1 UNESP – Universidade Estadual Paulista “Júlio de Mesquita Filho” Faculdade de Odontologia de Araraquara Sâmara Cruz Tfaile Corbi Terapia fotodinâmica com ftalocianina de zinco tetracarboxi-N-metilglucamina na doença periodontal induzida em ratos Araraquara 2017 1 UNESP – Universidade Estadual Paulista “Júlio de Mesquita Filho” Faculdade de Odontologia de Araraquara Sâmara Cruz Tfaile Corbi Terapia fotodinâmica com ftalocianina de zinco tetracarboxi-N-metilglucamina na doença periodontal induzida em ratos Tese apresentada à Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Araraquara para obtenção do título de Doutor em Odontologia, na Área de Periodontia. Orientadora: Profa. Dra. Rosemary Adriana Chiérici Marcantonio Araraquara 2017 Corbi, Sâmara Cruz Tfaile Terapia fotodinâmica com ftalocianina de zinco tetracarboxi- N-metilglucamina na doença periodontal induzida em ratos / Sâmara Cruz Tfaile Corbi.-- Araraquara: [s.n.], 2017 84 f. ; 30 cm. Tese (Doutorado em Odontologia) – Universidade Estadual Paulista, Faculdade de Odontologia Orientadora: Profa. Dra. Rosemary Adriana Chiérici Marcantonio 1. Doenças periodontais 2. Fotoquimioterapia 3. Microtomografia por raio-X I. Título Ficha catalográfica elaborada pela Bibliotecária Ana Cristina Jorge, CRB-8/5036 Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araraquara Serviço Técnico de Biblioteca e Documentação 2 Sâmara Cruz Tfaile Corbi Terapia fotodinâmica com ftalocianina de zinco tetracarboxi-N-metilglucamina na doença periodontal induzida em ratos Comissão Julgadora Tese para obtenção do grau de Doutor em Periodontia Presidente e Orientador: Profa. Dra. Rosemary Adriana Chiérici Marcantonio 2º Examinador: Prof. Dr. Joni Augusto Cirelli 3º Examinador: Profa. Dra. Raquel Mantuaneli Scarel-Caminaga 4º Examinador: Prof. Dr. Michel Reis Messora 5º Examinador: Profa. Dra. Chaine Pavone Araraquara, 07 de Dezembro de 2017 3 DADOS CURRICULARES Sâmara Cruz Tfaile Corbi NASCIMENTO 10 de Outubro de 1986, Araraquara/SP FILIAÇÃO Sálua Cruz Tfaile Jeferson Luis Corbi 2007/2011 Curso de Graduação em Odontologia pela Faculdade de Odontologia de Araraquara – UNESP 2012/2014 Curso de Pós-Graduação em Odontologia, área de concentração em Periodontia, nível de Mestrado, na Faculdade de Odontologia de Araraquara – UNESP 2014/2017 Curso de Pós-Graduação em Odontologia, área de concentração em Periodontia, nível de Doutorado, na Faculdade de Odontologia de Araraquara – UNESP 4 Dedico este trabalho aos meus pais Sálua e Jeferson e à minha irmã Sâmia, pela inspiração de todo dia e a vontade de vencer na vida. 5 Agradeço primeiramente a Deus, por colocar pessoas certas e especiais na minha vida. Pela sabedoria, força e amparo. Aos meus pais Sálua e Jeferson, que me proporcionaram uma vida digna, onde eu pudesse crescer, acreditando que tudo é possível, desde que sejamos honestos, íntegros e de caráter e tendo a convicção de que desistir nunca seja uma ação contínua em nossas vidas; que sonhar e concretizar os sonhos só dependerá da nossa vontade. Em especial, agradeço minha mãe por ser um exemplo de vida, guerreira e batalhadora; que me mostra sempre os melhores caminhos, que me dá os conselhos certos, que me ensina a ser sensata e que diariamente me faz perceber quão abençoada e privilegiada eu sou. À minha irmã Sâmia, pelo incessante estímulo, incentivo, exemplo, experiência, enorme compreensão e companheirismo, com quem compartilhei todos os momentos e que tem sido uma constante benção em minha vida. À amiga e minha orientadora profa. Adriana Marcantonio, a quem dedico admiração, gratidão e respeito; quem me ensinou os primeiros passos da pesquisa científica. Pela influência, direcionamento, grande amizade, apoio e eterna paciência. E por compartilhar comigo seu tempo e conhecimento. À minha Tia Salma (in memorian), que em vida sempre apoiou as minhas decisões, me incentivou a fazer tudo o que eu tinha vontade, mostrou os caminhos do bem e me ensinou que bondade e caridade podem vir de pequenos gestos. Agradeço por compartilhar comigo tantos sonhos, conversas, conselhos, tempo e risadas. Sinto muito sua falta. 6 Agradeço aos meus familiares, em especial aos meus avós Aparecida e Geraldo e, minha prima Sabrina Frasnelli e minha Tia Samira, por entenderem minha ausência, falta de tempo e as visitas rápidas. Pelo apoio de sempre e o incentivo de continuar meu caminho com força de vontade e fé no futuro. Á minha amiga querida Livia Finoti, a quem tenho grande admiração e apreço. Pessoa única, com coração imenso, a irmã mais nova que eu não tive! Sempre disposta a me ajudar com paciência e entusiasmo. Me ensinou coisas da vida e compartilhou muitos conhecimentos na pós-graduação. Me auxiliou na execução da metodologia da análise radiográfica tridimensional do estudo 2, juntamente com a amiga Ane Polly, que prontamente me socorreu com soluções certeiras para o desenvolvimento da avaliação. Aos meus amigos do Laboratório de Genética Molecular: Sâmia Corbi, Livia Finoti, Suzane Pigossi, Rafael Nepomuceno, Giovana Anovazzi, Romerito Lins, Guilherme Braido, Fernanda Coelho, profa. Raquel Caminaga e profa. Ticiana Capote pelos momentos de diversão, alegria, risos e descontração. 7 Aos meus amigos de Doutorado: Paula Macedo, Jackeline Tsurumaki, Cássio Rocha, Fernanda Florian, Vinícius Paiva, Adriana Cabrera, Tiago Fonseca, Lauriê Garcia, Patricia Maquera, Lélis Nícoli e Elton Pichotano, por todos os momentos de aprendizados que passamos juntos. Aos mestres e amigos: Rubens Spin-Neto, pelos ensinamentos desde minha iniciação científica e a quem tenho grande admiração e Guilherme Oliveira, pela paciência, explicações, dicas e por sempre estar acessível e à disposição para tirar dúvidas e sugerir ideias. Aos meus amigos do Convescote: Marina Manduca, Alessandro Alavarce, Tainara Alves, Aline dos Santos, Aylan Meneghini, Adriano Felicio, Bruna Bolsoni, Maria Angélica, Fernando Pavaneli e Paulo Zaccaro, pelas tardes de brincadeiras, jogos, gargalhadas e muito conhecimento inútil. Às minhas amigas do colegial: Mariana Rozatto e Michele Valila, pela amizade de sempre, apoio, conselhos, descobertas, cumplicidade e simplesmente por estarem na minha vida após tantos anos. 8 Aos amigos e funcionários que me ajudaram na realização deste trabalho: Mikail, no trabalho no biotério; Luana, no escaneamento das imagens do micro-CT; Claudinha e Leandro, pela enorme paciência nos procedimentos laboratoriais; Isa e Suleima na organização e funcionamento das clínicas de Periodontia. E também a Thelma e Toninho. À Faculdade de Odontologia de Araraquara (UNESP), na pessoa de sua Diretora, Profa. Dra. Elaine Maria Sgavioli Massucato, e do Vice-Diretor, Prof. Dr. Edson Alves de Campos, pelas condições oferecidas para a realização desta pesquisa. À profa. Janice Rodrigues Perussi, ao prof. Anderson Orzari Ribeiro e Cláudia Bernal, que sintetizaram e cederam o fotossensibilizador ftalocianina de zinco tetracarboxi-N-metilglucamina utilizado neste trabalho. Ao Coordenador atual do Programa de Pós-Graduação em Odontologia, Área de Periodontia, Prof. Dr. Joni Augusto Cirelli e ao anterior Prof. Dr. Carlos Rossa Jr. e a todos os docentes da disciplina de Periodontia, pela excelente formação, dedicação, competência e empenho em suas atividades. 9 Aos funcionários da Seção de Pós-Graduação, José Alexandre e Cristiano, pela gentileza, paciência e por sempre solucionarem dúvidas! Aos funcionários da Biblioteca, Ceres, Marley, Eliane, Maria Inês, Ana Cristina, Denise, Laudicélia e Maria Aparecida pela atenção e correção desta tese. À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES, por conceder bolsa de estudos e à Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP, pelo auxílio pesquisa e pela utilização do equipamento de micrótomografo computadorizado nesta faculdade, processo: 2009/54080-0. MUITO OBRIGADA! 10 “Passarinho quando aprende a voar, sabe mais sobre coragem, que de vôo!” (Autor Desconhecido) 11 Corbi SCT. Terapia fotodinâmica com ftalocianina de zinco tetracarboxi-N- metilglucamina na doença periodontal induzida em ratos [Tese de Doutorado]. Araraquara: Faculdade de Odontologia da UNESP; 2017. RESUMO A Terapia Fotodinâmica Antimicrobiana (Antimicrobial Photodynamic Therapy – aPDT), tem sido utilizada como um tratamento complementar na doença periodontal (DP). Ela combina um fotossensibilizador (FS) com uma fonte de luz que induz a produção de espécies reativas de oxigênio que elimina células microbianas. O objetivo deste trabalho foi avaliar, in vivo, os efeitos da aPDT (com o FS ftalocianina de zinco tetracarboxi-N-metilglucamina – 10µg/mL e luz LED vermelho – 655mn, 0,45W de potência), coadjuvante a Raspagem e Alisamento Radicular (RAR) e como monoterapia, além de verificar as respostas e alterações teciduais da DP induzida em ratos, pelas avaliações: microtomográfica, histométrica, estereométrica e histológica. Ligaduras foram inseridas nos sulcos dos segundos molares superiores para indução da DP. No Estudo 1, as ligaduras permaneceram por 15 dias e foram removidas para aplicar os tratamentos e no Estudo 2, as ligaduras foram colocadas por 7 dias e continuaram em posição por todo o experimento. 40 animais foram utilizados no Estudo 1 e distribuídos em 4 grupos: DP (Somente indução da doença, sem tratamento); RAR (Indução e tratamento básico periodontal); aPDT (Indução e aplicação da aPDT – FS ftalocianina de zinco tetracarboxi-N-metilglucamina e luz LED vermelho); RAR+aPDT (Indução, tratamento básico periodontal e aplicação da aPDT). 42 animais foram utilizados no Estudo 2 e divididos também em 4 grupos: FS (Tratamento somente com a ftalocianina de zinco tetracarboxi-N-metilglucamina); Luz (Tratamento somente com irradiação de luz LED vermelha); aPDT (Tratamento com a terapia fotodinâmica – FS+Luz) E DP (Indução da doença, sem tratamento). No Estudo 1, um dia após a remoção das ligaduras, foi aplicado os tratamentos e os animais foram eutanasiados nos períodos de 7 e 30 dias. No estudo 2, os animais receberam a aplicação das terapias e foram eutanasiados nos períodos de 7 e 15 dias. Para ambos os estudos, foi aplicado o teste paramétrico ANOVA one way, seguida do pós-teste de Tukey. No Estudo 1: na histometria, não foram encontradas diferenças estatísticas; a análise microtomográfica mostrou diferenças significantes nos dois períodos entre o grupo DP e RAR+aPDT e em 7 dias para DP e aPDT na região de furca. Nas proximais não houve diferenças significantes e na histologia, mostrou que não houve danos aos tecidos. No Estudo 2, na 12 análise histométrica e radiográfica tridimensional, os resultados não mostraram diferenças estatisticamente significantes na região de furca e nas regiões interproximais, o perfil inflamatório demonstrou uma tendência a apresentar menor quantidade de células inflamatórias no grupo aPDT em 7 dias e na análise histológica não houve diferenças entre os grupos, indicando também que as terapias não causaram danos aos tecidos. Pode-se concluir que a aPDTcom ftalocianina de zinco tetracarboxi-N- metilglucamina foi efetiva no controle de perda óssea em DP induzida em ratos e que a aplicação da aPDT (com os componentes como monoterapias) e com a preservação da ligadura, favoreceu a permanência das bactérias no local e inibiu a ação dos tratamentos. Palavras-chave: Doenças periodontais. Fotoquimioterapia. Microtomografia por raio- X. 13 Corbi SCT. Photodynamic therapy with zinc tetracarboxy-N-metylglucamine phthalocyanine in induced periodontal disease in rats [Tese de Doutorado]. Araraquara: Faculdade de Odontologia da UNESP; 2017. ABSTRACT Antimicrobial Photodynamic Therapy (PDT) is a minimally invasive method consisting in the application of a photosensitive dye, which is subsequently stimulated by a light source and reacts with oxygen, producing reactive species. The aim of this study was to evaluate in vivo, the aPDT effects (with the PS zinc tetracarboxy-N-metylglucamine phthalocyanine 10µg/mL, and red LED light with 655nm), as adjuvant treatment to Scaling Root and Planing (SRP) and as monotherapy and verify the responses and tissue changes after aPDT application in PD-induced rats by microtomographic, histometric, stereometric and histological evaluations. Ligatures were placed around the second maxillary molars for PD induction. In Study 1, the ligatures were placed for 15 days and then they were removed. On the following day the treatments were performed. In Study 2, the ligatures were placed for 7 days and remained in position throughout the periods. Forty animals were used in Study 1 and they were divided into 4 groups: PD (disease induction only, without treatment); SRP (induction and basic periodontal treatment); PDT (Induction and application of photodynamic therapy); SRP+PDT (induction, application of photodynamic therapy and basic periodontal treatment). Forty-two animals were used in Study 2 and they divided into 4 groups: PS (Treatment with zinc tetracarboxy-N-metylglucamine phthalocyanine only); Light (Treatment with red LED light irradiation only); aPDT (Treatment with photodynamic therapy – PS + Light) and PD (Periodontal disease induction, without treatment). In Study 1, the animals were euthanized after 7 and 30 days of treatment. In Study 2, the therapies were applied at zero period and the animals were euthanized at 7 and 15 days. For both studies, one- way ANOVA parametric test was applied, followed by Tukey’s post-test. In Study 1, concerning histometry data, no statistical differences were observed between groups. The microtomographic analysis indicated significant differences in the two periods for the PD and SRP+PDT groups and, at 7 days, for the PD and PDT groups in the furcation area. No significant differences the interproximal regions were observed. Regarding the histological analyses, no tissue damage was observed. In Study 2, the three-dimensional radiographic and histometric analyses revealed no statistically 14 different results for the furcation and interproximal regions. The inflammatory profile presented a trend of lower amounts of inflammatory cells in the aPDT group at 7 days, while the histological analysis indicated no significant differences between the groups, indicating that the therapies did not cause tissue damage. Thus, these data indicate that PDT using zinc tetracarboxy-N-metylglucamine phthalocyanine was effective in maintaining bone loss in PD-induced in rats, although further studies are required to further elucidate PDT effects and the application of aPDT and its components as monotherapies in PD-induced in rats with the preservation of the ligatures, favored in situ bacteria permanence and inhibited treatment action. Keywords: Periodontal disease. Photochemotherapy. Computadorized microtomography. 15 SUMÁRIO 1 INTRODUÇÃO.........................................................................16 2 PROPOSIÇÃO..........................................................................24 3 PUBLICAÇÕES........................................................................25 3.1 Publicação 1...............................................................................25 3.2 Publicação 2...............................................................................42 4 CONCLUSÃO...........................................................................65 REFERÊNCIAS........................................................................66 APÊNDICE................................................................................72 Apêndice A – Material e Método.............................................72 ANEXO......................................................................................83 Anexo A – Certificado do Comitê de Ética.............................83 Anexo B – Documentos Comprobatórios................................84 16 1 INTRODUÇÃO A Doença Periodontal (DP) é uma doença multifatorial, de caráter inflamatório, que acomete os tecidos de suporte do dente e caracteriza-se por inflamação gengival, perda do nível de inserção e reabsorção do osso alveolar (American et al.2, 2001; Armitage4, 2004). O fator etiológico primário da DP é a presença de microrganismos organizados em biofilmes que colonizam a superfície dos dentes. O biofilme é uma estrutura complexa composta por microcolônias de bactérias impregnadas em uma matrix extracelular que promove proteção celular e facilita a aderência aos dentes (Socransky, Haffajee64, 2002; Socransky, Haffajee65, 1991). O padrão ouro no tratamento em Periodontia é a Raspagem e Alisamento Radicular (RAR), também conhecido como tratamento básico periodontal, onde a remoção mecânica do biofilme e do cálculo é realizada por um profissional em conjunto com o controle de placa feito pelo paciente (Tagge et al.72, 1975). No entanto, em alguns casos, o debridamento mecânico pode ser falho ao remover alguns organismos patogênicos, seja por sua localização no tecido subgengival ou locais de difícil acesso, como regiões de furca, bolsas periodontais profundas e anatomias dentárias incomuns (Slots61, 2002; Slots, Ting62, 2002). Bonito et al.7 (2005), mostraram que o tratamento básico periodontal pode não remover completamente as bactérias patogênicas. Além disso, a RAR isolada, reduz temporariamente a infecção bacteriana e pode resultar a um retorno aos níveis de pré-tratamento em menos de duas semanas (Adriaens et al.1, 1988; Giuliana et al.23, 1997). Alguns pacientes continuam apresentando destruição do tecido periodontal após a realização da RAR. Estes pacientes, frequentemente, têm fatores de risco associados, tal como fumo, diabetes, condições hereditárias e doenças sistêmicas, que são acompanhadas por infecção persistente de uma ou mais bactérias periodontais patogênicas (Galler19, 2000; Grossi et al.26, 1994; Kuo et al.33, 2008). Assim, para contornar esta temática, o uso de antibióticos sistêmicos tem sido indicado. No entanto, a antibioticoterapia tem diminuído ao longo dos anos por causar efeitos colaterais, como problemas gastro-intestinais e o aumento de resistência bacteriana a estes medicamentos, já que em alguns casos, os pacientes abandonam o tratamento antes do término, facilitando assim, a seleção bacteriana (Slots61, 2002; Walker76, 1996). Na última década, as limitações da terapia periodontal convencional e a 17 problemática da administração de antibióticos, resultaram nas tentativas de introduzir a Terapia Fotodinâmica ou Terapia Fotodinâmica Antimicrobiana (do inglês, Antimicrobial Photodynamic Therapy – aPDT), como um tratamento adjunto à periodontite crônica (Braun et al.9, 2008; de Almeida et al.13, 2008; de Almeida et al.15, 2007; Meisel, Kocher41, 2005). Além disso, a aPDT tem sido confirmada como sendo uma terapia antimicrobiana não antibiótica (Hamblin, Hasan27, 2004; Wilson77, 1993). A aPDT combina luz visível de baixa intensidade (LASER/LED) e um fotossensibilizador (FS), corante não tóxico e fotossensível, que na presença de oxigênio, produz Espécies Reativas de Oxigênio (EROs) citotóxicos, tal como oxigênio singlete (Hamblin, Hasan27, 2004; Huang et al.29, 2012), sendo tóxico para bactérias. Assim resumidamente, a aPDT utiliza oxigênio singlete e radicais livres produzidos pelo FS ativado por luz, para eliminar bactérias. O processo fotoquímico é iniciado por uma fonte de luz de baixa intensidade com um comprimento de onda adequado e, desse modo, o FS no estado fundamental absorve luz e resulta em um estado singlete que pode perder energia por fluorescência para um estado triplete com longevidade. Este ultimo estágio leva à uma reação fotoquímica, que induz oxigênio singlete, radicais livres e superóxidos, que são citotóxicos, a causar a morte bacteriana (Kharkwal et al.30, 2011), como ilustra a Figura 1. Curiosamente, enquanto a aPDT pode eliminar bactérias resistente à antibióticos (Maisch37, 2009), não há informações sobre microrganismos desenvolvendo resistência a aPDT (Giuliani et al.24, 2010). Figura 1 – Mecanismo fotoquímico da Terapia Fotodinâmica. Fonte: Elaboração própria. Adaptado de Kikuchi et al.31(2015) para o português. 18 Vários estudos tem mostrado que bactérias periodontopatogênicas são susceptíveis à aPDT em culturas planctônicas (Bhatti et al.5, 2002; Bhatti et al.6, 1997; Chan, Lai11, 2003; Klepac-Ceraj et al.32, 2011; Matevski et al.39, 2003; Nagahara et al.45, 2013; Soukos et al.70, 1998; Topaloglu et al.74, 2013; Voos et al.75, 2014; Wilson et al.81, 1993) e biofilms (Klepac-Ceraj et al.32, 2011; Voos et al.75, 2014; Wilson et al.80, 1992; Wood et al.83, 1999) utilizando como FS azul de metileno (Chan, Lai11, 2003; Dobson, Wilson18, 1992; Wilson et al.81, 1993), azul de metileno com nanopartículas (Klepac- Ceraj et al.32, 2011), azul de toluidina O (Bhatti et al.5, 2002; Bhatti et al.6, 1997; Dobson, Wilson18, 1992; Matevski et al.39, 2003; Wilson et al.81, 1993), ftalocianina (Dobson, Wilson18, 1992; Wood et al.83, 1999), hematoporfirina HCl (Dobson, Wilson18, 1992), hematoporfirina ester (Dobson, Wilson18, 1992), conjugado de poli-L- lisina com o FS clorina (e6) (Soukos et al.70, 1998), indocianina verde (Topaloglu et al.74, 2013), indocianina com nanoesferas (Nagahara et al.45, 2013) e safranina O (Voos et al.75, 2014). Porém, outros estudos tem demonstrado destruição incompleta de patógenos orais (Muller et al.44, 2007; O'Neill et al.47, 2002; Qin et al.52, 2008; Soukos et al.66, 2003; Soukos et al.67, 2000). A utilização de FS em aPDT, como porfirinas, ftalocianinas e fenotiazínicos (azul de metileno e azul de toluidina O) podem afetar tanto bactérias Gram-positivas como Gram-negativas por carregarem uma carga positiva (Merchat et al.42, 1996; Merchat et al.43, 1996; Wilson et al.78, 1995), sugerindo que a aPDT pode ser útil para aplicações orais, especialmente para o tratamento periodontal (Passanezi et al.50, 2015; Sgolastra et al.57, 2013; Smiley et al.63, 2015). Bactérias Gram-negativas são amplamente resistentes à muitos FS utilizados na aPDT (Malik et al.38, 1992), no entanto, algumas espécies, tal como bactérias pigmentadas com cor preta, contém FS naturais e são muito susceptíveis a aPDT. Foi demonstrado que o comprimento de onda variando de 380 a 520nm induz uma redução tripla de crescimento de Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, e Prevotella melaninogenica em amostras de biofilme dental obtidas de pacientes com periodontite crônica (Soukos et al.68, 2005). Além de estudos em bactérias, os efeitos da aPDT têm sido avaliados também por vários modelos de ligadura em ratos, com indução de periondontite experimental (Carvalho et al.10, 2011; de Almeida et al.15, 2007; Prates et al.51, 2011). A ligadura leva ao acúmulo de biofilme, resultando em perda de inserção e e reabsorção de osso alveolar em 7 dias (Graves et al.25, 2008). Resultados favoráveis com aPDT como uma 19 terapia adjuvante à RAR têm sido relatados em periodontite experimental em ratos (de Almeida et al.13, 2008; de Almeida et al.14, 2008; de Almeida et al.15, 2007; Garcia et al.22, 2014). A progressão da periodontite experimental foi substancialmente reduzida por aPDT em análises radiográfica e histológica (de Almeida et al.15, 2007). Resultados positivos semelhantes também foram obtidos em áreas de furca (de Almeida et al.14, 2008; Garcia et al.21, 2013). Os ratos tratados com aPDT exibiram um número reduzido de células positivas ao ácido fosfatase resistente a tartarato, fraca imunoreatividade ao receptor-ativador do fator nuclear-κB, e forte imunoreactividade da osteoprotegerina (Garcia et al.20, 2013; Garcia et al.22, 2014). A eficácia da aPDT também foi confirmada na infecção periodontal em um modelo de cão da raça Beagle (de Oliveira et al.17, 2011; Sigusch et al.59, 2005). A melhora na cicatrização periodontal, associada à organização do colágeno, infiltração de células inflamatórias e perda óssea, com a adição da aPDT também tem sido relatada (Prates et al.51, 2011). Um receio para a aplicação clínica da aPDT é a potencial fotocitotoxicidade para as células hospedeiras. Contudo, foi demonstrado que as doses de luz necessárias para eliminar as bactérias na aPDT são muito mais baixas do que aquelas que são tóxicas para queratinócitos e fibroblastos (Soukos et al.69, 1996). De fato, alguns efeitos benéficos da PDT foram relatados em células do ligamento periodontal, como inibição de mediadores inflamatórios, favorecendo a quimiotaxia celular e a promoção da vasodilatação local e a angiogênese (Houreld, Abrahamse28, 2007). Em termos de modulação da imunidade inata, a PDT atua sobre neutrófilos e promove migração (Tanaka et al.73, 2012). A PDT também inativa citocinas derivadas do hospedeiro, como o fator de necrose tumoral-α e a interleucina-1β, para inibir a ativação da E-selectina em células endoteliais (Braham et al.8, 2009). A PDT afeta as células apresentadoras de antígenos, como macrófagos e células de Langerhans, reduzindo sua capacidade de ativar os linfócitos T e enfraquecendo a resposta inflamatória (Seguier et al.56, 2010). Duas vantagens principais são frequentemente citadas para a aPDT em comparação à outros tratamentos periodontais: Primeiro: na aPDT, um FS é colocado diretamente na bolsa periodontal e pode ser ativado através de uma fibra óptica colocada no mesmo local, o que ajuda a evitar danos aos tecidos circundantes (Qin et al.53, 2008). Segundo: os efeitos da aPDT são iniciados pela exposição à uma fonte de luz e deste modo, as bactérias podem ser erradicadas em um curto período de tempo. Assim o desenvolvimento de resistência bacteriana é improvável (Maisch36, 2007). Importante ressaltar que a erradicação de biofilmes e a inativação de citocinas 20 inflamatórias por aPDT provou ser eficaz e segura (Kikuchi et al.31, 2015). Nas últimas décadas, foram desenvolvidos compostos considerados como a segunda geração de corantes, com propósitos diagnóstico e terapêutico. Dentre eles, está as ftalocianinas, que são corantes sintéticos semelhantes às porfirinas e estruturalmente consideradas azaporfirinas (Spikes71, 1986) e tem sido estudadas e avaliadas (Longo et al.35, 2012; Nunes et al.46, 2004; Ribeiro et al.54, 2013). Estes compostos têm uma banda de absorção no espectro electromagnético que varia de 650 a 680nm, o que permite uma maior penetração da luz nos tecidos (Nunes et al.46, 2004) e as suas propriedades fotofísicas dependem da composição, particularmente do íon metálico central. Entre as ftalocianinas, a ftalocianina de cloro-alumínio tem sido sugerida por possuir propriedades fotofísicas favoráveis para uso em aPDT, uma vez que produz altas quantidades de oxigênio singlete (Nunes et al.46, 2004). A eficácia deste fotossensibilizador associado à luz LED foi comprovada em um estudo in vitro que avaliou o potencial fotodinâmico da ftalocianina de cloro-alumínio diluída em nanoemulsão catiônica para inativar as culturas planctônicas e de biofilmes formados por Candida albicans (Ribeiro et al.54, 2013). Este FS foi também eficaz para a inativação de bactérias em pacientes com lesões cariosas (Longo et al.35, 2012). Outros estudos (Dobson, Wilson18, 1992; Oliveira et al.49, 2006; Sibata et al.58, 2004; Wilson, Dobson79, 1993; Wilson et al.81, 1993; Wilson, Pratten82, 1995) têm corroborado a eficiência das ftalocianinas como agentes fotossensíveis na eliminação de microrganismos periodontopatogênicos com uso em aPDT. E também, as ftalocianinas de zinco (FcZn) estão entre os sensibilizadores promissores deste grupo (Anholt, Moan3, 1992; Rosenthal55, 1991; Spikes71, 1986). A ftalocianina (Figura 2) é um macrociclo simétrico composto por quatro unidades iminoisoindol com uma cavidade central de tamanho suficiente para acomodar vários íons metálicos e, este metal central possui influência considerável em sua propriedade fotossensibilizadora (Figura 3) (Anholt, Moan3, 1992; Rosenthal55, 1991; Spikes71, 1986). O nome ftalocianina vem de uma combinação do prefixo phthal, originalmente do grego naphtha (óleo de rocha), para enfatizar a associação com seus vários precursores derivados do ácido ftálico, e o grego cyanine (azul) (Mckeown40, 1998). 21 Figura 2 – Estrutura química da ftalocianina. Fonte: Adaptado de de Melo16 (2014). Figura 3 – Estrutura química da ftalocianina acomodando o íon metálico zinco. Fonte: de Melo16 (2014). Um fato importante é quanto à hidrofobicidade que alguns fotossensibilizadores apresentam, pois essa propriedade em meio aquoso leva à auto-agregação e em muitos casos a uma subsequente precipitação, o que reduz drasticamente a capacidade do composto de gerar oxigênio singlete (Simplicio et al.60, 2002). Desse modo é necessário que o princípio fotoativo apresente-se solúvel em meio aquoso para possível aplicação clínica. Uma estratégia interessante para aumentar a solubilidade em meio aquoso de alguns FS envolve a formação de espécies supramoleculares hidrofílicas. Uma supramolécula é definida como uma espécie química constituída por duas ou mais moléculas unidas por interações intermoleculares. Nesse sentido a química supramolecular utiliza uma abordagem centrada na associação de moléculas, visando a obtenção de uma determinada propriedade ou funcionalidade (de Melo16, 2014). A meglumina, conhecida também como N-metilglucamina (Figura 4) é um aminocarboidrato derivado da glicose capaz de formar espécies supramoleculares 22 binárias hidrofílicas com compostos que possuam em sua estrutura átomos de hidrogênio ácidos(de Melo16, 2014). Figura 4 – Estrutura química da meglumina. Fonte: de Melo16 (2014). A formação dos compostos de meglumina envolve como condição uma reação ácido-base em que o hidrogênio ácido é transferido ao grupo amina do aminocarboidrato. Para viabilizar a formação de espécies supramoleculares entre a meglumina e as ftalocianinas, estas primeiramente são funcionalizadas com grupos carboxílicos como a ftalocianina de zinco tetracarboxilada (FcZnTc, Figura 5) (de Melo16, 2014). Figura 5 – Ftalocianina-Zn-tetracarboxilada. Fonte: de Melo16 (2014). Posteriormente à inserção dos grupos ácidos, a reação com o aminocarboidrato pode ser conduzida produzindo espécies mais solúveis em água. Esse procedimento permite a inserção de até quatro moléculas de meglumina como é observado na Figura 6 para a ftalocianina de zinco tetracarboxi-N-metilglucamina (FcZnTcG). A presença de vários grupos hidroxila na supramolécula fornece os sítios onde as ligações de hidrogênio são estabelecidas aumentando a hidrofilicidade das ftalocianinas (de Melo16, 2014). Zinc(tetracarboxy)phthalocyanine Zinc(tetracarboxy)phthalocyanine-N-methylglucamine 23 Figura 6 – Ftalocianina-Zn-tetracarboxi-N-metilglucamina. Fonte: de Melo16 (2014). O espectro de absorção das ftalocianinas em solução consiste de duas bandas principais centradas em torno de 350 nm e 670 nm. A Figura 7 ilustra o espectro de absorção molecular da ftalocianina de zinco tetracarboxilada. Figura 7 – Espectro de absorção molecular da ftalocianina de zinco tetracarboxilada em DMSO. Fonte: de Melo16 (2014). Na literatura atual, há uma considerável quantidade de estudos em humanos e animais avaliando a aPDT com agentes fotossensibilizadores tradicionais (azul de metileno e azul de toluidina O), obtendo resutados satisfatórios utilizando diferentes metodologias. Os estudos não possuem padronização nos parâmetros de luz, dos tipos e concentrações dos fotossensibilizadores, tempos empregados, entre outros fatores que influenciam a ação da terapia. Alémd isso, existe uma escassez de estudos sobre corantes recém descobertos/descritos (como as ftalocianinas) e seu potencial na eliminação de microrganismos que mostra sua efetividade nas respostas e alterações teciduais da aplicação da aPDT na DP induzida em ratos. Zinc(tetracarboxy)phthalocyanine Zinc(tetracarboxy)phthalocyanine-N-methylglucamine 24 2 PROPOSIÇÃO Os objetivos deste estudo foram: Objetivos gerais Ambos os estudos tiveram como intuito observar perda óssea alveolar, verificar o grau de inflamação gengival e analisar características histológicas periodontais, utilizando o FS na sua forma mais solúvel, ftalocianina de zinco tetracarboxi-N-metilglucamina. Objetivos Específicos Publicação 1. Efeitos da aPDT como terapia associada ao tratamento da DP experimentalmente induzida em ratos. Publicação 2. Respostas e alterações teciduais utilizando os componentes da aPDT como monoterapias também na DP induzida. 25 3 PUBLICAÇÕES 3.1 Publicação 1 Evaluation of Antimicrobial Photodynamic Therapy Effects Using Phthalocyanine-Glucamine Photosensitizer as an Adjunct Therapy in the Treatment of Induced Periodontal Disease in Rats* Sâmara C. T. Corbi, Paula D. Macedo, Janice R. Perussi, Anderson O. Ribeiro, Rosemary A. C. Marcantonio *Artigo submetido à revista Archives of Oral Biology em 08/11/2017 (Anexo B) Manuscript ID: AOB-D-17-00667 26 Evaluation of Antimicrobial Photodynamic Therapy Effects Using Phthalocyanine-Glucamine Photosensitizer as an Adjunct Therapy in the Treatment of Induced Periodontal Disease in Rats Sâmara Cruz Tfaile Corbi (SCT, Corbi) – PhD student in Periodontics1; email: sa_tfaile@yahoo.com.br Paula Delello Macedo (Macedo, PD), PhD student in Periodontics1; email: paula_mac2@yahoo.com.br Janice Rodrigues Perussi (Perussi, JR), Associate Professor in Chemistry2; e-mail: janice@iqsc.usp.br Anderson Orzari Ribeiro (Ribeiro, AO), Adjunct Professor from UFABC3, email: anderson.ribeiro@ufabc.edu.br Rosemary Adriana Chiérici Marcantonio (Marcantonio, RAC), Associate Professor in Periodontics1; email: adriana@foar.unesp.br 1Sao Paulo State University (UNESP), School of Dentistry, Diagnosis and Surgery Department, Araraquara, SP, Brazil 2Sao Paulo University (USP), Chemistry and Molecular Physics Department, Sao Carlos, SP, Brazil 3Federal University of ABC (UFABC), Centre for Natural Sciences and Humanities, Santo Andre, SP, Brazil *Corresponding author: Rosemary Adriana C. Marcantonio, PhD Department of Diagnosis and Surgery Sao Paulo State University – School of Dentistry at Araraquara (UNESP) CEP 14801-903, Araraquara, SP, Brasil Tel: +55 16 3301-6376 E-mail: adriana@foar.unesp.br 27 ABSTRACT Antimicrobial Photodynamic Therapy (PDT) is a minimally invasive method consisting in the application of a photosensitive dye, which is subsequently stimulated by a light source and reacts with oxygen, producing reactive species. The aim of the present study was to evaluate in vivo tissue responses to PDT using phthalocyanine-glucamine and red LED light in the treatment of induced periodontal disease (PD) in rats, through microtomographic, histometric and histological evaluations. Ligatures were placed into the sulcus of the second maxilarry molars for PD induction. The animals were divided into 4 groups: PD (disease induction only, without treatment); SRP (induction and basic periodontal treatment); PDT (Induction and application of photodynamic therapy); SRP+PDT (induction, application of photodynamic therapy and basic periodontal treatment). The ligatures were removed after 15 days and treatments were performed the following day. The animals were euthanized after 7 and 30 days of treatment. As all data were normaly distributed (Kolmogorov-Smirnov), the parametric ANOVA test was applied, followed by the Tukey test. Concerning histometry data, no statistical differences were observed between groups. The microtomographic analysis indicated significant differences in the two periods for the PD and SRP+PDT groups and, at 7 days, for the PD and PDT groups in the furcation area. No significant differences the interproximal regions were observed. Regarding the histological analyses, no tissue damage was observed. These data indicate that PDT using phthalocyanine-glucamine was effective in maintaining bone loss in PD-induced in rats, although further studies are required to further elucidate PDT effects. Keywords: Periodontal diseases. Photochemotherapy. X-ray microtomography INTRODUCTION Periodontal disease (PD) is a multifactorial inflammatory disease that develops when the equilibrium between the host response and microbial challenge is altered (Andersen, Loebel, Hammond, & Wilson, 2007). This condition is clinically characterized by inflammation, bleeding on probing and pronounced loss of insertion, whose primary etiological factor is constituted by oral biofilm bacteria (de Almeida, Garcia, & Theodoro, 2006; de Almeida et al., 2007; Qin et al., 2008). Scaling Root and Planing (SRP) is aimed at the removal of this oral biofilm, enabling health reinstatement, tissue regeneration and lessening clinical signs of inflammation (Qin et al., 2008). However, in some cases, this therapy does not seem to be able to repair or maintain periodontal health, which may lead to the permanence or recolonization of microorganisms (Drisko, 1998). 28 Studies have proposed the use of local and systemic antibiotics associated with SRP to aid in bacterial combat (Vergani, Silva, Vinholis, & Marcantonio, 2004). However, the regular and indiscriminate use of these drugs can cause several side effects, in addition to possible bacterial resistance (de Almeida et al., 2006; de Almeida et al., 2007; Jori et al., 2006; Pfitzner, Sigusch, Albrecht, & Glockmann, 2004; Qin et al., 2008). Therefore, the relevance of a search for a new technique or therapy compatible with conventional mechanical treatments is clear, allowing for greater efficiency in periodontal treatment. Photodynamic Therapy (PDT), also called Antimicrobial Photodynamic Therapy (aPDT), because it affects microorganisms, is a new and thriving clinical treatment that basically employs the combination of the triad: oxygen, light source, and a photosensitizing agent (PS) (Maisch, 2007). Each of these isolated factors is not capable of causing damage, but, when combined, produce lethal cytotoxic agents that can selectively kill cells (Sharman, Allen, & van Lier, 1999). The mechanism of action of PDT occurs due to the excitation of a non-toxic photosensitive dye (PS) which, when irradiated by visible light at a frequency resonant with the level of optical absorption of said substance, transfers energy to the surrounding molecules, generally molecular oxygen (O2), and produces highly reactive species (ROS), such as free radicals and singlet oxygen and the latter, can modify the structures of plasma membranes or even DNA (Jori et al., 2006) and can also cause cell death through various mechanisms, including lipid peroxidation, inhibition of the enzymatic system, protein agglutination and reactions with other biological systems (Andersen et al., 2007). In periodontics, the success in eliminating microorganisms by PDT indicates that is as an adequate adjunct therapy in the fight against localized infections (Jori et al., 2006). In vitro (Klepac-Ceraj et al., 2011) and in vivo (Andersen et al., 2007; de Almeida et al., 2007; Qin et al., 2008; Sigusch, Pfitzner, Albrecht, & Glockmann, 2005) studies have analyzed PDT effects on both periodontopathogenic and non- periodontopathogenic bacteria exposed to several PS and different wavelengths, resulting in an effective antimicrobial action of up to 99%. Clinically, a reduction in pocket depth, clinical insertion level and bleeding has been observed, thus documenting the effectiveness of PDT as a adjunct therapy in the treatment of PD (Qin et al., 2008). However, despite the benefits of this technique, some studies reveal difficulties in reaching microorganisms located in the deeper layers of oral biofilms. Even so, PDT produces higher bacterial death when compared to the use of systemic antibiotics (Fontana et al., 2009). Phthalocyanines (FC) are a promising group of second generation *Para metodologia completa, ver Apêndice 1. #Aprovação do Comitê de Ética, ver Anexo A. 29 photosensitizers for PDT. They comprise organic compounds whose structure includes a ring formed by eight carbon atoms and eight nitrogen atoms joined by conjugated double bonds (Ryskova & Slezak, 2010). As a rule, FC display effective tissue penetration, since their most adequate light absorption region is between 600nm and 800nm (Ogunsipe et al., 2008). FC show high selectivity, low phototoxicity and are resistant to chemical or photochemical degradation (Garcia & Bentley, 2003). Their photophysical properties are strongly influenced by the presence and nature of the central metal ion, directly reflecting on the life time of the triplet excited state of metallophthalocyanines (Bonnet, 1995), providing a significant amount of singlet oxygen species that are able to remain in the triplet excited state for a longer period of time (Ryskova & Slezak, 2010). Scarce studies are available on PS and their potential in eliminating microorganisms, mainly in dentistry, when applying PDT in the treatment of PD, as well as their placement associated with conventional periodontal therapy. In this context, the aim of the present study was to evaluate in vivo tissue responses after PDT using a phthalocyanine-glucamine as an adjunct therapy in the treatment of PD-induced in rats by means of three-dimensional radiographic (µCT), histometric and histological analyses. MATERIAL AND METHODS* Ethics comittee This project was approved by the Ethics Committee on Animal Experimentation (No. 07/2012)#. Samples Forty rats (Rattus norvegicus) of the albinus variation, Holtzman, adults, weighing between 300-330g were used. The animals were kept in plastic boxes, 5 animals per box, and treated with water and food ad libitum before and during the whole experimental period. The animals were maintained in an environment with controlled light, humidity and temperature. Periodontal disease induction The animals were anesthetized with a combination of ketamine (ketamine hydrochloride - Francotar 3% - Virbac do Brasil Ind. e Com. Ltda.) and xylazine (xylazine hydrochloride - Virbaxyl 2% - Virbac do Brasil Ind. e Com. Ltda.) at 0,08mL/100g and 0,04mL/100g body weight, respectively. The PD-induced hemimaxilae were chosen randomly (right or left). The ligatures were inserted in the 30 subgingival region, into the sulcus and around the second maxillary molars using no. 24 cotton threads. The ligatures were removed after 15 days, and the treatments were performed one day after in each group (Figure 1). Photodynamic Therapy Photosensitizer preparation Phthalocyanine-glucamine was prepared from a stock solution of zinc- tetracarboxy-phthalocyanine at 1,1mg/mL in DMSO and subsequently diluted in phosphate buffered saline (pH=7.2) to a final concentration of 10µg/mL. Soon after the preparation, the PS was stored in light-protected poliproylene tubes maintained in a refrigerated environment until use. For application, a blunt tip syringe containing 0,2mL of the PS was inserted into the gingival sulcus. The solution was applied around the entire tooth and, after 10 minutes of incubation time, light irradiation was performed. Light source The light source used to activate the phthalocyanine-glucamine PS corresponded to a wavelength of 655 nm, 0,45W power, 0,47W/cm2 power density and 170,52J/cm2 dose (red LED, 11mm diameter, DMC Equipamentos Ltda, São Carlos, Brazil), coinciding with the maximum absorption band of phthalocyanine-glucamine. The LED light was placed on the occlusal surface of the teeth and irradiation was maintained for 6 minutes. Experimental groups On the day after ligatures removal, the animals were randomly divided and treated according to their group (5 animals/group/period): • PD Group (PD): disease induction only, without treatment. • Scaling Root and Planing Group (SRP): SRP performed with specific curettes (Gracey mine Five 5-6, HuFriedy). • Photodynamic Therapy Group (PDT): Application of the PS followed by LED application. • SRP+PDT Group (SRP+PDT): SRP (same as the SRP group) followed by PDT (same as the PDT group). The animals were euthanized with an anesthetic overdose at 7 and 30 days after the treatments. The hemimaxillae were removed and fixed in 4% paraformol for 48h. Subsequently, the samples were washed in running water for 24h and placed in 70% alcohol, where they remained until the computerized microtomograph scanning. 31 Three-dimensional Radiographic Analysis (µCT) The samples were scanned by means of X-ray beam scanning in a computerized microtomography system (Skyscan 1176, Aatselaar, Belgium, 2003). The parameters of the equipment were set as follows: Al 0.5mm filter; Voxel size: 17.48µm; Voltage 50KV and electric current 500µA. After scanning, the 3D images for each sample were obtained through the equipment software (NRecon 1.6.1.5 - SkyScan N. V., Belgium, 2003). The images were rotated and repositioned in a standard orientation the Dataviewer software (SkyScan 1176, Aartselaar, Belgium, 2003) and a contrast threshold (ranging from 59 to 255) was established to distinguish mineralized tissues using the CTan/CTvol software (Skyscan 1176, Aatselaar, Belgium, 2003). The regions of interest (ROI) were positioned by measuring 3 regions of the second maxillary molar; a 1.26x1.15mm2 furcation area and the mesial and distal proximal areas (1.26x0.56mm2) from the cement-enamel junction (Figure 2). The data were expressed as a percentage of volume of bone tissue of each region. Histological processing After scanning, the samples were placed in a 7% EDTA solution, pH 7,2 (Synth, São Paulo, Brazil), buffered with sodium phosphate for decalcification. Following laboratory procedures, the samples were then included in paraffin. Semi-serial sections were made along the axis of the tooth, at 4µm thickness. For each hemimaxillae, approximately 30 sections were obtained, divided into slides containing 3 sections each. Histometric analyses For this analysis, a blind and calibrated examiner (Pearsons’ Correlation, r=0.99) selected 2 slides from each hemimaxillae. The furcation area was delimited according to the methodology reported by da Silva et al., (2008). Measurements were taken using the ImageJ Launcher imaging software, version 1.48b (National Institutes of Health, USA), evaluating the following areas: • Furcation area: the area was defined, a 1000µm-zone under the furcation limited by the roots. Furcation and bone area were measured, thus obtaining the percentage of bone present in the furca region of each histological section. • Interproximal region (mesial and distal): a linear measurement of the cement- enamel junction up to the top of the bone crest was performed, thus obtaining bone loss values. 32 Histological analyses Using a DIASTAR (Leica Reichert & Jung products, Germany) optical microscope with 4,0-10,0-fold objective and 10 ocular magnifications, the images were captured and sent to a microcomputer with the aid of a DXC-1107A/107AP video camera (Sony Electronics Inc, Japan). The inflammatory reactions of the connective tissue, bone resorption processes and tissue neoformation in each experimental group were evaluated by an experienced, blind and calibrated examiner for the experimental groups. Statistical analyses The experimental data were tabulated using the Microsoft Excel for Mac 2011 software (Apple Inc, USA) and analyzed statistically with the aid of the GraphPad Prism 6.0 software (GraphPad Inc, USA). The data were evaluated applying the central point theorem, to verify if their arrangement respected a normal distribution, using the Kolmogorov-Smirnov test. As all data were normally distributed, the parametric ANOVA (One Way) test was applied to verify the existence of statistical differences between the groups. Tukey’s post-hoc test was subsequently applied, in order to detect differences among groups. For comparisons between the treatment periods, the ANOVA (Two Way) parametric test was applied. All tests were applied with a 95% confidence interval. RESULTS Three-dimensional radiographic analysis (µCT) The images of this analysis are displayed in Figure 3. Regarding the furcation analysis, a statistically significant difference was observed between the PD and PDT groups concerning the percentage of bone tissue volume in the furca region of the second maxilarry molars of the hemimaxillae treated within the 7-day period (*p <0.05), as well as between the PD and SRP+PDT groups (*p <0.05). During the 30-day period, a statistical difference between the PD and SRP+PDT groups was observed (&p<0.05). The PD group displayed a lower percentage of bone volume when compared to the experimental groups in both periods, indicating bone loss. These data are displayed in Figure 3.1. On the other hand, no statistically significant differences concerning the percentage of bone tissue volume was observed in the proximal analysis. These data are displayed in Figure 3.2. 33 Histological analyses In this analysis, a blind examiner (P.A.O.) evaluated the images and verified that the periodontal area of the animals of the PD group displayed several morphological alterations. At 7 days, an intense inflammatory process was observed in the interdental gingiva, which often appeared ulcerated; the gingival epithelium was adjacent to the surface of the acellular cement, in other words, located apically to the cement-enamel junction. A gradual but evident decrease in the inflammatory process was observed in subsequent periods. The SRP, PDT and SRP+PDT groups presented the same histological characteristics found in the PD group, but with additional migration of the epithelium, inflammatory processes, loss of the alveolar process and bone resorption in the furca region, albeit less pronounced. Thus, histological descriptions were similar for all experimental groups. The images illustrate the periodontal tissues of each treatment during the evaluated periods (Figure 4). Histometric analysis All data were statistically the same for the bone area in the furcation region (Figure 4.1) and for bone loss in the interproximal regions (Figure 4.2) of the second maxillary molars treated in the experimental groups. DISCUSSION The aim of this study was to evaluate in vivo tissue responses to PDT using the phthalocyanine-glucamine PS as an adjucant therapy in the treatment of PD-induced in rats. It is known that PDT action is related to the experimental model used, in this case, ligature-induced periodontitis in rats, which has been widely applied to investigate PDT effects on PD (de Almeida et al., 2007; Garcia et al., 2011; Qin et al., 2008). Since PD is a multifactorial and polymicrobial disease, ligature placement may be the most representative method for its induction for periodontal treatment evaluation (Gaspersic, Stiblar-Martincic, Osredkar, & Skaleric, 2003). The study conducted by Graves et al. (2008) demonstrated that the ligature model is simple, versatile and inexpensive, and, when applied to rats, allows for considerable information of the immune system, due to the availability of a wide range of genetically modified strains and immunochemistry and cellular reagents. In addition to the experimental model, the applied PS should also be evaluated, since the formation of aggregates between PS molecules can hinder the process of reactive oxygen species generation. Such aggregates tend to be formed as the concentration of the photosensitizing agent is increased or when the hydrophobic agent 34 is in an aqueous medium (da Silva et al., 2009). In the present study, a PS concentration that would be effective in PD treatment was used. Light irradiation time should also be taken into account when evaluating PDT effects. This concerns the maximum amount of light possible at the maximum absorption of the PS, without significant thermal effects. In this context, an efficient heat dissipation system is required, in order to minimize the thermal effects of the heat generated by the light source on the irradiated tissue and its surroundings. For this reason, a LED light was used. Finally, the availability of essential oxygen must also be considered, to obtain a successful therapy. The histological results observed herein indicated no differences between the groups in the evaluated periods, demonstrating that PDT did not cause tissue damage. Kaestner et al. (2003) applied zinc phthalocyanine to the skin of mice and demonstrated satisfactory responses regarding absorption, since the dye penetrates only to the epidermis, and not the dermal layers, which are rich in blood capillaries, in topical applications. Therefore, this dye should pose no risks regarding either photosensitivity or phototoxicity. de Almeida et al. (2007) evaluted the effects of PDT on the evolution of PD- induced in rats by histological and radiographical methods. The PDT group in that study was treated with methylene blue, irradiated with a low intensity laser and displayed lower bone loss compared to the control group at 5 and 15 days, with no statistical difference at 30 days. After 15 days, the histological results indicated a statistically significant difference in the extent of the inflammatory reaction in the gingival tissue. The authors concluded that PDT can, thus, reduce periodontal bone destruction in a transient manner. In the following year, de Almeida et al. (2008) developed an experiment, also in rats, with the purpose of histologically evaluating the influence of PDT applied with methylene blue on bone loss in furcation areas. The PDT group showed significantly lower bone loss compared to the other groups in a 7-day period. After 15 days, the dye-only and PDT groups presented significantly lower bone loss when compared to the other groups. The histometric results of the present study indicated no statistically significant differences between the groups in the evaluated periods. However, the PDT group maintained the same pattern of bone loss when compared to the SRP group, in both the interproximal and furcation areas. The results of the three-dimensional radiographic analysis indicate that, at the 7 and 30 day evaluations, the PDT group presented higher bone volume in the interproximal and furcation regions when compared to the other groups. The PD group exhibited higher bone loss at all periods, but was statistically significant at the furcation region at 7- and 30-day evaluations. The results of these 35 analyses, evaluating the same regions, differ due to the concepts of each method. Traditionally, quantitative histological techniques are considered the standard in the evaluation of trabecular and cortical bone architecture. Although histological analyses provide unique information on cellularity and dynamic indices of bone remodeling, they display limitations regarding the evaluation of bone microarchitecture, since the evaluated structural parameters are derived from stereometry of only a few 2D sections, generally assuming that the underlying structure is overlaid on the image (Parfitt et al., 1987). In comparison, 3D high-resolution imaging techniques, such as three-dimensional radiography directly measure bone microarchitecture without relying on stereological models. Introduced by Feldkamp and colleagues (Feldkamp, Goldstein, Parfitt, Jesion, & Kleerekoper, 1989) in the late 1980s, micro-CT has now become the gold standard for the evaluation of bone morphology and microarchitecture in mice and other small ex vivo animal models. Some animal studies (Qin et al., 2008; Sigusch et al., 2005) have demonstrated that PDT is effective in reducing periodontopathogenic microorganisms, while others (de Almeida et al., 2008; Garcia et al., 2011) have indicated that, when PDT is combined with conventional periodontal treatment, alveolar bone loss is lower when compared to the isolated intervention. One of the factors that may affect PDT results in PD is the presence of gingival fluid, blood and inflammatory exudate (Matevski et al., 2003), as these conditions may reflect or absorb light, promoting a "protective effect" for the bacteria present in the area. This may explain the results observed herein, although not significant, of the lower amount of bone tissue formed in the SRP+PDT group, since scraping prior to the application of PDT may have generated bleeding that inhibited the PS from acting on the microorganisms. The PDT mechanism of action seems to be very clear, so there is no dispute about its bactericidal capacity. Studies are unanimous in affirming that the excitation of the photosensitizer caused by the light source triggers the appearance of molecules with toxic effects on the microorganisms (Sigusch et al., 2005). Several studies (Pfitzner et al., 2004; Qin et al., 2008; Sigusch et al., 2005) have proven the high rate of microorganism destruction in samples submitted to PDT. On the other hand, certain bacterial species, such as Aggregatibacter actinomycetemcomitans, are more resistant to this therapy when compared to others, such as Porphyromonas gingivalis and Fusobacterium nucleatum (Pfitzner et al., 2004). Gram-positive bacteria are generally susceptible to photoinactivation, while gram-negative bacteria are often resistant (Soukos & Goodson, 2011). This resistance is attributed to the outer membrane of these organisms, which acts as a barrier to the penetration of the PDT-produced compounds. The use of a cationic dye shows greater photodynamic activity against 36 gram-negative bacteria, since the positive charge promotes an electrostatic bond to the external surface of the cell, inducing an initial damage that favors dye penetration (Merchat, Spikes, Bertoloni, & Jori, 1996). Although this study did not directly evaluate PDT effects on microorganisms, Persson et al. (2001) demonstrated that, when a decrease in the amount of bacteria present in periodontitis or peri-implantitis is observed, tissue repair or re- osseointegration is subsequently observed. In vitro (Klepac-Ceraj et al., 2011) and in vivo(de Almeida et al., 2006; de Almeida et al., 2008; Qin et al., 2008; Sigusch et al., 2005) studies have shown favorable results using PDT principles. A study performed in humans (Andersen et al., 2007) verified that PDT was effective in PD treatment, reducing clinical insertion level and probing depth. Thus, this therapy has been proposed as a complementary alternative, especially in areas of difficult access to manual instruments, such as furcation regions, concavities and deep pockets (de Almeida et al., 2007). This therapy may also be an alternative method to reduce the use of antibiotics, avoiding the development of resistant organisms (Maisch, 2007). As mentioned previously, the limitations of this study are due to the fact that different variables were present, such as the experimental animal model, dye concentration, tissue retention period, time for biological response, irradiation time, light energy and wavelength, pH of the site (tissue/tooth/interface), presence of exudate, blood and gingival fluid and frequency and mode of application of the dye, all of which may influence biological responses to PDT (de Almeida et al., 2006). Thus, further studies evaluating these factors are required in order to better understand the photoinactivation action of the local microorganisms. CONCLUSIONS With the results obtained herein, we can conclude that PDT applied with phthalocyanine-glucamine as the PS, both as a monotherapy and associated to SRP, is effective in bone loss control in PD-induced rats, similar to the conventional mechanical treatment. Thus, phthalocyanine-glucamine may be considered a promising photosensitizer. However, further in vitro and in vivo studies are required to elucidate PDT action and the effect of this PS as an adjunct therapy in the treatment of PD. ACKNOWLEDMENTS We would like to thank Capes and CNPq for financial support and Prof. Dr. Anderson O. Ribeiro from the Federal University of ABC for synthesize the solution of the photosensitizer phtalocyanine-glucamine used in this study. 37 CONFLICT OF INTEREST AND SOURCES OF FUNDING STATEMENT The authors declare that there are no conflicts of interest. REFERENCES Andersen, R., Loebel, N., Hammond, D., & Wilson, M. (2007). Treatment of periodontal disease by photodisinfection compared to scaling and root planing. The Journal of Clinical Dentistry, 18, 34-38. Bonnet, R. (1995). Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chemical Society Reviews, 24, 19-33. da Silva, A. R., Inada, N. M., Rettori, D., Baratti, M. O., Vercesi, A. E., & Jorge, R. A. (2009). In vitro photodynamic activity of chloro(5,10,15,20-tetraphenylporphyrinato)indium(III) loaded-poly(lactide-co-glycolide) nanoparticles in LNCaP prostate tumour cells. Journal of Photochemistry and Photobiology B: Biology, 94, 101-112. da Silva, V. C., Cirelli, C. C., Ribeiro, F. S., Leite, F. R., Benatti Neto, C., Marcantonio, R. A., & Cirelli, J. A. (2008). Intrusion of teeth with class III furcation: a clinical, histologic and histometric study in dogs. Journal of Clinical Periodontology, 35, 807-816. de Almeida, J. M., Garcia, V. G., & Theodoro, L. H. (2006). Terapia fotodinâmica: uma opção na terapia periodontal. Arquivos do Centro de Estudos do Curso de Odontologia da Universidade Federal de Minas Gerais, 42, 199-210. de Almeida, J. M., Theodoro, L. H., Bosco, A. F., Nagata, M. J., Oshiiwa, M., & Garcia, V. G. (2007). Influence of photodynamic therapy on the development of ligature-induced periodontitis in rats. Journal of Periodontology, 78, 566-575. de Almeida, J. M., Theodoro, L. H., Bosco, A. F., Nagata, M. J., Oshiiwa, M., & Garcia, V. G. (2008). In vivo effect of photodynamic therapy on periodontal bone loss in dental furcations. Journal of Periodontology, 79, 1081-1088. Drisko, C. H. (1998). The use of locally delivered doxycycline in the treatment of periodontitis. Clinical results. Journal of Clinical Periodontology, 25, 947-952; discussion 978-949. Feldkamp, L. A., Goldstein, S. A., Parfitt, A. M., Jesion, G., & Kleerekoper, M. (1989). The direct examination of three-dimensional bone architecture in vitro by computed tomography. Journal of Bone and Mineral Research, 4, 3-11. Fontana, C. R., Abernethy, A. D., Som, S., Ruggiero, K., Doucette, S., Marcantonio, R. C., & Soukos, N. S. (2009). The antibacterial effect of photodynamic therapy in dental plaque- derived biofilms. Journal of Periodontal Research, 44, 751-759. Garcia, F. S., & Bentley, M. V. (2003). Phthalocyanine dyes: importance and future directives for use in photodynamic therapy of cancer. Trends in Photochemistry & Photobiology, 10, 77-82. Garcia, V. G., Fernandes, L. A., Macarini, V. C., de Almeida, J. M., Martins, T. M., Bosco, A. F., & Theodoro, L. H. (2011). Treatment of experimental periodontal disease with antimicrobial photodynamic therapy in nicotine-modified rats. Journal of Clinical Periodontology, 38, 1106-1114. Gaspersic, R., Stiblar-Martincic, D., Osredkar, J., & Skaleric, U. (2003). Influence of subcutaneous administration of recombinant TNF-alpha on ligature-induced periodontitis in rats. Journal of Periodontal Research, 38, 198-203. Graves, D. T., Fine, D., Teng, Y. T., Van Dyke, T. E., & Hajishengallis, G. (2008). The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. Journal of Clinical Periodontology, 35, 89-105. Jori, G., Fabris, C., Soncin, M., Ferro, S., Coppellotti, O., Dei, D., & Roncucci, G. (2006). Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers in Surgery and Medicine, 38, 468-481. Kaestner, L., Cesson, M., Kassab, K., Christensen, T., Edminson, P. D., Cook, M. J., & Jori, G. (2003). Zinc octa-n-alkyl phthalocyanines in photodynamic therapy: photophysical properties, accumulation and apoptosis in cell cultures, studies in erythrocytes and 38 topical application to Balb/c mice skin. Photochemical and Photobiological Sciences, 2, 660-667. Klepac-Ceraj, V., Patel, N., Song, X., Holewa, C., Patel, C., Kent, R., & Soukos, N. S. (2011). Photodynamic effects of methylene blue-loaded polymeric nanoparticles on dental plaque bacteria. Lasers in Surgery and Medicine, 43, 600-606. Maisch, T. (2007). Anti-microbial photodynamic therapy: useful in the future? Lasers in Medical Science, 22, 83-91. Matevski, D., Weersink, R., Tenenbaum, H. C., Wilson, B., Ellen, R. P., & Lepine, G. (2003). Lethal photosensitization of periodontal pathogens by a red-filtered Xenon lamp in vitro. Journal of Periodontal Research, 38, 428-435. Merchat, M., Spikes, J. D., Bertoloni, G., & Jori, G. (1996). Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins. Journal of Photochemistry and Photobiology B: Biology, 35, 149-157. Ogunsipe, A., Durmusß, M., Atilla, D., Gürek, A. G., Ahsen, V., & Nyokong, T. (2008). Synthesis, photophysical and photochemical studies on long chain zinc phythalocyanines. Synthetic Metals, 158, 839-847. Parfitt, A. M., Drezner, M. K., Glorieux, F. H., Kanis, J. A., Malluche, H., Meunier, P. J., & Recker, R. R. (1987). Bone histomorphometry: standardization of nomenclature, symbols, and units. Journal of Bone and Mineral Research, 2, 595-610. Persson, L. G., Berglundh, T., Lindhe, J., & Sennerby, L. (2001). Re-osseointegration after treatment of peri-implantitis at different implant surfaces. An experimental study in the dog. Clinical Oral Implants Research, 12, 595-603. Pfitzner, A., Sigusch, B. W., Albrecht, V., & Glockmann, E. (2004). Killing of periodontopathogenic bacteria by photodynamic therapy. J Periodontol, 75, 1343-1349. Qin, Y. L., Luan, X. L., Bi, L. J., Sheng, Y. Q., Zhou, C. N., & Zhang, Z. G. (2008). Comparison of toluidine blue-mediated photodynamic therapy and conventional scaling treatment for periodontitis in rats. Journal of Periodontal Research, 43, 162-167. Ryskova, L., & Slezak, R. (2010). Photodynamic antimicrobial therapy. Central European Journal of Biology, 5, 400-406. Sharman, W. M., Allen, C. M., & van Lier, J. E. (1999). Photodynamic therapeutics: basic principles and clinical applications. Drug Discovery Today, 4, 507-517. Sigusch, B. W., Pfitzner, A., Albrecht, V., & Glockmann, E. (2005). Efficacy of photodynamic therapy on inflammatory signs and two selected periodontopathogenic species in a beagle dog model. Journal of Periodontology, 76, 1100-1105. Soukos, N. S., & Goodson, J. M. (2011). Photodynamic therapy in the control of oral biofilms. Periodontology 2000, 55, 143-166. Vergani, S. A., Silva, E. B., Vinholis, A. H., & Marcantonio, R. A. (2004). Systemic use of metronidazole in the treatment of chronic periodontitis: a pilot study using clinical, microbiological, and enzymatic evaluation. Brazilian Oral Research, 18, 121-127. Figure1 – Experimental design of the present study. 39 Figure 2 – µ-CT images obtained of the second maxillary molar region, where the ROIs were obtained. A: Furcation region with a 1.26x1.15mm2 area; B: proximal regions (mesial and distal) with a 1.26x0.56mm2 area from the cement-enamel junction. A B 40 Figure 3 – Photograph of the 3D models obtained from the scanning of the hemimaxillae in the µ-CT, palatal view, indicating the analyzed regions (distal, mesial and furcation) of the experimental groups: A, B, C and D (7 day period) and E , F, G and H (30 day period); In sequence, the PD, SRP, PDT and SRP+PDT groups. The graphs display the means and standard deviations of the percentage of bone volume (%) of the furcation area (3A) and proximal regions (3B), of the second maxillary molar of the treated hemimaxillae of the experimental groups. *, # ,& indicate statistically significant differences between groups. 41 Figure 4 – Photomicrographs of the sagittal sections of rat hemimaxillae of the experimental groups, in the 7 and 30 day periods, at 4x magnification, showing the alveolar process (AP) formed by irregular bone trabeculae, located between the 1st (1M) and 2nd (2M) and between the 2nd (2M) and 3rd (3M) molars. The cervical portion of the alveolar process (AP) is located near the middle and apical third of the 2M roots. Reabsorption of alveolar bone (AB) was observed in the furcation region. At 10x magnification, the gingival epithelium (GE) is located apically at the cement-enamel junction (CEJ), and the gingival mucosa exhibits an inflammatory process (IP) evident in the PD group and the destroyed interdental papilla. In the other groups, the inflammatory process (IP) is less pronounced than the PD group. CEJ, cement-enamel junction; GE, gingival epithelium; D, dentin; P, Tooth pulp; PL, periodontal ligament; AB, alveolar bone of the furcation region. HE. X10 - Bar: 80. x4 - Bar: 330. Graph 4A displays the means and standard deviation of the bone area in square millimeters (mm2) of the furcation region and figure 4B displays the means and standard deviations of bone linear loss in millimeters (mm) of the proximal regions of the second maxillary molar of the treated hemimaxillae of the experimental groups. 42 3.2 Publicação 2 Tissue responses of aPDT with phthalocyanine- tetracarboxyglucamine photosensitizer in ligature-induced periodontal disease in rats* Sâmara C. T. Corbi, Paula D. Macedo, Janice R. Perussi, Anderson O. Ribeiro, Rosemary A. C. Marcantonio *Artigo a ser submetido à revista Jornal of Applied Oral Science. 43 Tissue responses of aPDT with phthalocyanine- tetracarboxyglucamine photosensitizer in ligature-induced periodontal disease in rats Sâmara Cruz Tfaile Corbi (SCT, Corbi) – PhD student in Periodontics1; email: sa_tfaile@yahoo.com.br Paula Delello Macedo (Macedo, PD), PhD student in Periodontics1; email: paula_mac2@yahoo.com.br Janice Rodrigues Perussi (Perussi, JR), Associate Professor in Chemistry2; e-mail: janice@iqsc.usp.br Anderson Orzari Ribeiro (Ribeiro, AO), Adjunct Professor from UFABC3, email: anderson.ribeiro@ufabc.edu.br *Rosemary Adriana Chiérici Marcantonio (Marcantonio, RAC), Associate Professor in Periodontics1; email: adriana@foar.unesp.br 1Sao Paulo State University (UNESP), School of Dentistry, Diagnosis and Surgery Department, Araraquara, SP, Brazil 2Sao Paulo University (USP), Chemistry and Molecular Physics Department, Sao Carlos, SP, Brazil 3Federal University of ABC (UFABC), Centre for Natural Sciences and Humanities, Santo Andre, SP, Brazil *Corresponding author: Rosemary Adriana C. Marcantonio, PhD Department of Diagnosis and Surgery Sao Paulo State University – School of Dentistry at Araraquara (UNESP) CEP 14801-903, Araraquara, SP, Brasil Tel: +55 16 3301-6376 E-mail: adriana@foar.unesp.br 44 ABSTRACT Antimicrobial Photodynamic Therapy (aPDT) has been used as an adjuvant treatment in periodontal disease (PD). This technique combines a photosensitizer (PS) with a light source to induce the production of reactive oxygen species (ROS), eliminating microbial cells. The aim of this study was to evaluate in vivo responses and tissue changes after aPDT application (with the PS phthalocyanine-tetracarboxyglucamine - 10µg/mL, and red LED light with 655nm) in PD-induced rats by microtomographic, histometric, stereometric and histological evaluations. Ligatures were placed around the second maxillary molars in both sides for PD induction for 7 days and remained in position throughout the experiment. Forty-two animals were divided into 4 groups: PS (treatment with phthalocyanine-tetracarboxyglucamine only); Light (Treatment with red LED light irradiation only); aPDT (Treatment with photodynamic therapy – PS + Light) and PD (periodontal disease induction, without treatment). At the baseline, the animals were treated and euthanized at 7 and 15 days. A one-way ANOVA parametric test was applied, followed by Tukey’s post-test. The three-dimensional radiographic and histometric analyses revealed no statistically different results for the furcation and interproximal regions. The inflammatory profile presented a trend of lower amounts of inflammatory cells in the aPDT group at 7 days, while the histological analysis indicated no significant differences between the groups, indicating that the therapies did not cause tissue damage. Thus, the application of aPDT and its components as monotherapies in PD-induced in rats with the preservation of the ligatures, favored in situ bacteria permanence and inhibited treatment action. Keywords: Periodontal diseases, photochemotherapy, X-ray microtomography. INTRODUCTION Periodontal Disease (PD) is an oral infection affecting the gingiva, cementum, periodontal ligament and alveolar bone, and its primary etiological factor is the presence of pathogenic bacteria in biofilm, which adhere to the teeth surface of susceptible host. Pathogens release enzymes, endotoxins and cytotoxic factors that can, in turn, trigger inflammation mechanisms and cause various changes in the periodontium36. The standard therapy for PD treatment is Scaling Root and Planing (SRP)56, which aims to remove microorganisms found on all teeth in both the supra and subgingival region. SRP benefits can be verified by decreases in marginal bleeding, bleeding at probing and probing depth, as well as stabilization of clinical insertion levels9. These clinical improvements are due to well-executed SRP, which influences the amount and composition of the oral microbiota11. However, this therapy does not 45 seem to be responsive to mechanical treatment in some sites, which makes it less effective To overcome this difficulty, some therapeutic alternatives have been applied, such as the use of local and systemic antibiotics. However, it is known that this type of treatment has undesirable side effects and contributes to the development of bacterial resistance to drugs29, 35, 72. Thus, alternative methods that target bacterial reduction, such as the use of lasers and associated dyes, known as Antimicrobial Photodynamic Therapy (aPDT), could be a complementary feature to conventional periodontal treatment. PDT has emerged in recent years as a new, noninvasive, therapeutic modality for the treatment of various bacterial, fungal, and viral infections27. This therapy is defined as an oxygen-dependent photochemical reaction that occurs after the activation of a light-mediated photosensitizing compound, leading to the generation of cytotoxic reactive oxygen species (ROS), predominantly singlet oxygen44. This therapy can be topically applied in the periodontal pocket, thus avoiding overdoses. Other aPDT advantages include, reducing the likelihood of side effects associated with the systemic administration of antimicrobial agents and minimizing bacterial resistance22, 73. Several in vitro8, 10, 21, 31, 37, 41, 59, 70, 74 and in vivo experimental studies20, 24, 30, 61, 62 have obtained satisfactory results through aPDT, applying protocols comprising different types of dyes and wavelengths to eliminate several types of oral bacteria, such as periodontopathogenic and non-pathogenic bacteria. In the last decades, certain compounds with diagnostic and therapeutic purposes, considered second-generation dyes, have been developed, such as phthalocyanines, which are synthetic dyes similar to porphyrins and structurally classified as azaporphyrins34, 55, 67. The name phthalocyanine originates from a combination of the prefix phthal, originally from the Greek word naphtha (rock oil), to emphasize the association with its various precursors derived from phthalic acid, and the Greek word cyanine (blue)38. Phthalocyanines are symmetric macrocycles composed of four iminoisoindole (Figure 1A) units with a central cavity that accommodates different metal ions, such as chlorine, aluminum and zinc. When inserted, these metals present considerable influence on photosensitizing properties (Figure 1B)3, 57, 67. These compounds display an absorption band in the electromagnetic spectrum, ranging from 650 to 680nm, which allows greater light penetration into tissues40, and their photophysical properties depend on their composition, particularly that of the central metal ion. Among phthalocyanines, a chloro-aluminum phthalocyanine has been suggested as displaying photophysical properties favorable for use in aPDT, as it produces high amounts of singlet oxygen40. The effectiveness of 46 this photosensitizer associated with LED light was confirmed in an in vitro study that evaluated the photodynamic potential of a chloro-aluminum phthalocyanine diluted in a cationic nanoemulsion to inactivate planktonic cultures and biofilms formed by Candida albicans55. This PS was also shown to be effective for bacteria inactivation in patients with carious lesions34. Other studies16, 47, 63, 74-76 have supported the efficiency of phthalocyanines as photosensitive agents in the elimination of periodontopathogenic microorganisms with applications in aPDT. Another phthalocyanine routinely applied as a PS is zinc phthalocyanine (FCZn)3, 57, 67. The hydrophobicity of some PS is an important fact, since this property in aqueous media leads to molecule self-aggregation and, in most cases, to a subsequent precipitation, drastically reducing the ability of the compound to generate singlet oxygen64. Thus, the photoactive principle must be soluble in aqueous media for possible clinical applications. An interesting strategy applied to increase the aqueous solubility of some PS involves the formation of hydrophilic supramolecular species. A supramolecule is defined as a chemical species made up of two or more molecules linked by intermolecular interactions. In this sense, supramolecular chemistry uses an approach centered on molecule association, aiming at obtaining a certain property or functionality14. Meglumine, also known as N-methylglucamine (Figure 1C), is an aminocarbohydrate derived from glucose capable of forming hydrophilic binary supramolecular species with compounds containing acidic hydrogen atoms in their structure14. The formation of meglumine compounds involves an acid-base reaction, in which the acidic hydrogen is transferred to the amine group of the aminocarbohydrate. To enable the formation of supramolecular species between meglumine and phthalocyanines, the latter are primarily functionalized with carboxylic groups, such as tetracarboxylated zinc phthalocyanine (FtZnTc, Figure 1D)14. Subsequently to the insertion of the acid groups, a reaction with the aminocarbohydrate can be conducted, producing species that are more soluble in water. This procedure allows for the insertion of up to four meglumine molecules, as observed in Figure 1E for zinc phthalocyanine tetracarboxy-N-methylglucamine (FtZnTcG). The presence of several hydroxyl groups in the supramolecule provides the sites where the hydrogen bonds are established by increasing the hydrophilicity of the phthalocyanines14. The absorption spectrum of phthalocyanines in solution consists of two main bands centered at 350nm and 670nm. Figure 2 illustrates the molecular absorption spectrum of the tetracarboxylated zinc phthalocyanine. Phthalocyanines have been used in aPDT in cancer treatments3, 4, 54, 71, 77, cutaneous e subcutaneous lesions6, in eradication of neoplasitic processes57, 67 and *Para metodologia completa, ver Apêndice 1. #Aprovação do Comitê de Ética, ver Anexo A. 47 encapsulated virus7, due to its high selectivity and low phototoxicity characteristics and promotes an appreciable amount of ROS, capable of remaining in the triplet excited state for a longer period of time58. In this sense, the aim of this study was to evaluate in vivo the responses and tissue changes of aPDT application and its components as monotherapies, using phthalocyanine-tetracarboxyglucamine PS in PD-induced in rats. MATERIAL AND METHODS* Ethics comittee This project was approved by the Ethics Committee on Animal Experimentation (No. 07/2012)#. Samples Forty-two rats (Rattus norvegicus) of the albinus variation, Holtzman, adults, weighing between 300-330g were used. The animals were kept in plastic boxes, 3/4 animals per box, and treated with water and food ad libitum before and during the whole experimental period. The animals were maintained in an environment with controlled light, humidity and temperature. Periodontal disease induction The animals were anesthetized with a combination of ketamine (ketamine hydrochloride - Francotar 3% - Virbac do Brasil Ind. e Com. Ltda.) and xylazine (xylazine hydrochloride - Virbaxyl 2% - Virbac do Brasil Ind. e Com. Ltda.) at 0,08mL/100g and 0,04mL/100g body weight, respectively. The ligatures were placed around the second maxillary molars on both sides. The hemimaxilae that received the therapies was chosen randomly (right or left). The PD was induced for 7 day before the beginning the therapies application of each group/period and 0-day period was considered the baseline. The ligatures remained in position throughout the experiment (Figure 3). Photodynamic Therapy Photosensitizer preparation Phthalocyanine-tetracarboxyglucamine was prepared from a stock solution of zinc-tetracarboxy-phthalocyanine at 1,1mg/mL in DMSO and subsequently diluted in phosphate buffered saline (pH=7.2) to a final concentration of 10µg/mL, in ointment consistency. Soon after the preparation, the PS was stored in light-protected poliproylene tubes maintained in a refrigerated environment until use. 48 Photosensitizer Application At the time of application, the animals’ mouth and the PS were light-protected. A blunt tip syringe containing 0,2mL of the PS was inserted into the gingival sulcus. The solution was applied around the entire second maxillary molars and, after 10 minutes of incubation time in the dark, the light irradiation was performed. This application was done only once. Light source The light source used to activate the phthalocyanine-tetracarboxyglucamine PS corresponded to a wavelength of 655 nm, 0,45W power density and 34J/cm2 dose (red LED, 11mm diameter, DMC Equipamentos Ltda, São Carlos, Brazil), coinciding with the maximum absorption band of phthalocyanine-tetracarboxyglucamine. The LED light was placed on the occlusal surface of the second maxillary molars and irradiation was maintained for 72 seconds. Experimental groups After 7 days of PD-induced, the animals were randomly divided the therapies application were performed according to their group (7animals/group/period): • Photosensitizer Group (PS): PS was applied around the entire second maxillary molars, into the sulcus (10 minutes of incubation time in the dark) and after, the PS was removed with cotton swabs. • Red LED Light Group (LED): The LED light (655nm; 34J/cm2) was placed on the occlusal surface of the second maxillary molars and irradiation was maintained for 72 seconds. • Photodynamic Therapy Group (aPDT): Application of the PS followed by LED application. • PD Group (PD): Disease induction only, without treatment. The ligatures remained in position and they were removed at 7- and 15-days periods. Soon after, the animals were euthanized with an anesthetic overdose. The hemimaxillae were removed and fixed in 4% paraformol for 48h. Subsequently, the samples were washed in running water for 24h and placed in 70% alcohol, where they remained until the computerized microtomograph scanning. Histological processing After scanning, the samples were placed in a 7% EDTA solution, pH 7,2 (Synth, São Paulo, Brazil), buffered with sodium phosphate for decalcification. Following 49 laboratory procedures, the samples were then included in paraffin. Semi-serial sections were made along the axis of the tooth, at 4µm thickness. For each hemimaxillae, approximately 30 sections were obtained, divided into slides containing 3 sections each. Two slides from each hemimaxillae were stained by hematoxilin-eosin technique (HE) and used for, histometric, stereometric and histologic analysis. Three-dimensional Radiographic Analysis (µCT) The samples were scanned by means of X-ray beam scanning in a computerized microtomography system (Skyscan 1176, Aatselaar, Belgium, 2003). The parameters of the equipment were set as follows: Al 0.5mm filter; Voxel size: 17.48µm; Voltage 50KV and electric current 500µA. After scanning, the 3D images for each sample were obtained through the equipment software (NRecon 1.6.1.5 - SkyScan N. V., Belgium, 2003). The images were rotated and repositioned in a standard orientation with the two-dimensional Dataviewer software (SkyScan 1176, Aartselaar, Belgium, 2003). for better viewing. At each 28 scans, a 18x18x18µm matrix was reconstructed and 3D images were generated for each sample. Subsequently, a volumetric analysis was performed by a trained examiner with no knowledge of the experimental groups. For this analysis, a specific software (ITK-SNAP 3.6.0 - Pennsylvania, USA) was used, where the examiner delimited a three-dimensional region of interest (ROI), of 217x193x269, driven by the morphometry of the samples. To maximize bone quantification and minimize teeth and root inclusion, the ROI was delimited from the distal first molar root to the mesial third molar root, and from the furcation and interproximals region of the second molar to the end of the cortical bone, thus making sure that all the bone area in the furcation and interproximal region of the second molar were encompassed by the ROI, as displayed in Figure 4. After the ROI delineation, a binary image was generated and a single threshold was established for each sample, analyzing tissue similarity. Subsequently, the roots were digitally removed so as not to influence the results. The analyses and the resulting values are given in cubic millimeters (mm3). Histometric analyses For this analysis, a blind and calibrated examiner (Pearson’s correlation, r=0.93) selected 2 slides from each hemimaxillae. The furcation area was delimited according to the methodology reported by da Silva et al.,12 (2008). Measurements were taken using the Fiji ImageJ Launcher imaging software (National Institutes of Health, USA), evaluating the following areas: 50 • Furcation area: the area was defined, a 1000µm-zone under the furcation limited by the roots. The furcation and bone area were measured, thus obtaining the percentage of bone present in the furca region of each histological section. • Interproximal region (mesial and distal): a linear measurement of the cement- enamel junction up to the top of the bone crest was performed, thus obtaining alveolar bone loss values. The furcation region measurements were obtained in percentage and interproximals region in micrometers. Stereometric Analysis This analysis was performed using a Leica DMLS light microscope (Leica - Reichert Diastar Products & Jung, Wetzlar, Germany) to select 2 sections per tooth, with intervals ranging from 40 to 50µm between them, and a Leica DFC 300 digital camera FX (Leica - Reichert Diastar Products & Jung, Wetzlar, Germany) to capture the furcation and interproximal region images at a 200x magnification. In a two- dimensional plane, a 75x75 pixel area grid with 252 intersection points was placed in the regions of interest (supra-alveolar connective tissue at the furcation ceiling and papillae, in both mesial and distal sides) using the software Fiji ImageJ (National Institutes of Health, USA). Subsequently, the point counting technique was performed to analyze the proportion of tissue constituents (bone tissue, extracellular matrix, blood vessels, fibroblasts, inflammatory cells) at the angles of the grid. For the graphical representation of the stereometry, a percentage measurement of each tissue constituent corresponding to the total number of points was performed, based on Liu et al.33 (2006) and Odze et al.45 (1996). Histological analyses Using a DIASTAR (Leica Reichert & Jung products, Germany) optical microscope with 4,0-10,0-fold objective and 10 ocular magnifications, the images were captured and sent to a microcomputer with the aid of a DXC-1107A/107AP video camera (Sony Electronics Inc, Japan). The inflammatory reactions of the connective tissue, bone resorption processes and tissue neoformation in each experimental group were evaluated by an experienced, blind and calibrated examiner for the experimental groups. 51 Statistical analyses The experimental data were tabulated using the Microsoft Excel for Mac 2011 software (Apple Inc, USA) and analyzed statistically with the aid of the GraphPad Prism 6.0 software (GraphPad Inc, USA). The data were evaluated applying the central point theorem, to verify if their arrangement respected a normal distribution, using the Shapiro-Wilk test. As all data were normally distributed, the parametric ANOVA (One Way) test was applied to verify the existence of statistical differences between the groups. Tukey’s post-test was subsequently applied, in order to detect differences among groups. For comparisons between the treatment periods, the ANOVA (Two Way) parametric test was applied. All tests were applied with a 95% confidence interval. RESULTS Three-dimensional Radiographic Analysis (µCT) No statistically significant difference was detected for bone volume in the region of the second maxillary molars of the treated hemimaxils. These data are displayed in Figure 5. Histometric Analysis The results of the furcation and interproximal analyses indicate that all the data were statistically the same for the bone area and bone loss, respectively, for region of the second maxillary molars molars of the treated hemimaxils of the experimental groups, as displayed in Figure 6. Stereometric Analysis Significant differences were observed in the percentage of bone tissue at 7 days between the PS and LED light groups (*p<0.05). The percentage of blood vessels was also significantly different in the PD group between the 7 and 15 day groups (#p<0.05). The percentages of extracellular matrix and inflammatory cells were not significantly different. Regarding fibroblasts, a statistically significant difference was detected in the PD group comparing the 7 and 15 day periods (ap<0.05), the photosensitized group was statistically different compared to the PD, LED and aPDT groups (bcdp <0.05). These data are displayed in Figure 7. Histological Analysis In this evaluation, the morphological aspects of the gingival mucosa and bone tissue of the second maxillary molars of the rats were analyzed in the different groups. 52 The animals periodontium in the PD group exhibited changes at 7 days: An exacerbated inflammatory process in the lamina propria of the interdental papilla, was observed, frequently ulcerated. The junctional epithelium was located apically to the cement-enamel junction. Bone in the furcation region showed moderate resorption. At the 15-day period, a decrease in the inflammatory process and a slight bone resorption in the furcation were observed. The PS, light and aPDT groups presented microscopic characteristics similar to those described for the PD group, but less intense. Thus, histological descriptions were similar for the experimental groups. Figure 6 illustrates the periodontal tissues of the different periods. DISCUSSION The aim of this study was to evaluate in vivo alterations and tissue responses after the application of aPDT and its components as monotherapies using the phthalocyanine-tetracarboxyglucamine PS in rats presenting induced PD. The inflammatory profiles were not statistically different and indicated a trend of lower amounts of inflammatory cells in the aPDT group at 7 days. The histological analysis indicated no significant differences between the groups within the analyzed periods, suggesting that the applied therapies did not cause tissue damage. These findings are in agreement with the study by Al Habashneh et al.,2 (2015), that mentioned that PS application without a light source does not cause damage to healthy tissues, and that the bacterial destruction process occurs only when PS is used in conjunction with a light emitter. In the study conducted by Melo et al.,14 (2014) several conditions were analyzed for the selective photoinactivation of S. aureus and E. coli, in plankton cultures and biofilms, by using the PSs hypericin and zinc phthalocyanine and new synthesized hydrosoluble derivatives, such as phthalocyanine tetracarboxyglucamine (FcZnTcG), at various concentrations, incubation times and light densities, among others. The authors verified that the employed photoinactivation parameters contributed to the inhibition of 100% of the bacterial cells without damaging the cells used as the host model (VERO epithelial cell line). This indicates that the PS concentrations and incubation time should be low in order to facilitate selective accumulation in microorganisms, faster in bacteria than in epithelial cells, so that low dose irradiation leads to damage only to microorganisms and not healthy tissue. In the present study, a PS concentration of 10 µg/mL and an incubation time of 10 minutes were used. These parameters were defined based on the results reported by Melo et al.,14 (2014) in both cell and microorganism cultures. The absence of differences between the experimental groups could be related to these parameters, which were not sufficient to achieve any effect on the microorganisms located in the subgingival 53 ligature. The results of the three-dimensional radiographic and histometric analyses indicate no differences between the groups and analyzed periods, indicating that the applied therapies did not interfere in PD progression, since the ligatures were placed around the second molars on both sides of the maxillae and remained in position throughout the experimental period, simulating a clinical situation of PD progression in patients. Contrarily to other studies that evaluated aPDT associated with for PD treatment in animals5, 15, 19, 50, the present study analyzed aPDT with the PS phthalocyanine-tetracarboxyglucamine under disease conditions without other treatments. With the applied methodology, the ligature placed to induce PD was not removed, thus maintaining a large amount of biofilm in the region. This condition may have interfered in the results, suggesting that aPDT may have acted only on the superficial layer of the biofilm, and was not able to completely eliminate the bacteria present in the area. Fontana et al.,18 (2009) investigated the effects of aPDT on bacteria derived from human dental biofilms under planktonic conditions and in in vitro biofilms. The objective was to compare the susceptibility of bacteria to aPDT after sensitization with methylene blue and exposure to red light at 665nm. The results indicate that aPDT eliminated about 63% of the bacteria in the planktonic phase, whereas the light effect resulted in much lower decrease in microorganism counts (31% were killed) in biofilms derived from the same samples. Thus, biofilm bacteria presented resistance to the aPDT, with elimination not exceeding 32% in relation to the controls. The authors concluded that, although aPDT was less effective in treating bacteria in biofilms than in planktonic cultures, the difference was only two-fold, while another study60 demonstrated that antibiotics are approximately 250 times less effective under these conditions. Müller et al.,39 (2007) reported less than 1 log10 bacterial destruction in oral biofilms comprising six species developed on bovine enamel disks a