Study of Z Boson Production in PbPb Collisions at ffiffiffiffiffiffiffiffiffi sNN p ¼ 2:76 TeV S. Chatrchyan et al.* (CMS Collaboration) (Received 1 March 2011; published 24 May 2011) A search for Z bosons in the �þ�� decay channel has been performed in PbPb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 2:76 TeV with the CMS detector at the LHC, in a 7:2 �b�1 data sample. The number of opposite-sign muon pairs observed in the 60–120 GeV=c2 invariant mass range is 39, corresponding to a yield per unit of rapidity (y) and per minimum bias event of ½33:8� 5:5ðstatÞ � 4:4ðsystÞ� � 10�8, in the jyj< 2:0 range. Rapidity, transverse momentum, and centrality dependencies are also measured. The results agree with next-to-leading order QCD calculations, scaled by the number of incoherent nucleon-nucleon collisions. DOI: 10.1103/PhysRevLett.106.212301 PACS numbers: 25.75.Cj, 12.38.Bx, 14.70.Hp The hot and dense matter produced in heavy-ion colli- sions, often referred to as the quark-gluon plasma (QGP), can be studied in various ways. One approach is to compare measurements made in heavy-ion (AA) collisions to those in proton-proton (pp) and proton- (or deuteron-)nucleus collisions. Another way is to compare in the same AA sample the yields of particles that are modified by the QGP to those of unmodified reference particles. At the Relativistic Heavy Ion Collider (RHIC), direct photons play the reference role [1], although their measurement is complicated by copious background from �0 and other decays, and by the existence of a parton fragmentation component which is potentially modified by the medium [2]. At the Large Hadron Collider (LHC) energies, a new and cleaner reference becomes available: the Z boson, decaying into leptons [3,4]. Electroweak boson production is an important bench- mark process at hadron colliders. At 7 TeV center-of-mass energy, measurements in pp collisions at the LHC [5,6] are well described by calculations based on higher-order per- turbative quantum chromodynamics (pQCD), using recent parton distribution functions (PDFs). In AA collisions, Z boson production can be affected by various initial-state effects, though predictions indicate that these contributions are rather small [3,7–10]. First, the mix of protons and neutrons in AA collisions (the so-called isospin effect) is estimated to modify the Z yield by less than 3% compared to pp collisions [9]. Second, energy loss and multiple scattering of the initial partons can also alter the Z produc- tion, by about 3% [10]. The PDFs however are modified in nuclei and a depletion (shadowing) is expected for Z bosons at the LHC, modifying their yield by as much as 20% [9]. Precise measurements of Z production in heavy- ion collisions can therefore help to constrain nuclear PDFs. Once produced, Z bosons decay within the medium, with a lifetime of 0:1 fm=c. Their leptonic decays are of particular interest since leptons lose negligible energy in the produced medium regardless of its nature (partonic or hadronic) and properties [4]. Dileptons from Z bosons can thus serve as a reference to the processes expected to be heavily modified in the QGP, such as quarkonia produc- tion, or the production of an opposite-side jet in Zþ jet processes [3,11]. The Z bosons are therefore ideally suited to serve as a standard candle of the initial state in PbPb collisions at the LHC energies. During the first PbPb LHC run at the end of 2010, at a center-of-mass energy per nucleon pair of ffiffiffiffiffiffiffiffi sNN p ¼ 2:76 TeV, Z bosons were observed by the Compact Muon Solenoid (CMS) experiment. The measurement reported in this Letter is performed with a 55� 106 minimum bias (MB) event sample, corresponding to an integrated lumi- nosity of 7:2 �b�1. A detailed description of the CMS detector can be found in [12]. Its central feature is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter, and the brass or scintillator hadron calorimeter. Muons are mea- sured in gas-ionization detectors embedded in the steel return yoke. In addition, CMS has extensive forward calo- rimetry, in particular, two steel or quartz-fiber Čerenkov, hadron forward (HF) calorimeters, which cover the pseu- dorapidity range 2:9< j�j< 5:2. In this analysis, Z bosons are measured through their dimuon decays. The silicon pixel and strip tracker mea- sures charged particle trajectories in the range j�j< 2:5. It consists of 66 M pixel and 10 M strip detector channels. It provides a distance-to-vertex resolution of �15 �m in the transverse plane. Muons are detected in the j�j< 2:4 range, with detection planes based on three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. A matching of the muons to the tracks measured *Full author list given at the end of the article. Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri- bution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. PRL 106, 212301 (2011) P HY S I CA L R EV I EW LE T T E R S week ending 27 MAY 2011 0031-9007=11=106(21)=212301(14) 212301-1 � 2011 CERN, for the CMS Collaboration http://dx.doi.org/10.1103/PhysRevLett.106.212301 http://creativecommons.org/licenses/by/3.0/ in the silicon tracker results in a pT resolution between 1% and 2%, for pT values up to 100 GeV=c. The centrality of AA collisions, i.e., the geometrical overlap of the incoming nuclei, is related to the energy released in the collisions. In CMS, centrality is defined as percentiles of the distribution of the energy deposited in the HFs [13,14]. The centrality classes used in this analysis are 30%–100%, 10%–30%, and 0%–10% (most central), or- dered from the lowest to the highest HF energy deposit. Events are preselected if they contain a reconstructed primary vertex made of at least two tracks, and an offline coincidence of both of the HFs with a total deposited energy of at least 9 GeV. These criteria reduce contribu- tions from single-beam interactions with the environment (e.g., beam-gas and beam halo collisions with the beam pipe), ultraperipheral electromagnetic collisions, and cosmic-ray muons. The acceptance of this selection is (97� 3)% of the hadronic inelastic cross section [13]. The events are also selected by the two-level trigger of CMS. At the first hardware level, two muon candidates in the muon detectors are required. At the software-based higher level, two reconstructed tracks in the muon detec- tors are required, each with a pT of at least 3 GeV=c. In order to study the dimuon trigger efficiency, events are also collected with a single-muon trigger, requiring pT > 20 GeV=c. For Z bosons, the trigger efficiency is estimated to be ’ 94%. Muon offline reconstruction is seeded with ’ 99% effi- ciency by tracks in the muon detectors, called stand-alone muons. These tracks are then matched to tracks recon- structed in the silicon tracker by means of an algorithm optimized for the heavy-ion environment [14,15]. For a muon from Z decays the tracking efficiency is ’ 85%, less than in the pp case, as the track reconstruction requires more pixel hits to lower the number of combinations, due to the high multiplicity. Global fits of the muon and tracker tracks, called global muons, are used to obtain the results presented in this Letter. Background muons from cosmic rays and heavy-quark semileptonic decays are rejected by requiring a transverse (longitudinal) impact parameter of less than 0.3 (1.5) mm from the measured vertex. Loose criteria applied on the reconstructed muons result in the dimuon mass spectrum shown in Fig. 1. No muon isolation criteria are applied, as they are expected to have reduced efficiency in the high particle density of the PbPb environment. The fraction of Z decays removed by the applied selection criteria is esti- mated to be ’ 2:6%. A conservative upper limit of 4% for the residual background is estimated by extrapolations of various shapes from the low mass region, and no correction is applied. Thirty-nine Z candidates are observed in the mass interval 60–120 GeV=c2. Their distribution is con- sistent with the one from pp data at 7 TeV [6], scaled down to 39 counts and limited to the 60–120 GeV=c2 mass range as displayed by the histogram in Fig. 1. Muon trigger, reconstruction, and selection efficiencies, as well as acceptance, are estimated using the PYTHIA 6.424 simulation [16] with CTEQ6L PDFs [17] and full GEANT4 [18] detector simulation. To take into account the effect of the higher PbPb underlying-event activity, simulated Z decays are embedded in measured PbPb events at the level of detector hits and with generated vertices matched to the measured ones. These events were processed through the trigger emulation and event reconstruction chain. Track characteristics, such as the number of hits and the �2 of the track fit, have similar distributions in data and simula- tion. The detector acceptance �, defined as the fraction of Z bosons produced at rapidity jyj< 2:0 that decay into muons with j�j< 2:4 and pT > 10 GeV=c, is estimated to be 78%. Within this acceptance, the overall trigger, recon- struction, and identification efficiency " averages to 67%, and varies by less than 10% as a function of centrality. The individual components of this efficiency are also estimated with a data-driven technique, called tag-and- probe, similar to the one used for the corresponding pp measurement [6]. It consists in counting the Z candidates with and without applying the probed selection on one of the muons: (1) the stand-alone muon reconstruction effi- ciency is probed with tracker tracks; (2) the silicon tracker reconstruction efficiency is probed with stand-alone muons; (3) the trigger efficiency is probed by testing the trigger response to global muons from a sample triggered by a single-muon requirement. The last is also checked with high-quality reconstructed muons fromMB events. In all cases, these data-driven efficiencies agree with those derived from simulation within the statistical uncertainties. The total systematic uncertainty on the Z yield is esti- mated to be 13% by summing in quadrature the following contributions. The largest one is associated with the tracking efficiency and taken as the 9.8% precision of the above-mentioned data-driven efficiency determination. Similarly, the uncertainty associated with the dimuon )2Dimuon mass (GeV/c 30 40 50 60 70 80 90 100 110 120 )2 E ve nt s/ (2 G eV /c 0 5 10 15 Opposite-sign Same-sign -1CMS pp 7 TeV 2.9 pb = 2.76 TeVNNsCMS PbPb -1 bµ Ldt = 7.2 ∫ < 2.4µη > 10 GeV/c, µ T p )2Dimuon mass (GeV/c 30 40 50 60 70 80 90 100 110 120 )2 E ve nt s/ (2 G eV /c 0 5 10 15 FIG. 1 (color online). Dimuon invariant mass spectra. Full squares are opposite-sign dimuons, while the empty circle shows a unique like-sign dimuon candidate. The histogram shows the corresponding distribution measured in pp collisions at 7 TeV within 60–120 GeV=c2, scaled to the 39 PbPb candidates. PRL 106, 212301 (2011) P HY S I CA L R EV I EW LE T T E R S week ending 27 MAY 2011 212301-2 trigger is 4.5%. The 4% maximum contribution from un- subtracted background is taken as a systematic uncertainty. The uncertainty associated with the muon-pair selection is considered to be equal to the 2.6% loss of events. The MB trigger efficiency is known at the 3% level. The uncertainty coming from the acceptance correction is estimated to be less than 3%, by varying the underlying generated kinematics (y, pT) beyond reasonable modifications. Other systematic uncertainties are estimated to sum to less than 1.5%. The yield of Z ! �þ�� decays per MB event is defined as dN=dyðjyj< 2:0Þ ¼ NZ=ð�"NMB�yÞ, where NZ ¼ 39 is the number of dimuons counted in the mass window of 60–120 GeV=c2, NMB ¼ 55� 106 is the number of corre- spondingMB events, corrected for trigger efficiency,� and " are the acceptance and overall efficiency, and �y ¼ 4:0 is the rapidity bin width. We find dN=dyðjyj< 2:0Þ ¼ ð33:8� 5:5� 4:4Þ � 10�8, where the first uncertainty is statistical and the second systematic. The analysis de- scribed above is repeated after subdividing the data into three bins for each of the following variables: event cen- trality and Z boson y and pT . The total systematic uncer- tainty does not vary significantly with these variables and is considered to be constant and dominantly uncorrelated. In the absence of in-medium modifications, the yield of perturbative processes such as the Z boson production is supposed to scale with the number of incoherent nucleon- nucleon binary collisions [19]. In order to compare the PbPb measured yields to available pp cross-section calcu- lations, a scaling factor TAB is necessary. This nuclear overlap function is equal to the number of elementary nucleon-nucleon binary collisions divided by the elemen- tary NN cross section, and can be interpreted as the NN equivalent integrated luminosity per AA collision, at a given centrality. In units ofmb�1, the average TAB amounts to 1:45� 0:18, 11:6� 0:7, and 23:2� 1:0, for the central- ity ranges 30%–100%, 10%–30%, and 0%–10%, respec- tively, and 5:66� 0:35 for MB events. These numbers are computed with a Glauber model calculation [19], using the same parameters as in [13]. The quoted uncertainties are derived by varying within uncertainties the Glauber pa- rameters and the MB trigger and selection efficiency. The full circles in Fig. 2(a) show the centrality depen- dence of the Z yield divided by TAB, while the open square is for MB events. The variable used on the abscissa is the average number of participating nucleons Npart corre- sponding to the selected centrality intervals, computed in the same Glauber model. No centrality dependence of the binary-scaled Z yields is observed in data. A similar result was recently published by the ATLAS collaboration [20]. The normalized yields ðdN=dyÞ=TAB are compared to various calculations: (1) using the nucleon CT10 and modified nuclear EPS09 PDFs [9,21], (2) using MSTW08 PDFs [22] and modeling incoming-parton en- ergy loss [11], and (3) provided by the POWHEG [23] partN 0 50 100 150 200 250 300 350 400 ( pb ) A B dN /d y (| y| < 2. 0) / T 0 10 20 30 40 50 60 70 80 90 100 POWHEG + PYTHIA 6.4 Paukkunen et al., CT10+isospin Paukkunen et al., idem+EPS09 Neufeld et al., MSTW+isospin Neufeld et al., idem+eloss a) = 2.76 TeVNNs at -1bµCMS PbPb 7.2 [30-100]% [10-30]% [0-10]%[0-100]% Rapidity 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 dN /d y 0 10 20 30 40 50 60 CMS POWHEG + PYTHIA 6.4 Paukkunen et al., CT10+isospin Paukkunen et al., idem+EPS09 Neufeld et al., MSTW+isospin Neufeld et al., idem+eloss b) = 2.76 TeVNNs at -1bµCMS PbPb 7.2 -8x10 Transverse momentum (GeV/c) 0 5 10 15 20 25 30 35 -1 ( G eV /c ) T N /d yd p 2 d 0 0.5 1 1.5 2 2.5 3 CMS, |y|<2.0 POWHEG + PYTHIA 6.4 c) = 2.76 TeVNNs at -1bµCMS PbPb 7.2 -8x10 FIG. 2 (color online). The yields of Z ! �� per event: (a) dN=dy divided by the expected nuclear overlap function TAB and as a function of event centrality parametrized as the number of participating nucleons Npart, (b) dN=dy versus the Z boson y, (c) d2N=dydpT versus the Z boson pT . Data points are located horizontally at average values measured within a given bin. Vertical lines (bands) correspond to statistical (systematic) uncertainties. Theoretical predictions are computed within the same bins as the data, and are described in the text. PRL 106, 212301 (2011) P HY S I CA L R EV I EW LE T T E R S week ending 27 MAY 2011 212301-3 generator interfaced with the PYTHIA parton-shower gen- erator and using CTEQ6.6 PDFs [17]. Only a marginal centrality dependence is predicted: the inhomogeneous (i.e., depending on the radial position in nuclei) shadowing is predicted to have negligible impact [7] and the energy- loss prediction drops by 3% from peripheral to central collisions [11]. Figures 2(b) and 2(c) show the differential yields, dN=dy and d2N=dydpT , as a function of the Z boson y and pT . They are compared to the same theoretical calcu- lations as used for the centrality distribution (when avail- able) multiplied by the minimum bias TAB value. In all bins, no significant deviations from binary-collision scal- ing are observed. Nuclear modification factors, RAA¼dN=ðTAB�d�ppÞ, are computed from the AAmeasured yields dN, the nuclear overlap function TAB, and the pp ! Z cross sections d�pp given by the POWHEG calculation (solid lines on Fig. 2, e.g., d�pp=dy ¼ 59:6 pb in jyj< 2:0). The RAA systematic un- certainty includes TAB uncertainties, but no uncertainty is assigned to the theoretical pp cross section. All RAA values are found compatible with unity. They are reported in Table I, together with the number of observed Z bosons and their yield per event. In conclusion, the Z boson yield in PbPb collisions at ffiffiffiffiffiffiffiffi sNN p ¼ 2:76 TeV has been measured inclusively and as a function of rapidity, transverse momentum, and centrality. Within uncertainties, no modification is observed with respect to theoretical next-to-leading order perturbative quantum chromodynamics proton-proton cross sections scaled by the number of elementary nucleon-nucleon collisions. This measurement confirms the validity of the Glauber scaling for perturbative cross sections in nucleus-nucleus collisions at the LHC and establishes the feasibility of carrying out detailed Z physics studies in heavy-ion collisions with the CMS detector. With upcom- ing PbPb collisions at higher luminosity, the Z boson promises to be a powerful reference tool for final-state heavy-ion related signatures as well as providing a means to study the modifications of the parton distribution functions. We thank Bryon Neufeld, Hannu Paukkunen, Carlos Salgado, Ivan Vitev, and Ramona Vogt for fruitful theoreti- cal inputs on the nuclear effects involved in Z production. We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine in 2010. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA andNKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). [1] S. S. Adler et al. (PHENIX), Phys. Rev. Lett. 94, 232301 (2005). [2] F. Arleo, J. High Energy Phys. 09 (2006) 015. [3] V. Kartvelishvili, R. Kvatadze, and R. Shanidze, Phys. Lett. B 356, 589 (1995). [4] Z. Conesa del Valle, Eur. Phys. J. C 61, 729 (2009). [5] G. Aad et al. (ATLAS), J. High Energy Phys. 12 (2010) 060. [6] V. Khachatryan et al. (CMS), J. High Energy Phys. 01 (2011) 080. [7] R. Vogt, Phys. Rev. C 64, 044901 (2001). [8] X.-F. Zhang and G. I. Fai, Phys. Lett. B 545, 91 (2002). [9] H. Paukkunen and C.A. Salgado, J. High Energy Phys. 03 (2011) 071. [10] R. B. Neufeld, I. Vitev, and B.W. Zhang, arXiv:1010.3708 [11] R. B. Neufeld, I. Vitev, and B.W. Zhang, Phys. Rev. C 83, 034902 (2011). [12] R. Adolphi et al. (CMS), JINST 3, S08004 (2008). [13] V. Khachatryan et al. (CMS), arXiv:1102.1957. [14] D. d’Enterria et al. (CMS), J. Phys. G 34, 2307 (2007). [15] C. Roland (CMS), Nucl. Instrum. Methods Phys. Res., Sect. A 566, 123 (2006). [16] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026. TABLE I. For each jyj, pT , and centrality interval, number of Z bosons NZ, associated yield per event dN=dy, and nuclear modification factor RAA derived by using a POWHEG pp refer- ence. The quantity d2N=dydpT is given in units of ðGeV=cÞ�1. The first uncertainty is statistical and the second systematic. jyj NZ dN=dy (10�8) RAA [0, 2.0] 39 33:8� 5:5� 4:4 1:00� 0:16� 0:14 [0, 0.5] 13 38:1� 10:7� 5:0 1:03� 0:29� 0:15 [0.5, 1.0] 12 35:6� 10:4� 4:6 0:98� 0:29� 0:14 [1.0, 2.0] 14 30:0� 8:1� 3:9 0:97� 0:26� 0:14 pTðGeV=cÞ NZ d2N=dydpT (10�8) RAA [0, 6] 11 1:65� 0:50� 0:22 0:84� 0:26� 0:12 [6, 12] 15 2:05� 0:54� 0:27 1:32� 0:34� 0:19 [12, 36] 12 0:44� 0:13� 0:06 1:06� 0:31� 0:15 Centrality NZ dN=dy (10�8) RAA [30, 100]% 7 7:9� 3:0� 1:0 0:92� 0:35� 0:16 [10, 30]% 14 59:5� 16:0� 7:7 0:86� 0:23� 0:12 [0, 10]% 18 165� 40� 22 1:20� 0:29� 0:16 PRL 106, 212301 (2011) P HY S I CA L R EV I EW LE T T E R S week ending 27 MAY 2011 212301-4 http://dx.doi.org/10.1103/PhysRevLett.94.232301 http://dx.doi.org/10.1103/PhysRevLett.94.232301 http://dx.doi.org/10.1088/1126-6708/2006/09/015 http://dx.doi.org/10.1016/0370-2693(95)00865-I http://dx.doi.org/10.1016/0370-2693(95)00865-I http://dx.doi.org/10.1140/epjc/s10052-009-0980-8 http://dx.doi.org/10.1007/JHEP12(2010)060 http://dx.doi.org/10.1007/JHEP12(2010)060 http://dx.doi.org/10.1007/JHEP01(2011)080 http://dx.doi.org/10.1007/JHEP01(2011)080 http://dx.doi.org/10.1103/PhysRevC.64.044901 http://dx.doi.org/10.1016/S0370-2693(02)02558-3 http://dx.doi.org/10.1007/JHEP03(2011)071 http://dx.doi.org/10.1007/JHEP03(2011)071 http://arXiv.org/abs/1010.3708 http://dx.doi.org/10.1103/PhysRevC.83.034902 http://dx.doi.org/10.1103/PhysRevC.83.034902 http://dx.doi.org/10.1088/1748-0221/3/08/S08004 http://arXiv.org/abs/1102.1957 http://dx.doi.org/10.1088/0954-3899/34/11/008 http://dx.doi.org/10.1016/j.nima.2006.05.023 http://dx.doi.org/10.1016/j.nima.2006.05.023 http://dx.doi.org/10.1088/1126-6708/2006/05/026 http://dx.doi.org/10.1088/1126-6708/2006/05/026 [17] J. Pumplin et al., J. High Energy Phys. 07 (2002) 012. [18] S. Agostinelli et al. (GEANT4), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). [19] M. L. Miller et al., Annu. Rev. Nucl. Part. Sci. 57, 205 (2007). [20] G. Aad et al. (ATLAS), Phys. Lett. B 697, 294 (2011). [21] K. J. Eskola, H. Paukkunen, and C.A. Salgado, J. High Energy Phys. 04 (2009) 065. [22] A. Martin, W. Stirling, R. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009). [23] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 07 (2008) 060. S. Chatrchyan,1 V. Khachatryan,1 A.M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,2 M. Friedl,2 R. Frühwirth,2 V.M. Ghete,2 J. Hammer,2,b S. Hänsel,2 C. Hartl,2 M. Hoch,2 N. Hörmann,2 J. Hrubec,2 M. Jeitler,2 G. Kasieczka,2 W. Kiesenhofer,2 M. Krammer,2 D. Liko,2 I. Mikulec,2 M. Pernicka,2 H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2 F. Teischinger,2 P. Wagner,2 W. Waltenberger,2 G. Walzel,2 E. Widl,2 C.-E. Wulz,2 V. Mossolov,3 N. Shumeiko,3 J. Suarez Gonzalez,3 L. Benucci,4 E. A. De Wolf,4 X. Janssen,4 T. Maes,4 L. Mucibello,4 S. Ochesanu,4 B. Roland,4 R. Rougny,4 M. Selvaggi,4 H. Van Haevermaet,4 P. Van Mechelen,4 N. Van Remortel,4 F. Blekman,5 S. Blyweert,5 J. D’Hondt,5 O. Devroede,5 R. Gonzalez Suarez,5 A. Kalogeropoulos,5 J. Maes,5 M. Maes,5 W. Van Doninck,5 P. Van Mulders,5 G. P. Van Onsem,5 I. Villella,5 O. Charaf,6 B. Clerbaux,6 G. De Lentdecker,6 V. Dero,6 A. P. R. Gay,6 G.H. Hammad,6 T. Hreus,6 P. E. Marage,6 L. Thomas,6 C. Vander Velde,6 P. Vanlaer,6 J. Wickens,6 V. Adler,7 S. Costantini,7 M. Grunewald,7 B. Klein,7 A. Marinov,7 J. Mccartin,7 D. Ryckbosch,7 F. Thyssen,7 M. Tytgat,7 L. Vanelderen,7 P. Verwilligen,7 S. Walsh,7 N. Zaganidis,7 S. Basegmez,8 G. Bruno,8 J. Caudron,8 L. Ceard,8 E. Cortina Gil,8 C. Delaere,8 D. Favart,8 A. Giammanco,8 G. Grégoire,8 J. Hollar,8 V. Lemaitre,8 J. Liao,8 O. Militaru,8 S. Ovyn,8 D. Pagano,8 A. Pin,8 K. Piotrzkowski,8 N. Schul,8 N. Beliy,9 T. Caebergs,9 E. Daubie,9 G.A. Alves,10 D. De Jesus Damiao,10 M. E. Pol,10 M.H.G. Souza,10 W. Carvalho,11 E.M. Da Costa,11 C. De Oliveira Martins,11 S. Fonseca De Souza,11 L. Mundim,11 H. Nogima,11 V. Oguri,11 W. L. Prado Da Silva,11 A. Santoro,11 S.M. Silva Do Amaral,11 A. Sznajder,11 F. Torres Da Silva De Araujo,11 F. A. Dias,12 T. R. Fernandez Perez Tomei,12 E.M. Gregores,12,c C. Lagana,12 F. Marinho,12 P. G. Mercadante,12,c S. F. Novaes,12 Sandra S. Padula,12 N. Darmenov,13,b L. Dimitrov,13 V. Genchev,13,b P. Iaydjiev,13,b S. Piperov,13 M. Rodozov,13 S. Stoykova,13 G. Sultanov,13 V. Tcholakov,13 R. Trayanov,13 I. Vankov,13 M. Dyulendarova,14 R. Hadjiiska,14 V. Kozhuharov,14 L. Litov,14 E. Marinova,14 M. Mateev,14 B. Pavlov,14 P. Petkov,14 J. G. Bian,15 G.M. Chen,15 H. S. Chen,15 C. H. Jiang,15 D. Liang,15 S. Liang,15 X. Meng,15 J. Tao,15 J. Wang,15 J. Wang,15 X. Wang,15 Z. Wang,15 H. Xiao,15 M. Xu,15 J. Zang,15 Z. Zhang,15 Y. Ban,16 S. Guo,16 Y. Guo,16 W. Li,16 Y. Mao,16 S. J. Qian,16 H. Teng,16 L. Zhang,16 B. Zhu,16 W. Zou,16 A. Cabrera,17 B. Gomez Moreno,17 A. A. Ocampo Rios,17 A. F. Osorio Oliveros,17 J. C. Sanabria,17 N. Godinovic,18 D. Lelas,18 K. Lelas,18 R. Plestina,18,d D. Polic,18 I. Puljak,18 Z. Antunovic,19 M. Dzelalija,19 V. Brigljevic,20 S. Duric,20 K. Kadija,20 S. Morovic,20 A. Attikis,21 M. Galanti,21 J. Mousa,21 C. Nicolaou,21 F. Ptochos,21 P. A. Razis,21 M. Finger,22 M. Finger, Jr.,22 Y. Assran,23,e S. Khalil,23,f A. Radi,23 A. Hektor,24 M. Kadastik,24 M. Müntel,24 M. Raidal,24 L. Rebane,24 V. Azzolini,25 P. Eerola,25 S. Czellar,26 J. Härkönen,26 V. Karimäki,26 R. Kinnunen,26 M. J. Kortelainen,26 T. Lampén,26 K. Lassila-Perini,26 S. Lehti,26 T. Lindén,26 P. Luukka,26 T. Mäenpää,26 E. Tuominen,26 J. Tuominiemi,26 E. Tuovinen,26 D. Ungaro,26 L. Wendland,26 K. Banzuzi,27 A. Korpela,27 T. Tuuva,27 D. Sillou,28 M. Besancon,29 S. Choudhury,29 M. Dejardin,29 D. Denegri,29 B. Fabbro,29 J. L. Faure,29 F. Ferri,29 S. Ganjour,29 F. X. Gentit,29 A. Givernaud,29 P. Gras,29 G. Hamel de Monchenault,29 P. Jarry,29 E. Locci,29 J. Malcles,29 M. Marionneau,29 L. Millischer,29 J. Rander,29 A. Rosowsky,29 I. Shreyber,29 M. Titov,29 P. Verrecchia,29 S. Baffioni,30 F. Beaudette,30 L. Benhabib,30 L. Bianchini,30 M. Bluj,30,g C. Broutin,30 P. Busson,30 C. Charlot,30 T. Dahms,30 L. Dobrzynski,30 S. Elgammal,30 R. Granier de Cassagnac,30 M. Haguenauer,30 P. Miné,30 C. Mironov,30 C. Ochando,30 P. Paganini,30 D. Sabes,30 R. Salerno,30 Y. Sirois,30 C. Thiebaux,30 B. Wyslouch,30,h A. Zabi,30 J.-L. Agram,31,i J. Andrea,31 D. Bloch,31 D. Bodin,31 J.-M. Brom,31 M. Cardaci,31 E. C. Chabert,31 C. Collard,31 E. Conte,31,i F. Drouhin,31,i C. Ferro,31 J.-C. Fontaine,31,i D. Gelé,31 U. Goerlach,31 S. Greder,31 P. Juillot,31 M. Karim,31,i A.-C. Le Bihan,31 Y. Mikami,31 P. Van Hove,31 F. Fassi,32 D. Mercier,32 C. Baty,33 S. Beauceron,33 N. Beaupere,33 M. Bedjidian,33 O. Bondu,33 G. Boudoul,33 D. Boumediene,33 H. Brun,33 N. Chanon,33 R. Chierici,33 D. Contardo,33 P. Depasse,33 H. El Mamouni,33 A. Falkiewicz,33 J. Fay,33 S. Gascon,33 B. Ille,33 T. Kurca,33 T. Le Grand,33 M. Lethuillier,33 L. Mirabito,33 S. Perries,33 V. Sordini,33 S. Tosi,33 Y. Tschudi,33 P. Verdier,33 V. Roinishvili,34 D. Lomidze,35 G. Anagnostou,36 M. Edelhoff,36 L. Feld,36 N. Heracleous,36 O. Hindrichs,36 R. Jussen,36 K. Klein,36 J. Merz,36 N. Mohr,36 A. Ostapchuk,36 A. Perieanu,36 F. Raupach,36 J. Sammet,36 S. Schael,36 D. Sprenger,36 H. Weber,36 PRL 106, 212301 (2011) P HY S I CA L R EV I EW LE T T E R S week ending 27 MAY 2011 212301-5 http://dx.doi.org/10.1088/1126-6708/2002/07/012 http://dx.doi.org/10.1016/S0168-9002(03)01368-8 http://dx.doi.org/10.1016/S0168-9002(03)01368-8 http://dx.doi.org/10.1146/annurev.nucl.57.090506.123020 http://dx.doi.org/10.1146/annurev.nucl.57.090506.123020 http://dx.doi.org/10.1016/j.physletb.2011.02.006 http://dx.doi.org/10.1088/1126-6708/2009/04/065 http://dx.doi.org/10.1088/1126-6708/2009/04/065 http://dx.doi.org/10.1140/epjc/s10052-009-1072-5 http://dx.doi.org/10.1140/epjc/s10052-009-1072-5 http://dx.doi.org/10.1088/1126-6708/2008/07/060 http://dx.doi.org/10.1088/1126-6708/2008/07/060 M.Weber,36 B. Wittmer,36 M. Ata,37 W. Bender,37 M. Erdmann,37 J. Frangenheim,37 T. Hebbeker,37 A. Hinzmann,37 K. Hoepfner,37 C. Hof,37 T. Klimkovich,37 D. Klingebiel,37 P. Kreuzer,37 D. Lanske,37,a C. Magass,37 G. Masetti,37 M. Merschmeyer,37 A. Meyer,37 P. Papacz,37 H. Pieta,37 H. Reithler,37 S. A. Schmitz,37 L. Sonnenschein,37 J. Steggemann,37 D. Teyssier,37 M. Tonutti,37 M. Bontenackels,38 M. Davids,38 M. Duda,38 G. Flügge,38 H. Geenen,38 M. Giffels,38 W. Haj Ahmad,38 D. Heydhausen,38 T. Kress,38 Y. Kuessel,38 A. Linn,38 A. Nowack,38 L. Perchalla,38 O. Pooth,38 J. Rennefeld,38 P. Sauerland,38 A. Stahl,38 M. Thomas,38 D. Tornier,38 M.H. Zoeller,38 M. Aldaya Martin,39 W. Behrenhoff,39 U. Behrens,39 M. Bergholz,39,j K. Borras,39 A. Cakir,39 A. Campbell,39 E. Castro,39 D. Dammann,39 G. Eckerlin,39 D. Eckstein,39 A. Flossdorf,39 G. Flucke,39 A. Geiser,39 J. Hauk,39 H. Jung,39 M. Kasemann,39 I. Katkov,39 P. Katsas,39 C. Kleinwort,39 H. Kluge,39 A. Knutsson,39 M. Krämer,39 D. Krücker,39 E. Kuznetsova,39 W. Lange,39 W. Lohmann,39,j R. Mankel,39 M. Marienfeld,39 I.-A. Melzer-Pellmann,39 A. B. Meyer,39 J. Mnich,39 A. Mussgiller,39 J. Olzem,39 D. Pitzl,39 A. Raspereza,39 A. Raval,39 M. Rosin,39 R. Schmidt,39,j T. Schoerner-Sadenius,39 N. Sen,39 A. Spiridonov,39 M. Stein,39 J. Tomaszewska,39 R. Walsh,39 C. Wissing,39 C. Autermann,40 S. Bobrovskyi,40 J. Draeger,40 H. Enderle,40 U. Gebbert,40 K. Kaschube,40 G. Kaussen,40 J. Lange,40 B. Mura,40 S. Naumann-Emme,40 F. Nowak,40 N. Pietsch,40 C. Sander,40 H. Schettler,40 P. Schleper,40 M. Schröder,40 T. Schum,40 J. Schwandt,40 H. Stadie,40 G. Steinbrück,40 J. Thomsen,40 C. Barth,41 J. Bauer,41 V. Buege,41 T. Chwalek,41 W. De Boer,41 A. Dierlamm,41 G. Dirkes,41 M. Feindt,41 J. Gruschke,41 C. Hackstein,41 F. Hartmann,41 S.M. Heindl,41 M. Heinrich,41 H. Held,41 K. H. Hoffmann,41 S. Honc,41 T. Kuhr,41 D. Martschei,41 S. Mueller,41 Th. Müller,41 M. Niegel,41 O. Oberst,41 A. Oehler,41 J. Ott,41 T. Peiffer,41 D. Piparo,41 G. Quast,41 K. Rabbertz,41 F. Ratnikov,41 N. Ratnikova,41 M. Renz,41 C. Saout,41 A. Scheurer,41 P. Schieferdecker,41 F.-P. Schilling,41 M. Schmanau,41 G. Schott,41 H. J. Simonis,41 F.M. Stober,41 D. Troendle,41 J. Wagner-Kuhr,41 T. Weiler,41 M. Zeise,41 V. Zhukov,41,k E. B. Ziebarth,41 G. Daskalakis,42 T. Geralis,42 K. Karafasoulis,42 S. Kesisoglou,42 A. Kyriakis,42 D. Loukas,42 I. Manolakos,42 A. Markou,42 C. Markou,42 C. Mavrommatis,42 E. Ntomari,42 E. Petrakou,42 L. Gouskos,43 T. J. Mertzimekis,43 A. Panagiotou,43 I. Evangelou,44 C. Foudas,44 P. Kokkas,44 N. Manthos,44 I. Papadopoulos,44 V. Patras,44 F. A. Triantis,44 A. Aranyi,45 G. Bencze,45 L. Boldizsar,45 C. Hajdu,45,b P. Hidas,45 D. Horvath,45,l A. Kapusi,45 K. Krajczar,45,m F. Sikler,45 G. I. Veres,45,m G. Vesztergombi,45,m N. Beni,46 J. Molnar,46 J. Palinkas,46 Z. Szillasi,46 V. Veszpremi,46 P. Raics,47 Z. L. Trocsanyi,47 B. Ujvari,47 S. Bansal,48 S. B. Beri,48 V. Bhatnagar,48 N. Dhingra,48 R. Gupta,48 M. Jindal,48 M. Kaur,48 J.M. Kohli,48 M. Z. Mehta,48 N. Nishu,48 L. K. Saini,48 A. Sharma,48 A. P. Singh,48 J. B. Singh,48 S. P. Singh,48 S. Ahuja,49 S. Bhattacharya,49 B. C. Choudhary,49 P. Gupta,49 S. Jain,49 S. Jain,49 A. Kumar,49 K. Ranjan,49 R. K. Shivpuri,49 R. K. Choudhury,50 D. Dutta,50 S. Kailas,50 V. Kumar,50 A. K. Mohanty,50,b L.M. Pant,50 P. Shukla,50 T. Aziz,51 M. Guchait,51,n A. Gurtu,51 M. Maity,51,o D. Majumder,51 G. Majumder,51 K. Mazumdar,51 G. B. Mohanty,51 A. Saha,51 K. Sudhakar,51 N. Wickramage,51 S. Banerjee,52 S. Dugad,52 N.K. Mondal,52 H. Arfaei,53 H. Bakhshiansohi,53 S.M. Etesami,53 A. Fahim,53 M. Hashemi,53 A. Jafari,53 M. Khakzad,53 A. Mohammadi,53 M. Mohammadi Najafabadi,53 S. Paktinat Mehdiabadi,53 B. Safarzadeh,53 M. Zeinali,53 M. Abbrescia,54a,54b L. Barbone,54a,54b C. Calabria,54a,54b A. Colaleo,54a D. Creanza,54a,54c N. De Filippis,54a,54c M. De Palma,54a,54b A. Dimitrov,54a L. Fiore,54a G. Iaselli,54a,54c L. Lusito,54a,54b,b G. Maggi,54a,54c M. Maggi,54a N. Manna,54a,54b B. Marangelli,54a,54b S. My,54a,54c S. Nuzzo,54a,54b N. Pacifico,54a,54b G.A. Pierro,54a A. Pompili,54a,54b G. Pugliese,54a,54c F. Romano,54a,54c G. Roselli,54a,54b G. Selvaggi,54a,54b L. Silvestris,54a R. Trentadue,54a S. Tupputi,54a,54b G. Zito,54a G. Abbiendi,55a A. C. Benvenuti,55a D. Bonacorsi,55a S. Braibant-Giacomelli,55a,55b L. Brigliadori,55a P. Capiluppi,55a,55b A. Castro,55a,55b F. R. Cavallo,55a M. Cuffiani,55a,55b G.M. Dallavalle,55a F. Fabbri,55a A. Fanfani,55a,55b D. Fasanella,55a P. Giacomelli,55a M. Giunta,55a S. Marcellini,55a M. Meneghelli,55a,55b A. Montanari,55a F. L. Navarria,55a,55b F. Odorici,55a A. Perrotta,55a F. Primavera,55a A.M. Rossi,55a,55b T. Rovelli,55a,55b G. Siroli,55a,55b R. Travaglini,55a,55b S. Albergo,56a,56b G. Cappello,56a,56b M. Chiorboli,56a,56b,b S. Costa,56a,56b A. Tricomi,56a,56b C. Tuve,56a G. Barbagli,57a V. Ciulli,57a,57b C. Civinini,57a R. D’Alessandro,57a,57b E. Focardi,57a,57b S. Frosali,57a,57b E. Gallo,57a S. Gonzi,57a,57b P. Lenzi,57a,57b M. Meschini,57a S. Paoletti,57a G. Sguazzoni,57a A. Tropiano,57a,b L. Benussi,58 S. Bianco,58 S. Colafranceschi,58,p F. Fabbri,58 D. Piccolo,58 P. Fabbricatore,59 R. Musenich,59 A. Benaglia,60a,60b F. De Guio,60a,60b,b L. Di Matteo,60a,60b A. Ghezzi,60a,60b,b M. Malberti,60a,60b S. Malvezzi,60a A. Martelli,60a,60b A. Massironi,60a,60b D. Menasce,60a L. Moroni,60a M. Paganoni,60a,60b D. Pedrini,60a S. Ragazzi,60a,60b N. Redaelli,60a S. Sala,60a T. Tabarelli de Fatis,60a,60b V. Tancini,60a,60b S. Buontempo,61a C.A. Carrillo Montoya,61a N. Cavallo,61a,q A. Cimmino,61a,61b A. De Cosa,61a,61b M. De Gruttola,61a,61b PRL 106, 212301 (2011) P HY S I CA L R EV I EW LE T T E R S week ending 27 MAY 2011 212301-6 F. Fabozzi,61a,q A.O.M. Iorio,61a L. Lista,61a M. Merola,61a,61b P. Noli,61a,61b P. Paolucci,61a P. Azzi,62a N. Bacchetta,62a P. Bellan,62a,62b D. Bisello,62a,62b A. Branca,62a R. Carlin,62a,62b P. Checchia,62a M. De Mattia,62a,62b T. Dorigo,62a U. Dosselli,62a F. Fanzago,62a F. Gasparini,62a,62b U. Gasparini,62a,62b S. Lacaprara,62a,r I. Lazzizzera,62a,62c M. Margoni,62a,62b M. Mazzucato,62a A. T. Meneguzzo,62a,62b M. Nespolo,62a L. Perrozzi,62a,b N. Pozzobon,62a,62b P. Ronchese,62a,62b F. Simonetto,62a,62b E. Torassa,62a M. Tosi,62a,62b S. Vanini,62a,62b P. Zotto,62a,62b G. Zumerle,62a,62b P. Baesso,63a,63b U. Berzano,63a S. P. Ratti,63a,63b C. Riccardi,63a,63b P. Torre,63a,63b P. Vitulo,63a,63b C. Viviani,63a,63b M. Biasini,64a,64b G.M. Bilei,64a B. Caponeri,64a,64b L. Fanò,64a,64b P. Lariccia,64a,64b A. Lucaroni,64a,64b,b G. Mantovani,64a,64b M. Menichelli,64a A. Nappi,64a,64b A. Santocchia,64a,64b S. Taroni,64a,64b M. Valdata,64a,64b R. Volpe,64a,64b,b P. Azzurri,65a,65c G. Bagliesi,65a J. Bernardini,65a,65b T. Boccali,65a,b G. Broccolo,65a,65c R. Castaldi,65a R. T. D’Agnolo,65a,65c R. Dell’Orso,65a F. Fiori,65a,65b L. Foà,65a,65c A. Giassi,65a A. Kraan,65a F. Ligabue,65a,65c T. Lomtadze,65a L. Martini,65a,s A. Messineo,65a,65b F. Palla,65a F. Palmonari,65a G. Segneri,65a A. T. Serban,65a P. Spagnolo,65a R. Tenchini,65a G. Tonelli,65a,65b,b A. Venturi,65a,b P. G. Verdini,65a L. Barone,66a,66b F. Cavallari,66a D. Del Re,66a,66b E. Di Marco,66a,66b M. Diemoz,66a D. Franci,66a,66b M. Grassi,66a E. Longo,66a,66b S. Nourbakhsh,66a G. Organtini,66a,66b A. Palma,66a,66b F. Pandolfi,66a,66b,b R. Paramatti,66a S. Rahatlou,66a,66b N. Amapane,67a,67b R. Arcidiacono,67a,67c S. Argiro,67a,67b M. Arneodo,67a,67c C. Biino,67a C. Botta,67a,67b,b N. Cartiglia,67a R. Castello,67a,67b M. Costa,67a,67b N. Demaria,67a A. Graziano,67a,67b,b C. Mariotti,67a M. Marone,67a,67b S. Maselli,67a E. Migliore,67a,67b G. Mila,67a,67b V. Monaco,67a,67b M.Musich,67a,67b M.M. Obertino,67a,67c N. Pastrone,67a M. Pelliccioni,67a,67b,b A. Romero,67a,67b M. Ruspa,67a,67c R. Sacchi,67a,67b V. Sola,67a,67b A. Solano,67a,67b A. Staiano,67a D. Trocino,67a,67b A. Vilela Pereira,67a,67b,b S. Belforte,68a F. Cossutti,68a G. Della Ricca,68a,68b B. Gobbo,68a D. Montanino,68a,68b A. Penzo,68a S. G. Heo,69 S. K. Nam,69 S. Chang,70 J. Chung,70 D.H. Kim,70 G.N. Kim,70 J. E. Kim,70 D. J. Kong,70 H. Park,70 S. R. Ro,70 D. Son,70 D. C. Son,70 Zero Kim,71 J. Y. Kim,71 S. Song,71 S. Choi,72 B. Hong,72 M. S. Jeong,72 M. Jo,72 H. Kim,72 J. H. Kim,72 T. J. Kim,72 K. S. Lee,72 D. H. Moon,72 S. K. Park,72 H. B. Rhee,72 E. Seo,72 S. Shin,72 K. S. Sim,72 M. Choi,73 S. Kang,73 H. Kim,73 C. Park,73 I. C. Park,73 S. Park,73 G. Ryu,73 Y. Choi,74 Y. K. Choi,74 J. Goh,74 M. S. Kim,74 J. Lee,74 S. Lee,74 H. Seo,74 I. Yu,74 M. J. Bilinskas,75 I. Grigelionis,75 M. Janulis,75 D. Martisiute,75 P. Petrov,75 T. Sabonis,75 H. Castilla-Valdez,76 E. De La Cruz-Burelo,76 R. Lopez-Fernandez,76 A. Sánchez-Hernández,76 L.M. Villasenor-Cendejas,76 S. Carrillo Moreno,77 F. Vazquez Valencia,77 H.A. Salazar Ibarguen,78 E. Casimiro Linares,79 A. Morelos Pineda,79 M.A. Reyes-Santos,79 D. Krofcheck,80 P. H. Butler,81 R. Doesburg,81 H. Silverwood,81 M. Ahmad,82 I. Ahmed,82 M. I. Asghar,82 H. R. Hoorani,82 W.A. Khan,82 T. Khurshid,82 S. Qazi,82 M. Cwiok,83 W. Dominik,83 K. Doroba,83 A. Kalinowski,83 M. Konecki,83 J. Krolikowski,83 T. Frueboes,84 R. Gokieli,84 M. Górski,84 M. Kazana,84 K. Nawrocki,84 K. Romanowska-Rybinska,84 M. Szleper,84 G. Wrochna,84 P. Zalewski,84 N. Almeida,85 P. Bargassa,85 A. David,85 P. Faccioli,85 P. G. Ferreira Parracho,85 M. Gallinaro,85 P. Musella,85 A. Nayak,85 J. Seixas,85 J. Varela,85 S. Afanasiev,86 I. Belotelov,86 P. Bunin,86 I. Golutvin,86 A. Kamenev,86 V. Karjavin,86 G. Kozlov,86 A. Lanev,86 P. Moisenz,86 V. Palichik,86 V. Perelygin,86 S. Shmatov,86 V. Smirnov,86 A. Volodko,86 A. Zarubin,86 V. Golovtsov,87 Y. Ivanov,87 V. Kim,87 P. Levchenko,87 V. Murzin,87 V. Oreshkin,87 I. Smirnov,87 V. Sulimov,87 L. Uvarov,87 S. Vavilov,87 A. Vorobyev,87 A. Vorobyev,87 Yu. Andreev,88 A. Dermenev,88 S. Gninenko,88 N. Golubev,88 M. Kirsanov,88 N. Krasnikov,88 V. Matveev,88 A. Pashenkov,88 A. Toropin,88 S. Troitsky,88 V. Epshteyn,89 V. Gavrilov,89 V. Kaftanov,89,a M. Kossov,89,b A. Krokhotin,89 N. Lychkovskaya,89 V. Popov,89 G. Safronov,89 S. Semenov,89 V. Stolin,89 E. Vlasov,89 A. Zhokin,89 E. Boos,90 A. Demiyanov,90 A. Ershov,90 A. Gribushin,90 O. Kodolova,90 I. Lokhtin,90 S. Obraztsov,90 S. Petrushanko,90 L. Sarycheva,90 V. Savrin,90 A. Snigirev,90 I. Vardanyan,90 V. Andreev,91 M. Azarkin,91 I. Dremin,91 M. Kirakosyan,91 A. Leonidov,91 S. V. Rusakov,91 A. Vinogradov,91 I. Azhgirey,92 S. Bitioukov,92 V. Grishin,92,b V. Kachanov,92 D. Konstantinov,92 A. Korablev,92 V. Krychkine,92 V. Petrov,92 R. Ryutin,92 S. Slabospitsky,92 A. Sobol,92 L. Tourtchanovitch,92 S. Troshin,92 N. Tyurin,92 A. Uzunian,92 A. Volkov,92 P. Adzic,93,t M. Djordjevic,93 D. Krpic,93,t J. Milosevic,93 M. Aguilar-Benitez,94 J. Alcaraz Maestre,94 P. Arce,94 C. Battilana,94 E. Calvo,94 M. Cepeda,94 M. Cerrada,94 N. Colino,94 B. De La Cruz,94 A. Delgado Peris,94 C. Diez Pardos,94 D. Domı́nguez Vázquez,94 C. Fernandez Bedoya,94 J. P. Fernández Ramos,94 A. Ferrando,94 J. Flix,94 M. C. Fouz,94 P. Garcia-Abia,94 O. Gonzalez Lopez,94 S. Goy Lopez,94 J.M. Hernandez,94 M. I. Josa,94 G. Merino,94 J. Puerta Pelayo,94 I. Redondo,94 L. Romero,94 J. Santaolalla,94 C. Willmott,94 C. Albajar,95 G. Codispoti,95 J. F. de Trocóniz,95 J. Cuevas,96 J. Fernandez Menendez,96 S. Folgueras,96 I. Gonzalez Caballero,96 L. Lloret Iglesias,96 J.M. Vizan Garcia,96 J. A. Brochero Cifuentes,97 I. J. Cabrillo,97 A. Calderon,97 PRL 106, 212301 (2011) P HY S I CA L R EV I EW LE T T E R S week ending 27 MAY 2011 212301-7 M. Chamizo Llatas,97 S. H. Chuang,97 J. Duarte Campderros,97 M. Felcini,97,u M. Fernandez,97 G. Gomez,97 J. Gonzalez Sanchez,97 C. Jorda,97 P. Lobelle Pardo,97 A. Lopez Virto,97 J. Marco,97 R. Marco,97 C. Martinez Rivero,97 F. Matorras,97 F. J. Munoz Sanchez,97 J. Piedra Gomez,97,v T. Rodrigo,97 A.Y. Rodrı́guez-Marrero,97 A. Ruiz-Jimeno,97 L. Scodellaro,97 M. Sobron Sanudo,97 I. Vila,97 R. Vilar Cortabitarte,97 D. Abbaneo,98 E. Auffray,98 G. Auzinger,98 P. Baillon,98 A.H. Ball,98 D. Barney,98 A. J. Bell,98,w D. Benedetti,98 C. Bernet,98,d W. Bialas,98 P. Bloch,98 A. Bocci,98 S. Bolognesi,98 M. Bona,98 H. Breuker,98 G. Brona,98 K. Bunkowski,98 T. Camporesi,98 G. Cerminara,98 J. A. Coarasa Perez,98 B. Curé,98 D. D’Enterria,98 A. De Roeck,98 S. Di Guida,98 A. Elliott-Peisert,98 B. Frisch,98 W. Funk,98 A. Gaddi,98 S. Gennai,98 G. Georgiou,98 H. Gerwig,98 D. Gigi,98 K. Gill,98 D. Giordano,98 F. Glege,98 R. Gomez-Reino Garrido,98 M. Gouzevitch,98 P. Govoni,98 S. Gowdy,98 L. Guiducci,98 M. Hansen,98 J. Harvey,98 J. Hegeman,98 B. Hegner,98 H. F. Hoffmann,98 A. Honma,98 V. Innocente,98 P. Janot,98 K. Kaadze,98 E. Karavakis,98 P. Lecoq,98 C. Lourenço,98 T. Mäki,98 L. Malgeri,98 M. Mannelli,98 L. Masetti,98 F. Meijers,98 S. Mersi,98 E. Meschi,98 R. Moser,98 M.U. Mozer,98 M. Mulders,98 E. Nesvold,98,b M. Nguyen,98 T. Orimoto,98 L. Orsini,98 E. Perez,98 A. Petrilli,98 A. Pfeiffer,98 M. Pierini,98 M. Pimiä,98 G. Polese,98 A. Racz,98 J. Rodrigues Antunes,98 G. Rolandi,98,x T. Rommerskirchen,98 C. Rovelli,98,y M. Rovere,98 H. Sakulin,98 C. Schäfer,98 C. Schwick,98 I. Segoni,98 A. Sharma,98 P. Siegrist,98 M. Simon,98 P. Sphicas,98,z M. Spiropulu,98,aa F. Stöckli,98 M. Stoye,98 P. Tropea,98 A. Tsirou,98 P. Vichoudis,98 M. Voutilainen,98 W.D. Zeuner,98 W. Bertl,99 K. Deiters,99 W. Erdmann,99 K. Gabathuler,99 R. Horisberger,99 Q. Ingram,99 H. C. Kaestli,99 S. König,99 D. Kotlinski,99 U. Langenegger,99 F. Meier,99 D. Renker,99 T. Rohe,99 J. Sibille,99,bb A. Starodumov,99,cc P. Bortignon,100 L. Caminada,100,dd Z. Chen,100 S. Cittolin,100 G. Dissertori,100 M. Dittmar,100 J. Eugster,100 K. Freudenreich,100 C. Grab,100 A. Hervé,100 W. Hintz,100 P. Lecomte,100 W. Lustermann,100 C. Marchica,100,dd P. Martinez Ruiz del Arbol,100 P. Meridiani,100 P. Milenovic,100,ee F. Moortgat,100 P. Nef,100 F. Nessi-Tedaldi,100 L. Pape,100 F. Pauss,100 T. Punz,100 A. Rizzi,100 F. J. Ronga,100 M. Rossini,100 L. Sala,100 A. K. Sanchez,100 M.-C. Sawley,100 B. Stieger,100 L. Tauscher,100,a A. Thea,100 K. Theofilatos,100 D. Treille,100 C. Urscheler,100 R. Wallny,100 M. Weber,100 L. Wehrli,100 J. Weng,100 E. Aguiló,101 C. Amsler,101 V. Chiochia,101 S. De Visscher,101 C. Favaro,101 M. Ivova Rikova,101 B. MillanMejias,101 C. Regenfus,101 P. Robmann,101 A. Schmidt,101 H. Snoek,101 Y.H. Chang,102 E. A. Chen,102 K.H. Chen,102 W. T. Chen,102 S. Dutta,102 C.M. Kuo,102 S.W. Li,102 W. Lin,102 M.H. Liu,102 Z. K. Liu,102 Y. J. Lu,102 D. Mekterovic,102 J. H. Wu,102 S. S. Yu,102 P. Bartalini,103 P. Chang,103 Y.H. Chang,103 Y.W. Chang,103 Y. Chao,103 K. F. Chen,103 W.-S. Hou,103 Y. Hsiung,103 K.Y. Kao,103 Y. J. Lei,103 R.-S. Lu,103 J. G. Shiu,103 Y.M. Tzeng,103 M. Wang,103 A. Adiguzel,104 M.N. Bakirci,104,ff S. Cerci,104,gg Z. Demir,104 C. Dozen,104 I. Dumanoglu,104 E. Eskut,104 S. Girgis,104 G. Gokbulut,104 Y. Guler,104 E. Gurpinar,104 I. Hos,104 E. E. Kangal,104 T. Karaman,104 A. Kayis Topaksu,104 A. Nart,104 G. Onengut,104 K. Ozdemir,104 S. Ozturk,104 A. Polatoz,104 K. Sogut,104,hh D. Sunar Cerci,104,gg B. Tali,104 H. Topakli,104,ff D. Uzun,104 L. N. Vergili,104 M. Vergili,104 C. Zorbilmez,104 I. V. Akin,105 T. Aliev,105 S. Bilmis,105 M. Deniz,105 H. Gamsizkan,105 A.M. Guler,105 K. Ocalan,105 A. Ozpineci,105 M. Serin,105 R. Sever,105 U. E. Surat,105 E. Yildirim,105 M. Zeyrek,105 M. Deliomeroglu,106 D. Demir,106,ii E. Gülmez,106 A. Halu,106 B. Isildak,106 M. Kaya,106,jj O. Kaya,106,jj S. Ozkorucuklu,106,kk N. Sonmez,106,ll L. Levchuk,107 P. Bell,108 F. Bostock,108 J. J. Brooke,108 T. L. Cheng,108 E. Clement,108 D. Cussans,108 R. Frazier,108 J. Goldstein,108 M. Grimes,108 M. Hansen,108 D. Hartley,108 G. P. Heath,108 H. F. Heath,108 B. Huckvale,108 J. Jackson,108 L. Kreczko,108 S. Metson,108 D.M. Newbold,108,mm K. Nirunpong,108 A. Poll,108 S. Senkin,108 V. J. Smith,108 S. Ward,108 L. Basso,109,nn K.W. Bell,109 A. Belyaev,109,nn C. Brew,109 R.M. Brown,109 B. Camanzi,109 D. J. A. Cockerill,109 J. A. Coughlan,109 K. Harder,109 S. Harper,109 B.W. Kennedy,109 E. Olaiya,109 D. Petyt,109 B. C. Radburn-Smith,109 C.H. Shepherd-Themistocleous,109 I. R. Tomalin,109 W. J. Womersley,109 S. D. Worm,109 R. Bainbridge,110 G. Ball,110 J. Ballin,110 R. Beuselinck,110 O. Buchmuller,110 D. Colling,110 N. Cripps,110 M. Cutajar,110 G. Davies,110 M. Della Negra,110 J. Fulcher,110 D. Futyan,110 A. Guneratne Bryer,110 G. Hall,110 Z. Hatherell,110 J. Hays,110 G. Iles,110 G. Karapostoli,110 B. C. MacEvoy,110 A.-M. Magnan,110 J. Marrouche,110 R. Nandi,110 J. Nash,110 A. Nikitenko,110,cc A. Papageorgiou,110 M. Pesaresi,110 K. Petridis,110 M. Pioppi,110,oo D.M. Raymond,110 N. Rompotis,110 A. Rose,110 M. J. Ryan,110 C. Seez,110 P. Sharp,110 A. Sparrow,110 A. Tapper,110 M. Vazquez Acosta,110 T. Virdee,110 S. Wakefield,110 T. Whyntie,110 M. Barrett,111 M. Chadwick,111 J. E. Cole,111 P. R. Hobson,111 A. Khan,111 P. Kyberd,111 D. Leslie,111 W. Martin,111 I. D. Reid,111 L. Teodorescu,111 K. Hatakeyama,112 T. Bose,113 E. Carrera Jarrin,113 C. Fantasia,113 A. Heister,113 J. St. John,113 P. Lawson,113 D. Lazic,113 J. Rohlf,113 D. Sperka,113 L. Sulak,113 A. Avetisyan,114 S. Bhattacharya,114 J. P. Chou,114 PRL 106, 212301 (2011) P HY S I CA L R EV I EW LE T T E R S week ending 27 MAY 2011 212301-8 D. Cutts,114 A. Ferapontov,114 U. Heintz,114 S. Jabeen,114 G. Kukartsev,114 G. Landsberg,114 M. Narain,114 D. Nguyen,114 M. Segala,114 T. Speer,114 K. V. Tsang,114 R. Breedon,115 M. Calderon De La Barca Sanchez,115 S. Chauhan,115 M. Chertok,115 J. Conway,115 P. T. Cox,115 J. Dolen,115 R. Erbacher,115 E. Friis,115 W. Ko,115 A. Kopecky,115 R. Lander,115 H. Liu,115 S. Maruyama,115 T. Miceli,115 M. Nikolic,115 D. Pellett,115 J. Robles,115 S. Salur,115 T. Schwarz,115 M. Searle,115 J. Smith,115 M. Squires,115 M. Tripathi,115 R. Vasquez Sierra,115 C. Veelken,115 V. Andreev,116 K. Arisaka,116 D. Cline,116 R. Cousins,116 A. Deisher,116 J. Duris,116 S. Erhan,116 C. Farrell,116 J. Hauser,116 M. Ignatenko,116 C. Jarvis,116 C. Plager,116 G. Rakness,116 P. Schlein,116,a J. Tucker,116 V. Valuev,116 J. Babb,117 A. Chandra,117 R. Clare,117 J. Ellison,117 J.W. Gary,117 F. Giordano,117 G. Hanson,117 G.Y. Jeng,117 S. C. Kao,117 F. Liu,117 H. Liu,117 O. R. Long,117 A. Luthra,117 H. Nguyen,117 B. C. Shen,117,a R. Stringer,117 J. Sturdy,117 S. Sumowidagdo,117 R. Wilken,117 S. Wimpenny,117 W. Andrews,118 J. G. Branson,118 G. B. Cerati,118 E. Dusinberre,118 D. Evans,118 F. Golf,118 A. Holzner,118 R. Kelley,118 M. Lebourgeois,118 J. Letts,118 B. Mangano,118 S. Padhi,118 C. Palmer,118 G. Petrucciani,118 H. Pi,118 M. Pieri,118 R. Ranieri,118 M. Sani,118 V. Sharma,118,b S. Simon,118 Y. Tu,118 A. Vartak,118 S. Wasserbaech,118,pp F. Würthwein,118 A. Yagil,118 D. Barge,119 R. Bellan,119 C. Campagnari,119 M. D’Alfonso,119 T. Danielson,119 K. Flowers,119 P. Geffert,119 J. Incandela,119 C. Justus,119 P. Kalavase,119 S. A. Koay,119 D. Kovalskyi,119 V. Krutelyov,119 S. Lowette,119 N. Mccoll,119 V. Pavlunin,119 F. Rebassoo,119 J. Ribnik,119 J. Richman,119 R. Rossin,119 D. Stuart,119 W. To,119 J. R. Vlimant,119 A. Apresyan,120 A. Bornheim,120 J. Bunn,120 Y. Chen,120 M. Gataullin,120 Y. Ma,120 A. Mott,120 H. B. Newman,120 C. Rogan,120 V. Timciuc,120 P. Traczyk,120 J. Veverka,120 R. Wilkinson,120 Y. Yang,120 R.Y. Zhu,120 B. Akgun,121 R. Carroll,121 T. Ferguson,121 Y. Iiyama,121 D.W. Jang,121 S. Y. Jun,121 Y. F. Liu,121 M. Paulini,121 J. Russ,121 H. Vogel,121 I. Vorobiev,121 J. P. Cumalat,122 M. E. Dinardo,122 B. R. Drell,122 C. J. Edelmaier,122 W. T. Ford,122 A. Gaz,122 B. Heyburn,122 E. Luiggi Lopez,122 U. Nauenberg,122 J. G. Smith,122 K. Stenson,122 K.A. Ulmer,122 S. R. Wagner,122 S. L. Zang,122 L. Agostino,123 J. Alexander,123 D. Cassel,123 A. Chatterjee,123 S. Das,123 N. Eggert,123 L. K. Gibbons,123 B. Heltsley,123 W. Hopkins,123 A. Khukhunaishvili,123 B. Kreis,123 G. Nicolas Kaufman,123 J. R. Patterson,123 D. Puigh,123 A. Ryd,123 X. Shi,123 W. Sun,123 W.D. Teo,123 J. Thom,123 J. Thompson,123 J. Vaughan,123 Y. Weng,123 L. Winstrom,123 P. Wittich,123 A. Biselli,124 G. Cirino,124 D. Winn,124 S. Abdullin,125 M. Albrow,125 J. Anderson,125 G. Apollinari,125 M. Atac,125 J. A. Bakken,125 S. Banerjee,125 L. A. T. Bauerdick,125 A. Beretvas,125 J. Berryhill,125 P. C. Bhat,125 I. Bloch,125 F. Borcherding,125 K. Burkett,125 J. N. Butler,125 V. Chetluru,125 H.W.K. Cheung,125 F. Chlebana,125 S. Cihangir,125 W. Cooper,125 D. P. Eartly,125 V.D. Elvira,125 S. Esen,125 I. Fisk,125 J. Freeman,125 Y. Gao,125 E. Gottschalk,125 D. Green,125 K. Gunthoti,125 O. Gutsche,125 J. Hanlon,125 R.M. Harris,125 J. Hirschauer,125 B. Hooberman,125 H. Jensen,125 M. Johnson,125 U. Joshi,125 R. Khatiwada,125 B. Klima,125 K. Kousouris,125 S. Kunori,125 S. Kwan,125 C. Leonidopoulos,125 P. Limon,125 D. Lincoln,125 R. Lipton,125 J. Lykken,125 K. Maeshima,125 J.M. Marraffino,125 D. Mason,125 P. McBride,125 T. Miao,125 K. Mishra,125 S. Mrenna,125 Y. Musienko,125,qq C. Newman-Holmes,125 V. O’Dell,125 R. Pordes,125 O. Prokofyev,125 N. Saoulidou,125 E. Sexton-Kennedy,125 S. Sharma,125 W. J. Spalding,125 L. Spiegel,125 P. Tan,125 L. Taylor,125 S. Tkaczyk,125 L. Uplegger,125 E.W. Vaandering,125 R. Vidal,125 J. Whitmore,125 W. Wu,125 F. Yang,125 F. Yumiceva,125 J. C. Yun,125 D. Acosta,126 P. Avery,126 D. Bourilkov,126 M. Chen,126 G. P. Di Giovanni,126 D. Dobur,126 A. Drozdetskiy,126 R. D. Field,126 M. Fisher,126 Y. Fu,126 I. K. Furic,126 J. Gartner,126 S. Goldberg,126 B. Kim,126 J. Konigsberg,126 A. Korytov,126 A. Kropivnitskaya,126 T. Kypreos,126 K. Matchev,126 G. Mitselmakher,126 L. Muniz,126 Y. Pakhotin,126 C. Prescott,126 R. Remington,126 M. Schmitt,126 B. Scurlock,126 P. Sellers,126 N. Skhirtladze,126 D. Wang,126 J. Yelton,126 M. Zakaria,126 C. Ceron,127 V. Gaultney,127 L. Kramer,127 L.M. Lebolo,127 S. Linn,127 P. Markowitz,127 G. Martinez,127 J. L. Rodriguez,127 T. Adams,128 A. Askew,128 D. Bandurin,128 J. Bochenek,128 J. Chen,128 B. Diamond,128 S. V. Gleyzer,128 J. Haas,128 V. Hagopian,128 M. Jenkins,128 K. F. Johnson,128 H. Prosper,128 L. Quertenmont,128 S. Sekmen,128 V. Veeraraghavan,128 M.M. Baarmand,129 B. Dorney,129 S. Guragain,129 M. Hohlmann,129 H. Kalakhety,129 R. Ralich,129 I. Vodopiyanov,129 M.R. Adams,130 I.M. Anghel,130 L. Apanasevich,130 Y. Bai,130 V. E. Bazterra,130 R. R. Betts,130 J. Callner,130 R. Cavanaugh,130 C. Dragoiu,130 L. Gauthier,130 C. E. Gerber,130 D. J. Hofman,130 S. Khalatyan,130 G. J. Kunde,130,rr F. Lacroix,130 M. Malek,130 C. O’Brien,130 C. Silvestre,130 A. Smoron,130 D. Strom,130 N. Varelas,130 U. Akgun,131 E. A. Albayrak,131 B. Bilki,131 W. Clarida,131 F. Duru,131 C. K. Lae,131 E. McCliment,131 J.-P. Merlo,131 H. Mermerkaya,131 A. Mestvirishvili,131 A. Moeller,131 J. Nachtman,131 C. R. Newsom,131 E. Norbeck,131 J. Olson,131 Y. Onel,131 F. Ozok,131 S. Sen,131 J. Wetzel,131 T. Yetkin,131 K. Yi,131 B. A. Barnett,132 B. Blumenfeld,132 A. Bonato,132 C. Eskew,132 D. Fehling,132 G. Giurgiu,132 A. V. Gritsan,132 PRL 106, 212301 (2011) P HY S I CA L R EV I EW LE T T E R S week ending 27 MAY 2011 212301-9 G. Hu,132 P. Maksimovic,132 S. Rappoccio,132 M. Swartz,132 N.V. Tran,132 A. Whitbeck,132 P. Baringer,133 A. Bean,133 G. Benelli,133 O. Grachov,133 M. Murray,133 D. Noonan,133 S. Sanders,133 J. S. Wood,133 V. Zhukova,133 A. F. Barfuss,134 T. Bolton,134 I. Chakaberia,134 A. Ivanov,134 M. Makouski,134 Y. Maravin,134 S. Shrestha,134 I. Svintradze,134 Z. Wan,134 J. Gronberg,135 D. Lange,135 D. Wright,135 A. Baden,136 M. Boutemeur,136 S. C. Eno,136 D. Ferencek,136 J. A. Gomez,136 N. J. Hadley,136 R. G. Kellogg,136 M. Kirn,136 Y. Lu,136 A. C. Mignerey,136 K. Rossato,136 P. Rumerio,136 F. Santanastasio,136 A. Skuja,136 J. Temple,136 M.B. Tonjes,136 S. C. Tonwar,136 E. Twedt,136 B. Alver,137 G. Bauer,137 J. Bendavid,137 W. Busza,137 E. Butz,137 I. A. Cali,137 M. Chan,137 V. Dutta,137 P. Everaerts,137 G. Gomez Ceballos,137 M. Goncharov,137 K.A. Hahn,137 P. Harris,137 Y. Kim,137 M. Klute,137 Y.-J. Lee,137 W. Li,137 C. Loizides,137 P. D. Luckey,137 T. Ma,137 S. Nahn,137 C. Paus,137 D. Ralph,137 C. Roland,137 G. Roland,137 M. Rudolph,137 G. S. F. Stephans,137 K. Sumorok,137 K. Sung,137 E. A. Wenger,137 S. Xie,137 M. Yang,137 Y. Yilmaz,137 A. S. Yoon,137 M. Zanetti,137 P. Cole,138 S. I. Cooper,138 P. Cushman,138 B. Dahmes,138 A. De Benedetti,138 P. R. Dudero,138 G. Franzoni,138 J. Haupt,138 K. Klapoetke,138 Y. Kubota,138 J. Mans,138 V. Rekovic,138 R. Rusack,138 M. Sasseville,138 A. Singovsky,138 L.M. Cremaldi,139 R. Godang,139 R. Kroeger,139 L. Perera,139 R. Rahmat,139 D.A. Sanders,139 D. Summers,139 K. Bloom,140 S. Bose,140 J. Butt,140 D. R. Claes,140 A. Dominguez,140 M. Eads,140 J. Keller,140 T. Kelly,140 I. Kravchenko,140 J. Lazo-Flores,140 H. Malbouisson,140 S. Malik,140 G. R. Snow,140 U. Baur,141 A. Godshalk,141 I. Iashvili,141 S. Jain,141 A. Kharchilava,141 A. Kumar,141 S. P. Shipkowski,141 K. Smith,141 G. Alverson,142 E. Barberis,142 D. Baumgartel,142 O. Boeriu,142 M. Chasco,142 S. Reucroft,142 J. Swain,142 D. Wood,142 J. Zhang,142 A. Anastassov,143 A. Kubik,143 N. Odell,143 R.A. Ofierzynski,143 B. Pollack,143 A. Pozdnyakov,143 M. Schmitt,143 S. Stoynev,143 M. Velasco,143 S. Won,143 L. Antonelli,144 D. Berry,144 M. Hildreth,144 C. Jessop,144 D. J. Karmgard,144 J. Kolb,144 T. Kolberg,144 K. Lannon,144 W. Luo,144 S. Lynch,144 N. Marinelli,144 D.M. Morse,144 T. Pearson,144 R. Ruchti,144 J. Slaunwhite,144 N. Valls,144 M. Wayne,144 J. Ziegler,144 B. Bylsma,145 L. S. Durkin,145 J. Gu,145 C. Hill,145 P. Killewald,145 K. Kotov,145 M. Rodenburg,145 G. Williams,145 N. Adam,146 E. Berry,146 P. Elmer,146 D. Gerbaudo,146 V. Halyo,146 P. Hebda,146 A. Hunt,146 J. Jones,146 E. Laird,146 D. Lopes Pegna,146 D. Marlow,146 T. Medvedeva,146 M. Mooney,146 J. Olsen,146 P. Piroué,146 X. Quan,146 H. Saka,146 D. Stickland,146 C. Tully,146 J. S. Werner,146 A. Zuranski,146 J. G. Acosta,147 X. T. Huang,147 A. Lopez,147 H. Mendez,147 S. Oliveros,147 J. E. Ramirez Vargas,147 A. Zatserklyaniy,147 E. Alagoz,148 V. E. Barnes,148 G. Bolla,148 L. Borrello,148 D. Bortoletto,148 A. Everett,148 A. F. Garfinkel,148 L. Gutay,148 Z. Hu,148 M. Jones,148 O. Koybasi,148 M. Kress,148 A. T. Laasanen,148 N. Leonardo,148 C. Liu,148 V. Maroussov,148 P. Merkel,148 D.H. Miller,148 N. Neumeister,148 I. Shipsey,148 D. Silvers,148 A. Svyatkovskiy,148 H.D. Yoo,148 J. Zablocki,148 Y. Zheng,148 P. Jindal,149 N. Parashar,149 C. Boulahouache,150 V. Cuplov,150 K.M. Ecklund,150 F. J.M. Geurts,150 B. P. Padley,150 R. Redjimi,150 J. Roberts,150 J. Zabel,150 B. Betchart,151 A. Bodek,151 Y. S. Chung,151 R. Covarelli,151 P. de Barbaro,151 R. Demina,151 Y. Eshaq,151 H. Flacher,151 A. Garcia-Bellido,151 P. Goldenzweig,151 Y. Gotra,151 J. Han,151 A. Harel,151 D. C. Miner,151 D. Orbaker,151 G. Petrillo,151 D. Vishnevskiy,151 M. Zielinski,151 A. Bhatti,152 R. Ciesielski,152 L. Demortier,152 K. Goulianos,152 G. Lungu,152 C. Mesropian,152 M. Yan,152 O. Atramentov,153 A. Barker,153 D. Duggan,153 Y. Gershtein,153 R. Gray,153 E. Halkiadakis,153 D. Hidas,153 D. Hits,153 A. Lath,153 S. Panwalkar,153 R. Patel,153 A. Richards,153 K. Rose,153 S. Schnetzer,153 S. Somalwar,153 R. Stone,153 S. Thomas,153 G. Cerizza,154 M. Hollingsworth,154 S. Spanier,154 Z. C. Yang,154 A. York,154 J. Asaadi,155 R. Eusebi,155 J. Gilmore,155 A. Gurrola,155 T. Kamon,155 V. Khotilovich,155 R. Montalvo,155 C. N. Nguyen,155 I. Osipenkov,155 J. Pivarski,155 A. Safonov,155 S. Sengupta,155 A. Tatarinov,155 D. Toback,155 M. Weinberger,155 N. Akchurin,156 J. Damgov,156 C. Jeong,156 K. Kovitanggoon,156 S.W. Lee,156 Y. Roh,156 A. Sill,156 I. Volobouev,156 R. Wigmans,156 E. Yazgan,156 E. Appelt,157 E. Brownson,157 D. Engh,157 C. Florez,157 W. Gabella,157 M. Issah,157 W. Johns,157 P. Kurt,157 C. Maguire,157 A. Melo,157 P. Sheldon,157 S. Tuo,157 J. Velkovska,157 M.W. Arenton,158 M. Balazs,158 S. Boutle,158 M. Buehler,158 S. Conetti,158 B. Cox,158 B. Francis,158 R. Hirosky,158 A. Ledovskoy,158 C. Lin,158 C. Neu,158 R. Yohay,158 S. Gollapinni,159 R. Harr,159 P. E. Karchin,159 P. Lamichhane,159 M. Mattson,159 C. Milstène,159 A. Sakharov,159 M. Anderson,160 M. Bachtis,160 J. N. Bellinger,160 D. Carlsmith,160 S. Dasu,160 J. Efron,160 K. Flood,160 L. Gray,160 K. S. Grogg,160 M. Grothe,160 R. Hall-Wilton,160,b M. Herndon,160 P. Klabbers,160 J. Klukas,160 A. Lanaro,160 C. Lazaridis,160 J. Leonard,160 R. Loveless,160 A. Mohapatra,160 D. Reeder,160 I. Ross,160 A. Savin,160 W.H. Smith,160 J. Swanson,160 and M. Weinberg160 (CMS Collaboration) PRL 106, 212301 (2011) P HY S I CA L R EV I EW LE T T E R S week ending 27 MAY 2011 212301-10 1Yerevan Physics Institute, Yerevan, Armenia 2Institut für Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus 4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Université Libre de Bruxelles, Bruxelles, Belgium 7Ghent University, Ghent, Belgium 8Université Catholique de Louvain, Louvain-la-Neuve, Belgium 9Université de Mons, Mons, Belgium 10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil 13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China 16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia 18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia 21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic 23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt 24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland 26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland 28Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France 29DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France 30Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 31Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France 32Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 33Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France 34E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia 35Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 36RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 37RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 38RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany 39Deutsches Elektronen-Synchrotron, Hamburg, Germany 40University of Hamburg, Hamburg, Germany 41Institut für Experimentelle Kernphysik, Karlsruhe, Germany 42Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece 43University of Athens, Athens, Greece 44University of Ioánnina, Ioánnina, Greece 45KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 46Institute of Nuclear Research ATOMKI, Debrecen, Hungary 47University of Debrecen, Debrecen, Hungary 48Panjab University, Chandigarh, India 49University of Delhi, Delhi, India 50Bhabha Atomic Research Centre, Mumbai, India 51Tata Institute of Fundamental Research—EHEP, Mumbai, India 52Tata Institute of Fundamental Research—HECR, Mumbai, India 53Institute for Research and Fundamental Sciences (IPM), Tehran, Iran 54INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy 54aINFN Sezione di Bari, Bari, Italy 54bUniversità di Bari, Bari Italy 54cPolitecnico di Bari, Bari, Italy 55INFN Sezione di Bologna, Università di Bologna, Bologna, Italy 55aINFN Sezione di Bologna, Bologna, Italy PRL 106, 212301 (2011) P HY S I CA L R EV I EW LE T T E R S week ending 27 MAY 2011 212301-11 55bUniversità di Bologna, Bologna, Italy 56INFN Sezione di Catania, Università di Catania, Catania, Italy 56aINFN Sezione di Catania, Catania, Italy 56bUniversità di Catania, Catania, Italy 57INFN Sezione di Firenze, Università di Firenze, Firenze, Italy 57aINFN Sezione di Firenze, Firenze, Italy 57bUniversità di Firenze, Firenze, Italy 58INFN Laboratori Nazionali di Frascati, Frascati, Italy 59INFN Sezione di Genova, Genova, Italy 60INFN Sezione di Milano-Biccoca, Università di Milano-Bicocca, Milano, Italy 60aINFN Sezione di Milano-Biccoca, Milano, Italy 60bUniversità di Milano-Bicocca, Milano, Italy 61INFN Sezione di Napoli, Università di Napoli ‘‘Federico II,’’ Napoli, Italy 61aINFN Sezione di Napoli, Napoli, Italy 61bUniversità di Napoli ‘‘Federico II,’’ Napoli, Italy 62INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy 62aINFN Sezione di Padova, Padova, Italy 62bUniversità di Padova, Padova, Italy 62cUniversità di Trento (Trento), Padova, Italy 63INFN Sezione di Pavia, Università di Pavia, Pavia, Italy 63aINFN Sezione di Pavia, Pavia, Italy 63bUniversità di Pavia, Pavia, Italy 64INFN Sezione di Perugia, Università di Perugia, Perugia, Italy 64aINFN Sezione di Perugia, Perugia, Italy 64bUniversità di Perugia, Perugia, Italy 65INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy 65aINFN Sezione di Pisa, Pisa, Italy 65bUniversità di Pisa, Pisa, Italy 65cScuola Normale Superiore di Pisa, Pisa, Italy 66INFN Sezione di Roma, Università di Roma ‘‘La Sapienza,’’ Roma, Italy 66aINFN Sezione di Roma, Roma, Italy 66bUniversità di Roma ‘‘La Sapienza,’’ Roma, Italy 67INFN Sezione di Torino, Università di Torino, Università del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Torino, Torino, Italy 67bUniversità di Torino, Torino, Italy 67cUniversità del Piemonte Orientale (Novara), Torino, Italy 68INFN Sezione di Trieste, Università di Trieste, Trieste, Italy 68aINFN Sezione di Trieste, Trieste, Italy 68bUniversità di Trieste, Trieste, Italy 69Kangwon National University, Chunchon, Korea 70Kyungpook National University, Daegu, Korea 71Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 72Korea University, Seoul, Korea 73University of Seoul, Seoul, Korea 74Sungkyunkwan University, Suwon, Korea 75Vilnius University, Vilnius, Lithuania 76Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 77Universidad Iberoamericana, Mexico City, Mexico 78Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 79Universidad Autónoma de San Luis Potosı́, San Luis Potosı́, Mexico 80University of Auckland, Auckland, New Zealand 81University of Canterbury, Christchurch, New Zealand 82National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 83Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 84Soltan Institute for Nuclear Studies, Warsaw, Poland 85Laboratório de Instrumentação e Fı́sica Experimental de Partı́culas, Lisboa, Portugal 86Joint Institute for Nuclear Research, Dubna, Russia 87Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia 88Institute for Nuclear Research, Moscow, Russia 89Institute for Theoretical and Experimental Physics, Moscow, Russia 90Moscow State University, Moscow, Russia PRL 106, 212301 (2011) P HY S I CA L R EV I EW LE T T E R S week ending 27 MAY 2011 212301-12 91P.N. Lebedev Physical Institute, Moscow, Russia 92State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 93University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 94Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 95Universidad Autónoma de Madrid, Madrid, Spain 96Universidad de Oviedo, Oviedo, Spain 97Instituto de Fı́sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 98CERN, European Organization for Nuclear Research, Geneva, Switzerland 99Paul Scherrer Institut, Villigen, Switzerland 100Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 101Universität Zürich, Zurich, Switzerland 102National Central University, Chung-Li, Taiwan 103National Taiwan University (NTU), Taipei, Taiwan 104Cukurova University, Adana, Turkey 105Middle East Technical University, Physics Department, Ankara, Turkey 106Bogazici University, Istanbul, Turkey 107National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 108University of Bristol, Bristol, United Kingdom 109Rutherford Appleton Laboratory, Didcot, United Kingdom 110Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom 112Baylor University, Waco, USA 113Boston University, Boston, USA 114Brown University, Providence, USA 115University of California, Davis, Davis, USA 116University of California, Los Angeles, Los Angeles, USA 117University of California, Riverside, Riverside, USA 118University of California, San Diego, La Jolla, USA 119University of California, Santa Barbara, Santa Barbara, USA 120California Institute of Technology, Pasadena, USA 121Carnegie Mellon University, Pittsburgh, USA 122University of Colorado at Boulder, Boulder, USA 123Cornell University, Ithaca, USA 124Fairfield University, Fairfield, USA 125Fermi National Accelerator Laboratory, Batavia, USA 126University of Florida, Gainesville, USA 127Florida International University, Miami, USA 128Florida State University, Tallahassee, USA 129Florida Institute of Technology, Melbourne, USA 130University of Illinois at Chicago (UIC), Chicago, USA 131The University of Iowa, Iowa City, USA 132Johns Hopkins University, Baltimore, USA 133The University of Kansas, Lawrence, USA 134Kansas State University, Manhattan, USA 135Lawrence Livermore National Laboratory, Livermore, USA 136University of Maryland, College Park, USA 137Massachusetts Institute of Technology, Cambridge, USA 138University of Minnesota, Minneapolis, USA 139University of Mississippi, University, USA 140University of Nebraska-Lincoln, Lincoln, USA 141State University of New York at Buffalo, Buffalo, USA 142Northeastern University, Boston, USA 143Northwestern University, Evanston, USA 144University of Notre Dame, Notre Dame, USA 145The Ohio State University, Columbus, USA 146Princeton University, Princeton, USA 147University of Puerto Rico, Mayaguez, USA 148Purdue University, West Lafayette, USA 149Purdue University Calumet, Hammond, USA 150Rice University, Houston, USA 151University of Rochester, Rochester, USA PRL 106, 212301 (2011) P HY S I CA L R EV I EW LE T T E R S week ending 27 MAY 2011 212301-13 152The Rockefeller University, New York, USA 153Rutgers, the State University of New Jersey, Piscataway, USA 154University of Tennessee, Knoxville, USA 155Texas A&M University, College Station, USA 156Texas Tech University, Lubbock, USA 157Vanderbilt University, Nashville, USA 158University of Virginia, Charlottesville, USA 159Wayne State University, Detroit, USA 160University of Wisconsin, Madison, USA aDeceased. bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. cAlso at Universidade Federal do ABC, Santo Andre, Brazil. dAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. eAlso at Suez Canal University, Suez, Egypt. fAlso at British University, Cairo, Egypt. gAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland. hAlso at Massachusetts Institute of Technology, Cambridge, USA. iAlso at Université de Haute-Alsace, Mulhouse, France. jAlso at Brandenburg University of Technology, Cottbus, Germany. kAlso at Moscow State University, Moscow, Russia. lAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. mAlso at Eötvös Loránd University, Budapest, Hungary. nAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India. oAlso at University of Visva-Bharati, Santiniketan, India. pAlso at Facoltà Ingegneria Università di Roma ‘‘La Sapienza,’’ Roma, Italy. qAlso at Università della Basilicata, Potenza, Italy. rAlso at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy. sAlso at Università degli studi di Siena, Siena, Italy. tAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia. uAlso at University of California, Los Angeles, Los Angeles, USA. vAlso at University of Florida, Gainesville, USA. wAlso at Université de Genève, Geneva, Switzerland. xAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy. yAlso at INFN Sezione di Roma, Università di Roma ‘‘La Sapienza,’’ Roma, Italy. zAlso at University of Athens, Athens, Greece. aaAlso at California Institute of Technology, Pasadena, USA. bbAlso at The University of Kansas, Lawrence, USA. ccAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. ddAlso at Paul Scherrer Institut, Villigen, Switzerland. eeAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. ffAlso at Gaziosmanpasa University, Tokat, Turkey. ggAlso at Adiyaman University, Adiyaman, Turkey. hhAlso at Mersin University, Mersin, Turkey. iiAlso at Izmir Institute of Technology, Izmir, Turkey. jjAlso at Kafkas University, Kars, Turkey. kkAlso at Suleyman Demirel University, Isparta, Turkey. llAlso at Ege University, Izmir, Turkey. mmAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. nnAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. ooAlso at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy. ppAlso at Utah Valley University, Orem, USA. qqAlso at Institute for Nuclear Research, Moscow, Russia. rrAlso at Los Alamos National Laboratory, Los Alamos, USA. PRL 106, 212301 (2011) P HY S I CA L R EV I EW LE T T E R S week ending 27 MAY 2011 212301-14