RESSALVA Atendendo solicitação do(a) autor(a), o texto completo desta Tese será disponibilizado somente a partir de 24/08/2023. 1 UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” FACULDADE DE MEDICINA Ana Paula Silveira Leite Avaliação da associação do selante heterólogo de fibrina à tubulização na reconstrução nervosa após lesão nervosa periférica: com foco nas junções neuromusculares e proteínas associadas Tese apresentada à Faculdade de Medicina,Universidade Estadual Paulista “Júlio de Mesquita Filho”, Câmpus de Botucatu, como requisito para obtenção do título de Doutora em Cirurgia e Medicina Translacional. Orientador (a): Prof(a). Dr(a). Selma Maria Michelin Matheus Coorientador(a): Prof(a). Dr(a). Cintia Yuri Matsumura Botucatu (2021) Ana Paula Silveira Leite Avaliação da associação do selante heterólogo de fibrina à tubulização na reconstrução nervosa após lesão nervosa periférica: com foco nas junções neuromusculares e proteínas associadas Tese apresentada à Faculdade de Medicina,Universidade Estadual Paulista “Júlio de Mesquita Filho”, Câmpus de Botucatu, como requisito para obtenção do título de Doutora em Cirurgia e Medicina Translacional. Orientador (a): Prof(a).Dr(a). Selma Maria Michelin Matheus Coorientador(a):Prof(a).Dr(a). Cintia Yuri Matsumura Botucatu 2021 FICHA CATALOGRÁFICA ELABORADA PELA SEÇÃO TÉC. AQUIS. TRATAMENTO DA INFORM. DIVISÃO TÉCNICA DE BIBLIOTECA E DOCUMENTAÇÃO - CÂMPUS DE BOTUCATU - UNESP BIBLIOTECÁRIA RESPONSÁVEL: ROSEMEIRE APARECIDA VICENTE-CRB 8/5651 Leite, Ana Paula Silveira. Avaliação da associação do selante heterólogo de fibrina à tubulização na reconstrução nervosa após lesão nervosa periférica : com foco nas junções neuromusculares e proteínas associadas / Ana Paula Silveira Leite. - Botucatu, 2021 Tese (doutorado) - Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Medicina de Botucatu Orientador: Selma Maria Michelin Matheus Coorientador: Cintia Yuri Inamura Capes: 20600003 1. Fibrina. 2. Junção neuromuscular. 3. Biopolímeros. 4. Proteínas. Palavras-chave: Biopolímero de fibrina; Junção neuromuscular; Lesão nervosa periférica. Dedicatória Dedico este trabalho aos meus pais Carlos e Rose, e a minha irmã Juliana, sem o apoio e o amor de vocês eu não seria capaz de concluir mais essa etapa, muito obrigada. Agradecimentos Agradeço primeiramente a Deus, pelo dom da vida e por me guiar nesta jornada. Aos meus pais, Carlos e Rose, pelo apoio e amor incondicional. À minha irmã, Juliana, minha ouvinte fiel e melhor amiga, obrigada por sempre ser tão presente em minha vida. Aos meus avós, João e Antonia, Edison e Judite por serem meu porto seguro de carinho e cuidado. A minha família Cafofo, pelo apoio e companheirismo diário. A minha orientadora, Professora Drª Selma M. M. Matheus, por toda a experiência e conhecimento compartilhado, e principalmente por todo carinho que sempre teve comigo, muito obrigada. A minha coorientadora professora Dra Cintia Yuri Matsumura, pelo auxílio com as análises de Western Blot deste estudo e pela extrema atenção de sempre, obrigada. Ao CEVAP (UNESP/Botucatu) por gentilmente ceder o biopolímero de fibrina para a realização deste trabalho. Ao programa de Pós-graduação em Cirurgia e Medicina Translacional, ao Instituto de Biociências, da UNESP de Botucatu e a UNIPEX, Unidade de pesquisa experimental da Faculdade de Medicina de Botucatu (FMB), pela estrutura e apoio para a realização deste trabalho, e a CAPES pela concessão da bolsa de estudos e também pela concessão de bolsa PDSE para doutorado sanduíche. Ao professor Tom Gillingwater, que me recebeu prontamente em seu laboratório e em seu grupo de pesquisa. Á todos os professores e funcionários do departamento de Anatomia pelo auxílio e companheirismo de sempre. Agradeço também aos funcionários da Unipex, cujo conhecimento e auxílio foram indispensáveis para realização deste estudo, principalmente ao Bardella, Robson, Sílvio e Diego por todo o cuidado com os animais utilizados neste estudo. E ao Leandro pelo auxílio com as amostras, muito obrigada! Em especial agradeço ao Zé, meu fiel companheiro de todas as cirurgias e também dos pós-operatórios. Zé, sem a sua ajuda eu não conseguiria concluir este estudo. A Shelly, do Centro de Microscopia Eletrônica, por todo auxílio om as imagens utilizando microscopia confocal e pela amizade e parceria de sempre, obrigada! Aos amigos do laboratório de Anatomia e da Universidade de Edimburgo, pela amizade, apoio e companheirismo diários. Em especial ao Felipe, meu companheiro de laboratório, obrigada por todas as longas conversas sobre artigos, resultados e sobre a vida, vou sentir muito a sua falta no meu dia a dia. A Carina, Talita e Marilia, por me ensinarem tanto e serem amigas que vou levar para a vida. Aos membros das bancas de qualificação e defesa pela disposição e colaborações fundamentais para este trabalho. Aos animais desse experimento pelas vidas doadas, as quais espero ter feito valia no desenvolvimento deste trabalho. Muito obrigada! Epígrafe "Nada na vida deve ser temido, somente compreendido. Agora é hora de compreender mais para temer menos." (Marie Curie) RESUMO As lesões nervosas periféricas podem causar interrupção do impulso nervoso, e mesmo após intervenção cirúrgica é comum que a recuperação funcional não seja completa, nesse sentido é importante investigar a resposta das junções neuromusculares (JNMs), responsáveis pela interação entre o axônio motor e sua musculatura alvo. Na busca por novas terapias que potencializem a regeneração, se destacam os tubos ou conduítes, que podem ser de variados materiais e fornecem um conduto para o crescimento axonal. Combinado a esses tubos o uso de adjuvantes pode ser acrescido, dentre eles destaca-se o biopolímero de fibrina (FB) com possível fator protetor e trófico no ambiente da lesão. Assim, o objetivo deste trabalho foi avaliar a regeneração das Junções Neuromusculares (JNMs) e proteínas associadas, após lesão nervosa periférica, seguida de técnica de tubulização e uso do FB. Foram utilizados 52 ratos Wistar machos adultos, distribuídos em 4 grupos experimentais: Controle Sham (S), Controle Desnervado (D); Tubulização (PCL) e Tubulização + Biopolímero de Fibrina (FB). No grupo S, foi realizada apenas incisão, localização e debridação do nervo isquiático. Nos Grupos D, PCL e FB foram realizados modelos de lesão completa, com gap de 8 mm nos grupos PCL e FB. Após neurotmese no grupo D, os cotos foram invertidos e fixados a tela subcutânea. Nos grupos PCL e FB, após a lesão, os cotos nervosos foram inseridos e fixados na prótese tubular de policaprolactona (PCL) de 12mm com fio de sutura 10-0. No grupo FB foi adicionado após a fixação dos cotos ao tubo 500μl do FB. Antes da realização dos procedimentos cirúrgicos, e quinzenalmente, foram realizadas análises no Catwalk em todos os animais. Noventa dias após o procedimento cirúrgico, os animais foram pesados, os músculos sóleos e nervos isquiáticos direitos foram coletados, fixados e submetidos as seguintes análises: morfológica e morfométrica dos receptores de acetilcolina (AChRs) através de microscopia confocal de varredura a laser; Análise morfológica e morfométrica do nervo isquiático; Quantificação proteica de células de Schwann, agrina, LRP4, MuSK , rapsina, MMP3, MyoD, Miogenina, MURF1 e Atrogina-1 e dos AChRs: alfa, gama e épsilon. A análise morfológica e morfométrica do nervo isquiático compactua com a reconexão dos cotos nervosos observada nos grupos PCL e FB, onde para a maioria dos parâmetros houve equivalência dos valores entre os grupos, exceto pela área dos axônios do grupo PCL, os quais foram menores que os do grupo S. Na função motora, não houve alteração entre os grupos no que se refere ao índice funcional do fibular, ainda que em outros parâmetros como área da pegada e contato máximo com a plataforma, os grupos experimentais não apresentaram valores similares aos valores do grupo S. Na análise dos AChRs, a morfologia, os valores do índice de compactação, da área dos AChRs e da placa motora do grupo FB foram os únicos similares ao grupo S. Pode-se concluir considerando os resultados obtidos que o uso do FB associado a tubulização promoveu uma estabilização dos AChRs, potencializando a regeneração neuromuscular. ABSTRACT Peripheral nerve injuries may cause interruption of the nerve impulse, and even after surgical intervention it is common that functional recovery is not complete. In this sense it is important to investigate the response of neuromuscular junctions (NMJs), responsible for the interaction between the motor axon and its target muscle. In the search for new therapies that enhance regeneration, tubes or conduits, which can be made of various materials and provide a conduit for axonal growth, stand out. In combination with these tubes, the use of adjuvants may be added; among them, fibrin biopolymer (FB) stands out as a possible protective and trophic factor in the injury environment. Thus, the objective of this work was to evaluate the regeneration of Neuromuscular Junctions (NMJs) and associated proteins, after peripheral nerve injury, followed by tubulization technique and use of FB. We used 52 adults male Wistar rats, distributed in 4 experimental groups: Sham Control (S), Denervated Control (D); Tubulization (PCL) and Tubulization + Fibrin Biopolymer (FB). In Group S, only incision, localization and debridement of the ischiatic nerve was performed. In Groups D, PCL and FB, complete injury models were performed, with an 8 mm gap in the PCL and FB groups. After neurotmesis in Group D, the stumps were inverted and fixed to subcutaneous mesh. In the PCL and FB groups, after injury, the nerve stumps were inserted and fixed to the 12-mm polycaprolactone (PCL) tubular prosthesis with 10-0 suture points. In the FB group, 500μl of FB was added after fixing the stumps to the tube. Before the surgical procedures were performed, and every fifteen days, Catwalk analyses were performed on all animals. Ninety days after the surgical procedure, the animals were weighed, the soleus muscles and right ischiatic nerves were collected, fixed and subjected to the following analyses: morphological and morphometric analysis of acetylcholine receptors (AChRs) by laser scanning confocal microscopy; morphological and morphometric analysis of the ischiatic nerve; protein quantification of alpha, gamma and epsilon AChRs, Schwann cells, agrin, LRP4, MuSK, rapsin, MMP3, MyoD, Myogenin, MURF1 and Atrogin-1. The morphological and morphometric analysis of the ischiatic nerve agrees with the reconnection of the nerve stumps observed in the PCL and FB groups, where for most parameters there was equivalence of values among the groups, except for the area of the axons of the PCL group, which were smaller than those of the S group. There was no alteration in motor function (fibular funcional index) among the groups, although in other parameters such as the print area and max contact area, the experimental groups did not reach the values of group S. In the analysis of the AChRs, the morphology, the values of the compactness index, the area of the AChRs and the endplate of the FB group were similar to the S group, different from the other groups. In addition, the FB showed higher values of S100 protein, and epsilon subunit, when compared to group S and all other groups respectively. It can be concluded considering the results obtained that the use of FB associated with tubulization promoted a stabilization of the AChRs, potentiating neuromuscular regeneration. Sumário Sumário Lista de Abreviaturas ................................................................................ 15 1.0 Introdução .......................................................................................... 17 1.1 Lesão nervosa periférica ................................................................... 17 1.2 Junção Neuromuscular (JNMs) ......................................................... 20 1.3 Proteínas Envolvidas na Estabilização e Manutenção das JNMS ...... 26 1.3.1 Agrina .............................................................................................. 26 1.3.2 LRP4 ............................................................................................... 26 1.3.3 MuSK............................................................................................... 27 1.3.4 Dok7 ................................................................................................ 28 1.3.5 Rapsina .......................................................................................... 28 1.4 JNMs e as lesões nervosas periféricas .............................................. 29 1.5 Justificativa ......................................................................................... 30 1.6 Objetivos ............................................................................................ 31 1.6.1 Objetivos Específicos ...................................................................... 31 2.0 Materiais e Métodos ........................................................................... 31 2.1 Preparação das próteses para tubulização ........................................ 31 2.2 Procedimento cirúrgico ....................................................................... 32 2.3 Avaliação da marcha através do aparelho “Catwalk” ......................... 35 2.4 Microscopia Confocal para AChRs ..................................................... 37 2.5 Análise dos AChRs utilizando o plugin “NMJ- morph” ........................ 38 2.6 Análise morfológica e morfométrica do nervo isquiático .................... 42 2.7 Análise da Expressão proteica por Western Blotting .......................... 43 2.8 Análise Estatística .............................................................................. 44 Referências .............................................................................................. 45 Capítulo 1 - Acetylcholine Receptors of the Neuromuscular Junctions present normal distribution after peripheral nerve injury and repair trough nerve guidance associated with fibrin Biopolymer .................................... 54 Anexos- Certificado CEUA ...................................................................... 87 15 Lista de Abreviaturas ACh- Acetilcolina AChE – Acetilcolinesterase AChR – Receptores de acetilcolina BF- Biopolímero de Fibrina Ca2+ - Cálcio CEVAP- Centro de Estudos de Venenos e Animais Peçonhentos CEUA- Comissão de Ética no Uso de Animais D- Grupo Desnervado Dok-7 – Proteína citoplasmática derivada da quinase 7 EPL- Print lengh lado lesionado ETS- Toe spread lado lesionado EUA- Estados Unidos da América FMB- Faculdade de Medicina de Botucatu g- Gramas GAPDH- Gliceraldeído-3-fosfato desidrogenase GDNF- Fator neurotrófico derivado de linhagem de célula glia IFF- Índice Funcional do Fibular JNM- Junção Neuromuscular Kg- Quilogramas Lrp4 - Receptor lipoprotéico relacionado a proteína 4 mg- Miligramas μL- Microlitros μm- Micrômetros MMP3- Metaloproteinase 3 da matriz MRF4- Muscle regulatory factor 4 MuSK- Receptor tirosina quinase músculo-específico MyF5- Myogenic factor 5 MyOD- Myoblast determination protein 1 NGF- Fator de crescimento neural NPL- Print lengh lado normal NTS- Toe spread lado normal 16 PBS- Tampão fosfato-salino PCL- Policaprolactona/ grupo tubulização a base de policaprolactona PLA- Poliácido lático RIPA- Radioimmunoprecipitation assay buffer S- Grupo Sham SNARE- Soluble N-ethylmale-imide-sensitive factor-attachment protein receptors UNESP- Universidade Estadual Paulista “Júlio de Mesquita Filho” UNICAMP- Universidade Estadual de Campinas 45 Referências [1] Narayan SK, Arumugam M, Chittoria R. Outcome of human peripheral nerve repair interventions using conduits: a systematic review. Journal of the Neurological Sciences 2019;396:18–24. https://doi.org/10.1016/j.jns.2018.10.012. [2] Telich-Tarriba JE, De la Maza-Krzeptowsky LC, Cárdenas-Mejía A. Lesiones nerviosas en extremidad pélvica y su manejo en un centro de referencia en la Ciudad de México. Cirugía y Cirujanos 2021;89. https://doi.org/10.24875/ciru.20000211. [3] Kouyoumdjian JA. Peripheral nerve injuries: A retrospective survey of 456 cases. Muscle & Nerve 2006;34:785–8. https://doi.org/10.1002/mus.20624. [4] Grinsell D, Keating CP. Peripheral Nerve Reconstruction after Injury: A Review of Clinical and Experimental Therapies. BioMed Research International 2014;2014. https://doi.org/10.1155/2014/698256. [5] Calciolari S, González-Ortiz LG, Mongelli F, Cantini L, Capdevila X, la Regina D, et al. Identification and economic burden of main adverse events of nerve injuries caused by regional anesthesia: a systematic review. Brazilian Journal of Anesthesiology (English Edition) 2021. https://doi.org/10.1016/j.bjane.2021.02.043. [6] Dip F, Aleman R, Socolovsky M, Villalba N, Falco J, Menzo E Lo, et al. Nerve spectroscopy: understanding peripheral nerve autofluorescence through photodynamics. Surgical Endoscopy 2021. https://doi.org/10.1007/s00464-020- 08227-7. [7] Seddon HJ. A classification of nerve injuries. British Medical Journal 1942;2:237. https://doi.org/10.1136/bmj.2.4260.237. [8] Sunderland SS. The anatomy and physiology of nerve injury. Muscle & Nerve 1990;13:771–84. https://doi.org/10.1002/mus.880130903. [9] Chandran V, Coppola G, Nawabi H, Omura T, Versano R, Huebner EA, et al. A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program. Neuron 2016;89:956–70. https://doi.org/10.1016/j.neuron.2016.01.034. [10] Laskin DL, Sunil VR, Gardner CR, Laskin JD. Macrophages and tissue injury: Agents of defense or destruction? Annual Review of Pharmacology and Toxicology 2011;51:267–88. https://doi.org/10.1146/annurev.pharmtox.010909.105812. [11] Zhao Y, Wang Y, Gong J, Yang L, Niu C, Ni X, et al. Chitosan degradation products facilitate peripheral nerve regeneration by improving macrophage-constructed microenvironments. Biomaterials 2017;134:64–77. https://doi.org/10.1016/j.biomaterials.2017.02.026. [12] Echeverry S, Wu Y, Zhang J. Selectively reducing cytokine/chemokine expressing macrophages in injured nerves impairs the development of neuropathic pain. Experimental Neurology 2013;240:205–18. https://doi.org/10.1016/j.expneurol.2012.11.013. [13] Cheng Z, Zhang Y, Tian Y, Chen Y, Ding F, Wu H, et al. Cyr61 promotes Schwann cell proliferation and migration via αvβ3 integrin. BMC Molecular and Cell Biology 2021;22:21. https://doi.org/10.1186/s12860-021-00360-y. [14] Yi S, Liu Q, Wang X, Qian T, Wang H, Zha G, et al. Tau modulates Schwann cell 46 proliferation, migration and differentiation following peripheral nerve injury. Journal of Cell Science 2019;132. https://doi.org/10.1242/jcs.222059. [15] Scheib J, Höke A. Advances in peripheral nerve regeneration. Nature Reviews Neurology 2013;9:668–76. https://doi.org/10.1038/nrneurol.2013.227. [16] Cattin AL, Lloyd AC. The multicellular complexity of peripheral nerve regeneration. Current Opinion in Neurobiology 2016;39:38–46. https://doi.org/10.1016/j.conb.2016.04.005. [17] Rigoni M, Negro S. Signals Orchestrating Peripheral Nerve Repair. Cells 2020;9. https://doi.org/10.3390/cells9081768. [18] Lundborg G, Rosén B. Hand function after nerve repair. Acta Physiologica 2007;189:207–17. https://doi.org/10.1111/j.1748-1716.2006.01653.x. [19] Kemp SWP, Cederna PS, Midha R. Comparative outcome measures in peripheral regeneration studies. Experimental Neurology 2017;287:348–57. https://doi.org/10.1016/j.expneurol.2016.04.011. [20] Wang VC, Mullally WJ. Pain Neurology. American Journal of Medicine 2020;133:273–80. https://doi.org/10.1016/j.amjmed.2019.07.029. [21] Siemionow M, Brzezicki G. Chapter 8 Current Techniques and Concepts in Peripheral Nerve Repair. International Review of Neurobiology 2009;87:141–72. https://doi.org/10.1016/S0074-7742(09)87008-6. [22] Kubiak CA, Kung TA, Brown DL, Cederna PS, Kemp SWP. State-of-The-Art techniques in treating peripheral nerve injury. Plastic and Reconstructive Surgery 2018;141:702–10. https://doi.org/10.1097/PRS.0000000000004121. [23] Beris A, Gkiatas I, Gelalis I, Papadopoulos D, Kostas-Agnantis I. Current concepts in peripheral nerve surgery. European Journal of Orthopaedic Surgery and Traumatology 2019;29:263–9. https://doi.org/10.1007/s00590-018-2344-2. [24] Christopher P. Bellaire, BA, Dani C. Inglesby, MD, Naoum Fares Marayati B, Andrew J. Warburton, BS, and Eitan Melamed M. Trends in Peripheral Nerve Epidemiology and Reconstruction A State Database Study of Direct Repairs, Grafts, and Conduits. Annals of Plastic Surgery n.d. https://doi.org/10.1097/SAP.0000000000002823. [25] Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomaterialia 2020;106:54–69. https://doi.org/10.1016/j.actbio.2020.02.003. [26] Schutgens EM, Tryfonidou MA, Smit TH, Cumhur Öner F, Krouwels A, Ito K, et al. Biomaterials for intervertebral disc regeneration: Past performance and possible future strategies. European Cells and Materials 2015;30:210–31. https://doi.org/10.22203/eCM.v030a15. [27] Boni R, Ali A, Shavandi A, Clarkson AN. Current and novel polymeric biomaterials for neural tissue engineering. Journal of Biomedical Science 2018;25. https://doi.org/10.1186/s12929-018-0491-8. [28] Li R, Liu Z, Pan Y, Chen L, Zhang Z, Lu L. Peripheral Nerve Injuries Treatment: A Systematic Review. Cell Biochemistry and Biophysics 2014;68:449–54. https://doi.org/10.1007/s12013-013-9742-1. [29] Wilcox M, Gregory H, Powell R, Quick TJ, Phillips JB. Strategies for Peripheral Nerve Repair. Current Tissue Microenvironment Reports 2020;1:49–59. https://doi.org/10.1007/s43152-020-00002-z. [30] Rodríguez Sánchez DN, de Lima Resende LA, Boff Araujo Pinto G, de Carvalho 47 Bovolato AL, Possebon FS, Deffune E, et al. Canine Adipose-Derived Mesenchymal Stromal Cells Enhance Neuroregeneration in a Rat Model of Sciatic Nerve Crush Injury. Cell Transplantation 2019;28:47–54. https://doi.org/10.1177/0963689718809045. [31] Moattari M, Kouchesfehani HM, Kaka G, Sadraie SH, Naghdi M. Evaluation of nerve growth factor (NGF) treated mesenchymal stem cells for recovery in neurotmesis model of peripheral nerve injury. Journal of Cranio-Maxillofacial Surgery 2018;46:898–904. https://doi.org/10.1016/j.jcms.2018.03.015. [32] Eggers R, de Winter F, Tannemaat MR, Malessy MJA, Verhaagen J. GDNF Gene Therapy to Repair the Injured Peripheral Nerve. Frontiers in Bioengineering and Biotechnology 2020;8. https://doi.org/10.3389/fbioe.2020.583184. [33] Félix SP, Pereira Lopes FR, Marques SA, Martinez AMB. Comparison between suture and fibrin glue on repair by direct coaptation or tubulization of injured mouse sciatic nerve. Microsurgery 2013;33:468–77. https://doi.org/10.1002/micr.22109. [34] Spotnitz WD. Fibrin sealant: Past, present, and future: A brief review. World Journal of Surgery 2010;34:632–4. https://doi.org/10.1007/s00268-009-0252-7. [35] Ferreira RS, de Barros LC, Abbade LPF, Barraviera SRCS, Silvares MRC, de Pontes LG, et al. Heterologous fibrin sealant derived from snake venom: From bench to bedside - an overview. Journal of Venomous Animals and Toxins Including Tropical Diseases 2017;23. https://doi.org/10.1186/s40409-017-0109-8. [36] Cartarozzi LP, Spejo AB, Ferreira RS, Barraviera B, Duek E, Carvalho JL, et al. Mesenchymal stem cells engrafted in a fibrin scaffold stimulate Schwann cell reactivity and axonal regeneration following sciatic nerve tubulization. Brain Research Bulletin 2015;112:14–24. https://doi.org/10.1016/j.brainresbull.2015.01.005. [37] Buchaim RL, Andreo JC, Barraviera B, Ferreira Junior RS, Buchaim DV, Rosa Junior GM, et al. Effect of low-level laser therapy (LLLT) on peripheral nerve regeneration using fibrin glue derived from snake venom. Injury 2015;46:655–60. https://doi.org/10.1016/j.injury.2015.01.031. [38] Biscola NP, Cartarozzi LP, Ulian-Benitez S, Barbizan R, Castro MV, Spejo AB, et al. Multiple uses of fibrin sealant for nervous system treatment following injury and disease. Journal of Venomous Animals and Toxins Including Tropical Diseases 2017;23. https://doi.org/10.1186/s40409-017-0103-1. [39] Gromova A, La Spada AR. Harmony Lost: Cell–Cell Communication at the Neuromuscular Junction in Motor Neuron Disease. Trends in Neurosciences 2020;43:709–24. https://doi.org/10.1016/j.tins.2020.07.002. [40] Court FA, Gillingwater TH, Melrose S, Sherman DL, Greenshields KN, Morton AJ, et al. Identity, developmental restriction and reactivity of extralaminar cells capping mammalian neuromuscular junctions. Journal of Cell Science 2008;121:3901–11. https://doi.org/10.1242/jcs.031047. [41] Jimsheleishvili S, Sherman A l. Physiology, Neuromuscular Transmission. StatPearls Publishing; 2019. [42] Valdez G. Formation and maturation of neuromuscular junctions. Patterning and Cell Type Specification in the Developing CNS and PNS, Elsevier; 2020, p. 157–84. https://doi.org/10.1016/b978-0-12-814405-3.00008-4. [43] Nishimune H, Shigemoto K. Practical Anatomy of the Neuromuscular Junction in 48 Health and Disease. Neurologic Clinics 2018;36:231–40. https://doi.org/10.1016/j.ncl.2018.01.009. [44] Sanes JR, Lichtman JW. Development of the vertebrate neuromuscular junction. Annual Review of Neuroscience 1999;22:389–442. https://doi.org/10.1146/annurev.neuro.22.1.389. [45] Bloch-Gallego E. Mechanisms controlling neuromuscular junction stability. Cellular and Molecular Life Sciences 2015;72:1029–43. https://doi.org/10.1007/s00018-014-1768-z. [46] Hall ZW, Sanes JR. Synaptic structure and development: The neuromuscular junction. Cell 1993;72:99–121. https://doi.org/10.1016/S0092-8674(05)80031-5. [47] Sanes JR. The basement membrane/basal lamina of skeletal muscle. Journal of Biological Chemistry 2003;278:12601–4. https://doi.org/10.1074/jbc.R200027200. [48] Martinez-Pena Y Valenzuela I, Akaaboune M. The Metabolic Stability of the Nicotinic Acetylcholine Receptor at the Neuromuscular Junction. Cells 2021;10. https://doi.org/10.3390/cells10020358. [49] Lebbe EKM, Peigneur S, Wijesekara I, Tytgat J. Conotoxins Targeting nicotinic acetylcholine receptors: An overview. Marine Drugs 2014;12:2970–3004. https://doi.org/10.3390/md12052970. [50] RUFF RL. Neurophysiology of the Neuromuscular Junction: Overview. Annals of the New York Academy of Sciences 2003;998:1–10. https://doi.org/10.1196/annals.1254.002. [51] Hong W. SNAREs and traffic. Biochimica et Biophysica Acta 2005;1744:493–517. https://doi.org/10.1016/j.bbamcr.2005.03.014. [52] Holz RW, Zimmerberg J. Dynamic Relationship of the SNARE Complex with a Membrane. Biophysical Journal 2019;117:627–30. https://doi.org/10.1016/j.bpj.2019.07.010. [53] Ohkawara B, Ito M, Ohno K. Secreted signaling molecules at the neuromuscular junction in physiology and pathology. International Journal of Molecular Sciences 2021;22:1–16. https://doi.org/10.3390/ijms22052455. [54] Wu H, Xiong WC, Mei L. To build a synapse: Signaling pathways in neuromuscular junction assembly. Development 2010;137:1017–33. https://doi.org/10.1242/dev.038711. [55] Rodríguez Cruz PM, Cossins J, Beeson D, Vincent A. The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Frontiers in Molecular Neuroscience 2020;13. https://doi.org/10.3389/fnmol.2020.610964. [56] Depew AT, Mosca TJ. Conservation and innovation: Versatile roles for lrp4 in nervous system development. Journal of Developmental Biology 2021;9. https://doi.org/10.3390/jdb9010009. [57] Chen PJ, Valenzuela IMPY, Aittaleb M, Akaaboune M. AChRs are essential for the targeting of rapsyn to the postsynaptic membrane of NMJs in living mice. Journal of Neuroscience 2016;36:5680–5. https://doi.org/10.1523/JNEUROSCI.4580- 15.2016. [58] Bruneau EG, Brenner DS, Kuwada JY, Akaaboune M. Acetylcholine Receptor Clustering Is Required for the Accumulation and Maintenance of Scaffolding Proteins. Current Biology 2008;18:109–15. 49 https://doi.org/10.1016/j.cub.2007.12.029. [59] Bruneau E, Sutter D, Hume RI, Akaaboune M. Identification of nicotinic acetylcholine receptor recycling and its role in maintaining receptor density at the neuromuscular junction in vivo. Journal of Neuroscience 2005;25:9949–59. https://doi.org/10.1523/JNEUROSCI.3169-05.2005. [60] Ko CP, Robitaille R. Perisynaptic schwann cells at the neuromuscular synapse: Adaptable, multitasking glial cells. Cold Spring Harbor Perspectives in Biology 2015;7. https://doi.org/10.1101/cshperspect.a020503. [61] McMahan UJ, Horton SE, Werle MJ, Honig LS, Kröger S, Ruegg MA, et al. Agrin isoforms and their role in synaptogenesis. Current Opinion in Cell Biology 1992;4:869–74. https://doi.org/10.1016/0955-0674(92)90113-Q. [62] McCarthy KJ. The Basement Membrane Proteoglycans Perlecan and Agrin: Something Old, Something New. Current Topics in Membranes 2015;76:255–303. https://doi.org/10.1016/bs.ctm.2015.09.001. [63] Borges LS, Yechikhov S, Lee YI, Rudell JB, Friese MB, Burden SJ, et al. Identification of a motif in the acetylcholine receptor β subunit whose phosphorylation regulates rapsyn association and postsynaptic receptor localization. Journal of Neuroscience 2008;28:11468–76. https://doi.org/10.1523/JNEUROSCI.2508- 08.2008. [64] Mascarenhas JB, Rüegg MA, Winzen U, Halfter W, Engel J, Stetefeld J. Mapping of the laminin-binding site of the N-terminal agrin domain (NtA). EMBO Journal 2003;22:529–36. https://doi.org/10.1093/emboj/cdg041. [65] Ohkawara B, Shen XM, Selcen D, Nazim M, Bril V, Tarnopolsky MA, et al. Congenital myasthenic syndrome-associated agrin variants affect clustering of acetylcholine receptors in a domain-specific manner. JCI Insight 2020;5. https://doi.org/10.1172/JCI.INSIGHT.132023. [66] Gomez AM, Burden SJ. The extracellular region of Lrp4 is sufficient to mediate neuromuscular synapse formation. Developmental Dynamics 2011;240:2626–33. https://doi.org/10.1002/dvdy.22772. [67] Wu H, Lu Y, Shen C, Patel N, Gan L, Xiong WC, et al. Distinct roles of muscle and motoneuron LRP4 in neuromuscular junction formation. Neuron 2012;75:94–107. https://doi.org/10.1016/j.neuron.2012.04.033. [68] Weatherbee SD, Anderson K V., Niswander LA. LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 2006;133:4993–5000. https://doi.org/10.1242/dev.02696. [69] Barik A, Lu Y, Sathyamurthy A, Bowman A, Shen C, Li L, et al. LRP4 is critical for neuromuscular junction maintenance. Journal of Neuroscience 2014;34:13892– 905. https://doi.org/10.1523/JNEUROSCI.1733-14.2014. [70] Simon-Chazottes D, Tutois S, Kuehn M, Evans M, Bourgade F, Cook S, et al. Mutations in the gene encoding the low-density lipoprotein receptor LRP4 cause abnormal limb development in the mouse. Genomics 2006;87:673–7. https://doi.org/10.1016/j.ygeno.2006.01.007. [71] Ohazama A, Porntaveetus T, Ota MS, Herz J, Sharpe PT. Lrp4: A novel modulator of extracellular signaling in craniofacial organogenesis. American Journal of Medical Genetics, Part A 2010;152 A:2974–83. https://doi.org/10.1002/ajmg.a.33372. [72] Choi HY, Dieckmann M, Herz J, Niemeier A. Lrp4, a novel receptor for dickkopf 1 50 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover In Vivo. PLoS ONE 2009;4. https://doi.org/10.1371/journal.pone.0007930. [73] Li Y, Pawlik B, Elcioglu N, Aglan M, Kayserili H, Yigit G, et al. LRP4 Mutations Alter Wnt/β-Catenin Signaling and Cause Limb and Kidney Malformations in Cenani- Lenz Syndrome. American Journal of Human Genetics 2010;86:696–706. https://doi.org/10.1016/j.ajhg.2010.03.004. [74] Mosca TJ, Luginbuhl DJ, Wang IE, Luo L. Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons. ELife 2017;6. https://doi.org/10.7554/eLife.27347. [75] Gomez AM, Froemke RC, Burden SJ. Synaptic plasticity and cognitive function are disrupted in the absence of Lrp4. ELife 2014;3:1–16. https://doi.org/10.7554/eLife.04287. [76] Tsivgoulis G, Dervenoulas G, Kokotis P, Zompola C, Tzartos JS, Tzartos SJ, et al. Double seronegative myasthenia gravis with low density lipoprotein-4 (LRP4) antibodies presenting with isolated ocular symptoms. Journal of the Neurological Sciences 2014;346:328–30. https://doi.org/10.1016/j.jns.2014.09.013. [77] Tzartos JS, Zisimopoulou P, Rentzos M, Karandreas N, Zouvelou V, Evangelakou P, et al. LRP4 antibodies in serum and CSF from amyotrophic lateral sclerosis patients. Annals of Clinical and Translational Neurology 2014;1:80–7. https://doi.org/10.1002/acn3.26. [78] Zhang H, Chen W, Tan Z, Zhang L, Dong Z, Cui W, et al. A Role of Low-Density Lipoprotein Receptor-Related Protein 4 (LRP4) in Astrocytic Ab Clearance. Journal of Neuroscience 2020;40:5347–61. https://doi.org/10.1523/JNEUROSCI.0250- 20.2020. [79] Valenzuela DM, Stitt TN, DiStefano PS, Rojas E, Mattsson K, Compton DL, et al. Receptor tyrosine kinase specific for the skeletal muscle lineage: Expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 1995;15:573–84. https://doi.org/10.1016/0896-6273(95)90146-9. [80] Herbst R. MuSk function during health and disease. Neuroscience Letters 2020;716:134676. https://doi.org/10.1016/j.neulet.2019.134676. [81] Garcia-Osta A, Tsokas P, Pollonini G, Landau EM, Blitzer R, Alberini CM. MuSK expressed in the brain mediates cholinergic responses, synaptic plasticity, and memory formation. Journal of Neuroscience 2006;26:7919–32. https://doi.org/10.1523/JNEUROSCI.1674-06.2006. [82] DeChiara TM, Bowen DC, Valenzuela DM, Simmons M V., Poueymirou WT, Thomas S, et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 1996;85:501–12. https://doi.org/10.1016/S0092- 8674(00)81251-9. [83] Inoue A, Setoguchi K, Matsubara Y, Okada K, Sato N, Iwakura Y, et al. Dok-7 activates the muscle receptor kinase MuSK and shapes synapse formation. Science Signaling 2009;2:ra7–ra7. https://doi.org/10.1126/scisignal.2000113. [84] Apel ED, Roberds SL, Campbell KP, Merlie JP. Rapsyn may function as a link between the acetylcholine receptor and the agrin-binding dystrophin-associated glycoprotein complex. Neuron 1995;15:115–26. https://doi.org/10.1016/0896- 6273(95)90069-1. [85] Legay C, Mei L. Moving forward with the neuromuscular junction. Journal of 51 Neurochemistry 2017;142:59–63. https://doi.org/10.1111/jnc.14028. [86] Piguet J, Schreiter C, Segura JM, Vogel H, Hovius R. Acetylcholine receptor organization in membrane domains in muscle cells: Evidence for rapsyn- independent and rapsyn-dependent mechanisms. Journal of Biological Chemistry 2011;286:363–9. https://doi.org/10.1074/jbc.M110.139782. [87] Xing G, Xiong WC, Mei L. Rapsyn as a signaling and scaffolding molecule in neuromuscular junction formation and maintenance. Neuroscience Letters 2020;731. https://doi.org/10.1016/j.neulet.2020.135013. [88] Li L, Cao Y, Wu H, Ye X, Zhu Z, Xing G, et al. Enzymatic Activity of the Scaffold Protein Rapsyn for Synapse Formation. Neuron 2016;92:1007–19. https://doi.org/10.1016/j.neuron.2016.10.023. [89] Ma CHE, Omura T, Cobos EJ, Latrémolière A, Ghasemlou N, Brenner GJ, et al. Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice. Journal of Clinical Investigation 2011;121:4332–47. https://doi.org/10.1172/JCI58675. [90] Sakuma M, Gorski G, Sheu SH, Lee S, Barrett LB, Singh B, et al. Lack of motor recovery after prolonged denervation of the neuromuscular junction is not due to regenerative failure. European Journal of Neuroscience 2016;43:451–62. https://doi.org/10.1111/ejn.13059. [91] Wu P, Chawla A, Spinner RJ, Yu C, Yaszemski MJ, Windebank AJ, et al. Key changes in denervated muscles and their impact on regeneration and reinnervation. Neural Regeneration Research 2014;9:1796–809. https://doi.org/10.4103/1673-5374.143424. [92] Furey MJ, Midha R, Xu QG, Belkas J, Gordon T. Prolonged target deprivation reduces the capacity of injured motoneurons to regenerate. Neurosurgery 2007;60:723–32. https://doi.org/10.1227/01.NEU.0000255412.63184.CC. [93] Kurimoto S, Jung J, Tapadia M, Lengfeld J, Agalliu D, Waterman M, et al. ACTIVATION OF THE WNT/β-CATENIN SIGNALING CASCADE AFTER TRAUMATIC NERVE INJURY HHS Public Access. Neuroscience 2015;294:101–8. https://doi.org/10.1016/j.neuroscience.2015.02.049. [94] Ozsoy U, Ogut E, Sekerci R, Hizay A, Rink S, Angelov DN. Effect of Pulsed and Continuous Ultrasound Therapy on the Degree of Collateral Axonal Branching at the Lesion Site, Polyinnervation of Motor End Plates, and Recovery of Motor Function after Facial Nerve Reconstruction. Anatomical Record 2019;302:1314– 24. https://doi.org/10.1002/ar.24122. [95] Tu H, Zhang D, Corrick RM, Muelleman RL, Wadman MC, Li YL. Morphological regeneration and functional recovery of neuromuscular junctions after tourniquet-induced injuries in mouse hindlimb. Frontiers in Physiology 2017;8. https://doi.org/10.3389/fphys.2017.00207. [96] Ma J, Shen J, Lee CA, Elsaidi GA, Smith TL, Walker FO, et al. Gene expression of nAChR, SNAP-25 and GAP-43 in skeletal muscles following botulinum toxin A injection: A study in rats. Journal of Orthopaedic Research 2005;23:302–9. https://doi.org/10.1016/j.orthres.2004.08.027. [97] Su HL, Chiang CY, Lu ZH, Cheng FC, Chen CJ, Sheu ML, et al. Late administration of high-frequency electrical stimulation increases nerve regeneration without aggravating neuropathic pain in a nerve crush injury. BMC Neuroscience 2018;19. https://doi.org/10.1186/s12868-018-0437-9. 52 [98] Cisterna BA, Cardozo C, Sáez JC. Neuronal involvement in muscular atrophy. Frontiers in Cellular Neuroscience 2014;8. https://doi.org/10.3389/fncel.2014.00405. [99] Ma J, Shen J, Garrett JP, Lee CA, Li Z, Elsaidi GA, et al. Gene expression of myogenic regulatory factors, nicotinic acetylcholine receptor subunits, and GAP- 43 in skeletal muscle following denervation in a rat model. Journal of Orthopaedic Research 2007;25:1498–505. https://doi.org/10.1002/jor.20414. [100] R W, S J, LN N, PJ K. Investigation of the Expression of Myogenic Transcription Factors, microRNAs and Muscle-Specific E3 Ubiquitin Ligases in the Medial Gastrocnemius and Soleus Muscles following Peripheral Nerve Injury. PloS One 2015;10. https://doi.org/10.1371/JOURNAL.PONE.0142699. [101] Kang H, Tian L, Mikesh M, Lichtman JW, Thompson WJ. Terminal schwann cells participate in neuromuscular synapse remodeling during reinnervation following nerve injury. Journal of Neuroscience 2014;34:6323–33. https://doi.org/10.1523/JNEUROSCI.4673-13.2014. [102] Bloch-Gallego E. Mechanisms controlling neuromuscular junction stability. Cellular and Molecular Life Sciences 2015;72:1029–43. https://doi.org/10.1007/s00018-014-1768-z. [103] Pinto CG, Leite APS, Sartori AA, Tibúrcio FC, Barraviera B, Junior RSF, et al. Heterologous fibrin biopolymer associated to a single suture stitch enables the return of neuromuscular junction to its mature pattern after peripheral nerve injury. Injury 2020;52:731–7. https://doi.org/10.1016/j.injury.2020.10.070. [104] Leite APS, Pinto CG, Tibúrcio FC, Sartori AA, de Castro Rodrigues A, Barraviera B, et al. Heterologous fibrin sealant potentiates axonal regeneration after peripheral nerve injury with reduction in the number of suture points. Injury 2019;50:834– 47. https://doi.org/10.1016/j.injury.2019.03.027. [105] Kempe PRG, Chiarotto GB, Barraviera B, Ferreira RS, de Oliveira ALR. Neuroprotection and immunomodulation by dimethyl fumarate and a heterologous fibrin biopolymer after ventral root avulsion and reimplantation. Journal of Venomous Animals and Toxins Including Tropical Diseases 2020;26. https://doi.org/10.1590/1678-9199-JVATITD-2019-0093. [106] Buchaim DV, Cassaro CV, Shindo JVTC, Coletta BB della, Pomini KT, de Oliveira Rosso MP, et al. Unique heterologous fibrin biopolymer with hemostatic, adhesive, sealant, scaffold and drug delivery properties: A systematic review. Journal of Venomous Animals and Toxins Including Tropical Diseases 2019;25. https://doi.org/10.1590/1678-9199-jvatitd-2019-0038. [107] Assaf K, Leal CV, Derami MS, de Rezende Duek EA, Ceragioli HJ, de Oliveira ALR. Sciatic nerve repair using poly(ε-caprolactone) tubular prosthesis associated with nanoparticles of carbon and graphene. Brain and Behavior 2017;7. https://doi.org/10.1002/brb3.755. [108] Evans GRD, Brandt K, Widmer MS, Lu L, Meszlenyi RK, Gupta PK, et al. In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 1999;20:1109–15. https://doi.org/10.1016/S0142- 9612(99)00010-1. [109] Parvizi D, Friedl H, Schintler M v., Rappl T, Laback C, Wiedner M, et al. Use of 2- octyl cyanoacrylate together with a self-adhering mesh (DermabondTM PrineoTM) for skin closure following abdominoplasty: An open, prospective, controlled, 53 randomized, clinical study. Aesthetic Plastic Surgery 2013;37:529–37. https://doi.org/10.1007/s00266-013-0123-3. [110] Gasparotto VPO, Landim-Alvarenga FC, Oliveira ALR, Simões GF, Lima-Neto JF, Barraviera B, et al. A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells. Stem Cell Research and Therapy 2014;5. https://doi.org/10.1186/scrt467. [111] Neptune RR, Kautz SA, Zajac FE. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. Journal of Biomechanics 2001;34:1387–98. https://doi.org/10.1016/S0021- 9290(01)00105-1. [112] Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plastic and Reconstructive Surgery 1989;83:129–36. https://doi.org/10.1097/00006534-198901000-00024. [113] Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 2017;18. https://doi.org/10.1186/s12859-017-1934-z. [114] Jones RA, Reich CD, Dissanayake KN, Kristmundsdottir F, Findlater GS, Ribchester RR, et al. Correction to NMJ-morph reveals principal components of synaptic morphology influencing structure - Function relationships at the neuromuscular junction (Open Biology (2016) 6 (160240) DOI: 10.1098/rsob.160335). Open Biology 2017;7. https://doi.org/10.1098/rsob.160240. [115] ZAR JH. Biostatistical analysis, 4th impression. Dorling Kindersley (India) Pvt Ltd, Delhi, 2009;110:92. [116] Johnson R, Wichern D. Applied multivariate statistical analysis 2002.