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Abstract 

Meneguette, M., Chawla-Numerov method revisited, Journal of Computational and Applied Mathematics 36 
(1991) 247-250. 

The well-known two-step fourth-order Numerov method was shown to have better interval of periodicity when 
made explicit, see Chawla (1984). It is readily verifiable that the improved method still has phase-lag of order 4. 
We suggest a slight modification from which linear problems could benefit. Phase-lag of any order can be 
achieved, but only order 6 is derived. 

Keywork Chawla-Numerov method, higher derivatives and phase-lag, periodic second-order initial-value 
problems. 

The Numerov method 

Y n-+2 - 2Y,+i +Y, = S2(f,+2 + lOf,,l +f,) (1) 

is the optimal two-step method of the Stormer-Cowell family for solving the initial problem 

Y”=fk Y), Yo =Y(-%A Yd ‘Y’(Xo)- 

This method is fourth order and has (0, 6) as interval of periodic stability [4, Chapter 91. Its 
local truncation error LTE is given by 

LTE = &h6y,‘6!i + 0( h’). 

The stability and phase-lag can be derived by applying the method to the test equation 

y”= -x2y, x E R,. (2) 
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Solving (2) by (1) we obtain, for H2 = (Xh)2, 

Y n+2 
_ 2A(H2) 

2Yn+l +Yn = 0, 
B(H > 

where 

A(H’)=l-&H2 and B(H2) = 1 + &H’. 

Periodicity holds as long as the characteristic 
unit circle. That is so for H2 E (0, 6). 

The phase-lag analysis, for two-step methods, 

4H2) 
BW) 

=l-;H2+$,H4-&H’+ 

with 

H2 H4 H6 
cos H=l-2+41-6r+ . . . . 

(3) 

polynomial associated with (3) has zeros on the 

can be shown only to require the comparison of 

. . . 3 

(4) 
Clearly the order of phase-lag is 4, the actual phase-lag being H4/480. It is surprising that 

phase analysis has never been done in this way before; for example, in [2,5] a complicated 
tangent expansion is used. 

Chawla [l] improved (1) by making it explicit, that is, he replaced fn+2 by f,+2 =f(~,+~, j,,,), 
where 

u,+2 = 2Yn+, -Y, + h2fn+,, (5) 
whose 

LTE = &h4y,‘“+‘I + 0( h’). 

Hence the LTE of the new formula is 

h6 af h6 
- ,,,Y,‘“!, + -(x,+2, Yn+,)~Yt$ + O(h7). 

aY 

The explicit method applied to (2) leads to (3) with 

B(H2)=1 and A(H’)=l-q+$, 

which again imposes order 4, but the phase-lag now is H4/6!. However, the interval of 
periodicity is enlarged to H2 E (0, 12) [l]. 

Although less attractive to nonlinear problems, incorporation of higher derivatives in (5) 
provides phase-lag of any order; as an illustration order 6 is derived. No major difficulty is, 
however, imposed by linear problems as for instance from semidiscretisation of some hyperbolic 
problems. 

Let Y,,+~ be calculated from 

Yn+2 = 2Yn+I -Y, + h2fn+, + 6h4f,‘:‘u 

Y n+2 - 2Yn+I +Y, = ikh2( fn+2 + lOfn+l +fn>, 
with fn+2 as before and 

(6) 

d2 f,‘:‘, := - 
dx f( 2 

x n+l, Yn+l ). 
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The error constant in our yn+z is l/20, therefore slightly smaller than that of Chawla’s. This is 
also reflected in the LTE of (6), which becomes 

h6 af h6 _- 
24()yn(6!1+ -(x,+2, Y,+2)mY,‘% + O(h’)* 

aY 

Applying (6) to (2) we obtain (3) with 

B(H*)=l and A(I7*)=1--$+$-$, 

which gives rise, by comparison with (4), to phase-lag H6/8!. Higher orders can be achieved by 
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Fig. 1. 1: Numerov; 2: Chawla-Numerov; 3: phase-lag 6; 4: phase-lag 8. 
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using higher derivatives with coefficients to match the cos H expansion, that is, the predicted 
value y,, +z is given by 

L 

j,,+z = ~Y,,+I -Yn +h2fn+l + C h*j+*Yj dX2j d2’ f(x n+l, Yn+A 
;=1 

where y, = 4!/(2j + 4)! and L is a positive integer. 

Remark. A fourth-order explicit method with phase-lag of order 6 and similar periodicity 
characteristics as in (6) was presented in [3]. 

The interval of periodicity is calculated from 1 A( H2)/B( H2) 1 -c 1, therefore a straightfor- 
ward search followed by a bisection computation provides (0, 7.57) as the interval for (6). 
Although this is a smaller interval, it is still reasonably large. However, if the fourth total 
derivative of f is also incorporated in (6), the new method has the same LTE (7); the phase-lag 
becomes H’/lO! and the interval of periodicity is (0, 21.48121). Figure 1 gives the behaviour of 
A( H2)/B( H2) against H2 for the various methods. 
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