.Z., Moreira, L.B., Xu, E.G., Castro, Í.B., 2023b. A global snapshot of microplastic contamination in sediments and biota of marine protected areas. Sci. Total Environ. 865, 161293. https://doi.org/10.1016/j.scitotenv.2022.161293 Nunes, L.S., Silva, A.G., Espínola, L.A., Blettler, M.C.M., Simões, N.R., 2021. Intake of microplastics by commercial fish: A Bayesian approach. Environ. Monit. Assess. 193, 402. https://doi.org/10.1007/s10661-021-09156-1 Nunes, T.Y., Broadhurst, M.K., Domit, C., 2021. Selectivity of marine-debris ingestion by juvenile green turtles (Chelonia mydas) at a South American World Heritage Listed area. Mar. Pollut. Bull. 169, 112574. https://doi.org/10.1016/j.marpolbul.2021.112574 28 Nunes, V.L., Cutrim, C.H.G., de Azevedo Koch, E.B., Araújo, V.A., 2023. Anthropogenic threats associated with mortality and biomass of stranded sea turtles on the northern coast of São Paulo State, Brazil. Int. J. Environ. Stud. 80, 1912–1926. https://doi.org/10.1080/00207233.2023.2216609 Oceana, 2024. Fragmentos da Destruição: impactos do plástico na biodiversidade marinha brasileira. Zenodo. https://doi.org/10.5281/ZENODO.13931989 Otegui, M.B.P., Schuab, J.M., França, M.A., Caniçali, F.B., Yapuchura, E.R., Zamprogno, G.C., da Costa, M.B., 2024. Microplastic contamination in different shell length in Tivela mactroides (Born, 1778). Sci. Total Environ. 922, 171283. https://doi.org/10.1016/j.scitotenv.2024.171283 Padula, A.D., Machado, R., Milmann, L., de León, M.C., Gana, J.C.M., Wickert, J.C., Argañaraz, M.E., Bastida, R.O., Rodríguez, D.H., Denuncio, P.E., 2023. Marine debris ingestion by odontocete species from the Southwest Atlantic Ocean: Absence also matter. Mar. Pollut. Bull. 186, 114486. https://doi.org/10.1016/j.marpolbul.2022.114486 Pandey, B., Pathak, J., Singh, P., Kumar, R., Kumar, A., Kaushik, S., Thakur, T.K., 2023. Microplastics in the Ecosystem: An Overview on Detection, Removal, Toxicity Assessment, and Control Release. Water 15, 51. https://doi.org/10.3390/w15010051 Peeken, I., Primpke, S., Beyer, B., Gütermann, J., Katlein, C., Krumpen, T., Bergmann, M., Hehemann, L., Gerdts, G., 2018. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 9, 1505. https://doi.org/10.1038/s41467-018-03825-5 Pegado, T., Brabo, L., Schmid, K., Sarti, F., Gava, T.T., Nunes, J., Chelazzi, D., Cincinelli, A., Giarrizzo, T., 2021. Ingestion of microplastics by Hypanus guttatus stingrays in the Western Atlantic Ocean (Brazilian Amazon Coast). Mar. Pollut. Bull. 162, 111799. https://doi.org/10.1016/j.marpolbul.2020.111799 Peng, X., Chen, M., Chen, S., Dasgupta, S., Xu, H., Ta, K., Du, M., Li, J., Guo, Z., Bai, S., 2018. Microplastics contaminate the deepest part of the world’s ocean. Geochem. Perspect. Lett. 9. https://doi.org/10.7185/geochemlet.1829 Petry, M.V., Araújo, L.D., Brum, A.C., Benemann, V.R.F., Finger, J.V.G., 2021. Plastic ingestion by juvenile green turtles (Chelonia mydas) off the coast of Southern Brazil. Mar. Pollut. Bull. 167, 112337. https://doi.org/10.1016/j.marpolbul.2021.112337 Petry, M.V., Benemann, V.R.F., 2017. Ingestion of marine debris by the White-chinned Petrel (Procellaria aequinoctialis): Is it increasing over time off southern Brazil? Mar. Pollut. Bull. 117, 131–135. https://doi.org/10.1016/j.marpolbul.2017.01.073 Petry, M.V., da Silva Fonseca, V.S., Krüger-Garcia, L., da Cruz Piuco, R., Brummelhaus, J., 2008. Shearwater diet during migration along the coast of Rio Grande do Sul, Brazil. Mar. Biol. 154, 613–621. https://doi.org/10.1007/s00227-008-0954-7 Petry, M.V., Fonseca, V.S. da S., Scherer, A.L., 2007. Analysis of stomach contents from the black-browed albatross, Thalassarche melanophris, on the Coast of Rio Grande do Sul, Southern Brazil. Polar Biol. 30, 321–325. https://doi.org/10.1007/s00300-006-0186-6 Petry, M.V., Krüger, L., da Silva Fonseca, V.S., Brummelhaus, J., da Cruz Piuco, R., 2009. Diet and ingestion of synthetics by Cory’s Shearwater Calonectris diomedea off southern Brazil. J. Ornithol. 150, 601–606. https://doi.org/10.1007/s10336-009-0373-7 Pfaller, J.B., Goforth, K.M., Gil, M.A., Savoca, M.S., Lohmann, K.J., 2020. Odors from marine plastic debris elicit foraging behavior in sea turtles. Curr. Biol. 30, R213–R214. https://doi.org/10.1016/j.cub.2020.01.071 Poli, C., Mesquita, D.O., Saska, C., Mascarenhas, R., 2015. Plastic ingestion by sea turtles in Paraíba State, Northeast Brazil. Iheringia Sér. Zool. 105, 265–270. https://doi.org/10.1590/1678-476620151053265270 Possatto, F.E., Barletta, M., Costa, M.F., Ivar do Sul, J.A., Dantas, D.V., 2011. Plastic debris ingestion by marine catfish: An unexpected fisheries impact. Mar. Pollut. Bull. 62, 1098–1102. https://doi.org/10.1016/j.marpolbul.2011.01.036 Ramos, J.A.A., Barletta, M., Costa, M.F., 2012. Ingestion of nylon threads by Gerreidae while using a tropical estuary as foraging grounds. Aquat. Biol. 17, 29–34. https://doi.org/10.3354/ab00461 Ribeiro, V.V., Avelino Soares, T.M., De-la-torre, G.E., Casado-Coy, N., Sanz-Lazaro, C., Castro, Í.B., 29 2024a. Microplastics in rocky shore mollusks of different feeding habits: An assessment of sentinel performance. Environ. Pollut. 346, 123571. https://doi.org/10.1016/j.envpol.2024.123571 Ribeiro, V.V., Casado-Coy, N., Salaní, S., De-la-Torre, G.E., Sanz-Lazaro, C., Castro, Í.B., 2024b. Microplastics in marine sponges (Porifera) along a highly urbanized estuarine gradient in Santos, Brazil. Mar. Pollut. Bull. 208, 117044. https://doi.org/10.1016/j.marpolbul.2024.117044 Ribeiro, V.V., Nobre, C.R., Moreno, B.B., Semensatto, D., Sanz-Lazaro, C., Moreira, L.B., Castro, Í.B., 2023a. Oysters and mussels as equivalent sentinels of microplastics and natural particles in coastal environments. Sci. Total Environ. 874, 162468. https://doi.org/10.1016/j.scitotenv.2023.162468 Ribeiro, V.V., Nobre, C.R., Moreno, B.B., Semensatto, D., Sanz-Lazaro, C., Moreira, L.B., Castro, Í.B., 2023b. Oysters and mussels as equivalent sentinels of microplastics and natural particles in coastal environments. Sci. Total Environ. 874, 162468. https://doi.org/10.1016/j.scitotenv.2023.162468 Ritchie, H., Samborska, V., Roser, M., 2023. Plastic Pollution. Our World Data. Rizzi, M., Rodrigues, F.L., Medeiros, L., Ortega, I., Rodrigues, L., Monteiro, D.S., Kessler, F., Proietti, M.C., 2019. Ingestion of plastic marine litter by sea turtles in southern Brazil: abundance, characteristics and potential selectivity. Mar. Pollut. Bull. 140, 536–548. https://doi.org/10.1016/j.marpolbul.2019.01.054 Rossi, L.C., Scherer, A.L., Petry, M.V., 2019. First record of debris ingestion by the shorebird American Oystercatcher (Haematopus palliatus) on the Southern coast of Brazil. Mar. Pollut. Bull. 138, 235–240. https://doi.org/10.1016/j.marpolbul.2018.11.051 Sacco, V.A., Zuanazzi, N.R., Selinger, A., Alliprandini da Costa, J.H., Spanhol Lemunie, É., Comelli, C.L., Abilhoa, V., Sousa, F.C. de, Fávaro, L.F., Rios Mendoza, L.M., de Castilhos Ghisi, N., Delariva, R.L., 2024. What are the global patterns of microplastic ingestion by fish? A scientometric review. Environ. Pollut. 350, 123972. https://doi.org/10.1016/j.envpol.2024.123972 Saldaña-Serrano, M., Bastolla, C.L.V., Mattos, J.J., Lima, D., Freire, T.B., Nogueira, D.J., De-la-Torre, G.E., Righetti, B.P.H., Zacchi, F.L., Gomes, C.H.A.M., Taniguchi, S., Bícego, M.C., Bainy, A.C.D., 2022. Microplastics and linear alkylbenzene levels in oysters Crassostrea gigas driven by sewage contamination at an important aquaculture area of Brazil. Chemosphere 307, 136039. https://doi.org/10.1016/j.chemosphere.2022.136039 Sampaio, C.L.S., Leite, L., Reis-Filho, J.A., Loiola, M., Miranda, R.J., de Anchieta C.C. Nunes, J., Macena, B.C.L., 2018. New insights into whale shark Rhincodon typus diet in Brazil: an observation of ram filter-feeding on crab larvae and analysis of stomach contents from the first stranding in Bahia state. Environ. Biol. Fishes 101, 1285–1293. https://doi.org/10.1007/s10641-018-0775-6 Santana, M.F.M., Ascer, L.G., Custódio, M.R., Moreira, F.T., Turra, A., 2016. Microplastic contamination in natural mussel beds from a Brazilian urbanized coastal region: Rapid evaluation through bioassessment. Mar. Pollut. Bull. 106, 183–189. https://doi.org/10.1016/j.marpolbul.2016.02.074 Santos, R.G., Andrades, R., Boldrini, M.A., Martins, A.S., 2015. Debris ingestion by juvenile marine turtles: An underestimated problem. Mar. Pollut. Bull. 93, 37–43. https://doi.org/10.1016/j.marpolbul.2015.02.022 Sazima, I., Gadig, O.B.F., Namora, R.C., Motta, F.S., 2002. Plastic debris collars on juvenile carcharhinid sharks (Rhizoprionodon lalandii) in southwest Atlantic. Mar. Pollut. Bull. 44, 1149–1151. https://doi.org/10.1016/S0025-326X(02)00141-8 Schuab, J.M., de Paula, M.S., Ocaris, E.R.Y., Milagres, M.R., Motta, D.G., da Costa, M.B., 2023. First record of microplastic in the Brazilian sea hare Aplysia brasiliana Rang, 1828 (Mollusca: Aplysiidae). Sci. Total Environ. 895, 165156. https://doi.org/10.1016/j.scitotenv.2023.165156 Sumário para tomadores de decisão do 1o Diagnóstico Brasileiro Marinho-Costeiro sobre Biodiversidade e Serviços Ecossistêmicos, 2023. . Cristiana Simão Seixas, São Carlos, SP. Tavares, D.C., de Moura, J.F., Merico, A., Siciliano, S., 2017. Incidence of marine debris in seabirds 30 feeding at different water depths. Mar. Pollut. Bull. 119, 68–73. https://doi.org/10.1016/j.marpolbul.2017.04.012 Thompson, T., 2022. Plastic pollution: Three problems that a global treaty could solve. Nature. https://doi.org/10.1038/d41586-022-03835-w Tourinho, P.S., Ivar do Sul, J.A., Fillmann, G., 2010. Is marine debris ingestion still a problem for the coastal marine biota of southern Brazil? Mar. Pollut. Bull. 60, 396–401. https://doi.org/10.1016/j.marpolbul.2009.10.013 Turner, A., Holmes, L., Thompson, R.C., Fisher, A.S., 2020. Metals and marine microplastics: Adsorption from the environment versus addition during manufacture, exemplified with lead. Water Res. 173, 115577. https://doi.org/10.1016/j.watres.2020.115577 Van Cauwenberghe, L., Vanreusel, A., Mees, J., Janssen, C.R., 2013. Microplastic pollution in deep-sea sediments. Environ. Pollut. 182, 495–499. https://doi.org/10.1016/j.envpol.2013.08.013 Vanstreels, R.E.T., Gallo, L., Serafini, P.P., Santos, A.P., Egert, L., Uhart, M.M., 2021. Ingestion of plastics and other debris by coastal and pelagic birds along the coast of Espírito Santo, Eastern Brazil. Mar. Pollut. Bull. 173, 113046. https://doi.org/10.1016/j.marpolbul.2021.113046 Vieira, K.S., Baptista Neto, J.A., Crapez, M.A.C., Gaylarde, C., Pierri, B. da S., Saldaña-Serrano, M., Bainy, A.C.D., Nogueira, D.J., Fonseca, E.M., 2021. Occurrence of microplastics and heavy metals accumulation in native oysters Crassostrea Gasar in the Paranaguá estuarine system, Brazil. Mar. Pollut. Bull. 166, 112225. https://doi.org/10.1016/j.marpolbul.2021.112225 Ward, C.P., Reddy, C.M., 2020. We need better data about the environmental persistence of plastic goods. Proc. Natl. Acad. Sci. 117, 14618–14621. https://doi.org/10.1073/pnas.2008009117 Watts, A.J.R., Lewis, C., Goodhead, R.M., Beckett, S.J., Moger, J., Tyler, C.R., Galloway, T.S., 2014. Uptake and Retention of Microplastics by the Shore Crab Carcinus maenas. Environ. Sci. Technol. 48, 8823–8830. https://doi.org/10.1021/es501090e 31 NORMAS - MARINE POLLUTION BULLETIN About the journal Aims and scope Marine Pollution Bulletin is concerned with the rational use of maritime and marine resources in estuaries, the seas and oceans, as well as with documenting marine pollution and introducing new forms of measurement and analysis. A wide range of topics are discussed not only on effluent disposal and pollution control, but also on the management, economic aspects and protection of the marine environment in general. Papers published may include, but are not limited to: ● Marine debris and litter study and management ● Oil spills and their ecological impacts ● Chemical pollution (including inorganic and organic contaminants, e.g., heavy metals, Persistent Organic Pollutants) in marine environments ● Microplastics and their effects ● Pollution from shipping and maritime activities ● Eutrophication and its consequences on marine ecosystems ● Harmful algal blooms (HABs) and their impacts ● Acidification of oceans due to carbon dioxide absorption ● Noise pollution in marine environments and its effects on marine life ● Pollution from coastal development and runoff ● Radioactive contamination in marine environments ● Emerging pollutants and their effects on marine ecosystems ● Pollution from aquaculture and mariculture operations ● Global initiatives and policies for mitigating marine pollution ● Using artificial intelligence to assess marine environmental conditions and/or to provide policy decisions. A distinctive feature of Marine Pollution Bulletin is the number of different categories of articles which are published: 1. Research Papers form the core of the journal, with a typical length of 6000 words and a maximum of 10000 words. 2. Reviews are between 8000 and 20000 words, on topics cross traditional lines. Marine Pollution Bulletin does not publish articles that present only model development or processes in water treatment plants. Article types A distinctive feature of Marine Pollution Bulletin is the number of different types of paper which are published. 1. Research Papers form the core of the journal, with a typical length of 6000 words and a maximum of 10000 words. 2. Reviews are between 8000 and 20000 words, on topics cross traditional lines. 32 Ethics and policies Ethics in publishing Authors must follow ethical guidelines stated in Elsevier's Publishing Ethics Policy. Submission declaration When authors submit an article to an Elsevier journal it is implied that: ● the work described has not been published previously except in the form of a preprint, an abstract, a published lecture, academic thesis or registered report. See our policy on multiple, redundant or concurrent publication. ● the article is not under consideration for publication elsewhere. ● the article's publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. ● if accepted, the article will not be published elsewhere in the same form, in English or in any other language, including electronically, without the written consent of the copyright-holder. To verify compliance with our journal publishing policies, we may check your manuscript with our screening tools. Authorship All authors should have made substantial contributions to all of the following: 1. The conception and design of the study, or acquisition of data, or analysis and interpretation of data. 2. Drafting the article or revising it critically for important intellectual content. 3. Final approval of the version to be submitted. Authors should appoint a corresponding author to communicate with the journal during the editorial process. All authors should agree to be accountable for all aspects of the work to ensure that the questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Writing and formatting File format We ask you to provide editable source files for your entire submission (including figures, tables and text graphics). Some guidelines: ● Save files in an editable format, using the extension .doc/.docx for Word files and .tex for LaTeX files. A PDF is not an acceptable source file. ● Lay out text in a single-column format. ● Use spell-check and grammar-check functions to avoid errors. We advise you to read our Step-by-step guide to publishing with Elsevier. LaTeX We encourage you use our LaTeX template when preparing a LaTeX submission. You will be asked to provide all relevant editable source files upon submission or revision. Support for your LaTeX submission: ● LaTeX submission instructions and templates ● Journal Article Publishing Support Center LaTeX FAQs and support ● Researcher Academy’s Beginners’ guide to writing a manuscript in LaTeX Title page 33 You are required to include the following details in the title page information: ● Article title. Article titles should be concise and informative. Please avoid abbreviations and formulae, where possible, unless they are established and widely understood, e.g., DNA). ● Author names. Provide the given name(s) and family name(s) of each author. The order of authors should match the order in the submission system. Carefully check that all names are accurately spelled. If needed, you can add your name between parentheses in your own script after the English transliteration. ● Affiliations. Add affiliation addresses, referring to where the work was carried out, below the author names. Indicate affiliations using a lower-case superscript letter immediately after the author's name and in front of the corresponding address. Ensure that you provide the full postal address of each affiliation, including the country name and, if available, the email address of each author. ● Corresponding author. Clearly indicate who will handle correspondence for your article at all stages of the refereeing and publication process and also post-publication. This responsibility includes answering any future queries about your results, data, methodology and materials. It is important that the email address and contact details of your corresponding author are kept up to date during the submission and publication process. ● Present/permanent address. If an author has moved since the work described in your article was carried out, or the author was visiting during that time, a "present address" (or "permanent address") can be indicated by a footnote to the author's name. The address where the author carried out the work must be retained as their main affiliation address. Use superscript Arabic numerals for such footnotes. Abstract You are required to provide a concise and factual abstract which does not exceed 250 words. The abstract should briefly state the purpose of your research, principal results and major conclusions. Some guidelines: ● Abstracts must be able to stand alone as abstracts are often presented separately from the article. ● Avoid references. If any are essential to include, ensure that you cite the author(s) and year(s). ● Avoid non-standard or uncommon abbreviations. If any are essential to include, ensure they are defined within your abstract at first mention. Keywords You are required to provide 1 to 7 keywords for indexing purposes. Keywords should be written in English. Please try to avoid keywords consisting of multiple words (using "and" or "of"). We recommend that you only use abbreviations in keywords if they are firmly established in the field. Highlights You are required to provide article highlights at submission. Highlights are a short collection of bullet points that should capture the novel results of your research as well as any new methods used during your study. Highlights will help increase the discoverability of your article via search engines. Some guidelines: ● Submit highlights as a separate editable file in the online submission system with the word "highlights" included in the file name. ● Highlights should consist of 3 to 5 bullet points, each a maximum of 85 characters, including spaces. We encourage you to view example article highlights and read about the benefits of their inclusion. 34 Graphical abstract You are encouraged to provide a graphical abstract at submission. The graphical abstract should summarize the contents of your article in a concise, pictorial form which is designed to capture the attention of a wide readership. A graphical abstract will help draw more attention to your online article and support readers in digesting your research. Some guidelines: ● Submit your graphical abstract as a separate file in the online submission system. ● Ensure the image is a minimum of 531 x 1328 pixels (h x w) or proportionally more and is readable at a size of 5 x 13 cm using a regular screen resolution of 96 dpi. ● Our preferred file types for graphical abstracts are TIFF, EPS, PDF or MS Office files. We encourage you to view example graphical abstracts and read about the benefits of including them. Tables Tables must be submitted as editable text, not as images. Some guidelines: ● Place tables next to the relevant text or on a separate page(s) at the end of your article. ● Cite all tables in the manuscript text. ● Number tables consecutively according to their appearance in the text. ● Please provide captions along with the tables. ● Place any table notes below the table body. ● Avoid vertical rules and shading within table cells. We recommend that you use tables sparingly, ensuring that any data presented in tables is not duplicating results described elsewhere in the article. Figures, images and artwork Figures, images, artwork, diagrams and other graphical media must be supplied as separate files along with the manuscript. We recommend that you read our detailed artwork and media instructions. Some excerpts: When submitting artwork: ● Cite all images in the manuscript text. ● Number images according to the sequence they appear within your article. ● Submit each image as a separate file using a logical naming convention for your files (for example, Figure_1, Figure_2 etc). ● Please provide captions for all figures, images, and artwork. ● Text graphics may be embedded in the text at the appropriate position. If you are working with LaTeX, text graphics may also be embedded in the file. Artwork formats When your artwork is finalized, "save as" or convert your electronic artwork to the formats listed below taking into account the given resolution requirements for line drawings, halftones, and line/halftone combinations: ● Vector drawings: Save as EPS or PDF files embedding the font or saving the text as "graphics." ● Color or grayscale photographs (halftones): Save as TIFF, JPG or PNG files using a minimum of 300 dpi (for single column: min. 1063 pixels, full page width: 2244 pixels). ● Bitmapped line drawings: Save as TIFF, JPG or PNG files using a minimum of 1000 dpi (for single column: min. 3543 pixels, full page width: 7480 pixels). 35 ● Combinations bitmapped line/halftones (color or grayscale): Save as TIFF, JPG or PNG files using a minimum of 500 dpi (for single column: min. 1772 pixels, full page width: 3740 pixels). Please do not submit: ● files that are too low in resolution (for example, files optimized for screen use such as GIF, BMP, PICT or WPG files). ● disproportionally large images compared to font size, as text may become unreadable. Figure captions All images must have a caption. A caption should consist of a brief title (not displayed on the figure itself) and a description of the image. We advise you to keep the amount of text in any image to a minimum, though any symbols and abbreviations used should be explained. Provide captions in a separate file. Color artwork If you submit usable color figures with your accepted article, we will ensure that they appear in color online. Please ensure that color images are accessible to all, including those with impaired color vision. Learn more about color and web accessibility. For articles appearing in print, you will be sent information on costs to reproduce color in the printed version, after your accepted article has been sent to production. At this stage, please indicate if your preference is to have color only in the online version of your article or also in the printed version. Generative AI and Figures, images and artwork Please read our policy on the use of generative AI and AI-assisted tools in figures, images and artwork, which can be found in Elsevier’s GenAI Policies for Journals. This policy states: ● We do not permit the use of Generative AI or AI-assisted tools to create or alter images in submitted manuscripts. ● The only exception is if the use of AI or AI-assisted tools is part of the research design or methods (for example, in the field of biomedical imaging). If this is the case, such use must be described in a reproducible manner in the methods section, including the name of the model or tool, version and extension numbers, and manufacturer. ● The use of generative AI or AI-assisted tools in the production of artwork such as for graphical abstracts is not permitted. The use of generative AI in the production of cover art may in some cases be allowed, if the author obtains prior permission from the journal editor and publisher, can demonstrate that all necessary rights have been cleared for the use of the relevant material, and ensures that there is correct content attribution. Supplementary material We encourage the use of supplementary materials such as applications, images and sound clips to enhance research. Some guidelines: ● Cite all supplementary files in the manuscript text. ● Submit supplementary materials at the same time as your article. Be aware that all supplementary materials provided will appear online in the exact same file type as received. These files will not be formatted or typeset by the production team. ● Include a concise, descriptive caption for each supplementary file describing its content. 36 ● Provide updated files if at any stage of the publication process you wish to make changes to submitted supplementary materials. ● Do not make annotations or corrections to a previous version of a supplementary file. ● Switch off the option to track changes in Microsoft Office files. If tracked changes are left on, they will appear in your published version. We recommend you upload research data to a suitable specialist or generalist repository. Please read our guidelines on sharing research data for more information on depositing, sharing and using research data and other relevant research materials. Video This journal accepts video material and animation sequences to support and enhance your scientific research. We encourage you to include links to video or animation files within articles. Some guidelines: ● When including video or animation file links within your article, refer to the video or animation content by adding a note in your text where the file should be placed. ● Clearly label files ensuring the given file name is directly related to the file content. ● Provide files in one of our recommended file formats. Files should be within our preferred maximum file size of 150 MB per file, 1 GB in total. ● Provide "stills" for each of your files. These will be used as standard icons to personalize the link to your video data. You can choose any frame from your video or animation or make a separate image. ● Provide text (for both the electronic and the print version) to be placed in the portions of your article that refer to the video content. This is essential text, as video and animation files cannot be embedded in the print version of the journal. We publish all video and animation files supplied in the electronic version of your article. For more detailed instructions, we recommend that you read our guidelines on submitting video content to be included in the body of an article. Research data We are committed to supporting the storage of, access to and discovery of research data, and our research data policy sets out the principles guiding how we work with the research community to support a more efficient and transparent research process. Research data refers to the results of observations or experimentation that validate research findings, which may also include software, code, models, algorithms, protocols, methods and other useful materials related to the project. Please read our guidelines on sharing research data for more information on depositing, sharing and using research data and other relevant research materials. For this journal, the following instructions from our research data guidelines apply. Option C: Research data deposit, citation and linking You are required to: ● Deposit your research data in a relevant data repository. ● Cite and link to this dataset in your article. 37 ● If this is not possible, make a statement explaining why research data cannot be shared. Data statement To foster transparency, you are required to state the availability of any data at submission. Ensuring data is available may be a requirement of your funding body or institution. If your data is unavailable to access or unsuitable to post, you can state the reason why (e.g., your research data includes sensitive or confidential information such as patient data) during the submission process. This statement will appear with your published article on ScienceDirect. Read more about the importance and benefits of providing a data statement. Data linking Linking to the data underlying your work increases your exposure and may lead to new collaborations. It also provides readers with a better understanding of the described research. If your research data has been made available in a data repository there are a number of ways your article can be linked directly to the dataset: ● Provide a link to your dataset when prompted during the online submission process. ● For some data repositories, a repository banner will automatically appear next to your published article on ScienceDirect. ● You can also link relevant data or entities within the text of your article through the use of identifiers. Use the following format: Database: 12345 (e.g. TAIR: AT1G01020; CCDC: 734053; PDB: 1XFN). Learn more about linking research data and research articles in ScienceDirect. Data in Brief and MethodsX: co-submission You are encouraged to publish research data, methods or protocols related to your manuscript as a co-submission article in Data in Brief or MethodsX. By publishing a co-submission, you further advance research reproducibility, interoperability, and open science. In case both your original research article and your co-submission article(s) get accepted for publication, they will be linked together on ScienceDirect. When submitting your original research article, please follow the co-submission process active for this journal: ● Describe the research data, methods or protocols in a separate paper to be considered for publication in Data in Brief or inMethodsX. ● Adhere to one of the following submission templates: ○ Data article template (Data in Brief) ○ Methods article template (MethodsX) ○ Protocol article template (MethodsX) ● Online submission of your co-submission article: ○ When you upload the files for your original research article, in the ‘Attach Files’ step in the Editorial Manager submission process, please also upload the file(s) for your co-submission. ○ Please select ‘Data in Brief’ or ‘MethodsX’ from the ‘Select Item Type’ drop-down menu when you upload your co-submission file(s). ○ Submit your co-submission file(s) as a Word document. Article structure Article sections 38 Divide your manuscript into clearly defined sections covering all essential elements using headings. Glossary Please provide definitions of field-specific terms used in your article, in a separate list. Acknowledgements Include any individuals who provided you with help during your research, such as help with language, writing or proof reading, in the acknowledgements section. Acknowledgements should be placed in a separate section which appears directly before the reference list. Do not include acknowledgements on your title page, as a footnote to your title, or anywhere else in your article other than in the separate acknowledgements section. Author contributions: CRediT Corresponding authors are required to acknowledge co-author contributions using CRediT (Contributor Roles Taxonomy) roles: ● Conceptualization ● Data curation ● Formal analysis ● Funding acquisition ● Investigation ● Methodology ● Project administration ● Resources ● Software ● Supervision ● Validation ● Visualization ● Writing – original draft ● Writing – review and editing Not all CRediT roles will apply to every manuscript and some authors may contribute through multiple roles. We advise you to read more about CRediT and view an example of a CRediT author statement. Funding sources Authors must disclose any funding sources who provided financial support for the conduct of the research and/or preparation of the article. The role of sponsors, if any, should be declared in relation to the study design, collection, analysis and interpretation of data, writing of the report and decision to submit the article for publication. If funding sources had no such involvement this should be stated in your submission. List funding sources in this standard way to facilitate compliance to funder's requirements: Funding: This work was supported by the National Institutes of Health [grant numbers xxxx, yyyy]; the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzz]; and the United States Institutes of Peace [grant number aaaa]. It is not necessary to include detailed descriptions on the program or type of grants, scholarships and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding. 39 If no funding has been provided for the research, it is recommended to include the following sentence: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Appendices We ask you to use the following format for appendices: ● Identify individual appendices within your article using the format: A, B, etc. ● Give separate numbering to formulae and equations within appendices using formats such as Eq. (A.1), Eq. (A.2), etc. and in subsequent appendices, Eq. (B.1), Eq. (B. 2) etc. In a similar way, give separate numbering to tables and figures using formats such as Table A.1; Fig. A.1, etc. References References within text Any references cited within your article should also be present in your reference list and vice versa. Some guidelines: ● References cited in your abstract must be given in full. ● We recommend that you do not include unpublished results and personal communications in your reference list, though you may mention them in the text of your article. ● Any unpublished results and personal communications included in your reference list must follow the standard reference style of the journal. In substitution of the publication date add "unpublished results" or "personal communication." ● References cited as "in press" imply that the item has been accepted for publication. Linking to cited sources will increase the discoverability of your research. Before submission, check that all data provided in your reference list are correct, including any references which have been copied. Providing correct reference data allows us to link to abstracting and indexing services such as Scopus, Crossref and PubMed. Any incorrect surnames, journal or book titles, publication years or pagination within your references may prevent link creation. We encourage the use of Digital Object Identifiers (DOIs) as reference links as they provide a permanent link to the electronic article referenced. Reference format This journal does not set strict requirements on reference formatting at submission. Some guidelines: ● References can be in any style or format as long as the style is consistent. ● Author names, journal or book titles, chapter or article titles, year of publication, volume numbers, article numbers or pagination must be included, where applicable. ● Use of DOIs is recommended. Our journal reference style will be applied to your article after acceptance, at proof stage. If required, at this stage we will ask you to correct or supply any missing reference data. Web references When listing web references, as a minimum you should provide the full URL and the date when the reference was last accessed. Additional information (e.g. DOI, author names, dates or reference to a source publication) should also be provided, if known. 40 You can list web references separately under a new heading directly after your reference list or include them in your reference list. Data references We encourage you to cite underlying or relevant datasets within article text and to list data references in the reference list. When citing data references, you should include: ● author name(s) ● dataset title ● data repository ● version (where available) ● year ● global persistent identifier Add [dataset] immediately before your reference. This will help us to properly identify the dataset. The [dataset] identifier will not appear in your published article. Preprint references We ask you to mark preprints clearly. You should include the word "preprint" or the name of the preprint server as part of your reference and provide the preprint DOI. Where a preprint has subsequently become available as a peer-reviewed publication, use the formal publication as your reference. If there are preprints that are central to your work or that cover crucial developments in the topic, but they are not yet formally published, you may reference the preprint. Reference management software Most Elsevier journals have their reference template available in popular reference management software products. These include products that support Citation Style Language (CSL) such as Mendeley Reference Manager. If you use a citation plug-in from these products, select the relevant journal template and all your citations and bibliographies will automatically be formatted in the journal style. We advise you to remove all field codes before submitting your manuscript to any reference management software product. If a template is not available for this journal, follow the format given in examples in the reference style section of this Guide for Authors. Submitting your manuscript Submission checklist Before completing the submission of your manuscript, we advise you to read our submission checklist: ● One author has been designated as the corresponding author and their full contact details (email address, full postal address and phone numbers) have been provided. ● All files have been uploaded, including keywords, figure captions and tables (including a title, description and footnotes) included. 41 ● Spelling and grammar checks have been carried out. ● All references in the article text are cited in the reference list and vice versa. ● Permission has been obtained for the use of any copyrighted material from other sources, including the Web. ● For gold open access articles, all authors understand that they are responsible for payment of the article publishing charge (APC) if the manuscript is accepted. Payment of the APC may be covered by the corresponding author's institution, or the research funder. Suggest reviewers To support the peer review process, we ask you to provide names and institutional email addresses of several potential reviewers for their manuscript. Some guidelines: ● Reviewers should not be colleagues or have co-authored or collaborated with you during the last three years. ● Do not suggest reviewers with whom you have competing interests. ● Suggest reviewers who are located in different countries or regions from yourself. This helps to provide a broad and balanced assessment of your work and to ensure scientific rigor. ● Consider diversity in your reviewer suggestions, such as gender, race and ethnicity and career stage. ● Do not suggest members of our Editorial Board. The journal editors will take the final decision on whether to invite your suggested reviewers. Submit online Our online submission system guides you through the process steps of entering your manuscript details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the editor's decision and requests for revision, is sent by email. Please follow this link to submit your paper. After receiving a final decision Article Transfer Service If your manuscript is more suitable for an alternative Elsevier journal, you may receive an email asking you to consider transferring your manuscript via the Elsevier Article Transfer Service. The recommendation could come from the journal editor, a dedicated in-house scientific managing editor, a tool-assisted recommendation or a combination. If you agree with the recommendation, your manuscript will be transferred and independently reviewed by the editors of the new journal. You will have the opportunity to make revisions, if necessary, before the submission is complete at the destination journal. Publishing agreement Authors will be asked to complete a publishing agreement after acceptance. The corresponding author will receive a link to the online agreement by email. We advise you to read Elsevier's policies related to copyright to learn more about our copyright policies and your, and your employer’s/institution’s, additional rights for subscription and gold open access articles. License options 42 Authors will be offered open access user license options which will determine how you, and third parties, can reuse your gold open access article. We advise that you review these options and any funding body license requirements before selecting a license option. Open access We refer you to our open access information page to learn about open access options for this journal. Permission for copyrighted works If excerpts from other copyrighted works are included in your article, you must obtain written permission from the copyright owners and credit the source(s) within your article using Elsevier’s permission request and license form (Word). Proof correction To ensure a fast publication process we will ask you to provide proof corrections within two days. Corresponding authors will be sent an email which includes a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to Word. You can edit text, comment on figures and tables and answer questions raised by our copy editor. Our web-based proofing service ensures a faster and less error-prone process. You can choose to annotate and upload your edits on the PDF version of your article, if preferred. We will provide you with proofing instructions and available alternative proofing methods in our email. The purpose of the proof is to check the typesetting, editing, completeness and correctness of your article text, tables and figures. Significant changes to your article at the proofing stage will only be considered with approval of the journal editor. Share Link A customized Share Link, providing 50 days free access to the final published version of your article on ScienceDirect, will be sent by email to the corresponding author. The Share Link can be used to share your article on any communication channel, such as by email or on social media. For an extra charge, you will be provided with the option to order paper offprints. A link to an offprint order form will be sent by email when your article is accepted for publication. A Share Link will not be provided if your article is published gold open access. The final published version of your gold open access article will be openly available on ScienceDirect and can be shared through the article DOI link. Offprints A PDF file of your article will be sent by email to the corresponding author. The PDF file will be a watermarked version of your published article including a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use. For an extra charge, you will be provided with the option to order paper offprints. A link to an offprint order form will be sent by email when your article is accepted for publication. Responsible sharing 43 We encourage you to share and promote your article to give additional visibility to your work, enabling your paper to contribute to scientific progress and foster the exchange of scientific developments within your field. Read more about how to responsibly share and promote your article. Resources for authors Elsevier Researcher Academy If you would like help to improve your submission or navigate the publication process, support is available via Elsevier Researcher Academy. Elsevier Researcher Academy offers free e-learning modules, webinars, downloadable guides and research writing and peer review process resources. 44 45