E R M a b a A R A A K C B E F P I f a ( t T t s 2 a n d ( t t w m 1 2 ( Perspectives in Ecology and Conservation 15 (2017) 257–265 Supported by Boticário Group Foundation for Nature Protection www.perspectecolconserv.com ssays and Perspectives - Rewilding South American Landscapes ewilding ecological communities and rewiring ecological networks athias Mistretta Piresa,b Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato 255, 13083-862 Campinas, SP, Brazil Departamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP-Rio Claro), Av. 24-A 1515, 13506-900 Rio Claro, SP, Brazil r t i c l e i n f o rticle history: eceived 6 June 2017 ccepted 6 September 2017 vailable online 27 September 2017 eywords: onservation iological invasion cological networks ood web leistocene a b s t r a c t Rewilding encompasses management actions such as reintroductions and translocations with the pur- pose of restoring ecological processes and ecosystem functions that were lost when species were locally extirpated. The success of a species introduction is conditioned by multiple factors, in particular, ecolog- ical interactions. To predict the fate of the introduced population and the community-level outcomes of the introduction, species interaction patterns need to be considered. Here I propose that ecological net- work models can help in rewilding projects in at least three ways. First, combining ecological information and probabilistic models it is possible to infer the most likely ways whereby the introduced species will integrate the community and which will be its role in the topology of the food web. Second, by determin- ing the species more likely to interact directly or indirectly with the introduced species, it is possible to identify those species that may affect the success of the introduction and those that are more likely to be affected. Third, by constructing potential interaction networks representing the rewilding scenario, one can infer the possible ways by which the overall structure of the network will change and thus devise more efficient plans to monitor the community. Network models can be an important asset in rewilding, helping in feasibility and risk assessment as well as in monitoring the consequences after species release. © 2017 Associação Brasileira de Ciência Ecológica e Conservação. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/). ntroduction Over the past decades, conservation biology underwent a shift rom a field whose main mission was to evaluate extinction risk nd halt diversity loss, with particular focus on threatened species Meine, 2010), to a more process-centered view, whose focus is he conservation of functional ecosystems (Tylianakis et al., 2010). he functioning of ecological systems depends on the integrity of he ecological networks formed by the multiple interactions that pecies establish with each other (McCann, 2007; Molnar et al., 004). The main strategy for the conservation of ecosystems is rguably the establishment and management of large intercon- ected reserves (Lovejoy, 2006). Larger areas can harbor a greater iversity of habitats, organisms and thus of ecological processes Peres, 2005). However, maintaining large areas does not guaran- ee ecological processes will be preserved. In fact, most regions of he planet are already largely defaunated (Dirzo et al., 2014), and ithout large stocks of organisms in neighboring areas, reserves ay be nothing more than large patches of empty forests (Redford, 992) amidst the urban and agricultural landscape matrix. E-mail address: mathiasmpires@gmail.com https://doi.org/10.1016/j.pecon.2017.09.003 530-0644/© 2017 Associação Brasileira de Ciência Ecológica e Conservação. Published by http://creativecommons.org/licenses/by-nc-nd/4.0/). The extirpation of large vertebrates began when humans expanded their distribution in the Pleistocene and continued in his- torical times, having profound consequences for ecological systems (Malhi et al., 2016). Large bodied vertebrates are often key players in ecosystems, participating in several processes such as nutrient cycling (Doughty et al., 2013), long-distance seed dispersal (Pires et al., 2017) and exerting top-down control on species on lower trophic levels (Ripple et al., 2015; Terborgh, 2001). Moreover even smaller-sized vertebrates, which might be able to compensate to some extent the absence of large-bodied species, are now declin- ing in most areas (Donatti et al., 2009). This scenario calls for more active restoration approaches in order to reestablish animal popu- lations in the wild (rewilding) and their ecological interactions (rewiring), thus reinstating ecological processes and ecosystem functions (Seddon et al., 2014). Soulé and Noss (1998) proposed the use of the Pleistocene as a baseline for ecosystem restoration in North America and introduced the rewilding concept. Rewilding was originally defined as “the restoration and protection of big wilderness and wide- ranging large animals – particularly carnivores” (Soulé and Noss, 1998). The use of the Pleistocene fauna as a baseline implies in the introduction of taxon substitutes, such as large felids, feral horses, cattle and elephants, that would be able perform the Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license https://doi.org/10.1016/j.pecon.2017.09.003 https://www.perspectecolconserv.com http://crossmark.crossref.org/dialog/?doi=10.1016/j.pecon.2017.09.003&domain=pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ mailto:mathiasmpires@gmail.com https://doi.org/10.1016/j.pecon.2017.09.003 http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/ 2 y and r c G a e c l l w a d w S a i m a g o s t s d a d a i o r i o T S b f c s t p a Y t s s t a n s N a s B w w w o u M 58 M.M. Pires / Perspectives in Ecolog oles that vacated since the native megafauna, like saber-toothed ats, lions, camels, sloths and mastodons died out (Donlan, 2005; aletti, 2004). More recently the definition has been loosened nd rewilding now encompasses both the reintroduction of locally xtinct species (Galetti et al., 2017; Svenning et al., 2016) and onservation translocations using surrogate species whose eco- ogical roles would be equivalent to the species that have been ost (Seddon et al., 2014). Different from traditional reintroduction, hich focuses on recovering declining populations, the ultimate im of rewilding is to restore ecosystem processes that were lost ue to local extirpation, generating a self-regulated community, ithout the need of continued management (Sandom et al., 2013; venning et al., 2016). To reestablish ecological processes, a rewilding project envis- ges rewiring an emptied food web with the desired links. Rewiring s the reconfiguration of the interaction patterns of network ele- ents (Watts and Strogatz, 1998). I refer to network rewiring s the establishment of novel ecological interactions, which will enerally involve the introduced species, but also reconfigurations f the interaction network that occur as an indirect effect of a pecies introduction. If the goal in rewilding is to restore certain ecological processes, he viability of the introduced population over time has to be ecured. However, a number of examples from accidental intro- uctions and biological invasions show that the introduction of species into a local food web may trigger cascading effects via irect and indirect pathways that can result in diversity decline nd changes in ecosystem properties (Lodge, 1993). Thus, a rewild- ng program should also be able to ensure that the negative impact n other populations will be minimal. Considering the amount of esources a rewilding initiative demands and the potential mishaps, t is compulsory to use techniques that allow foreseeing the suite f possible outcomes after an introduction. The “Guidelines for Reintroductions and Other Ecological ranslocations” (IUCN/SSC, 2013) from the IUCN Reintroduction pecialist Group (RSG) highlight the need of assessing the match etween the abiotic and biotic needs of the candidate species and eatures of the target area. Basic information about the abiotic onditions determining species occurrence are available for many pecies, especially the ones that are often considered as poten- ial rewilding candidates. Distribution modeling techniques allow redicting, sometimes with a very high level of confidence, where re the suitable regions for a species (Elith and Leathwick, 2009). et, without careful consideration of how biotic interactions affect he dynamics of the managed population and how the introduced pecies will affect other organisms, a reintroduction program is entenced to failure. In short, the main challenge of any reintroduc- ion is how to guarantee that the introduced species will subsist in biotic context where it is able to sustain its population and will ot harm the others. Here I first review a set of cases where success and failure of pecies introduction was related to the effects of biotic interactions. ext, I argue that approaches derived from network science can be n asset for planning, assessing the viability, and for monitoring the uccess of rewilding. iotic interactions and rewilding success As soon as individuals of the candidate species are released they ill create novel interactions with several other species, which ill influence the likelihood that the population establishes and ill have consequences to the local community. Looking at the utcomes of past reintroductions and translocations is the key to nderstand how biotic interactions affected their success or failure. ost of the early attempts of reintroduction were ill-planned, with Conservation 15 (2017) 257–265 no post-introduction monitoring (Seddon et al., 2007). Available data regarding introductions in the 70s and the 80s show many pro- grams were unsuccessful in reestablishing populations, although the causes of failure were mostly unaddressed (Griffith et al., 1989; Seddon et al., 2007). Examining more than 500 cases of reintroduc- tion to understand what aspects were being reported, Seddon et al. (2007), found that only 7% of the studies addressed the ecologi- cal effects of the introduction, i.e., the interactions of the released species with the environment and other organisms. The RSG (Reintroduction Specialist Group) reports include detailed analyses on the consequences of introductions, but tend to report mainly the successful attempts. Actually, this is a trend in the restoration literature (Fischer and Lindenmayer, 2000; Moehren- schlager et al., 2013), which may be harmful to our understanding on the reasons underlying failure or negative impacts of introduc- tions and translocations. Yet, most of the reports on introductions and translocations covered by the RSG list interactions with preda- tors, pathogens, competitors and resource availability (prey or plants) as potential causes determining the success of introduction attempts. Predation, either by native or invasive predators, is often identi- fied as a major determinant of post-release mortality, limiting the success of released individuals to form a viable population (Innes et al., 1999; Moseby et al., 2011; Seddon et al., 2007). High mortal- ity due to predation after release has been associated mainly with the naivety of captive-bred individuals (Aaltonen et al., 2009; Big- gins et al., 2011). Exposure to predators during captivity has been shown to reduce predation-related mortality for different species (e.g., Heezik et al., 1999). A careful assessment of the predator–prey interactions the rewilding candidate establishes in its location of origin may allow determining the potential predators in the tar- get area and how the introduced species will integrate the local interaction network. Such knowledge may help devising strategies that minimize loss due to predation, including rearing schemes that foster anti-predator behavior. Large-bodied rewilding candidates are presumably less likely to be victims of predation, especially in already defaunated areas. Still, other natural enemies such as pathogens may induce high mor- tality in released individuals. The stress produced during capture and transportation may affect the immune system of introduced individuals making them more susceptible to pathogen infection, a phenomenon described for different species such as beavers (Castor fiber; Nolet et al., 1997) and the Eurasian lynx (Lynx lynx; Schmidt-Posthaus et al., 2002). Knowledge of the pathogens carried by resident organisms and their potential to infect the introduced species is essential to the development of countermeasures that reduce mortality risk. Another important source of mortality related to the biotic com- ponent is starvation. Examples include introductions of the river otter (Lontra canadensis; Day et al., 2013), the Arabian oryx (Oryx leucoryx; Mésochina et al., 2003), and the Canadian lynx (Lynx canadensis; Devineau et al., 2010). Failure of several reintroduc- tion attempts of African predators has also been associated with reduced prey availability in the target area or inefficient hunting skills of captive-bred individuals (Hayward et al., 2007). In a compi- lation of carnivore introduction success, Jule et al. (2008) found that starvation was the second cause of mortality after human related causes such as shooting and vehicle collision. Competition with res- ident species for resources may also hinder the establishment of the introduced population (Hayward et al., 2007; Jule et al., 2008). Starvation may only become a prevalent mortality cause when populations grow unchecked due to low top-down control. In the Oostvaardersplassen, a fenced nature reserve in the Netherlands where cattle, red deer and horses were introduced, populations undergo die-offs as the availability and quality of the forage drops during the winter (Vera, 2009). In the absence of predators, y and i v r i h i d B f w m o m t a A t ( A f i 2 r s t d e r r e e w b r h b t b b f m w s e i i i t p p A t o 2 i p w ( t d M.M. Pires / Perspectives in Ecolog ntroduced species may also cause undesirable impacts on the egetation, affecting several other species, such as happened with eintroduced elk (Cervus canadensis) in Kentucky (Cox, 2011), ntroduced red deer (Cervus elaphus) in Scotland and mustang orses in North America (Sandom et al., 2013). Yet, the effects of ntroduced herbivores on vegetation are likely complex, including esirable and undesirable outcomes (Johnson and Cushman, 2007). eing able to predict in which species the rewilding candidate will eed on, which are the potential competitors in the target area, and hether it will be able to shift to alternate resources in case the ain resource declines is important to foretell not only the success f the introduction, but also the consequences it will have for other embers of the community. A number of examples illustrate the potential of introductions o produce adverse effects (Moehrenschlager et al., 2013; Ricciardi nd Simberloff, 2009). The introduction of foxes (Vulpes vulpes) in ustralia in the nineteenth century for recreational hunting still hreatens several native species (Saunders et al., 2010). Beavers Castor canadensis) introduced in the 1940s in Southern South merica for fur trading have devastated the endemic Nothofagus orests and constructed dams produce a number of effects on ripar- an communities, water chemistry, and nutrient cycling (Vázquez, 002). Introduction of the Nile perch (Lates niloticus) in Lake Victo- ia resulted in population decline and extinctions of several2 native pecies of fishes (Harrison and Stiassny, 1999). In all these cases he introduced species impacted resident populations via negative irect and indirect effects, causing diversity loss and changes in cosystem functions. Despite the conceivable risks, well-planned and well-monitored ewilding has the potential to produce the desired effects. The eplacement of extinct endemic giant tortoises in Mauritius by an cologically similar tortoise (Aldabrachelys gigantea) has restored cological functions such as seed dispersal and control of invasive eeds (Griffiths et al., 2010). The release of wolves in Yellowstone ecame the paramount example of the overarching effects that ewilding can produce. The introduction of wolves is thought to ave regulated the population of elks, numerically or by inducing ehavioral changes, allowing woody plants such as aspen (Populus remuloides) and willows (Salix spp.) to recover, but also benefitted eavers and songbirds that depended on the trees and bears who enefit from carcasses (Ripple and Beschta, 2012). Collectively the examples discussed above highlight a salient eature of rewilding, the introduction of a novel species in a com- unity will create a suite of novel direct and indirect interactions, hich determine the fate of the introduced population and the con- equences of the introduction for the community. The interactions stablished by an introduced species are part of a larger network of nteractions. The network approach offers the tools to characterize nteraction patterns and thus infer how species affect each other n the community. Using a network approach in the rewilding con- ext might allow determining which other species may represent otential threats or assets to the establishment of the introduced opulation, affecting the outcome of a rewilding project. network approach for rewilding If the motivation for rewilding is to restore ecological processes, he proximate goal is to restore past interactions or establish novel nes that will help reinstating community function (Seddon et al., 014). The multiple biotic interactions species establish in ecolog- cal communities make it hard to predict how an introduction will lay out. Ideally, a rewilding program should be able to foresee: (i) hich interactions will be established once a species is introduced; ii) how the introduced population will react, taking into account he positive and negative interactions; (iii) the impacts of the intro- uction on the multiple species in the community and how these Conservation 15 (2017) 257–265 259 impacts will feedback to the introduced population. I argue that network modeling may not only help devising such predictions but also monitoring the outcomes of an introduction. The network approach has a long history in ecology, from the diagrammatic representation of feeding interactions between species in communities or energy flow in ecosystems, to more sophisticated quantitative analysis of network structure in search for general patterns and underlying processes (Dunne, 2006). The overall architecture of the network is determined by the ecology of its constituent species. The number and strength of interactions of a given species in the network are determined by its degree of ecological specialization (Blüthgen et al., 2008). Thus, the level of ecological specialization of the species in the studied community determines network properties such as the distribution of the num- ber of links, the distribution of interaction strengths and the overall density of links in the network. Complex network patterns such as compartmentation, the presence of groups of species densely connected to each other, can also be mapped into ecological mecha- nisms such as habitat preferences or morphofunctional constraints (Dunne, 2006; Baskerville et al., 2011). Therefore, examining the structure of ecological networks offers insights on the mechanisms underlying community assembly and functioning. The main information required to study interaction networks is basically the information on who interacts with whom in a given locality. Ideally we wish to know what are the demographic consequences of each interaction, but this information is often unavailable (Vázquez et al., 2005). The inherent complexity of real ecological networks makes the outcome of interactions in terms of their demographic effects hard to predict (Vucetich et al., 2011). Even the dynamics of apparently simple systems where a preda- tor and prey seem to control each other’s densities, are actually more complicated and involve several trophic levels (Krebs et al., 2001). In this sense predicting the demographic responses of all community elements to such a drastic intervention as a species introduction is unfeasible. However, networks can help us predict how the introduced species will integrate in the community and point in the direction of what are the most likely ways a community is expected to change. The network approach offers the toolset to quantitatively assess the overall architecture formed by species interactions and the role of each species in the network. A rewilding candidate will usu- ally be chosen based on the expectation that it will be able to restore key processes lost after species extirpation. In this sense the introduced species is expected to display the characteristics of keystone species, those whose influence on ecological processes are disproportionate in relation to abundance (Power et al., 1996). Although identifying keystone species is fraught with challenges and requires experiments or manipulation in the field (Power et al., 1996), the network approach offers ways to detect poten- tial keystone species based on the species connection patterns and its degree of topological centrality (Jordán et al., 2006). If the introduced species take on a central position in the network, inter- acting directly and indirectly with many other species, it is very likely to become a key species in the community (Soulé et al., 2003). One of the main shortcomings of the network approach is that obtaining detailed information on interactions to build high resolu- tion ecological networks is demanding (McCann, 2007). Moreover, ecological systems are dynamic adaptive systems where species compositions and interaction patterns can change over short and long timescales. For instance, Olesen et al. (2008) have shown that interaction turnover in plant–pollinator networks may be high, changing from day to day. Therefore, the best way to think on an ecological network is not as a snapshot, which is often how networks are represented and studied. Instead, predictions should incorporate the uncertainty on interaction patterns, which is inher- ent to any real ecological network. 2 y and Conservation 15 (2017) 257–265 t a a t i i a s l W e p i T a o e e c e o e s p p c f f e v a t o ( a s F d f r i g o i t h w e s h t f s t t t t e a i t i Box 1: Constructing probabilistic predator–prey networks using body mass data In previous studies we used the network modeling approach to reconstruct predator–prey interactions between large mammals that occurred in the past (Yeakel et al., 2014; Pires et al., 2015). First, we compiled information on the inter- action patterns of mammalian predators and their prey in Africa to investigate how body size affected the probability that we observed an interaction between two species in the dataset. To determine the relationship between body mass and predator–prey interactions, we used a statistical model (Rohr et al., 2010) where the logit of the probability of an interaction (aij = 1 in matrix A) is a function of the ratio between the body mass of predator (mi) and prey species (mj): log [ P(aij = 1) P(aij = 0) ] = ̨ + ̌ log ( mi mj ) + � log2 ( mi mj ) . Using model fitting techniques we estimated the param- eters of the model (˛, ˇ, �) that yielded the best fit to the observed data. The expected fraction of interactions (and non- interactions) correctly predicted by the model can be computed by summing the estimated probability assigned to each pair- wise interaction (and absences of interactions) and dividing it by the total number of interactions. fc ( A|� ) = ∑ i ∑ jaijP(i, j|�) + (1 − aij)(1 − P(i, j|�))∑ i ∑ jaij + (1 − aij) This metric allows characterizing the performance of the model in a straightforward way, and it showed that the model was able to correctly predict between 70% and 83% of the observed interactions in different datasets (Pires et al., 2015). For a given a set of parameters the probability of interac- tions can be computed as: P(i, j) = e˛+ ̌ log(mi/mj)+� log2(mi/mj) 1 + e˛+ ̌ log(mi/mj)+� log2(mi/mj) We then used the model and estimated parameters to infer the probability of interactions and reconstruct potential interaction networks between species known to occur in past assemblages in Africa (Yeakel et al., 2014) and in the Ameri- cas during the Pleistocene (Pires et al., 2015). The underlying assumption here is that the rules governing the relationship between body mass and predator–prey interaction patterns would be similar in past and present assemblages. In these examples we only used qualitative information on interactions and used only body–mass relationship to predict predator–prey interactions. If more information were avail- able for the assemblages we wanted to reconstruct, such as abundance estimates, it would have been possible to weight pairwise interaction probabilities and obtain more realistic esti- mates. The purpose of this type of model is not to obtain highly accurate inferences on the probability that two species will interact in a given place, but to generate an approximation that shows which interactions are more likely or less likely to 60 M.M. Pires / Perspectives in Ecolog In the same ways that considering stochastic processes helped o devise more representative models for population viability nalyses (Morris and Doak, 2002), by dealing with ecological inter- ctions under a probabilistic framework it is possible to encompass he uncertainty in the outcomes of rewiring after a species is ntroduced. The toolset to analyze the structure of probabilistic nteraction networks is now available (Poisot et al., 2016), and prob- bilistic models that predict species interaction patterns based on pecies traits are becoming more popular in the literature of eco- ogical networks (e.g., Pires and Guimarães, 2013; Rohr et al., 2010; illiams and Purves, 2011). Probabilistic network models are statistical or rule-based mod- ls in which the probability of pairwise species interactions is redicted from a set of parameters, which can often be mapped nto one or a small set of species traits (Williams and Purves, 2011). here is a growing body of studies showing a large part of the inter- ction patterns in real ecological networks can be predicted based n basic biological information, such as habitat use (Baskerville t al., 2011), body mass relationships (Brose et al., 2006; Gravel t al., 2013) and abundance (Krishna et al., 2008). Interactions between any pair of species can only occur if species o-occur in space and time. For instance, diverging habitat prefer- nces may result in low encounter rates diminishing the likelihood f interactions (Baskerville et al., 2011). Species may also miss ach other due to phenological mismatches, as happens in many easonal plant–pollinator systems where the activity patterns of ollinators are decoupled from the flowering periods of certain lants (Olesen et al., 2011). If individuals from different species do ome into contact, some level of trait matching may be required or interactions to take place. For instance, body size ratio has been ound to be a good predictor of predator–prey interactions (Brose t al., 2006). Fruit size and gape-width are often found as rele- ant traits conditioning seed-dispersal interactions between plants nd frugivores (Dehling et al., 2016). Likewise, the match between he depth of the corolla and the length of the pollinator proboscis r bird beak constrains interactions in plant–pollinator networks Stang et al., 2009; Vizentin-Bugoni et al., 2014). In fact, the over- ll structure of interaction networks seems to be predicted by a mall number of species traits (Eklöf et al., 2013; Pires et al., 2011). inally, abundance determines the likelihood that individuals from ifferent species will run into each other. Thus, high interaction requency may simply reflect high local abundance, whereas two are species are unlikely to interact (Vázquez et al., 2007). The first step to build predictive network models is to compile nformation on the interactions between the species in the tar- et area, and interaction patterns of the candidate species with ther species across its distribution (Fig. 1). Although any species is nvolved in multiple types of interactions, both as consumer (preda- or, herbivore, seed disperser, pollinator) and as resource (prey, ost), studied networks usually focus on a certain interaction type, hich presumably is the most relevant for the phenomena of inter- st. Accordingly, different types of interactions can be modeled eparately. To model trophic interactions such as predator–prey or erbivore–plant interactions, for instance, the required informa- ion can be drawn from dietary assessments, which are available or a large number of species, especially those that are often con- idered for rewilding. Next, one should gather information on the raits likely to affect interaction patterns such as morphology, habi- at preferences, activity patterns and behavior (Fig. 1). Of course he lack of information for certain traits will be the main limita- ion at this point. However, one or a few trait dimensions may be nough to build networks models that are able to predict a reason- ble share of species interaction patterns (see Box 1). Moreover, f a species is being introduced in a given locality it is expected hat basic information on morphology and behavior, for instance, s known. happen in a given assemblage. Morales-Castilla et al. (2015) suggest a hierarchical framework for combining these different layers of biological information in a single model and build theoretical ecological networks that encom- pass the effects of multiple factors (Fig. 2). This approach starts by identifying species unlikely to interact based on basic biological information such as trophic level or guilds. This coarse catego- rization allows identifying forbidden links (e.g., herbivores are not allowed to feed on carnivores). The next step is to refine the infer- ence on the interactions by establishing the relationship between interaction probability and species traits. Using information on M.M. Pires / Perspectives in Ecology and Conservation 15 (2017) 257–265 261 Fig. 1. An outline for building ecological networks to inform rewilding programs. Data on the traits and interaction patterns of the candidate species can be used to test the relationship between specific traits and the probability of interactions with other species. Similar tests can be performed using data on the traits and interactions among the s n be u t ighligh a i a t f a e O o b i e p t b b t 2 u i c b t t a pecies occurring in the target area. The estimated parameters and trait data can the he rewilding scenario. The position of the introduced species in the network (as h nd network structure can be examined. nteraction patterns for the species occurring in the target area nd assuming interaction sampling was thorough, it is possible o use statistical approaches such as generalized models to test or the effectiveness of certain traits in predicting interactions nd estimate the parameters governing the relationship (Eklöf t al., 2013; Rohr et al., 2010; Sebastián-González et al., 2017). nce the important traits are identified, the estimated parameters f the fitted models can be used to compute interaction proba- ilities (Figs. 1 and 2; Morales-Castilla et al., 2015). Combining nformation on the traits of the species in the target area and the stimated parameters, interaction probabilities can be computed roviding a picture of which are the species likely to interact with he introduced species (Figs. 1 and 2; Box 1). The interaction probabilities estimated from different traits can e combined in multidimensional models resulting in joint proba- ilities, which reflect the combined effects of different independent raits on the likelihood that an interaction occurs (Fig. 2; Eklöf et al., 013; Williams and Purves, 2011). Further layers depicting habitat se or abundance can be used to weight the estimated probabil- ties (Fig. 2). Actually, the use of a hierarchical framework allows onsidering any modifier known to affect interactions, including ehavior, natural history information or abiotic characteristics of he environment (Fig. 2). Layers representing mechanisms known o affect the efficiency of interactions, the actual effects of inter- ctions on individual fitness or population dynamics, may also sed to compute interaction probabilities and build ecological networks simulating ted by the node with a different color in the model network) can then be inferred be considered, delivering more functionally meaningful networks (Vidal et al., 2013). The relationship between interaction probability and species traits can also be analyzed under a Bayesian approach, which uses information on the observed interactions and empirical trait distribution to obtain posterior probability distributions for the parameters (Bartomeus et al., 2016). This approach also allows weighting the trait distribution by species abundances, thus tak- ing into account the neutral component of the interaction. Multiple traits can be considered at the same time by computing the joint probabilities under the assumption that the considered traits are independent (Bartomeus et al., 2016). Even in the absence of infor- mation on specific traits governing interactions it might be possible to obtain information on interaction probabilities using informa- tion on the patterns of interactions of other species, as done using the framework of latent traits (Rohr et al., 2016) or by using proxies that encompass a combination of traits such as phylogenetic data (Mouquet et al., 2012). The final outcome of the outlined modeling approaches is an array of pairwise interaction probabilities. The pairwise interac- tion probabilities can be represented as a matrix or as a weighted network where the weights represent the inferred probabilities (Fig. 2). This network has the desirable property of encompassing the uncertainty on interaction patterns. The interaction proba- bilities obtained using any of the approaches listed above, allow 262 M.M. Pires / Perspectives in Ecology and Conservation 15 (2017) 257–265 Fig. 2. Building a probabilistic network. Each hypothetical matrix contains information on the probability of pairwise interactions between predator (rows, labeled P#) and prey (columns, labeled p#) species. Darker colors depict higher probabilities. Species are ordered according to decreasing body size from top to bottom and left to r -occur m Overa p d ens c a m c t m b i s b t o r s o t e r a a p C i e ( s o e i ight. Interaction probabilities can be estimated according to different variables: co atching (body–mass ratio is depicted in the example), and relative abundances. robabilities computed according to each variable and a probabilistic network or an onstructing an ensemble of potential networks, each representing hypothesis about how species interact with each other in the com- unity. The properties of the whole network and of each species an be analyzed using metrics designed specifically for probabilis- ic networks (Poisot et al., 2016) or by applying the conventional etrics to the networks constructed from the interaction proba- ilities. From these interaction networks other networks depicting ndirect interactions, such as competition, can also be inferred. Having inferred networks for the rewilding scenario, it is pos- ible to identify those species that are more likely to be affected y the introduction, e.g., by quantifying the distances separating he species in the food web. Furthermore, using basic descriptors f network structure it is possible to infer what are the most likely esponses of the community as a whole to rewilding. Properties uch as connectance, the proportion of interactions that actually ccur relative to the theoretical maximum, and compartimentaliza- ion, are related to the vulnerability of a network to change (Dunne t al., 2002; Stouffer and Bascompte, 2011). Thus, given the straight elationship between network structure and community dynamics, nalyzing the structure of the local interaction networks before and fter management actions such as rewilding should be a standard rocedure. hallenges The main challenge to the implementation of network methods n rewilding projects is data availability. Obtaining information on cological interactions in the wild is expensive and time consuming Tylianakis et al., 2010). In the best scenario, interactions among pecies in the target area will be well known and a model will nly be required to fit the candidate species in the network. Nev- rtheless, in the proposed framework a first approximation on the nteraction networks can be obtained even in the absence of data rence, behavioral or natural history information known to affect interactions, trait ll interaction probabilities can be obtained from the element-wise product of the emble of theoretical networks based on probabilities may be built and analyzed. on the local interactions patterns. Using the data already available in the literature, one may be able to infer the relationship between interaction patterns and traits in a different locality and generate potential interaction networks for the species in the area of inter- est under the assumption that the relationship between traits and interaction occurrence is consistent. Interaction patterns can vary over time and across space. One way of dealing with this variation is to perform separate analyses on the relationship between interaction probability and species traits for all locations from where good quality information on inter- action patterns is available. By conducting separate analyses for different locations one can evaluate the consistency of the rela- tionship between interaction patterns and traits and estimate a range for the parameter values. Different networks could then be generated using a range of parameters to account for such context dependence. Another potential source of variation in the interaction pat- terns is intrapopulation variation. Interactions take place at the individual level (Poisot et al., 2015) and the traits of individuals affect how exactly they will be behave in a novel ecological context. Using population averages to predict interactions is reasonable if intrapopulation variation is small or if the sample of individuals to be introduced is not a biased one. Otherwise variation among individuals should also be taken into account. Some of the trait- informed network models discussed above can also incorporate trait information at the individual level when this information is available (Bartomeus et al., 2016). Any species participate in different types of interactions, playing multiple ecological roles as consumers, resources, hosts, competi- tors and mutualists. Networks are often constructed based on a single type of interaction, but the ideal scenario would be to gener- ate predictions on multiple interaction types, so as to anticipate the consequences of an introduction for different groups of organisms y and a p s s m s i d b a a c s C t s e v p w u m s e o h m t r b m i r t i p m t o v 1 e p c t s t m a 2 i i b t a i l t r M.M. Pires / Perspectives in Ecolog nd different ecological processes. Obtaining information on all the ossible interactions of species in a community is unrealistic. Yet, ome information on the main interactions is better than none. The tudied networks will always include only a subset of the innu- erable interactions that species participate. The main assumption hared by any community ecology study is that the subset of stud- ed interactions is representative of the interactions governing the ynamics of the studied system. Network ecologists have recently egun to merge different types of interactions in a single network nd study its properties (Pilosof et al., 2017). As novel methods re devised for the analysis of these multilayered networks a more omplete assessment of the impacts of the introduction of a new pecies in the community will be possible. oncluding remarks The assessment of the results of species introductions and ranslocations often focus on population aspects of the target pecies or on a single or a few pairwise interactions (Svenning t al., 2016). However, to fully understand the impact of such inter- entions, variables related to the whole community and ecological rocesses should be monitored over time. In this sense using a net- ork approach to monitor the aftermath of the release may help nraveling broader consequences and the need for further manage- ent. The main risk is that the new community with the introduced pecies have unanticipated emergent properties of its own (Seddon t al., 2014). Although network approaches cannot replace the need f detailed information on demographic trends of species to assess ow community functioning was impacted, the use of networks ay allow detecting which are the species that should be moni- ored closely. Moreover the network approach is not intended to eplace any other tool already established in conservation practice, ut to be used as an ancillary approach that combined with others, ay assist conservation planning and monitoring. Monitoring a rewilding program using networks may also help n adaptive management actions, where management options are eassessed based on results from previous implementation steps o guarantee efficient establishment of the population or reduce mpacts (Moehrenschlager et al., 2013). After release the several ossible hypothesis on interaction patterns generated by network odels can be refined according to observation and the interac- ion networks can be constantly reevaluated. Depending on the bserved changes, the need for interventions, such as resource pro- isioning or predator control (in the case of exotics) (e.g., Innes et al., 999), may be anticipated. Network science can also benefit from the use of network mod- ls in rewilding. Rewilding episodes may allow testing theoretical redictions on the relationship between network structure and ommunity dynamics (e.g., Ripple and Beschta, 2012) and guide heoreticians on how to make models more accurate. With each pecies introduction instance where the changes in networks struc- ure are not evaluated we miss a unique opportunity of learning ore about how ecological communities respond to change. The success of any introduction depend on several factors, such s the number of released individuals (Fischer and Lindenmayer, 000), variation in habitat quality (Wolf et al., 1998), and human nterference (Jule et al., 2008). Yet, a key component in a rewild- ng program is how biotic interactions affect and are affected y a species introduction. Because biotic interactions can affect he success of introduction in multiple ways, using probabilistic pproaches and network models in the different stages of program mplementation can offer important insights on community- evel responses to rewilding while incorporating uncertainties, hus helping evaluating the balance between the benefits and isks. Conservation 15 (2017) 257–265 263 When rewilding involves species that are not originally from the target region the risks are potentially greater and less pre- dictable and meticulous assessment of the these risks are necessary (IUCN/SSC, 2013). Although introductions of species outside its range would better be avoided (Ricciardi and Simberloff, 2009) the severity of the ongoing biodiversity crisis asks for proactive meas- ures to maintain functional ecosystems (Svenning et al., 2016). As highlighted by Jepson (2016) rewilding is already happening and we need to employ the right tools to minimize negative impacts and strengthen the desired effects. Being able to foresee how inter- actions will rewire the food web is critical to predict the success of an introduction and its potential outcomes. Funding MMP was supported by São Paulo Research Foundation (FAPESP: grant #2013/22016-6) and Coordenaç ão de Aperfeiç oamento de Pessoal de Nível Superior (CAPES). Acknowledgments I thank Paulo R. Guimarães and Tiago B. Quental for comments and suggestions. References Aaltonen, K., Bryant, A.A., Hostetler, J.A., Oli, M.K., 2009. Reintroducing endangered Vancouver Island marmots: survival and cause-specific mortality rates of captive-born versus wild-born individuals. Biol. Conserv. 142, 2181–2190, http://dx.doi.org/10.1016/j.biocon.2009.04.019. Bartomeus, I., Gravel, D., Tylianakis, J.M., Aizen, M.A., Dickie, I.A., Bernard-Verdier, M., 2016. A common framework for identifying linkage rules across different types of interactions. Funct. Ecol. 30, 1894–1903, http://dx.doi.org/10.1111/1365-2435.12666. Baskerville, E.B., Dobson, A.P., Bedford, T., Allesina, S., Anderson, T.M., Pascual, M., 2011. Spatial guilds in the Serengeti food web revealed by a Bayesian group model. PLoS Comput. Biol. 7, e1002321, http://dx.doi.org/10.1371/journal.pcbi.1002321. Biggins, D.E., Miller, B.J., Hanebury, L.R., Powell, R.A., 2011. Mortality of Siberian polecats and black-footed ferrets released onto prairie dog colonies. J. Mammal. 92, 721–731, http://dx.doi.org/10.1644/10-MAMM-S-115.1. Blüthgen, N., Fründ, J., Vázquez, D.P., Menzel, F., 2008. What do interaction network metrics tell us about specialization and biological traits. Ecology 89, 3387–3399, http://dx.doi.org/10.1890/07-2121.1. Brose, U., Jonsson, T., Berlow, E.L., Warren, P., Banasek-Richter, C., Bersier, L.-F., Blanchard, J.L., Brey, T., Carpenter, S.R., Blandenier, M.-F.C., Cushing, L., Dawah, H.A., Dell, T., Edwards, F., Harper-Smith, S., Jacob, U., Ledger, M.E., Martinez, N.D., Memmott, J., Mintenbeck, K., Pinnegar, J.K., Rall, B.C., Rayner, T.S., Reuman, D.C., Ruess, L., Ulrich, W., Williams, R.J., Woodward, G., Cohen, J.E., 2006. Consumer-resource body-size relationships in natural food webs. Ecology 87, 2411–2417, http://dx.doi.org/10.1890/0012-9658(2006)87[2411:CBRINF]2.0.CO;2. Cox, J.J., 2011. Tales of a repatriated megaherbivore: challenges and opportunities in the management of reintroduced elk in the Appalachia. In: Fei, S., Lhotka, J.M., Stringer, J.W., Gottschalk, K.W., Miller, G.W. (Eds.), Proceedings of the 17th Central Hardwood Forest Conference. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newton Square, pp. 632–642. Day, C.C., Westover, M.D., McMillan, B.R., 2013. Factors influencing mortality associated with the translocation of northern river otters (Lontra canadensis) in Utah. West. North Am. Nat. 73, 357–364, http://dx.doi.org/10.3398/064.073.0309. Dehling, D.M., Jordano, P., Schaefer, H.M., Böhning-Gaese, K., Schleuning, M., 2016. Morphology predicts species’ functional roles and their degree of specialization in plant–frugivore interactions. Proc. R. Soc. B 283, 20152444, http://dx.doi.org/10.1098/rspb.2015.2444. Devineau, O., Shenk, T.M., White, G.C., Doherty Jr., P.F., Lukacs, P.M., Kahn, R.H., 2010. Evaluating the Canada lynx reintroduction programme in Colorado: patterns in mortality. J. Appl. Ecol. 47, 524–531, http://dx.doi.org/10.1111/j.1365-2664.2010.01805.x. Dirzo, R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J.B., Collen, B., 2014. Defaunation in the Anthropocene. Science 345, 401–406, http://dx.doi.org/10.1126/science.1251817. Donatti, C.I., Guimarães, P.R., Galetti, M., 2009. Seed dispersal and predation in the endemic Atlantic rainforest palm Astrocaryum aculeatissimum across a gradient of seed disperser abundance. Ecol. Res. 24, 1187–1195, http://dx.doi.org/10.1007/s11284-009-0601-x. Donlan, J., 2005. Re-wilding North America. Nature 436, 913–914, http://dx.doi.org/10.1038/436913a. dx.doi.org/10.1016/j.biocon.2009.04.019 dx.doi.org/10.1111/1365-2435.12666 dx.doi.org/10.1371/journal.pcbi.1002321 dx.doi.org/10.1644/10-MAMM-S-115.1 dx.doi.org/10.1890/07-2121.1 dx.doi.org/10.1890/0012-9658(2006)87[2411:CBRINF]2.0.CO;2 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0035 dx.doi.org/10.3398/064.073.0309 dx.doi.org/10.1098/rspb.2015.2444 dx.doi.org/10.1111/j.1365-2664.2010.01805.x dx.doi.org/10.1126/science.1251817 dx.doi.org/10.1007/s11284-009-0601-x dx.doi.org/10.1038/436913a 2 y and D D D E E F G G G G G H H H I I J J J J K K L L M M M 64 M.M. Pires / Perspectives in Ecolog oughty, C.E., Wolf, A., Malhi, Y., 2013. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat. Geosci. 6, 761–764, http://dx.doi.org/10.1038/ngeo1895. unne, J.A., 2006. The network structure of food webs. In: Pascual, M., Dunne, J.A. (Eds.), Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford University Press, New York, pp. 27–86. unne, J.A., Williams, R.J., Martinez, N.D., 2002. Food-web structure and network theory: the role of connectance and size. Proc. Natl. Acad. Sci. U. S. A. 99, 12917–12922, http://dx.doi.org/10.1073/pnas.192407699. klöf, A., Jacob, U., Kopp, J., Bosch, J., Castro-Urgal, R., Chacoff, N.P., Dalsgaard, B., de Sassi, C., Galetti, M., Guimarães, P.R., Lomáscolo, S.B., Martín González, A.M., Pizo, M.A., Rader, R., Rodrigo, A., Tylianakis, J.M., Vázquez, D.P., Allesina, S., 2013. The dimensionality of ecological networks. Ecol. Lett. 16, 577–583, http://dx.doi.org/10.1111/ele.12081. lith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697, http://dx.doi.org/10.1146/annurev.ecolsys.110308.120159. ischer, J., Lindenmayer, D.B., 2000. An assessment of the published results of animal relocations. Biol. Conserv. 96, 1–11, http://dx.doi.org/10.1016/S0006-3207(00)00048-3. aletti, M., 2004. Parks of the Pleistocene: recreating the Cerrado and the Pantanal with megafauna. Nat. Conserv. 2, 93–100. aletti, M., Pires, A.S., Brancalion, P.H.S., Fernandez, F.A.S., 2017. Reversing defaunation by trophic rewilding in empty forests. Biotropica 49, 5–8, http://dx.doi.org/10.1111/btp.12407. ravel, D., Poisot, T., Albouy, C., Velez, L., Mouillot, D., 2013. Inferring food web structure from predator–prey body size relationships. Methods Ecol. Evol. 4, 1083–1090, http://dx.doi.org/10.1111/2041-210X.12103. riffith, B., Scott, J.M., Carpenter, J.W., Reed, C., 1989. Translocation as a species conservation tool: status and strategy. Science 245, 477–480, http://dx.doi.org/10.1126/science.245.4917.477. riffiths, C.J., Jones, C.G., Hansen, D.M., Puttoo, M., Tatayah, R.V., Müller, C.B., Harris, S., 2010. The use of extant non-indigenous tortoises as a restoration tool to replace extinct ecosystem engineers. Restor. Ecol. 18, 1–7, http://dx.doi.org/10.1111/j.1526-100X.2009.00612.x. arrison, I.J., Stiassny, M.L., 1999. The quiet crisis: a preliminary listing of the freshwater fishes of the world that are extinct or “missing in action”. In: Macphee, R.D.E., Sues, H.-D. (Eds.), Extinctions in Near Time Causes, Contexts, and Consequences. Oxford University Press, Oxford. ayward, M.W., Adendorff, J., O’Brien, J., Sholto-Douglas, A., Bissett, C., Moolman, L.C., Bean, P., Fogarty, A., Howarth, D., Slater, R., Kerley, G.I.H., 2007. Practical considerations for the reintroduction of large, terrestrial, mammalian predators based on reintroductions to South Africa’s Eastern Cape province. Open Conserv. Biol. J. 1, 1–11, http://dx.doi.org/10.2174/1874839200701010001. eezik, Y., van, Seddon, P.J., Maloney, R.F., 1999. Helping reintroduced houbara bustards avoid predation: effective anti-predator training and the predictive value of pre-release behaviour. Anim. Conserv. 2, 155–163, http://dx.doi.org/10.1111/j.1469-1795.1999.tb00061.x. nnes, J., Hay, R., Flux, I., Bradfield, P., Speed, H., Jansen, P., 1999. Successful recovery of North Island kokako Callaeas cinerea wilsoni populations, by adaptive management. Biol. Conserv. 87, 201–214, http://dx.doi.org/10.1016/S0006-3207(98)00053-6. UCN/SSC, 2013. Guidelines for Reintroductions and Other Conservation Translocations. IUCN Species Survival Commission, Gland, Switzerland. epson, P., 2016. A rewilding agenda for Europe: creating a network of experimental reserves. Ecography 39, 117–124, http://dx.doi.org/10.1111/ecog.01602. ohnson, B.E., Cushman, J.H., 2007. Influence of a large herbivore reintroduction on plant invasions and community composition in a California grassland. Conserv. Biol. 21, 515–526, http://dx.doi.org/10.1111/j.1523-1739.2006.00610.x. ordán, F., Liu, W., Davis, A.J., 2006. Topological keystone species: measures of positional importance in food webs. Oikos 112, 535–546, http://dx.doi.org/10.1111/j.0030-1299.2006.13724.x. ule, K.R., Leaver, L.A., Lea, S.E.G., 2008. The effects of captive experience on reintroduction survival in carnivores: a review and analysis. Biol. Conserv. 141, 355–363, http://dx.doi.org/10.1016/j.biocon.2007.11.007. rebs, C.J., Boonstra, R., Boutin, S., Sinclair, A.R.E., 2001. What drives the 10-year cycle of snowshoe hares? Bioscience 51, 25, http://dx.doi.org/10.1641/0006-3568(2001)051[0025:WDTYCO]2.0.CO;2. rishna, A., Guimarães Jr., P.R., Jordano, P., Bascompte, J., 2008. A neutral-niche theory of nestedness in mutualistic networks. Oikos 117, 1609–1618, http://dx.doi.org/10.1111/j.1600-0706.2008.16540.x. odge, D.M., 1993. Biological invasions: lessons for ecology. Trends Ecol. Evol. 8, 133–137, http://dx.doi.org/10.1016/0169-5347(93)90025-K. ovejoy, T.E., 2006. Protected areas: a prism for a changing world. Trends Ecol. Evol. 21, 329–333, http://dx.doi.org/10.1016/j.tree.2006.04.005. alhi, Y., Doughty, C.E., Galetti, M., Smith, F.A., Svenning, J.-C., Terborgh, J.W., 2016. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl. Acad. Sci. U. S. A. 113, 838–846, http://dx.doi.org/10.1073/pnas.1502540113. cCann, K., 2007. Protecting biostructure. Nature 446, 29, http://dx.doi.org/10.1038/446029a. eine, C., 2010. Conservation biology: past and present. In: Sodhi, N.S., Ehrlich, P.R. (Eds.), Conservation Biology for All. Oxford University Press, Oxford, pp. 7–26. Conservation 15 (2017) 257–265 Mésochina, P., Bedin, E., Ostrowski, S., 2003. Reintroducing antelopes into arid areas: lessons learnt from the oryx in Saudi Arabia. C. R. Biol. 326, 158–165, http://dx.doi.org/10.1016/S1631-0691(03)00053-2. Moehrenschlager, A., Shier, D.M., Moorhouse, T.P., Stanley, M.R.S., 2013. Righting past wrongs and ensuring the future: challenges and opportunities for effective reintroductions amidst a biodiversity crisis. In: MacDonald, D.W., Willis, K.J. (Eds.), Key Topics in Conservation Biology, vol. 2. Wiley-Blackwell, Oxford, pp. 405–429. Molnar, J., Marvier, M., Kareiva, P., 2004. The sum is greater than the parts. Conserv. Biol. 18, 1670–1671, http://dx.doi.org/10.1111/j.1523-1739.2004.00l07.x. Morales-Castilla, I., Matias, M.G., Gravel, D., Araújo, M.B., 2015. Inferring biotic interactions from proxies. Trends Ecol. Evol. 30, 347–356, http://dx.doi.org/10.1016/j.tree.2015.03.014. Morris, W.F., Doak, D.F., 2002. Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis. Sinauer Associates, Sunderland. Moseby, K.E., Read, J.L., Paton, D.C., Copley, P., Hill, B.M., Crisp, H.A., 2011. Predation determines the outcome of 10 reintroduction attempts in arid South Australia. Biol. Conserv. 144, 2863–2872, http://dx.doi.org/10.1016/j.biocon.2011.08.003. Mouquet, N., Devictor, V., Meynard, C.N., Munoz, F., Bersier, L.F., Chave, J., Couteron, P., Dalecky, A., Fontaine, C., Gravel, D., Hardy, O.J., Jabot, F., Lavergne, S., Leibold, M., Mouillot, D., Münkemüller, T., Pavoine, S., Prinzing, A., Rodrigues, A.S.L., Rohr, R.P., Thébault, E., Thuiller, W., 2012. Ecophylogenetics: advances and perspectives. Biol. Rev. 87, 769–785, http://dx.doi.org/10.1111/j.1469-185X.2012.00224.x. Nolet, B.A., Broekhuizen, S., Dorrestein, G.M., Rienks, K.M., 1997. Infectious diseases as main causes of mortality to beavers Castor fiber after translocation to the Netherlands. J. Zool. 241, 35–42. Olesen, J.M., Bascompte, J., Elberling, H., Jordano, P., 2008. Temporal dynamics in a pollination network. Ecology 89, 1573–1582. Olesen, J.M., Stefanescu, C., Traveset, A., 2011. Strong, long-term temporal dynamics of an ecological network. PLoS One 6, e26455, http://dx.doi.org/10.1371/journal.pone.0026455. Peres, C.A., 2005. Why we need megareserves in Amazonia. Conserv. Biol. 19, 728–733, http://dx.doi.org/10.1111/j.1523-1739.2005.00691.x. Pilosof, S., Porter, M.A., Pascual, M., Kéfi, S., 2017. The multilayer nature of ecological networks. Nat. Ecol. Evol. 1, 101, http://dx.doi.org/10.1038/s41559-017-0101. Pires, M.M., Galetti, M., Guimarães, P.R., Jordano, P., 2017. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography, http://dx.doi.org/10.1111/ecog.03163 (in press). Pires, M.M., Guimarães, P.R., 2013. Interaction intimacy organizes networks of antagonistic interactions in different ways. J. R. Soc. Interface 10, 20120649, http://dx.doi.org/10.1098/rsif.2012.0649. Pires, M.M., Koch, P.L., Fariña, R.A., de Aguiar, M.A.M., dos Reis, S.F., Guimarães, P.R., 2015. Pleistocene megafaunal interaction networks became more vulnerable after human arrival. Proc. R. Soc. B 282, 20151367, http://dx.doi.org/10.1098/rspb.2015.1367. Pires, M.M., Prado, P.I., Guimarães, P.R., 2011. Do food web models reproduce the structure of mutualistic networks? PLoS One 6, e27280, http://dx.doi.org/10.1371/journal.pone.0027280. Poisot, T., Cirtwill, A.R., Cazelles, K., Gravel, D., Fortin, M.-J., Stouffer, D.B., 2016. The structure of probabilistic networks. Methods Ecol. Evol. 7, 303–312, http://dx.doi.org/10.1111/2041-210X.12468. Poisot, T., Stouffer, D.B., Gravel, D., 2015. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251, http://dx.doi.org/10.1111/oik.01719. Power, M.E., Tilman, D., Estes, J.A., Menge, B.A., Bond, W.J., Mills, L.S., Daily, G., Juan Carlos Castilla, J., Lubchenco, A., Paine, R.T., 1996. Challenges in the quest for keystones. Bioscience 46, 609–620. Redford, K.H., 1992. The empty forest. Bioscience 42, 412–422. Ricciardi, A., Simberloff, D., 2009. Assisted colonization is not a viable conservation strategy. Trends Ecol. Evol. 24, 248–253, http://dx.doi.org/10.1016/j.tree.2008.12.006. Ripple, W.J., Beschta, R.L., 2012. Trophic cascades in Yellowstone: the first 15years after wolf reintroduction. Biol. Conserv. 145, 205–213, http://dx.doi.org/10.1016/j.biocon.2011.11.005. Ripple, W.J., Newsome, T.M., Wolf, C., Dirzo, R., Everatt, K.T., Galetti, M., Hayward, M.W., Kerley, G.I.H., Levi, T., Lindsey, P.A., Macdonald, D.W., Malhi, Y., Painter, L.E., Sandom, C.J., Terborgh, J., Van Valkenburgh, B., 2015. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103, http://dx.doi.org/10.1126/sciadv.1400103. Rohr, R.P., Naisbit, R.E., Mazza, C., Bersier, L.-F., 2016. Matching–centrality decomposition and the forecasting of new links in networks. Proc. R. Soc. B 283, 20152702, http://dx.doi.org/10.1098/rspb.2015.2702. Rohr, R.P., Scherer, H., Kehrli, P., Mazza, C., Bersier, L., 2010. Modeling food webs: exploring unexplained structure using latent traits. Am. Nat. 176, 170–177, http://dx.doi.org/10.1086/653667. Sandom, C., Donlan, C.J., Svenning, J.-C., Hansen, D., 2013. Rewilding. In: MacDonald, D.W., Willis, K.J. (Eds.), Key Topics in Conservation Biology, vol. 2. Wiley-Blackwell, pp. 430–451. Saunders, G.R., Gentle, M.N., Dickman, C.R., 2010. The impacts and management of foxes Vulpes vulpes in Australia. Mamm. Rev. 40, 181–211, http://dx.doi.org/10.1111/j.1365-2907.2010.00159.x. Schmidt-Posthaus, H., Breitenmoser-Wörsten, C., Posthaus, H., Bacciarini, L., Breitenmoser, U., 2002. Causes of mortality in reintroduced Eurasian lynx in dx.doi.org/10.1038/ngeo1895 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0075 dx.doi.org/10.1073/pnas.192407699 dx.doi.org/10.1111/ele.12081 dx.doi.org/10.1146/annurev.ecolsys.110308.120159 dx.doi.org/10.1016/S0006-3207(00)00048-3 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0100 dx.doi.org/10.1111/btp.12407 dx.doi.org/10.1111/2041-210X.12103 dx.doi.org/10.1126/science.245.4917.477 dx.doi.org/10.1111/j.1526-100X.2009.00612.x http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0125 dx.doi.org/10.2174/1874839200701010001 dx.doi.org/10.1111/j.1469-1795.1999.tb00061.x dx.doi.org/10.1016/S0006-3207(98)00053-6 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0145 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0145 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0145 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0145 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0145 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0145 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0145 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0145 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0145 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0145 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0145 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0145 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0145 dx.doi.org/10.1111/ecog.01602 dx.doi.org/10.1111/j.1523-1739.2006.00610.x dx.doi.org/10.1111/j.0030-1299.2006.13724.x dx.doi.org/10.1016/j.biocon.2007.11.007 dx.doi.org/10.1641/0006-3568(2001)051[0025:WDTYCO]2.0.CO;2 dx.doi.org/10.1111/j.1600-0706.2008.16540.x dx.doi.org/10.1016/0169-5347(93)90025-K dx.doi.org/10.1016/j.tree.2006.04.005 dx.doi.org/10.1073/pnas.1502540113 dx.doi.org/10.1038/446029a http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0200 dx.doi.org/10.1016/S1631-0691(03)00053-2 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0210 dx.doi.org/10.1111/j.1523-1739.2004.00l07.x dx.doi.org/10.1016/j.tree.2015.03.014 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0225 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0225 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0225 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0225 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0225 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0225 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0225 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0225 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0225 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0225 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0225 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0225 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0225 dx.doi.org/10.1016/j.biocon.2011.08.003 dx.doi.org/10.1111/j.1469-185X.2012.00224.x http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0240 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0245 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0245 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0245 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0245 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0245 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0245 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0245 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0245 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0245 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0245 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0245 dx.doi.org/10.1371/journal.pone.0026455 dx.doi.org/10.1111/j.1523-1739.2005.00691.x dx.doi.org/10.1038/s41559-017-0101 dx.doi.org/10.1111/ecog.03163 dx.doi.org/10.1098/rsif.2012.0649 dx.doi.org/10.1098/rspb.2015.1367 dx.doi.org/10.1371/journal.pone.0027280 dx.doi.org/10.1111/2041-210X.12468 dx.doi.org/10.1111/oik.01719 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0295 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0295 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0295 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0295 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0295 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0295 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0295 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0295 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0295 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0295 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0295 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0300 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0300 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0300 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0300 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0300 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0300 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0300 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0300 dx.doi.org/10.1016/j.tree.2008.12.006 dx.doi.org/10.1016/j.biocon.2011.11.005 dx.doi.org/10.1126/sciadv.1400103 dx.doi.org/10.1098/rspb.2015.2702 dx.doi.org/10.1086/653667 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0330 dx.doi.org/10.1111/j.1365-2907.2010.00159.x y and S S S S S S S S T T M.M. Pires / Perspectives in Ecolog Switzerland. J. Wildl. Dis. 38, 84–92, http://dx.doi.org/10.7589/0090-3558-38.1.84. ebastián-González, E., Pires, M.M., Donatti, C.I., Guimarães, P.R., Dirzo, R., 2017. Species traits and interaction rules shape a species-rich seed-dispersal interaction network. Ecol. Evol., http://dx.doi.org/10.1002/ece3.2865. eddon, P.J., Armstrong, D.P., Maloney, R.F., 2007. Developing the science of reintroduction biology. Conserv. Biol. 21, 303–312, http://dx.doi.org/10.1111/j.1523-1739.2006.00627.x. eddon, P.J., Griffiths, C.J., Soorae, P.S., Armstrong, D.P., 2014. Reversing defaunation: restoring species in a changing world. Science 345, 406–412, http://dx.doi.org/10.1126/science.1251818. oulé, M., Noss, R., 1998. Rewilding and biodiversity: complementary goals for continental conservation. Wild Earth 8, 19–28. oulé, M.E., Estes, J.A., Berger, J., Del Rio, C.M., 2003. Ecological effectiveness: conservation goals for interactive species. Conserv. Biol. 17, 1238–1250, http://dx.doi.org/10.1046/j.1523-1739.2003.01599.x. tang, M., Klinkhamer, P.G.L., Waser, N.M., Stang, I., van der Meijden, E., 2009. Size-specific interaction patterns and size matching in a plant–pollinator interaction web. Ann. Bot. 103, 1459–1469, http://dx.doi.org/10.1093/aob/mcp027. touffer, D.B., Bascompte, J., 2011. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. U. S. A. 108, 3648–3652, http://dx.doi.org/10.1073/pnas.1014353108. venning, J.-C., Pedersen, P.B.M., Donlan, C.J., Ejrnæs, R., Faurby, S., Galetti, M., Hansen, D.M., Sandel, B., Sandom, C.J., Terborgh, J.W., Vera, F.W.M., 2016. Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. U. S. A. 113, 898–906, http://dx.doi.org/10.1073/pnas.1502556112. erborgh, J., 2001. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926, http://dx.doi.org/10.1126/science.1064397. ylianakis, J.M., Laliberté, E., Nielsen, A., Bascompte, J., 2010. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279, http://dx.doi.org/10.1016/j.biocon.2009.12.004. Conservation 15 (2017) 257–265 265 Vázquez, D.P., 2002. Multiple effects of introduced mammalian herbivores in a temperate forest. Biol. Invas. 4, 175–191, http://dx.doi.org/10.1023/A:1020522923905. Vázquez, D.P., Melián, C.J., Williams, N.M., Blüthgen, N., Krasnov, B.R., Poulin, R., 2007. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116, 1120–1127, http://dx.doi.org/10.1111/j.0030-1299.2007.15828.x. Vázquez, D.P., Morris, W.F., Jordano, P., 2005. Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol. Lett. 8, 1088–1094, http://dx.doi.org/10.1111/j.1461-0248.2005.00810.x. Vera, F.W.M., 2009. Large-scale nature development – the oostvaardersplassen. Br. Wildl. 20, 28–36. Vidal, M.M., Pires, M.M., Guimarães, P.R., 2013. Large vertebrates as the missing components of seed-dispersal networks. Biol. Conserv. 163, 42–48. Vizentin-Bugoni, J., Maruyama, P.K., Sazima, M., 2014. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird–plant network. Proc. R. Soc. B 281, 20132397, http://dx.doi.org/10.1098/rspb.2013.2397. Vucetich, J.A., Hebblewhite, M., Smith, D.W., Peterson, R.O., 2011. Predicting prey population dynamics from kill rate, predation rate and predator–prey ratios in three wolf-ungulate systems. J. Anim. Ecol. 80, 1236–1245, http://dx.doi.org/10.1111/j.1365-2656.2011.01855.x. Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of “small-world” networks. Nature 393, 440–442, http://dx.doi.org/10.1038/30918. Williams, R.J., Purves, D.W., 2011. The probabilistic niche model reveals substantial variation in the niche structure of empirical food webs. Ecology 92, 1849–1857, http://dx.doi.org/10.1890/11-0200.1. Wolf, C.M., Garland, T., Griffith, B., 1998. Predictors of avian and mammalian translocation success: reanalysis with phylogenetically independent contrasts. Biol. Conserv. 86, 243–255, http://dx.doi.org/10.1016/S0006-3207(97)00179-1. Yeakel, J.D., Pires, M.M., Rudolf, L., Dominy, N.J., Koch, P.L., Guimarães, P.R., Gross, T., 2014. Collapse of an ecological network in Ancient Egypt. Proc. Natl. Acad. Sci. U. S. A. 111, 14472–14477, http://dx.doi.org/10.1073/pnas.1408471111. dx.doi.org/10.7589/0090-3558-38.1.84 dx.doi.org/10.1002/ece3.2865 dx.doi.org/10.1111/j.1523-1739.2006.00627.x dx.doi.org/10.1126/science.1251818 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0360 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0360 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0360 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0360 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0360 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0360 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0360 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0360 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0360 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0360 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0360 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0360 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0360 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0360 dx.doi.org/10.1046/j.1523-1739.2003.01599.x dx.doi.org/10.1093/aob/mcp027 dx.doi.org/10.1073/pnas.1014353108 dx.doi.org/10.1073/pnas.1502556112 dx.doi.org/10.1126/science.1064397 dx.doi.org/10.1016/j.biocon.2009.12.004 dx.doi.org/10.1023/A:1020522923905 dx.doi.org/10.1111/j.0030-1299.2007.15828.x dx.doi.org/10.1111/j.1461-0248.2005.00810.x http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0410 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0410 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0410 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0410 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0410 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0410 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0410 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0410 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0410 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0410 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0410 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0410 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0415 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0415 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0415 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0415 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0415 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0415 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0415 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0415 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0415 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0415 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0415 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0415 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0415 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0415 http://refhub.elsevier.com/S2530-0644(17)30083-4/sbref0415 dx.doi.org/10.1098/rspb.2013.2397 dx.doi.org/10.1111/j.1365-2656.2011.01855.x dx.doi.org/10.1038/30918 dx.doi.org/10.1890/11-0200.1 dx.doi.org/10.1016/S0006-3207(97)00179-1 dx.doi.org/10.1073/pnas.1408471111 Rewilding ecological communities and rewiring ecological networks Introduction Biotic interactions and rewilding success A network approach for rewilding Challenges Concluding remarks Funding Acknowledgments References