UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS – RIO CLARO unesp PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (BIOLOGIA VEGETAL) INTERAÇÃO LIANA-ÁRVORE EM VEGETAÇÕES COM PADRÕES SAZONAIS CONTRASTANTES Betânia da Cunha Vargas Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de doutor em Ciências Biológicas (Biologia Vegetal). Betânia da Cunha Vargas INTERAÇÃO LIANA-ÁRVORE EM VEGETAÇÕES COM PADRÕES SAZONAIS CONTRASTANTES Rio Claro 2018 Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de doutor em Ciências Biológicas (Biologia Vegetal). Orientador (a): Profª. Drª. Leonor Patrícia Cerdeira Morellato Co-orientador (a): Drª. Maria Tereza Gromboni- Guaratini V297i Vargas, Betânia da Cunha Interação liana-árvores em vegetações com padrões sazonais contrastantes / Betânia da Cunha Vargas. -- Rio Claro, 2018 133 f. : tabs., mapas Tese (doutorado) - Universidade Estadual Paulista (Unesp), Instituto de Biociências, Rio Claro Orientadora: Leonor Patrícia Cerdeira Morellato Coorientadora: Maria Tereza Gromboni-Guaratini 1. Revisão bibliográfica. 2. Biomassa e estoque de carbono. 3. Atributos funcionais foliares. I. Título. Sistema de geração automática de fichas catalográficas da Unesp. Biblioteca do Instituto de Biociências, Rio Claro. Dados fornecidos pelo autor(a). Essa ficha não pode ser modificada. AGRADECIMENTOS O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001. À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pelo apoio financeiro para o desenvolvimento do projeto (projetos #2013/50155-0 FAPESP- Microsoft Research, #2010/51307-0 FAPESP-VALE-FAPEMIG e #2009/54208-6 EMU). Aos diretores e funcionários do Parque Estadual do Vassununga (Gleba Pé de Gigante), Fundação Serra do Japi pelo apoio e suporte para desenvolvimento do trabalho. Principalmente ao Sr. Lauro (Fundação Serra do Japi) que nos ajudou com equipamentos de campo e uma boa conversa após termos das atividades de coleta. Incluo também a diretora e os funcionários, em especial ao André, do Parque Estadual Porto Ferreira que disponibilizou vários dias de seu trabalho para nos ajudar a encontrar uma área adequada para desenvolvermos o trabalho. Infelizmente não foi possível, mas o funcionário foi um exemplo de dedicação e empolgação com a pesquisa científica. À Universidade Estadual Paulista Júlio Mesquita Filho (UNESP - Campus Rio Claro, SP), à Pró-Reitoria de Pós-graduação da Universidade Estadual e ao Programa de Pós- graduação em Ciências Biológicas (Biologia Vegetal). Em especial ao coordenador Douglas Silva Domingues que sempre esteve disposto a solucionar as eventuais dúvidas e problemas que sugiram nos últimos anos. E a ex-coordenadora Alessandra Ike Coan que também dispôs muito de seu tempo para que tivesse um bom período enquanto aluna deste programa de pós-graduação. Agradeço ainda as funcionárias da seção técnica de pós-graduação Ivana Terezinha Brandt e Rosangela pelo bom atendimento prestado durante esse período de doutorado. A todos muito obrigado!! Agradeço à minha orientadora Prof.ª Dr.ª Patrícia Morellato por ter aceitado me orientar sem conhecer a mim e ao meu trabalho. Pelas discussões e delimitações de cada parte da tese. E por incentivar à tantos alunos a tornarem bons pesquisadores. À Maria Tereza, minha co-orientadora, que também aceitou a orientação no escuro, que ajudou em exatamente tudo durante a tese e no doutorado. Desde as perguntas pecaminosas que me faziam sair da zona de conforto, as redes de contatos e colaboração que me inseriu me unindo a um grupo de pessoas que trabalham e sorriem juntas, por escutar minhas lamentações e sempre me dar uma luz de esperança. Com certeza vocês colaboraram muito para formação da profissional que sou hoje. Palavras, frases não são suficientes para demonstrar a gratidão de trabalhar e conviver com vocês. Agradeço aos professores e pesquisadores que fizeram parte da banca examinadora como membros titulares e suplentes pela valiosa colaboração e sugestões com o trabalho. Aos professores Gustavo Habermann e Marco Antônio Assis com os quais fiz estágio docência e pude aprender muito o conteúdo teórico. Porém, aprendi principalmente o modelo de professores, didática e interação com alunos que vocês demonstraram ao longo das aulas. Agradeço também ao Juliano van Mellis que me ajudou muito, muito, muito nas análises estatísticas, discussões ao longo do trabalho e colaboração em um dos capítulos. À Mirian Cilene Spasini Rinaldi (Instituto de Botânica de São Paulo) que me ensinou, orientou, desesperou, ficou até tarde comigo para fazermos as análises laboratoriais da tese. Mobilizou seus alunos (e os demais que estavam no laboratório) para me ajudar nas incontáveis digestões foliares. À aluna Solange Brandão (Instituto de Botânica de São Paulo) que parou seu experimento para me ajudar nas análises de pigmentos. Sol sem sua ajuda, paciência e as infindáveis conversas de quando abríamos à Ecologia às 06:30 da manhã e ali ficávamos trabalhando, discutindo e rindo muito durante todo o dia. Vocês tornaram realidade boa parte desta pesquisa e demonstraram a importância e como são saudáveis as parcerias, visando não só minimizar deficiências, mas também somar as qualidades de cada um. Serei eternamente grata aos novos amigos que fiz no Instituto de Botânica de São Paulo. Agradeço à Naiara David de Souza (técnica do departamento de Botânica) pela disposição a me ajudar durante o estágio docência e todo o período do doutorado. Sem falar nas conversas em assuntos em comum que nos levava muitas horas produtivas de conhecimento. Ao ex-técnico Rafael Consomagno que esteve em praticamente todos os campos comigo, fazendo de tudo o possível e impossível para realizarmos as atividades de campo e sempre com a maior boa vontade. Até mesmo para carregar o cilindro de nitrogênio líquido no cerrado e fazer peripécias para coletar algumas lianas. Rafa fez muita falta nos campos finais e agora para comemorar os bons frutos. Serei muito grata ao Renan Borgiani companheiro de trabalho e estudos das lianas. As nossas lamentações, conversas, discussões, conquistas, plantas para identificar, planilhas para arrumar, pedidos para serem feitos. Ufa foram muitos os tropeços, mas hoje vejo como mudamos e melhoramos como estudantes de um grupo de plantas que nos segurava em campo até descobrirmos muito de seus mistérios intrigantes. Aos amigos de laboratório Amanda, Annia, Bia, Bruna, Bruno, Desirée Diego, Gabi, Gustavo, Irene, Léo, Paty, Renan, Rosane, Swanni, Soizig, Valê, Van que tornaram uma família, unida que sofria nos campos juntos e sorria de muito mais para não deixa que os momentos difíceis superassem a jornada de cada um. Para vocês sempre haverá um grande espaço na minha vida. E o que dizer do quarteto familiar formado por Loris, Paty, Lê e por mim!!! Uma amizade que tenho à certeza que foi um reencontro de espíritos amigos. Vocês foram capazes de transformar dias, períodos difíceis em um longo aprendizado. Choramos, rimos, brincamos, malhamos, discutimos sobre cada coisinha mais mínima que podíamos e tenho certeza que uma raiz de cada uma de vocês está presente na minha vida. Devo um imenso agradecimento à cidade de Rio Claro, os quatro anos que tive aqui me fizeram crescer e amadurecer muito. Nossa relação não foi tão boa no começo, mas as pessoas que você me apresentou melhorou cada minutinho que estive por aí. Estar em Rio Claro não foi apenas uma transformação profissional, mas também um crescimento pessoal e espiritual. Muito obrigada Rio Claro. Agradeço a minha família Natália (mãe), Almir (pai), Lívio, (irmão), Káritas (irmã), Fran e Pedro (sobrinhos), Mariano (cunhado), Celina (avó), Nilton (tio) e Leide (tia). Essas pessoas depositaram em mim uma confiança que nem eu tinha, sorriam e vibravam com cada vitória, choravam e tinham esperança em cada tropeço. Fizeram o doutorado junto comigo, cada um do seu jeito, a quilômetros ou milhas de distância. Mas, nossa conexão é tão forte que eu tive sempre vocês onde quer que eu estivesse. Amo muito, muito, muito vocês e agradecer é muito pouco de tudo que fizeram por mim!! Resumo Lianas são plantas que alocam a biomassa primordialmente para a produção de folhas em detrimento da estrutura de suporte com alta densidade de madeira. Como consequência disso, lianas precisam de outros componentes florestais, geralmente árvores, para alcançar e permanecer no dossel. Uma vez estabelecida essa interação caracteriza-se como antagônica e duradoura, sendo que as lianas são os competidores mais eficientes acima e abaixo do dossel. Isso ocorre, pois, as características foliares e radiculares garantem às lianas rápida absorção e transporte de água e nutrientes, principalmente em períodos de escassez hídrica. Este trabalho teve como objetivo avaliar a interação entre árvores e lianas ao longo de comunidades florestais neotropicais e foi dividido em três capítulos. No capítulo um, fizemos uma revisão sistemática sobre os estudos com lianas na região Neotropical (26ºN-26ºS). Para realizar esta revisão, pesquisamos em bancos de dados especializados, artigos que continham os termos liana*, “climb* plant*”, vine*, trepad*, sem limitação de país, e incluímos somente artigos científicos. Os artigos foram classificados em categorias pré-estabelecidas. Esta revisão encontrou 425 artigos com lianas para a região Neotropical, sendo a maior quantidade destes focados na interação entre árvores e lianas (255) e os demais exclusivos sobre lianas (170). A maioria dos artigos derivou de pesquisas no Brasil e Panamá, em florestas úmidas e floresta sazonal, e os temas de fitossociologia e ecofisiologia prevaleceram nos trabalhos. No capítulo dois, realizamos um levantamento fitossociológico em duas áreas de cerrado e uma floresta semidecidual no estado de São Paulo e incluímos áreas sazonais e não-sazonais disponibilizadas no banco de dados de Alwyn H. Gentry. Constatamos que o modelo proposto de biomassa e acúmulo de carbono foi bem representado e que os fatores climáticos não exerceram efeito direto sobre a biomassa de lianas e nem no estoque de carbono. A biomassa de lianas tem efeito direto e significativo somente com a biomassa arbórea e abundância de lianas, e biomassa arbórea é o único fator com efeito direto e significativo para o estoque de carbono. Por fim, no terceiro capítulo avaliamos as variações sazonais das propriedades foliares e espectrais de árvores e lianas e a possibilidade de distinguir árvores de lianas no cerrado. Nossos resultados mostraram que por meio do espectro de reflectância não foi possível distinguir árvores e lianas. Enquanto que, a área foliar específica e a concentração nutricional nas folhas são fortes atributos para separar árvores e lianas. Portanto, consideramos a importância de incluir estudos em áreas sazonalmente extremas, pois nestes ambientes, assim como em cerrado, lianas podem ter padrões e respostas distintos do que previsto para florestas úmidas. Além disso, destacarmos a relevância do componente arbóreo em detrimento dos fatores climáticos nas florestas neotropicais. Palavra-chave: revisão, interação antagonista, lianas, estoque de carbono, características funcionais, Neotropical. Abstract Lianas are plants that invest biomass primarily to leaf production in detriment of woody components. The consequence of this is that lianas need other forest components, usually trees, to reach and remain in the canopy. Once established, this interaction is characterized as antagonistic and lasting, as lianas are more efficient in below and aboveground. This is due to the foliar and root characteristics of lianas that are known for fast absorption and transportation of water and nutrients, especially in drought period. We carried out an ecological research, that is divided in 3 chapters, on the antagonistic interaction between trees and lianas along neotropical forests. In chapter I, we performed a review on liana studies in the Neotropical region (26ºN-26ºS. To do this review we searched, in specialized databases, for articles that used the terms liana *, "climb * plant*", vine *, trepad *, without country limitation, but restricting ourselves only to scientific articles. In this process, we found 425 articles regarding lianas on the Neotropical region. Most of them were focused on the interaction between trees and lianas (255), although some talked exclusively about lianas (170). The majority of the articles came from studies in Brazil and Panama, in rainforests and seasonal forest, with dominance of phytosociology and ecophysiology themes. In Chapter 2, we performed a phytosociological survey in two cerrado and a semidecidual forest in São Paulo, where we followed a standard methodology suggested by Alwyn H. Gentry. We have also included seasonal and no seasonal areas available in this author's database. We found that the model well represented and the climatic factors had no direct effect on lianas biomass or carbon stock. Liana biomass has a direct and significant effect only with tree biomass and abundance of lianas. While tree biomass is the only factor with a direct and significant effect on the forest carbon stocks. In Chapter 3, we evaluated the seasonal variations of foliar and spectral properties of trees and lianas, and identified if it is possible to distinguish these groups in cerrado. As we concluded, the reflectance spectrum was not a good parameter to distinguish the lianas and trees. However, the specific leaf area and nutritional concentration in the leaves are strong attributes to separate trees and lianas. Therefore, we consider that studies with lianas need to be conducted in areas with extreme seasonality of precipitation. Because in these environments, like in cerrado, lianas may have differeny patterns from those predicted for rainforests. In addition, we highlight the relevance of the arboreal component to the detriment of the climatic factors in the Neotropical forests. Key-words: review, antagonistic interaction, lianas, carbon stocks, functional traits, Neotropical. SUMÁRIO Introdução Geral......................................................................................................10-13 Referências............................................................................................................14-18 Capítulo I: Lianas research in the Neotropics: state of the art and future perspectives...............................................................................................................19-59 Abstract..................................................................................................................21-22 Introduction...........................................................................................................23-25 Criteria for the inclusion of studies, vegetation classification and research topics......................................................................................................................25-26 Review on liana research in the Neotropical region...............................................26-30 Liana research over time and topics addressed among the research on lianas.................................................................................................................26-29 Liana research in the Neotropics: geographical distribution and vegetation types..................................................................................................................29-30 Lianas: its antagonistic relation to trees and importance to biodiversity...............30-32 Global change and the future of lianas...................................................................32-34 Control, management and conservation of lianas..................................................34-37 Future perspectives and conclusions......................................................................37-38 References.............................................................................................................38-53 Tables and figures..................................................................................................54-59 Capítulo 2: Biomassa de lianas e estoque de carbono em florestas neotropicais...............................................................................................................60-94 Resumo.......................................................................................................................62 Introdução..............................................................................................................62-65 Material e Métodos................................................................................................65-69 Amostragem florística e estrutural.........................................................................65 Áreas de estudo e banco de dados Alwyn H. Gentry.........................................65-66 Biomassa e estoque de carbono.........................................................................66-67 Variáveis ambientais..............................................................................................67 Justificativa e hipóteses do modelo hipotético...................................................67-68 Análises dos dados..................................................................................................69 Resultados..............................................................................................................69-70 Discussão...............................................................................................................70-72 Considerações finais....................................................................................................73 Referências............................................................................................................74-84 Taelas e figuras......................................................................................................85-89 Material suplementar.............................................................................................90-94 Capítulo 3: Características foliares entre lianas e árvores em cerrado sensu stricto (Itirapina, SP).........................................................................................................95-127 Resumo.......................................................................................................................97 Introdução............................................................................................................98-100 Material e Métodos....................................................................................................101 Área de estudos: Itirapina - cerrado sensu stricto.................................................101 Constituição dos grupos estudados e amostragem foliar................................101-102 Espectro de reflectância foliar e análise espectral..........................................102-103 Conteúdo de pigmentos: Clorofila (a, b, total) e Carotenóides..............................103 Conteúdo nutricional (fósforo e nitrogênio), área foliar específicas, massa foliar por unidade de área..............................................................................................103-104 Análises dos dados................................................................................................104 Resultados..........................................................................................................104-106 Discussão...........................................................................................................106-109 Considerações finais..........................................................................................109-110 Referências........................................................................................................111-120 Tabelas e Figuras...............................................................................................121-128 Considerações finais.............................................................................................129-132 Referências........................................................................................................130-132 9 Introdução Geral Lianas (trepadeiras lenhosas) são plantas heliófilas, ou seja, demandantes de luz para o desenvolvimento e o seu estabelecimento (Stevens 1987; Gerwing et al. 2006) e que investem em crescimento rápido em altura em prejuízo de sua sustentação mecânica (Castellanos et al. 1992; van der Heijden et al. 2013). Este grupo de plantas é caracterizado como parasita estrutural por utilizar o suporte físico de outras plantas para ascenderem ao dossel da floresta, mantendo suas raízes no solo ao longo de sua vida (Schnitzer & Bongers 2002; 2011). Nesse sentido, as lianas usam outros componentes florestais, principalmente árvores, como estrutura de suporte para maximizar a obtenção de luz (Hergaty 1991; Laurance et al. 2014). Lianas próximas filogeneticamente compartilham mecanismos de escalada semelhantes e colonizam árvores com características funcionais equivalentes (Zulqarnain et al. 2016). Contudo, o estabelecimento desse contato é marcado pela competição entre árvores e lianas, em todos os estágios de vida (Vleut & Pérez-Salicrup 2005; Toledo- Aceves 2015), por água, luz e nutrientes, sendo as lianas mais eficientes que as árvores (Schnitzer & Bongers 2002; Schnitzer & Bongers 2011; Tobin et al. 2012; Rios et al. 2014). Consequentemente, lianas podem reduzir as taxas de recrutamento, crescimento e produtividade das árvores (Schnitzer & Carson 2010; Álvarez-Casino et al. 2015). Em contrapartida, árvores podem apresentar atributos restritivos à colonização por lianas, por exemplo, casca lisa, crescimento rápido em altura, caule flexível, diâmetro menor, ramificações altas no tronco, folhas grandes e copa menos iluminadas (Putz 1984; Nabe- Nielsen 2001; Pérez-Salicrup & Meijere 2005; Reddy & Parthasarathy 2006; van der Heijden et al. 2008; Schnitzer & Carson 2010; Sfair et al. 2013). Sendo a combinação de uma ou mais estratégias a forma eficiente para limitar a ocupação dessas plantas (Sfair et al. 2016). Assim, têm-se que lianas podem alterar a dinâmica e a diversidade da comunidade arbórea, atuando então como uma força seletiva (Pérez-Salicrup et al. 2001; Phillips et al. 2005). Lianas em conjunto com as demais trepadeiras herbáceas, são um grupo polifilético de plantas, uma vez que, durante o processo evolutivo das angiospermas, esta forma de vida surgiu várias vezes em eventos independentes (Burnham 2009). Um estudo realizado com 442 famílias de angiospermas, mostrou que 159 (36 % do total), possuem ao menos uma espécie de plantas escaladoras em sua composição (Gianoli 2015). O hábito trepador é considerado a inovação evolutiva para as angiospermas, uma vez que 10 táxons compostos por estas plantas apresentam maior riqueza de espécies do que seus grupos irmãos onde estas estão ausentes (Gianoli 2004; Gianoli et al. 2016). Lianas apresentam uma diversidade de atributos ecológicos e morfológicos, tais como, modo de dispersão de semente e forma de ascender à copa. Tais plantas, de maneira geral, desenvolvem-se no interior de florestas em estádios finais de sucessão (Gentry 1991), são predominantemente anemocóricas (Morellato & Leitão-Filho 1998; Vargas et al. 2018) e têm pico de floração nas transições das estações seca e chuvosa e frutificação no final da estação seca (Croat 1975; Morellato & Leitão-Filho 1996). Lianas têm uma distribuição ampla em diversos ecossistemas, mas é na região tropical, principalmente em formações florestais de baixa altitude, que essas plantas atingem maior riqueza, diversidade e abundância (Emmos & Gentry 1983; Gentry 1991; Schnitzer & Bongers 2002). Em florestas tropicais 50 % das árvores carregam lianas em sua estrutura (Acevedo-Rodrigues 2005), o que caracteriza as lianas como responsáveis por cerca de 2-15 % da biomassa foliar, 5 % da biomassa lenhosa, 24-30 % serapilheira (Hergaty 1991; Gerwing & Farias 2000; Hora et al. 2008) e 15-45 % da diversidade florística (Pérez-Salicrup et al. 2001; Schnitzer & Bongers, 2002; Gallagher 2015). Lianas produzem mais folhas com menor massa foliar em relação as árvores, e elevada concentração de nitrogênio foliar, o que lhes assegura maior eficiência fotossintética (Kazda & Salzer 2000; Kazda et al. 2009), e por essa razão formam uma extensa camada de folhas sobre a copa das árvores (Hergaty & Caballé 1991; Avalos et al. 2007). Em Barro Colorado, Avalos et al. (1999) compararam as propriedades foliares de árvores e lianas, estas diferenciaram apenas quanto à transmitância, que foi significativamente menor nas folhas de lianas. Tal abordagem foi ampliada por Castro- Esau et al. (2004) e Sánchez-Azofeifa et al. (2009) que buscaram distinguir os padrões ecofisiológicos destes grupos em florestas tropicais com graus de sazonalidade contrastantes. Os resultados obtidos pelos trabalhos acima citados se opuseram ao encontrado por Avalos et al. (1999) pois revelaram que as propriedades ópticas entre estes grupos diferem somente quando são oriundas de ambientes florestais com um período seco marcante. Além disso, suas características foliares marcantes de elevada transmitância e reflectância e baixa absorbância reduzem a perda de calor, a troca gasosa e o estresse hídrico favorecendo as taxas fotossintéticas (Sánchez-Azofeifa et al. 2009). Dentro deste contexto, torna-se relevante avaliar as características e as respostas foliares de árvores e lianas em ambientes submetidos a diferentes graus de sazonalidade (Anser & Martin 2012). 11 O interesse por lianas nos estudos ecológicos é crescente (Schnitzer et al. 2015), tendo em vista que existem evidências que estas estão aumentando em densidade, abundância e biomassa nas florestas tropicais (Laurance et al. 2014; Schnitzer 2015) e ocasionando alterações na estrutura florestal (Schnitzer & Bongers 2011; Tymen et al. 2016). A intensidade das atividades antrópicas provocam a formação de clareiras no interior da floresta e o de bordas associadas a fragmentação, ambientes que favorecem a germinação, ocupação e super-dominância de lianas (Balch et al. 2011; Schnitzer et al. 2014). Estas plantas mecanicamente dependentes, em uma floresta úmida na Guiana Francesa, aumentaram em biomassa 60 % mais rápido que as árvores, e reduziram em 4.6 % a abundância da comunidade arbórea, enquanto incrementaram 1.8 % em sua abundância (Chave et al. 2008). Em Barro Colorado (Panamá), em um período de dez anos a proporção de copas colonizadas por lianas aumentaram de 32 % para 47 %, no qual aquelas com domínio severo por lianas atingiram 75 % do número de árvores (Ingwell et al. 2010). É documentado também em Barro Colorado, uma maior densidade de lianas (75-140 %), principalmente daquelas com diâmetro maior que 5 cm (Schnitzer et al. 2012). As alterações do clima são um dos fatores relevantes que ocasionam as alterações na dinâmica em florestas tropicais (Phillips & Lewis 2013). O rápido aquecimento global desde meados do século 20 alterou o padrão de circulação de ar atmosférico, estabelecendo áreas com secas mais intensas (Dai 2011; Trenberth et al. 2013). Os modelos climáticos prevêem secas severas em diversas localidades depois da metade deste século, tendo por consequência a diminuição da precipitação e/ou aumento da demanda evaporativa (Dai 2013). O período de menor disponibilidade de água é oportuno para o desenvolvimento das lianas (DeWalt et al. 2010; Cai et al. 2009). Isto porque, lianas, supostamente, possuem sistema radicular que tem ampla capacidade de forrageamento, tendo acesso a água e nutrientes que geralmente estão escassos durante os períodos mais secos (Schnitzer 2005) e um sistema vascular que garante um transporte rápido e eficiente de água (Andrade et al. 2005; Rosell & Olson 2014). Com isso, durante o período de escassez de água, quando os demais componentes florestais estão em dormência de suas funcionalidades, lianas são capazes de crescer 7 vezes mais que seus competidores (Schnitzer et al. 2005). As alterações climáticas previstas, então intensificam o aumento da abundância, densidade e biomassa de lianas em florestas tropicais secas (Gentry 1991; DeWalt et al. 2010; Yorke et al. 2013). Contudo, além das lianas contribuírem pouco em biomassa lenhosa (Gentry 1991; van der Heijden et al. 12 2013) e acarretarem o aumento da mortalidade arbórea (Laurance et al. 2001; van der Heijden et al. 2008), estas também diminuem o estoque de carbono florestal (Durán & Gianoli 2013; Schnitzer et al. 2014). Esta redução ocorre porque os recursos deslocados para alta produção de folhas são rapidamente dispensados com alta produtividade de serapilheira, portanto, o tempo de residência do carbono em florestas dominadas por lianas é baixo (Tymen et al. 2016). Tendo em vista a importância das lianas no cenário atual, esta tese teve como objetivo realizar uma pesquisa ecológica sobre a interação antagônica entre árvores e lianas ao longo de comunidades florestais neotropicais. Para isso, associamos base de dados climáticos, estruturais, biomassa, acúmulo de carbono e características foliares para compreender esta interação entre árvores e lianas. No capítulo I, intitulado “Lianas research in the Neotropics: state of the art and future perspectives”, fizemos uma revisão sistemática sobre o estado da arte dos estudos de liana na região Neotropical de 1950 a 2016. Os trabalhos foram classificados por ano, país, tipo de vegetação e categoria de estudos. Nosso objetivo foi ampliar o interesse dos pesquisadores pelas lianas, e discutir o futuro das lianas em termos de controle, conservação e legislação para possibilitar a regulação e o manejo de destas espécies nativas que pode se tornar super-dominantes e dificultar a regeneração florestal. No capítulo II, intitulado “Biomassa de lianas e estoque de carbono em florestas neotropicais”, estabelecemos transectos em três unidades de conservação (dois cerrado sensu stricto e uma floresta estacional semidecidual) seguindo a metodologia proposta por Gentry (1982). Complementamos nossa amostragem com o banco de dados desse autor e calculamos parâmetros fitossociológicos, estruturais, biomassa e acúmulo de carbono. Com isso, determinamos os fatores climáticos e estruturais que estão relacionados direta e indiretamente com a biomassa de lianas e acúmulo de carbono florestal. No capítulo III, intitulado “Características foliares entre lianas e árvores em cerrado sensu stricto (Itirapina, SP)”, analisamos as características ecofisiológicas foliares entre lianas e árvores durante as estações seca e chuvosa de um fragmento de cerrado. Buscando distinguir estes grupos estruturais por meio dos parâmetros ecofisiológicos. 13 Referências Acevedo-Rodrigues, P. 2005. Vines and Climbing plants of Puerto Rico and the Virgin Island. Washington: National Musuem of Natural History. 483p. Álvarez-Casino, L.; Schnitzer, S.A.; Reid, J.P. & Powers, J. 2015. Liana competition with tropical trees varies seasonally but not with tree species identity. Ecology 96 (1): 39-45. Andrade L.J.; Meinzer F.C.; GoldsteinG.; Schnitzer. S.A. 2005. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest. Trees 19: 282-289. Avalos, G.; Mulkey, S.S. & Kitajima, K. 1999. Leaf optical properties of trees and lianas in the outer canopy of a tropical dry forest. Biotropica 31 (3): 517-520. Avalos, G.; Mulkey, S.S.; Kitajima, K. & Wright, S.J. 2007. Colonization strategies of two liana species in a tropical dry forest canopy. Biotropica 39, 393–399. Asner, G.P. & Martin, R.E. 2012. Contrasting leaf chemical traits in tropical lianas and trees: implications for future forest composition. Ecology Letters (15): 1001-1007. Balch, J.K.; Nepstad, D.C.; Curran, L.M.; Brando, P.M.; Portela, O.; Guilherme, P.; Reuning-Scherer, J.D. & Carvalho, O. 2011. Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management 261: 68–77. Burnham, R.J. 2009. An overview of the fossil record of climbers: bejucos, soga, trepadeoras, lianas, cipós and vines. Revista Brasileira de Paleontologia 12 (2): 149-160. Cai, Z.; Schnitzer, S.A. & Bongers, F. 2009. Seasonal differences in leaf-level physiology give lianas a competitive advantages over trees in a tropical seasonal forest. Physiological Ecology 161: 25-33. Castellanos, A.E.; Durán, R.; Guzman, S.; Briones, O. & Faria, M. 1992. Three- Dimensional space utilization of lianas: A Methodology. Biotropica 24 (3): 396-401. Castro-Esau, K. L., Sánchez-Azofeifa, G. A., & Caelli, T. 2004. Discrimination of lianas and trees with leaf-level hyperspectral data. Remote Sensing of Environment 90 (2004): 353−372. Chave, J.; Olivier, J.; Bongers, B.; Châtelet, P.; Forget, P.M.; van der Meer, P.; Norden, N.; Riéra, B. & Charles-Dominique, P. 2008. Above-ground biomass and productivity in a rain forest of eastern South America. Journal of Tropical Ecology 24: 355-366. Croat, T.B. 1975. Phenological behavior of habit classes on Barro Colorado Island (Panama Canal Zone) Biotropica 7: 270-277. Dai, A. 2011. Drought under global warming: a review. WIRES Climatic Change 2: 45- 65. 14 Dai, A. 2013. Increasing drought under global wr=arming in observations and models. Nature Climatic Change 3: 53-58. DeWalt, S.J.; Schinitzer, S.A.; Chave, J.; Bonger, F.; Burnham, R.J.; Cai, Z.; Chuyong, G.; Clarck, D.B.; Ewaango, C.E.N.; Gerwing, J.J.; Gortaire, E.; Hart, T.; Ibarra- Manríques, G.; Ickes, K.; Kenfack, D.; Macía, M.J.; Makana, J.; Martínez-Ramos, M.; Mascaro, J.; Moses, S.; Muller-Landau, H.C.; Parren, M.P.E.; Parthasarathy, N.; Pérez- Salicrup, D.R.; Putz, F.E.; Romero-Saltos, H. & Thomas, D. 2010. Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica 42: 309-317. Durán, S.M. & Gianoli, E. 2013. Carbon stocks in tropical forests dedrease with liana density. Biology Letters 9: 1-4. Emmons, L.H. & Gentry, A.H. 1983. Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates. The American Naturalist 12, 513-524. Gallagher, R.V. 2015. Climbing plants diversity in Australia: taxonomy, biogeography and functional traits. In: Schnitzer, S.A.; Bongers, F.; Burnham, R.J. & Putz, F.E. Ecology of lianas, Wiley Blackwell, Oxford. P.p. 104-115. Gentry, A.H. 1991. The distribution and evolution of climbing plants. In: Putz, F.E. and Mooney, H.A. (eds.). The biology of vines. Cambridge, Cambridge University Press. Pp. 3-49. Gerwing, J.J. & Farias, D.L. 2000. Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest. Journal of Tropical Ecology 16: 327-335. Gerwing, J.J.; Schnitzer, S.A.; Burnham, R.J.; Bongers, F.; Chave, J.; Dewalt, S.J.; Ewango, C.E.N.; Foster, R.; Kenfack, D.; Martinez-Ramos, M.; Parren, M.; Parthasarathy, N.; Perez-Salicrup, D.R.; Putz, F.E. & Thomas, D.W. 2006. A standard protocol for lianas censuses. Biotropica 38: 256-261. Gianoli, E. 2004. Evolution of a climbing habit promotes diversification in flowering plants. Proceedings of the Royal Society Biological Sciences 271: 2011-2015. Gianoli, E. 2015. Evolutionary implications of the climbing habit in plants. In: Schnitzer, S.A.; Bongers, F.; Burnham, R.J. & Putz, F.E. Ecology of lianas, Wiley Blackwell, Oxford. P.p. 239-250. Gianoli, E.; Torres-Diaz, C.; Ruiz, E., Salgado-Luarte, C.; Molina-Montenegro, M.A.; Saldaña, A. & Rios, R.S. 2016. Woody climbers show greater population genetic differentiation than trees: Insights into the link between ecological traits and diversification. Evolution 70 (12): 2736-2745. Hergaty, E.E. 1991. Vine-host interactions. In: Putz, F.E. & Mooney, H.A. The biology of vines. Cambridge University Press, Cambridge. Pp. 357-375. 15 Hergaty, E.E.; Caballé, G. 1991. Distribution and abundance of vines in forest communities. In: Putz, F.E. & Mooney, H.A. The biology of vines. Cambridge University Press, Cambridge. Pp. 313-355. Hora, R.C. Primavesi, O. & Soares, J.J. 2008. Contribuição das folhas de lianas na produção de serrapilheira em um fragmento de floresta estacional semidecidual em São Carlos, SP. Revista Brasileira de Botânica 31 (2): 277-285. Ingwell, L.L.; Wright, S.J.; Becklund, K.K.; Hubbell, S.P. & Schnitzer, S.A. 2010. The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. Journal of Ecology 98: 879–887. Kazda, M. & Salzer, J. 2000. Leaves of lianas and self-supporting plants differ in mass per unit area and nitrogen concentration. Plant Biology 2: 268-271. Kazda, M; Miladera, J.C. & Salzer, J. 2009. Optimisation of spatial allocation patterns in lianas compared to trees used for support. Trees 23: 295-304. Laurence, W.F.; Peréz-Salicrup, D.; Dalemônica, P.; Fearnside, P.M.; D’angelo, S.; Jerozolinski, A.; Pohl, L.; Levejoy, T.E. 2001. Rain forest fragmentation and the structure of Amazonian liana communities. Ecology: 82 (1): 105-116. Laurance, W.F.; Andrade, A.S.; Magrhach, A.; Camargo, J.L.; Valsko, J.J.; Campbell, M.; Fearnside, P.M.; Edwards, W.; Lovejoy, T.E. & Laurance, S. 2014. Long-term changes in liana abundance and forest dynamic in undisturbed Amazonian forests. Ecology 95 (6): 1604-1611. Morellato, P.C. & Leitão-Filho, H.F. 1996. Reproductive phenology of climbers is Southeastern Brazilian forest. Biotropica 28: 180-191. Morellato, L.P. &Leitão-Filho, H.F. 1998. Levantamento florístico da comunidade de trepadeiras em uma floresta semidecídua no sudeste do Brasil. Boletim do Museu Nacional 103: 1-15. Nabe-Nielsen, J. 2001. Diversity and distribution of lianas in a Neotropical rain forest, Yasuní National Park, Ecuador. Journal of Tropical Ecology 17 (1): 1-19. Pérez-Salicrup, D.R.; Sork, V.L. & Putz, F.E. 2001. Lianas and trees in a Lianas Forest of Amazonian Bolivia. Biotropica 33: 34-47. Pérez-Salicrup, D.R. & Meijere, W. 2005. Number of lianas per tree and number of trees climbed by lianas at Los Tuxtlas, Mexico. Biotropica 37 (1): 153-156. Phillips, O.L.; Martínez, R.V.; Mendoza, A.M.; Baker, T.R. & Vargas, P.N. 2005. Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology 86 (5): 1250- 1258. Phillips, O. & Lewis, S. 2013. Recent changes in tropical forest biomass and dynamics. Forests and Global Change 4: 77–108. 16 Putz, F.E. 1984. How trees avoid and shed lianas. Biotropica 16 (1):19-23. Reddy, M.S. & Parthasarathy, N. 2006. Liana diversity and distribution on host trees in four inland tropical dry evergreen forests on host trees in four inland tropical dry evergreen forests of peninsular India. Tropical Ecology 47: 109-123. Rios, R.S.; Salgado-Luarte, C. & Gianoli, E. 2014. Species divergence and phylogenetic variation of ecophysiological traits in lianas and trees. PloS One 9 (6): 3-10. Rosell, J.A. & Olson, M.E. 2014. Do lianas really have wide vessels? Vessel diameter– stem length scaling in non-self-supporting plants. Perspectives in Plant Ecology, Evolution and Systematics 16: 288–295. Sánchez-Azofeifa, G.A.; Castro, K.; Wrigh, S.J.; Gamon, J.; Kalacska, M.; Rivard, B.; Schnitzer, S.A. & Feng, J.L. 2009. Differences in leaf traits, leaf internal structure, and spectral reflectance between two communities of lianas and trees: Implications for remote sensing in tropical environments. Remote Sensing of Environment 113: 2076–2088. Schnitzer, S.A & Bongers, F. 2002. The ecology of lianas and their role in forests. Trends in Ecology & Evolution 17 (5): 223-230. Schnitzer, S.A. 2005. A mechanism explanation for global patterns of liana abundance and distribution. American Society of Naturalists 166 (2): 262-276. Schnitzer, S.A.; Kuzee, M. & Bongers, F. 2005. Disentangling above-and belowground competition between lianas and trees in a tropical forest. Journal of Ecology 93, 1115– 1125. Schnitzer, S.A. & Carson, W.P. 2010. Lianas suppress tree regeneration and diversity in treefall gaps. Ecology Letters 13: 849–857. Schnitzer, S.A. & Bongers, F. 2011. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology Letters 14: 397-406. Schnitzer, S.A.; Mangan, S,A.; Dalling, J.W., Baldeck, C.A.; Hubbell, S.P.; Ledo, A.; Muller-Landau, H.; Tobin, M.F.; Aguilar, S.; Brassfield, D.; Hernandez, A.; Lao, S.; Perez, R., Valdes, O. & Yorke, S.R. 2012. Liana abundance, diversity, and distribution on Barro Colorado Island, Panama. PLoS One 7 (12): 1-16. Schnitzer, S.A.; van der Heijden, G.; Mascaro, J. & Carson, W.P. 2014. Lianas in gaps reduce carbon accumulation in a tropical forest. Ecology 95 (1): 3008-3017. Schnitzer, S.A. 2015. Increasing liana abundance in Neotropical forests: causes and consequences. In: Schnitzer, S.A.; Bongers, F.; Burnham, R.J. & Putz, F.E. Ecology of lianas, Wiley Blackwell, Oxford. P.p. 451-464. Schnitzer, S.A., Putz, F.E., Bongers, F. & Kroening, K. 2015. The past, present and potential future of liana ecology. In: Schnitzer, S.A., Bongers, F., Burnham, R.J. & Putz, F.E. Ecology of lianas, Wiley Blackwell, Oxford. P.p.: 1-9. 17 Sfair, J.C.; Ribeiro, B.R.; Pimneta, E.P.; Gonçalves, T. & Ramos, F.N. 2013. A importância da luz na ocupação de árvores por lianas. Rodriguésia 64 (2): 255-261. Sfair, J.C.; Rochele, A.L.C.; Rezende, A.A.; Melis, J.V.; Burnham, R.J.; Weiser, V.L.B. & Martins, F.R. 2016. Liana avoidance strategies in trees: combined attributes increase efficiency. Tropical Ecology 57 (3): 559-566. Stevens, G.C. 1987. Lianas as structural parasites: The Bursera simaruba example. Ecology 68, 77-81. Tobin, M.F.; Wright, A.J.; Mangan, S.A. & Schnitzer, S.A. 2012. Lianas have a greater competitive effect than trees of similar biomass on tropical canopy trees. Ecosphere 3 (2): 1-11. Toledo-Aceves, T. 2015. Above- and belowground competition between lianas and trees. In: Schnitzer, S.A.; Bongers, F.; Burnham, R.J. & Putz, F.E. Ecology of lianas, Wiley Blackwell, Oxford. P.p. 149-163. Trenberth, K.E.; Dail, A.; van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R. & Sheffield, J. 2014. Global warming and changes in drought. Nature Climatic Change 4: 17-22. Tymen, B.; Réjou-Méchain, Dalling, J.W., Fauset, S.; Feldpausch, T.R.; Norden, N.; Phillips, O.L.; Turner, B.L.; Viers, J. & Chave, J. 2016. Evidence for arrested succession in a liana-infested Amazonian forest. Journal of Ecology 104: 149-159. van der Heijden, G.M.F.; Healey, J.R. & Phillips, O.L. 2008. Infestation of trees by lianas in a tropical forest in Amazonian Peru. Journal of Vegetation Science 19: 747-756. van der Heijden, G.H.; Schnitzer, S.A.; Powers, J.S. & Phillips, O.L. 2013. Lianas impacts on carbon cycling, storage and sequestration in Tropical forests. Biotropica 45 (6): 682-692. Vargas, B.C; Oliveira, A.P.C.; Udulutsch, R.G.; Marcusso, G.M.; Sabino, G.P.; Melo, P.H.A.; Grilo, R.M.M; Kamimura, V.A. & Assis, M.A. 2018. Climbing plants pf Porto Ferreia State Park, southeastern Brazil. Biota Neotropica 18 (2): 1-9. Vleut, I. & Pérez-Salicrup, D.R. 2005. Lianas and their supporting plants in the understorey at Los Tuxtlas, Mexico. Journal of Tropical Ecology 21 (5): 577-580. Yorke, S.R.; Schnitzer, S.A.; Mascaro, J.; Lechter, S.G. & Carson, W.P. 2013. Increasing liana abundance and basal area in a tropical forest: the contribution of long-distance clonal colonization. Biotropica 45 (3): 317-324. Zulqarnain, I.A.S.; Melis, J.V.; Sfair, J.C.; Martins, F.R. & Ullah, F. 2016. Phylogenetic interactions among lianas in a southeastern Brazilian semideciduous tropical forest. South African Journal of Botany 103: 108-125. Capítulo 1 LIANAS RESEARCH IN THE NEOTROPICS: STATE OF THE ART AND FUTURE PERSPECTIVES 19 Lianas research in the Neotropics: state of the art and future perspectives Betânia Cunha Vargas1,2, Maria Tereza Gromboni-Guarantini3, Leonor Patricia Cerdeira Morellato1 1. UNESP - Universidade Estadual Paulista, Instituto de Biociências, Departamento de Botânica, Laboratório de Fenologia, Rio Claro, São Paulo, Brasil. 2. UNESP - Universidade Estadual Paulista, Instituto de Biociências, Programa de Pós-graduação em Biologia Vegetal, Rio Claro, São Paulo, Brasil. 3. Instituto de Botânica, Núcleo de Pesquisa em Ecologia, São Paulo, São Paulo, Brasil. 20 Abstract Lianas are key components of species composition, structure and dynamics of tropical 'forests. Current global warming scenario, however, are favoring increases in the abundance and density of lianas in tropical forests, affecting tree growth and fertility, and in the number of tree injuries, which increases tree mortality over time. Here we present a review of studies on Neotropical lianas aiming to (i) establish the current state of ecological research, identifying knowledge gaps and determining new directions and perspectives for future studies; (ii) offer baseline knowledge to support the control, management and conservation of lianas and (iii) boost the interest of researchers towards lianas and their intricate relation with trees. We systematically reviewed the literature on lianas (woody climbers) since 1950 through the databases Web of Science, Google Scholar and Scielo using the terms liana*, “climb* plant*”, vine*, trepad*. We organized the literature by country, vegetation type, topic addressed and whether the study focused exclusively on lianas or lianas and trees. We surveyed 425 studies in the Neotropical region: 255 focused on the interaction between lianas and trees and 170 exclusively on lianas. Studies bloomed in the 90’s, but mostly after 2000, and were carried out mainly in rainforests (194 – 42%) and seasonal forests (120- 26%), the majority in the Brazilian Amazon (162- 38%) and BCI-Panamá (74- 17%), respectively. Our review demonstrates the importance of lianas in seasonal forests and the lack of studies in seasonally dry tropical forests, woody savannas and especially extremely dry vegetations as the Caatinga. The main topics addressed were: phytosociology (104- 19% studies), ecophysiology (59- 11%), biomass (48- 9%), control and management (46- 9%), floristics (41- 8%), functional traits (42- 7%), phenology (39- 7%) and plant-animal interactions (33- 6%), and more recently global change (23- 4%), phylogeny (15- 3%), and recent technologies (14- 2%). Regardless of their remarkable importance in the Neotropics and worldwide, and their contribution for diversity, biomass and carbon flux, lianas are rarely used in global vegetation models and have been overlooked in restoration and management studies. We must consider the relevance of lianas in maintaining diversity and microclimate, and as resources for native animals, such as pollinators, herbivores and seed dispersers, as well as for traditional human communities. Research on ecophysiology and functional spectral traits, and the control, restoration and management of lianas are among the key areas of study in the Anthropocene. 21 Keywords: biomass; liana; climate change; ecological restoration; management; tropical forest 22 1. Introduction Climbing plants have been of interest to naturalists since the 17th century. Plumier (1693), Molh (1827), Palm (1827), Darwin (1865), Beal (1870), and Schenk (1892) were the first to describe habit-related features of climbing plants, such as using other plants as support and the variety of morphological mechanisms used to reach tree crowns and thus occupy forest canopies. Climbing plants grow fast in height but invest little in support relying on other plants to reach the forest canopy (Gentry 19991). However, climbers remain rooted to the soil during their entire life cycle (Putz and Chai, 1987), which has earned them the designation of structural parasites (Steven 1987; Phillips et al., 2002, Tobin et al., 2012). Climbing plants are classified into woody climbers (lianas), which show secondary growth, and herbaceous climbers (Gentry, 1991, Gerwing et al., 2006). According to Hergaty (1991), climbing mechanisms comprise: use of tendrils, including stem and leaf tendrils, twining using stems, branches or petioles and petiolules, scandent, which can be assisted by hooks and thorns, and the use of adventitious roots. These mechanisms are related to characteristics of the supporting plant, such as stem diameter, bark thickness and roughness, and height (Malizia and Grau, 2006, Campanello et al., 2007b). Climbing plants are common across many climate and plant communities, but reach the highest abundance, diversity and species richness in tropical forests (Emmons and Gentry, 1983, Pérez-Salicrup et al., 2001b). However, in the tropics, the contribution of lianas (woody climbers) to both community structure and composition is greater in relation to herbaceous climbers or vines (Putz, 1984b, Phillips et al., 2005, Durigon et al., 2014). The importance of lianas (woody climbers) to the structure and dynamics of tropical environments is noteworthy in the amount of food resources they offer to animals, including fleshy leaves, flowers and fruits, mostly during periods when tree resources are scarce (Morellato and Leitão-Filho, 1996, Chaves et al., 2015). Lianas (woody climbers) also play a role facilitating animal displacement (Nabe-Nielsen, 2001) across forest canopy and maintaining the microclimate of seasonal forests during the dry season, period in which many trees are leafless (Reston and Nepstad, 2001, Campanello et al., 2007a). However, lianas’ most outstanding feature is related to its increasing abundance in areas of early forest succession, forest gaps, edges and fragments (Phillips et al., 2002, Schnitzer et al., 2014, Barry et al., 2015). The unprecedented state of fragmentation of natural environments has created micro-environmental conditions with increased light 23 availability, which is suitable for the establishment and rapid development of lianas (Schnitzer and Carson, 2010, Yorke et al., 2013). As a consequence, liana abundance in disturbed and fragmented areas in the tropics has increased (Schnitzler et al., 2012, Magnano et al., 2016), causing negative impacts on the community. In such areas lianas may be considered as a potentially harmful super-dominant species, which requires management actions (Pivello et al. 2018) The current global warming scenario, with increased atmospheric CO2 and temperatures, and concurrent increases in the duration of the dry season in many regions, has favored the performance of lianas in tropical forests (Wrigth et al., 2004, Schnitzer, 2015). Lianas have been increasing in abundance, basal area and/or biomass in several tropical forest sites (Schnitzer et al., 2012, Philips and Lewis, 2014) and have already been considered as an indicator of global change effects in such ecosystems (Phillips et al., 2002, Pan et al,. 2011). As a result, trees sustaining lianas are affected, for example, by stems break and injury, favoring the attack of herbivores and pathogens (Putz, 1991, van der Heijden and Phillips, 2009). Those damages may lead to tree mortality, biomass reduction and, consequently, a decline in CO2 storage (Schnitzer et al., 2014, van der Heijden et al., 2015). The dominance of lianas in the canopy of tropical forests can also affect light availability in the understory (Avalos et al., 1999, 2007), seedling establishment, development and recruitment (Campanello et al., 2007b, Schnitzer and Carson et al., 2010, DeWalt et al., 2015), sap flow velocity (Tobin et al., 2012), canopy height (Pérez-Salicrup, 2001b, Tymen et al. 2016), and overall tree fecundity (Kainer et al., 2006, Grogan and Landis, 2009). Nevertheless, the effects of lianas in tropical tree communities are not uniform (Schnitzer et al., 2016). Liana abundance, density, biomass, and basal area are usually positively related to dry season duration and severity and negatively related to mean annual precipitation (Gentry, 1991, Schnitzer, 2005, DeWalt et al., 2010). However, Laurance et al. (2014) detected an increase in liana density in the Amazonian rainforest that was not related to precipitation variation but rather to increasing tree turnover, mortality and recruitment. Conversely, Marvin et al. (2015) did not find significant differences between trees and lianas in relation to CO2 increase and fertilization, both in the dry and rainy seasons. Therefore, including lianas in vegetation models and improving the quality of data regarding this plant group is crucial to better understand tropical forest dynamics and forecast the possible changes of ecosystems worldwide (Durán et al., 2015, Schnitzer et al., 2016). 24 Here we present a review of studies on the biology of lianas in the Neotropical region aiming to (i) establish the current state of ecological research regarding lianas, identify the knowledge gaps and determine new directions and perspectives for future studies, (ii) offer baseline knowledge to support the control, management and conservation of lianas and (iii) boost the interest of researchers towards lianas and their intricate relation with trees. We systematically reviewed the literature on lianas (woody climbers) regarding studies conducted in the Neotropics (26º N – 26º S) since 1950. We organized the literature by country, vegetation type, topic addressed by the study and whether it focused exclusively on lianas or on the relationship between lianas and trees. We drew some considerations about lianas, their importance and relevance to vegetation worldwide, and the key areas of study in the Anthropocene. 2. Criteria for the inclusion of studies, vegetation classification and research topics In this systematic review, we searched through the databases of Web of Science using the terms liana*, “climb* plant*”, vine*, trepad* with no limitation by country or year. We also searched the online data banks of Google Scholar and Scielo using the same terms. From all studies surveyed, we selected only those conducted in the Neotropical region (26ºN - 26ºS) between 1950 and 2018 (august). Additionally, we excluded all studies that addressed agricultural and cultivated species. Each paper surveyed was classified by country, vegetation type, topic and whether it focused exclusively on lianas or on the relationship between trees and lianas. To assign a vegetation category to each of our study site, we adopted the nine vegetation types used by Mendoza et al. (2017), based on the ecoregions of Olson et al. (2001), as follows: rainforests, seasonal forests, tropical dry forests, cerrado woodlands, desert and xeric shrublands, open grassy savannas, temperate evergreen forests, montane formations and seasonally flooded forests. We added the ecotone type when the study site was located in transition zones (between ecoregions). We classified the sites into the “wide distribution” category when a study used databases involving several countries in the Neotropics, and into the “no vegetation” category when the vegetation type of the study was not disclosed (Table 1). If a study included more than one country or vegetation formation we considered each site as an independent dataset (e.g. Mendoza et al., 2017), even when the vegetation types showed the same geographical coordinates. 25 We established 15 topics that could have been addressed in a given study: taxonomy, phylogeny, floristics, ontogeny and development, anatomy, phytosociology, biomass, control and management, functional traits (habit, seed dispersal, climbing mode, morphology of supporting trees), ecophysiology (structure, chemistry and physiology of leaf and canopy, and spectral reflectance), phenology, ethnobotany, plant-animal interaction, new technologies (satellite data), and global change. Each study could be classified in one or more topics. 3. Review on liana research in the Neotropical region 3.1. Liana research over time and topics addressed among the research on lianas We found 1060 articles using the search criterion described above. We identified 425 studies that were carried out in the Neotropical region, of which most (255- 60%) focused on the interaction between lianas and trees and 170 (40%) focused exclusively on lianas (Table S.1, supplementary-digital), and are here described over time (Fig. 1). The main topics addressed among these studies surveyed were: phytosociology (104-19% studies), ecophysiology (59-11%), biomass (48-9%), control and management (46-9%), and functional traits (42-8%) (Table 1). Such descriptive studies are followed by ecological research on floristic (41-8%), phenology (39-7%), and plant-animal interactions (33-6%) (Table 1). Up to the early 90s, research on lianas showed only a slight increase over time, however, after 2000 the number of studies addressing lianas increased exponentially (Fig. 1). Scholander et al. (1957) carried out the first study with lianas in the Neotropics, which focused on the physiology of Tetracera sp. (Dilleniaceae) in Barro Colorado Island. However, it was only in the 1970s that new studies on the ecology of lianas in the Neotropics were published: Janzen (1971) addressed strategies to avoid seed predation of Dioclea sp. and the classic study by Gentry (1974) on the phenology of Central American Bignoniaceae. Up to the early 1990s, lianas were nearly neglected and understudied by the scientific community, except by the pioneer work of Gentry (1985, 1987, 1991, 1992) and the studies by Putz (1980), Putz (1984b), Putz and Chai (1987) and Boom and Mori (1982), describing the mechanisms in which trees avoid lianas. In fact, the 1990s mark the flourishing of papers regarding lianas, which began with the seminal book by Putz and Mooney (1991) “The biology of vines”. A very rich and diversified literature was published during the 90s, including papers that addressed 26 ethnobotany and the importance of lianas for traditional communities (Arenas and Gilbert, 1987, Gentry, 1992, Phillips and Gentry, 1993, Paz y Niño et al. 1995), and papers describing the contrasting and complementary phenology patterns between lianas and trees (Morellato and Leitão-Filho, 1996) and their role as food resource to the fauna (Chiarello, 1998, Galleti et al., 1994, Wallace et al. 1998). During the 2000s, the number of studies increased by more than three folds, establishing lianas as a key field of study in the Neotropics (Fig. 1). The exponential growth in scientific papers with lianas observed in our survey is similar to that shown by Schnitzer et al. (2015). The number of publications involving liana ecology increased more than publications involving the ecology of other groups (Schnitzer et al., 2015, Mendoza et al., 2017). Among the topics (Table 1), research focusing on the interaction between trees and lianas followed the same proportion of topics as for the total summary. While we found that studies focusing exclusively on lianas are rather basic research and combine most of the research on phytosociology and taxonomy (29-14%, each), anatomy (21-10%), floristic (19- 9%), ecophysiology (17- 8%), functional traits, phylogeny and phenology (12-4%, each), and biomass and plant-animal interaction (11- 5% each). The phytosociology studies, mostly describing the importance of lianas as a structural component of tropical communities (Ibarra-Marínquez and Martínez-Ramos, 2002, Phillips et al., 2002, Burnham, 2004, Gerwing, 2004; Franci et al., 2016). The studies have focused too mainly on liana dynamics in gaps and forest areas of different successional stages and have demonstrated how well these plants grow in such environments (Gerwing and Uhl, 2002: Madeira et al., 2009; Yorke et al., 2013, Barry et al. 2015). It was during 2000s that Schnitzer (2005) discussed the importance of the dry season for the development of lianas, and Schnitzer et al. (2006) proposed an allometric equation to calculate liana biomass after demonstrating how different types of diameter measurements affect liana biomass, basal area and abundance estimates. Subsequently, the first studies proposing general guidelines and protocols to standardize the methods employed with lianas (Gerwing et al., 2006, Schnitzer et al., 2008). The studies with ecophysiology was also relevant, with many studies focusing on how lianas are affected by light and water availability (Sanches and Válio, 2002, Reston and Nepstad, 2004). For instance, Molina-Freaner et al. (2004) observed a decrease in leaf parameters (total and specific leaf area) with a decrease in precipitation and an increase in water stress and described how such factors could limit the local distribution of lianas. Ecophysiological studies provided evidence, in terms of leaf-level traits (leaf 27 area index, nutrient content and leaf dry mass) of the competitive advantages lianas have over trees (Selaya and Anten, 2008, Deurwaerder et al. 2018). Through these leaf distinctions, remote sensing studies start to map and monitor forest areas dominated by lianas, producing large-scale biomass estimates and revealing changes on forest structure across landscapes and biomes (Kalácska et al., 2007, Foster et al., 2008, Ledo et al., 2016, Marvin et al., 2016, Tymen et al., 2016). News technologies with terrestrial laser scanner and imagens hiperespectrais, detected structural changes related to lianas dominance (Sánchez-Azofeifa et al. 2017; Moorthy et al. 2018). Such new sets of data allow the identification of areas that need liana management and control, potentially enhancing the local experiences (e.g. César et al., 2016). Research has shown that lianas have become increasingly important in forest ecosystems (Schnitzer et al., 2012, Laurance et al., 2014b), occupying forest canopy (Ingwell et al., 2010, van der Heijden et al., 2010, Campanello et al., 2012) and producing structural and economic damage to trees (Nascimento et al., 2013, Staudhammer et al., 2013). Likewise, studies began to evaluate the effect of experimentally removing lianas as a mean to manage forest remnants (Schnitzer et al., 2010, César et al., 2016), evaluate phenological parameters and reproductive advantages, such as production of fruits and seeds for species of economic potential (Kainer et al., 2006, Fonseca et al., 2009, Grogan and Landis, 2009), the fast regeneration rates of lianas, even after removal (Campanello et al., 2012), and how the increase of liana abundance (Nascimento et al., 2013, Laurance et al., 2014b) and biomass (Laurance et al., 2001, Tobin et al., 2012, van der Heijden et al., 2015) affect community structure throughout time.Questions concerning how climate change will affect forests and fragments and liana dominance also began to be raised by researchers (Durán et al., 2015, van der Heijden et al., 2015, Collins et al., 2016). Likewise, quantify the overall negative effects of lianas on forest structure, tree biomass and carbon storage in forested ecosystems (Durán et al., 2015, Zelarayán et al., 2015). All taxonomic studies focused exclusively on lianas, and include both reviews (Nee 2007, Pool, 2009, Trethowan et al., 2015) and new species descriptions (Camargo and Tozzi, 2014, Aguirre-Morales et al., 2016). Most of the taxonomic studies (14) were on a single family, the Bignoniaceae (Hauk, 1997, Pool 2007, Udulutsch et al., 2009, Zuntini and Lohmann, 2014, Fonseca et al., 2016), stressing the relevance of this group of lianas (Gentry, 1991, Santos et al., 2009). Bignoniaceae is among the richest families in lianas in Neotropical (Gentry 1995). In addition, the largest tribe in this family, Bignonieae, is predominate by lianas (Lohmann 2006). Worth mentioning the studies that 28 described lianas floral pattern (Alcantara et al. 2013) and the association between molecular analysis and palynology to identify liana species (Milward-Azevedo et al. 2014). Anatomical studies were practically exclusive with lianas and have focused on secondary growth and cambial activity, mainly of species from the most representative families, such as Sapindaceae and Bignoniaceae (Tamaio et al., 2011, Angyalossy et al., 2012, Pace et al., 2015), including dendroecology and dendrochronology of lianas, and the importance of rainfall on liana growth rates (Lima et al., 2010, Brandes et al., 2011). Floristc also was important to lianas, those combining floristics with functional traits (habit, dispersal mode and climbing mechanisms) were frequent and have resulted in important identification keys (Araújo and Alves, 2010, Villagra and Roumaniuc Neto, 2011). 3.2. Liana research in the Neotropics: geographical distribution and vegetation types Our review showed that research on lianas has been conducted in 20 countries, mainly in Central America (particularly Panama, Costa Rica), South America (especially in Brazil and other Amazon countries such as Bolivia, Ecuador, Peru, and the Guianas) and Mexico (North America, Fig. 2;3). Most studies were carried out in Brazil (162- 38%), Panama (74- 17%), and Mexico (45- 10%), or were placed into the wide distribution category (35- 8%, Fig. 2). The studies in Brazil are mainly in the Amazon forest and the Atlantic forest from southeastern Brazil (Fig. 3). The Panamanian studies were predominantly conducted at Barro Colorado Island. In contrast with liana research in Brazil, the Panamanian studies have long-term data (frequency, density, dynamics and biomass) from permanent plots (Wright et al., 2004, Barry et al., 2015, Ledo et al., 2016). In the wide distribution category, most studies focused exclusively on lianas (Fig. 2), including phylogenetic and taxonomic reviews, some addressing exclusively the Bignoniaceae family (Hauk, 1997, Pool, 2009, Alcantara et al., 2013). Our survey detected a dominance of studies conducted in rainforests (194- 42%) and seasonal forests (120- 26%), both included into the moist broadleaf forest biome according to Olson et al. (2001, Fig. 3, Table 2) and occupying the largest area within the Neotropical region. Although the rainforest is the vegetation type where most tropical research, including those on lianas, have been conducted up to today, we observed a 29 significant amount of studies conducted in vegetations types that undergo some degree of climate seasonality with a marked dry season: seasonal forests (120), tropical dry forests (30- 6%) and cerrado woodlands (11- 2%) (Table 1). Both seasonality and a lower total annual precipitation have been pointed out as key climatic factors favoring high liana abundance and basal area in tropical forests (Gentry, 1991, Schnitzer, 2005). However, severe dry seasons, as occurs in the Brazilian semiarid (Caatinga dry forest and xeric shrublands), restricts liana distribution and abundance. Other climatic factors limiting liana abundance are altitude and minimum temperatures, as they limit water conduction in the xylem, eventually leading to embolism, and thus restrict the occurrence of woody lianas in high elevations (Alves et al., 2011). Therefore, although lianas have wide and long vessel elements that ensure efficient water transport, these characteristics also make lianas vulnerable to cold temperatures and water stress (Hu et al., 2010). 4. Lianas: its antagonistic relation to trees and importance to biodiversity Lianas face the trade-off between investing little in secondary growth, lacking thereby self-support, and investing in rapid growth in height, to reach the forest overstory where light availability is abundant (Castellanos et al., 1992, van der Heijden et al., 2013). Given this trade-off and the fact that these plants need abundant sunlight, lianas need the structural support of trees and can be defined as structural parasites (Ingwell et al., 2010, Tang et al., 2012, Stewart and Schnitzer, 2017). This dependency on trees may occur as seedlings or in later stages of their life cycles (Vleut and Pérez-Salicrup, 2005, Avalos and Mulkey, 2014). Lianas reach the canopy efficiently mostly through specialized organs, such as tendrils and adventitious roots (Hergaty, 1991, Putz and Holbrook, 1991). However, the effect of lianas on tree communities is not uniform given that trees show diverse ecological and morphological strategies, such as rapid growth in height, height, bark diameter, thickness and roughness, stem flexibility, to avoid or reduce liana colonization (Putz, 1980, van der Heijden et al., 2010, Garbin et al., 2014), thus restraining the competitive interaction between lianas and trees (Sfair et al., 2016). Alternatively, lianas may neutralize such mechanisms by using other climbers as support (facilitated colonization) or by using neighboring plants to reach the canopy (Putz, 1984b, van der Heijden et al., 2008, Yorke et al., 2013). Once the interaction liana-tree is established, competition for resources (water, light and nutrients) begins, where lianas are usually more efficient (Schnitzer and 30 Bongers, 2002, Schnitzer and Bongers, 2011, Tobin et al., 2012), especially in seasonally dry forests. Schnitzer (2005) suggests that lianas have a root and vascular system that is highly efficient in water transport and nutrient uptake, even in periods of water shortage, and Rosell and Olson (2014) observed that lianas have a higher density of vessels than self-supporting plants. Therefore, during periods when many plant growth forms exhibit some degree of dormancy, ceasing or reducing their metabolic activity, lianas continue photosynthetically active, assimilating carbon, and producing and maintaining their leaves and reproductive structures. Thus, lianas can be aggressive competitors that forage efficiently for resources, expanding and dominating the forest canopy during drier periods (Schnitze et al., 2005). Nonetheless, lianas lose their competitive advantage in forests where the dry season is too severe (Carvalho et al., 2016), given their roots become more superficial with limiting water availability (Andrade et al., 2005, Johnson et al., 2013; De Deurwaerder et al. 2018). Additionally, lianas do not tolerate water stress and the high vapor pressure deficit (Schnitzer et al., 2005), shedding its leaves at the beginning of the dry season to avoid water stress and damages to the xylem (Carvalho et al., 2016). Moreover, climbing species from Vitaceae and Cucurbitaceae family (important in arid and semi-arid ecosystems) use the Crassulacean acid metabolism (CAM) pathway when submitted to water stress in order to improve water use efficiency (Rundel and Franklin, 1991). Competition for resources between trees and lianas is highest at canopy levels. Once lianas reach tree crowns, they form a layer of leaves, intercepting light before liana- supporting trees (Avalos et al., 1999, 2007, Castro-Esau et al., 2004). Thus, canopy spectral signatures may be altered in areas dominated by lianas (Castro-Esau et al. 2004, Sanchéz-Azofeifa and Castro-Esau, 2006). This is particularly noticeable in seasonally dry forests as liana leaves, in contrast to tree leaves, are narrower, containing more aerenchym, water, nitrogen and phosphorous, and low concentrations of photosynthetic pigments (Sanchéz-Azofeifa and Castro-Esau, 2006, Sanchéz-Azofeifa et al., 2009a). These leaf traits, coupled with its higher specific leaf area and water use efficiency, give lianas a higher capacity to allocate resources and promote higher photosynthetic rates in relation to trees. On the other hand, trees show resource conservation strategies in order to avoid water stress and survive periods of leaf shedding and reduced growth (Pooter and De Jong’s, 1999, Cai et al., 2009, Sanchéz-Azofeifa et al., 2009a, Ball et al., 2015). Moreover, although liana leaves are less tolerant to the dry season than tree leaves, lianas 31 maintain cell turgidity through osmotic control even in dry conditions, enabling plant growth (Márechaux et al., 2017). Lianas are important floristic, functional and structural components of tropical forests (Gentry, 1991, Morellato and Leitão-Filho, 1996). Lianas contribute greatly to carbon and nitrogen dynamics in these ecosystems as the litter layer contains around 24- 30% of liana leaves and, in a smaller proportion, flowers, fruits, seeds and stems (Hergaty, 1991, Hora, 2008). Liana phenology is complementary to tree phenology, becoming an alternative food source during periods of resource scarcity for animals (Morellato and Leitão-Filho, 1996, Dunn et al., 2012). For instance, lianas may account for nearly 30% of a monkey’s diet (Galetti and Pedroni, 1994, Souza-Alves et al., 2011) and be the main food source for bees (Odegaard et al., 2000). Regarding the contribution to plant species diversity, lianas appeared multiple times throughout the evolution of angiosperms and are present in nearly 159 botanical families (Gentry, 1991). The life form is considered a key innovation given that clades containing lianas are more diverse in relation to those where lianas are absent (Gianoli, 2004, Gianoli et al., 2016). Thus, lianas represent 18-25% of the taxonomic diversity in tropical forests (Gentry, 1991, Schnitzer and Bongers, 2002, Schnitzer et al., 2012) and may represent up to 44% of the diversity in the Amazonian forests (Pérez-Salicrup et al., 2001b). 5. Global change and the future of lianas The climate change forecast predicts an average global surface temperature increase between 1 to 4 oC by 2100 (IPCC, 2013). In tropical forests, such temperature raise may result in longer and more intense dry seasons (Joetzjer et al., 2013) and irregular or extreme rainfall regimes (Cusack et al., 2016). The dry season has been pointed out as a key factor driving liana abundance, basal area, density and biomass (Gentry, 1991, Schnitzer, 2005, DeWalt et al., 2010, Sfair et al., 2016). Therefore, climate change may favor lianas in detriment of trees, especially in seasonally dry forests (Yorke et al., 2013, Schnitzer et al., 2014, Durán et al., 2015, Maréchaux et al., 2017). Collins et al. (2016) compared roots of lianas and trees and concluded that the association with mycorrhiza is less frequent in lianas than in trees. The authors state that the increasing temperatures due to climate change may accelerate nutrient mineralization in the soil, thus the advantages 32 bestowed to trees from the association with mycorrhiza (nutrient uptake, capability to avoid water loss and pathogens) would become insignificant, benefiting lianas. Aside from changes in temperature, climate change research has demonstrated the increase of atmospheric CO2 (Cramer et al., 2001, Eissenhauer et al., 2011). Eamus (1991) observed that an increase in CO2, coupled with elevated temperatures, reduce stomatal conductance and plants can obtain more carbon with less water loss. Additionally, elevated CO2 leads to increments in photosynthetic rates resulting in plant growth (Eamus, 1991) and, therefore, promotes a positive response from both trees and lianas (Phillips and Gentry, 1994). However, resource acquisition in lianas is extremely efficient given their leaf characteristics (high nitrogen and phosphorous concentrations, low carbon concentration, low tissue density) and root systems (deep roots and efficient water and nutrient transport) (Sanchéz-Azofeifa and Castro-Esau, 2006, Sanchéz-Azofeifa et al., 2009a, Collins et al., 2016). Thus, climate change favors higher photosynthetic rates in lianas in relation to trees (Granados and Körner, 2002, Wrigth et al., 2004, Phillips et al., 2004), which leads to higher growth, fecundity and recruitment rates in lianas (Phillips et al., 2002, Hättenschwiller and Köner, 2003, Mohan et al., 2006, Yorke et al., 2013) and increases their biomass contribution in forests (Granados and Köner, 2002, Phillips et al., 2002, van der Heijden et al., 2015). Liana leaf and root systems alter water and nutrient availability in the soil, increase litter production and accelerate decomposition, thus altering biogeochemical cycles (Sayer et al., 2011, Collins et al., 2016). Lianas also promote structural changes in forest communities reducing forest carbon stocks by 35 to 50% (Durán and Gianoli, 2013, van der Heijden et al., 2015) as lianas increase tree mortality (Ingwell et al., 2010) and reduce tree fecundity (Kainer et al., 2006, Staudhammer et al., 2013) and biomass (van der Heijden et al., 2009, Tobin et al., 2012, Phillips and Lewis, 2014, van der Heijden et al., 2015). Additionally, climate change increases treefall gaps, which also favors lianas (Clark et al., 2010, Schnitzer et al., 2014). In contrast, Schnitzer (2015) states that the direct effect of elevated CO2 in the antagonistic relationship between trees and lianas is debatable due to the lack of experimental studies that evaluate leaf traits associated with size, age and species identity of both trees and lianas. Moreover, Marvin et al. (2015) simulated the effect of CO2 concentrations in seedlings of trees and lianas in both rainy and dry conditions and did not observe significant physiological differences favoring lianas in relation to trees. They conclude that raising CO2 is not the main mechanism related to the increase of lianas in 33 tropical forests. The elevation of CO2 coupled with the severity of the dry season (Schnitzer, 2005, Cai et al., 2009, Tobin et al., 2012), the increase in temperature (Anser and Martin, 2012) and in nutrient availability in the soil (Schnitzer et al., 2011) are likely driving the dominance of lianas in tropical forests. 6. Control, management and conservation of lianas We have highlighted the effect of climate change as a factor favoring lianas in tropical forests. However, human-related activities such as agriculture, anthropogenic fires and fragmentation may also be associated to the super-dominance lianas (Balch et al., 2011, Schnitzer, 2015). Between 1980-2010 Latin American forest had deforestation grater than global average (Armenteras et al. 2017). In Brazil, between 1970 and 2015, lost 768, 938 Km² of forest area (Burton 2017). This has led to disturbed environments, such as edges and gaps, where light availability and temperatures are higher, favoring the recruitment and establishment of species typical of early successional stages, including lianas (Schnitzer and Carson, 2001, Schnitzer and Carson, 2010). Such conditions favor liana abundance, density and distribution (Malizia et al., 2010, Schnitzer et al., 2014). Clonal reproduction (Schnitzer et al., 2012, Yorke et al., 2013) also allows lianas to rapidly and efficiently colonize gaps and disturbed areas (Dalling et al., 2012, Ledo and Schnitzer, 2014). Lianas associated to forest canopies can regenerate quickly after treefalls, rooting and developing new stems from ramets (Putz, 1984a, Schnitzer and Bongers, 2011). Therefore, increasing disturbances caused by changes in rainfall, atmospheric CO2 concentration or in the duration and severity of the dry season can stimulate lianas to colonize such altered environments through clonal reproduction, which may explain the increased liana abundance and biomass in tropical forests (Schnitzer and Bongers, 2011, Yorke et al., 2013). Fires are frequently used to clear forest areas for agriculture, reducing biomass and preventing recruitment of new trees (Balck et al., 2011, Devisscher et al. 2016). According to Nelson (1994), fire plays an important role in the dominance of lianas in the Brazilian Amazon forest. Pinard (1999) and Gerwing (2002) agree and have observed an increase in liana recruitment after fires, which limits the regeneration of the tree component. Lianas can be a hazard for both logging and silviculture practices as they can damage barks and stems of species of economic interest (Putz, 1991, Kainer et al., 2007, 34 Grogan and Landis, 2009). Thus, removing lianas is an alternative to reduce their competitive effects, benefitting the tree community. Although lianas super-dominance impacts the community structure and diversity, no legislation regulates the management of native super-dominant species (Pivello et al. 2018). Reid et al. (2015) observed that cutting lianas can alter soil humidity according to soil depth: in shallow soils, liana removal increases soil humidity by 6.5 % during drier periods, while in deeper soils, liana removal can increase soil humidity up to 25 %. While monitoring the response of adult individuals of Senna multijuga after the removal of lianas, Pérez-Salicrup and Barker (2000) observed that lianas limit tree growth by reducing the amount of water available. Removing lianas from trees can increase tree sap velocity by 60% (Álvarez-Casino et al., 2015) and tree fruiting probability by up to 25% (Fonseca et al., 2009). For instance, Bertholletia excelsa trees not associated to lianas produce more fruits and heavier nuts than liana-infested trees (Kainer et al., 2007). Likewise, biomass, basal area, canopy openings and seedling growth show a significant increase when lianas are removed (Venturoli et al., 2015, César et al., 2016). The detrimental effects of lianas on trees is widely recognized, thus managing and monitoring liana growth is needed. New technologies, such as satellite derived information and remote sensing monitoring, have been used to detect areas where lianas prevail (Li et al, 2011, Marvin et al., 2016). Lianas can be detected by an increase in the normalized difference vegetation index (NDVI) and in the photosynthetic vegetation index (PV) in areas where timber harvesting occurs as they are marked by a great number of gaps (Broadment et al., 2006). The greater spectral chlorophyll indices from liana leaves in relation to tree leaves is another parameter that makes distinguishing them possible (Castro-Esau et al. 2004, Sanchéz-Azofeifa and Castro-Esau, 2006, Sanchéz-Azofeifa et al., 2009b). The LIDAR dataset (a cloud of laser echoes originating from ground and vegetation), the high- resolution color-infrared videography (high-resolution viodeography) and the hyperspectral imagery from EO-1 Hyperion (sensor hyperspectral aboard the EO-1 satellite) have been employed to detect and monitor lianas (Foster et al., 2008, Tymen et al., 2016). Areas dominated by lianas appear in hyperspectral imagery as closed areas with a higher brightness and greenness index in comparison to canopies lacking lianas (Kalácska et al., 2007, Foster et al., 2008, Tymen et al., 2016). This occurs because lianas modify canopy architecture as they form a continuous and extensive layer of leaves on top of trees, thus reducing shaded areas (Avalos et al., 1999, 2007, Kalácska et al., 2007). 35 Alternatively, tree leaves usually do not form a horizontal angle and their orientation shifts throughout the day (Gamon et al., 2005). On the other hand, the ecological and ecophysiological characteristics that allows lianas to dominate tropical forests are the same traits that make lianas suitable for forest restoration. In a recent review, Campbell et al. (2015) show that the fast growth and high leaf productivity of lianas may reduce the establishment of shade intolerant plants, minimize the time for canopy closure, and contribute to the formation of wildlife corridors, facilitating animal displacement and reducing the financial cost of ecological restorations (Pérez-Salicrup et al., 2001a). Lianas may also efficiently close fragment edges that are being restored, thus avoiding damages caused by winds, reducing the proliferation of weeds and the incidence of fires (Santiago et al. 2010, Balch et al., 2011). Liana leaves have high nutrient concentrations and are major contributors to litter production, their leaves decompose quickly and return a great amount of nutrients to the soil, which helps maintain soil microfauna and reduces the risk of erosion (Chalker-Scott, 2007, Tang et al., 2012). Lianas are also an important non-timber forest product (NTFP), being a significant economic source for traditional communities (Bezecry, 2005, Guadagnin and Gravato, 2013). For instance, stems of lianas may be used to produce handicraft pieces (Gentry 1992, Tamaio 2011) and stems and fruits of Odontocarya asarifolia (Menispermaceae) are widely consumed in the diet of indigenous families of the Chaco region in South America (Arenas and Gilbert 1987). Gentry (1992) highlights the importance of species of Bignoniaceae for human populations in South and Central America, where lianas have been used as ornamental (Podranea ricasoliana, Pyrostegia venusta), as spices (species of Mansoa- scent resembles garlic and Tynanthus sp.- sweet scent that resembles clove), to manufacture sieves and filters (species of Fridericia sp.), in construction, as dyes for handicraft pieces and body paintings (Fridericia chica, Cybistax antisyphilitica) and during religious rituals (Bignonia aequinoctialis, Cuspidaria inaequalis). Gentry (1992) also points out that around 27 genera of lianas have some medicinal property, such as clove, garlic and almond scented species that are used as insect repellents and in the treatment of conjunctivitis, hepatitis, tuberculosis, rheumatism and fever (stems of Stizophyllum sp.); additionally, some species may be used as hallucinogens (Bignonia noctura, Bignonia hyacinthina) or as tools for fishing (Adenocalymma allamandiflorum) and hunting crabs (Dolichandra quadrivalvis). Tynanthus fasciculatus (Bignoniaceae) is a source of drinking water and may be used as an antihelminthic and as ornamental (Lopes 36 et al. 2008). Davilla nitida (Dilleniaceae) is used to manufacture fishing lines and as a source of water to treat eye and stomach infections, while Dioclea sp. (Fabaceae) is antiophidic but is also applied on bug bites (DeWalt et al., 1999). Therefore, aside from being important for forest composition and diversity, lianas are also extremely relevant for traditional communities, where they are used in a variety of daily activities. Additionally, the sale of manufactured goods made with liana stems generates an income of around USD 1926/year for these communities (Guadagnin and Gravato, 2013). 7. Future perspectives and conclusions This review shows that liana neotropical studies are concentrated in moist forests, particularly in Brazil (across Amazon and Atlantic forests) and Panama (Barro Colorado Island). Tropical dry forests are still understudied although they show favorable climatic conditions for the establishment and development of lianas. The best studied tropical dry forests are in Mexico, however, of the 45 studies surveyed in Mexico, only twelve were in tropical dry forests. Studies in environments as the Brazilian dry caatinga and the seasonally flooded forests are still scarce (Table 1). Cavalho et al. (2016) points out that understanding how lianas establish and develop in extreme environments (under severe dry seasons) may uncover different responses from what is known from moist environments. We also suggest diversifying the research, targeting species from other liana-rich families, such as Apocynaceae (Sales et al., 2006), Cucurbitaceae (Nee, 2007, Gomes-Costa et al., 2015), Passifloraceae (Cervi and Linsingen, 2008) and Fabaceae (Carmargo and Tozzi, 2014). Lianas are increasing in density, abundance and basal area with consequences to carbon stocks, tree survival, recruitment and growth, and detrimental effects on the productivity of species of economic interest. Remote sensing techniques have improved the identification of areas that urgently need liana control and management (Marvin et al., 2016). Even though lianas affect forest carbon stocks, they are rarely included in tropical forest studies that address that issue (Durán and Gianoli, 2013, Durán et al., 2015). Therefore, it is extremely important to consider lianas in global vegetation models to ensure accurate predictions of future changes on carbon stocks and carbon cycles (Schnitzer 2016). 37 Management and restoration actions targeting only tree communities are inadequate given lianas’ importance for tropical forests structure and function, increasing diversity, maintaining the microclimate and providing resources for animals during periods of scarcity. Lianas are also important for traditional communities, being used with multiple purposes: nutritional, cultural, structural and pharmaceutical, generating income when handicraft pieces using liana stems are commercialized. Therefore, promoting adequate conservation and management actions ensures forest maintenance, but also respects traditional uses as many populations still use the forest as their main resource source. Acknowledgements Our research was supported by FAPESP, the São Paulo Research Foundation (grants #2013/50155-0 FAPESP-Microsoft Research, #2010/51307-0 FAPESP-VALE- FAPEMIG and grant #2009/54208-6 EMU). BCV received a doctoral fellowship and additional financial support from CAPES. LPCM receives a Research Productivity Fellowship from CNPq, the National Council for Scientific and Technological Development. We have also benefited from funds from CAPES-PROAP (Coordination for the Improvement of Higher Education Personnel). We are also grateful to Talita Zupo for English review. 8. References Aguirre-Morales, A.C., M.M. Bonilla-Morales, & C.M. Caetano. 2016. Passiflora franciscoi, a new species of Passiflora subgenus Astrophea (Passiflora) from Colombia. Phytotaxa 252: 56-62. Alcantara, S., F.B. de Oliveira, & L.G. Lohmann. 2013. Phenotypic integration in flowers of neotropical lianas: Diversification of form with stasis of underlying patterns. Journal of Evolutionary Biology 26: 2283–2296. Álvarez-Casino, L., S.A. Schnitzer, J.P. Reid, & J.S. Powers. 2015. Liana competition with tropical trees varies seasonally but not with tree species identity. Ecology 96: 39-45. Alves, L.F., M.A. Assis, J. van Melis, A.L.S. Barros, S.A. Vieira, F.R. Martins, L.A. Martinelli, & C.A. Joly. 2011. Variation in liana abundance and biomass along an elevational gradient in the tropical Atlantic Forest (Brazil). Ecological Research 27: 323–332. 38 Andrade, J.L., F.C. Meinzer, G. Goldstein, & S.A. Schnitzer. 2005. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest. Trees - Structure and Function 19: 282–289. Angyalossy,V., G. Angeles, M.R. Pace, A.C. Loma, C.L. Dias-Leme, L.G. Lohmann, & C. Madero-Veja. 2012. An overview on the anatomy, development and evolution of the vascular system of lianas. Plant Ecology and Diversity 1: 1-16. Araújo, D., & M. Alves. 2010. Climbing plants of a fragmented area of lowland Atlantic Forest, Igarassu, Pernambuco (northeastern Brazil). Phytotaxa 8: 1–24. Arenas, P. 1987. The ethnobotany of Odontocarya asarifolia (Menispermaceae), an Edible Plant from the Chaco. Economic Botany 41 (3): 361–369. Armenteras, D., J.M. Espelta, N. Rodríguez, & J. Renata. 2017. Deforestation dynamics and drivers in different forest types in Latin America: Three decades of studies (1980–2010). Global Environmental Change 46: 139-147. Asner, G.P., & R.E. Martin. 2012. Contrasting leaf chemical traits in tropical lianas and trees: implications for future forest composition. Ecology Letters 15: 1001–1007. Avalos, G., S.S. Mulkey, & K. Kitajima. 1999. Leaf optical properties of trees and lianas in the outer canopy of a tropical dry forest. Biotropica 31: 517–520. Avalos, G., S.S. Mulkey, & G. Avalos. 2014. Photosynthetic and morphological acclimation of seedlings of tropical lianas to changes in the light environment. American Journal of Botany 101: 2068–2078. Ball, A., A. Sanchez-Azofeifa, C. Portillo-Quintero, B. Rivard, S. Castro-Contreras, & G. Fernandes. 2015. Patterns of leaf biochemical and structural properties of cerrado life forms: Implications for remote sensing. PlosOne, 1-15. Balch, J.K., D.C. Nepstad, L.M. Curran, P.M. Brando, O. Portela, P. Guilherme, J.D. Reuning-Scherer, & O. Carvalho. 2011. Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management 261: 68–77. Barry, K.E., S.A. Schnitzer, M. van Breugel & J.S. Hall. 2015. Rapid liana colonization along a secondary forest chronosequence. Biotropica 47 (6): 672–680. Beal. W.J., 1870. Climbing plants. The American Naturalist 4: 405-419. Boom, B.M. & S.A. Mori. 1982. Falsification of two hypotheses buttresses from tropical trees possessing buttresses and smooth bark. Bulletin of the Torrey Botanical Club 109 (4): 447–450. Brandes, A.F.N., C.S. Lisi, & C.F. Barros. 2011. Dendrochronology of lianas of the Leguminosae family from the Atlantic Forest, Brazil. Trees - Structure and Function 25: 133–144. 39 Broadbent, E.N., D.J. Zarin, G.P. Asner, M. Peña-Claros, A. Cooper, & R. Littell. 2006. Recovery of forest structure and spectral properties after selective logging in lowland Bolivia. Ecological Applications 16: 1148-1163. Burnham, R.J. 2004. Alpha and beta diversity of Lianas in Yasuní, Ecuador. Forest Ecology and Management 190: 43–55. Burton, A. 2017. Dispatches. Frontiers in Ecology and the Environment 15: 4–8. Cai, Z.Q., S.A. Schnitzer, & F. Bongers. 2009. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia 161: 25–33. Camargo, R.A., & A.M.G.A. Tozzi. 2014. A new species of Deguelia (Leguminosae, Papilionoideae) from the Brazilian Amazon Basin. Phytotaxa 184: 160. Campanello, P.I., J.F. Garibaldi, M.G. Gatti, & G. Goldstein. 2007a. Lianas in a subtropical Atlantic Forest: Host preference and tree growth. Forest Ecology and Management 242: 250–259. Campanello, P.I., M. Genoveva Gatti, A. Ares, L. Montti, & G. Goldstein. 2007b. Tree regeneration and microclimate in a liana and bamboo-dominated semideciduous Atlantic Forest. Forest Ecology and Management 252: 108–117. Campanello, P.I., M. Villagra, J.F. Garibaldi, L.J. Ritter, J.J. Araujo, & G. Goldstein. 2012. Liana abundance, tree crown infestation, and tree regeneration ten years after liana cutting in a subtropical forest. Forest Ecology and Management 284: 213-22. Campbell, M.J., W. Edwards, E. Odell, D. Mohandass, & W.F. Laurance. 2015. Can lianas assist in rainforest restoration? Tropical Conservation Science 8: 257–273. Castellanos, A.E., R. Durán, S. Guzman, O. Briones, & M. Faria. 1992. Three- Dimensional space utilization of lianas: A Methodology. Biotropica 24: 396-401. Carvalho, E.C.D., F.R. Martins, R.S. Oliveira, A.A. Soares, & F.S. Araújo. 2016. Why is liana abundance low in semiarid climates? Austral Ecology 41: 559–571. Castro-Esau, K.L., G.A. Sánchez-Azofeifa, & T. Caelli. 2004. Discrimination of lianas and trees with leaf-level hyperspectral data. Remote Sensing of Environment 90: 353–372. Cervi, A.C., & L. Linsingen. 2008. Sinopse taxonômica das Passifloraceae Juss. no complexo de cerrado (savana) no estado do Paraná - Brasil. Iheringia, Série Botanica 63: 145–157. César, R.G., K.D. Holl, V.J. Girão, F.N.A. Mello, E. Vidal, M.C. Alves & P.H.S. Brancalion. 2016. Evaluating climber cutting as a strategy to restore degraded tropical forests. Biological Conservation 201: 309–313. Chalker-Scott, L. 2007. Impact of mulches on landscape plants and the environment-a 40 review. Journal of Environmental and Horticulture 25:239-249. Chaves, O.M., V. Arroyo-Rodríguez, M. Martínez-Ramos, & K.E. Stoner. 2015. Primate extirpation from rainforest fragments does not appear to influence seedling recruitment. American Journal of Primatology 77: 468–478. Chiarello, A.G., 1998. Diet of the Atlantic forest maned sloth Bradypus torquatus (Xenarthra: Bradypodidae). Journal of Zoology 246 (1): 11–19. Cervi, A.C., & L.V. Linsingen, 2008. Sinopse taxonômica das Passifloraceae Juss. no complexo de cerrado (savana) no estado do Paraná - Brasil. Iheringia, Série Botanica 63: 145–157. Chiarello, A.G. 1998. Diet of the Atlantic forest maned sloth Bradypus torquatus (Xenarthra: Bradypodidae). Journal of Zoology 246: 11–19. Clark, D.B., D.A. Clark, & S.F. Oberbauer. 2010. Annual wood production in a tropical rain forest