J H E P 0 7 ( 2 0 1 3 ) 1 7 8 Published for SISSA by Springer Received: March 21, 2013 Revised: June 26, 2013 Accepted: July 5, 2013 Published: July 29, 2013 Search for microscopic black holes in pp collisions at√ s = 8TeV The CMS collaboration E-mail: cms-publication-committee-chair@cern.ch Abstract: A search for microscopic black holes and string balls is presented, based on a data sample of pp collisions at √ s = 8 TeV recorded by the CMS experiment at the Large Hadron Collider and corresponding to an integrated luminosity of 12 fb−1. No excess of events with energetic multiparticle final states, typical of black hole production or of similar new physics processes, is observed. Given the agreement of the observations with the expected standard model background, which is dominated by QCD multijet production, 95% confidence level limits are set on the production of semiclassical or quantum black holes, or of string balls, corresponding to the exclusions of masses below 4.3 to 6.2 TeV, depending on model assumptions. In addition, model-independent limits are set on new physics processes resulting in energetic multiparticle final states. Keywords: Hadron-Hadron Scattering ArXiv ePrint: 1303.5338 Open Access, Copyright CERN, for the benefit of the CMS collaboration doi:10.1007/JHEP07(2013)178 mailto:cms-publication-committee-chair@cern.ch http://arxiv.org/abs/1303.5338 http://dx.doi.org/10.1007/JHEP07(2013)178 J H E P 0 7 ( 2 0 1 3 ) 1 7 8 Contents 1 Introduction 1 2 The CMS detector 2 3 Event reconstruction and Monte Carlo samples 3 4 Analysis method 4 5 Results 5 6 Summary 11 The CMS collaboration 17 1 Introduction Theoretical models with low-scale quantum gravity aim to account for the origin of the large difference between the electroweak scale (∼0.1 TeV) and the Planck scale (MPl ∼ 1016 TeV), known as the hierarchy problem of the standard model (SM) of particle physics. One of the predictions of such scenarios is the possibility of producing microscopic black holes or their quantum precursors in proton-proton collisions at the CERN Large Hadron Collider (LHC) [1, 2]. The basis of this analysis is the theoretical model proposed by Arkani-Hamed, Di- mopoulos, and Dvali (ADD) [3, 4]. This model attempts to solve the hierarchy problem by introducing n large, flat, extra spatial dimensions, compactified on an n-dimensional torus or a sphere. By opening the multidimensional space only to the gravitational interac- tion, the fundamental Planck scale in 4 + n dimensions, MD, is lowered to the electroweak symmetry breaking scale, such that Mn+2 D ∝ M2 PlR −n where R is the radius of the extra dimensions. The reduction in MD is accomplished without affecting tight constraints com- ing from precision measurements of properties of other types of fundamental interactions. The enhanced gravity in multidimensional space allows the formation of microscopic black holes. Production of black holes is also possible in the Randall-Sundrum (RS) model [5–7] and in models with unparticles [8, 9]. In the former case, the hierarchy problem is addressed by adding a single compact spatial dimension with radius comparable to the Planck length and with the metric of the 5-dimensional space-time being exponentially “warped” in the direction of this extra dimension (the anti-deSitter space-time). We present an extension of previous searches for microscopic semiclassical black holes [1, 2], quantum black holes [7, 10], and string balls [11] conducted by the Compact Muon Solenoid (CMS) Collaboration at the CERN LHC [12, 13]. The analysis utilizes – 1 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 a data sample corresponding to an integrated luminosity of 12.1 ± 0.5 fb−1, collected by the CMS detector in pp collisions at a centre-of-mass energy of 8 TeV. These data were recorded in the 2012 running period of the LHC. The 14% increase in the energy of the machine relative to the 2011 dataset would result in a larger production cross section for black holes and other new physics with energetic multiparticle final states. This allows the current search to penetrate a previously unexplored regime. Searches for black holes have also been performed by the CMS collaboration in the dijet channel [14] and by the ATLAS Collaboration [15–17]. A characteristic signature of evaporating semiclassical black holes or string balls is a large number of energetic final-state particles of various types, while quantum black holes typically decay into a few energetic partons. Further details of the analysis method and the underlying models can be found in earlier publications [12, 13]. The results are presented in terms of a set of benchmark scenarios and are also interpreted in terms of model-independent limits on the production cross section for a new physics phenomenon multiplied by the branching fraction of its decay into a multiparticle final state. 2 The CMS detector A detailed description of the CMS detector can be found elsewhere [18]. The central feature of CMS is a 3.8 T superconducting solenoid of 6 m internal diameter that encloses a silicon pixel and strip tracker, a lead-tungstate crystal electromagnetic calorimeter (ECAL), and a brass/scintillator hadron calorimeter (HCAL). Muons are detected in gas-ionisation detectors embedded in the steel flux return yoke of the magnet. The ECAL is a finely segmented calorimeter that uses crystals situated in a barrel region (|η| < 1.48) and two endcaps that extend to |η| = 3.0. Here pseudorapidity η is defined as − ln[tan(θ/2)], where θ is the polar angle measured from the geometrical centre of the detector with respect to the anticlockwise proton beam. The transverse dimensions of the lead-tungstate crystals are ∆η×∆φ = 0.0174×0.0174, where φ is the azimuthal angle in radians. The HCAL consists of interleaved brass plates and scintillator sheets that extend to |η| = 3.0. The granularity of the HCAL towers is ∆η ×∆φ = 0.087× 0.087. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. The CMS trigger system is composed of two levels that are used to select potentially interesting events. The first level (L1) trigger ensures negligible dead time and is responsible for reducing the event rate to 100 kHz using the information from calorimeters and muon detectors. After L1 triggering, the data are passed to the software-based high-level trigger, which decreases the event rate to several hundred Hz for further storage. The data used for this analysis are collected with a set of triggers based on the scalar sum of the transverse energies (HT) of the calorimeter jets found by the trigger. The thresholds for the HT triggers increased from 200 to 750 GeV, depending on the data-taking period, to cope with the increasing instantaneous luminosity of the LHC. For the earlier part of the data taking, we additionally utilized HT triggers that use jets reconstructed using the particle-flow (PF) technique [19], which are corrected for the calorimeter response to calculate the HT variable. The trigger is measured to be fully efficient for jet-enriched collision events with HT above 1 TeV. – 2 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 3 Event reconstruction and Monte Carlo samples The PF technique is used offline to reconstruct and identify charged and neutral particles using information from all the subdetectors. Jets are reconstructed by clustering the PF candidates using an infrared-safe anti-kT algorithm with a distance parameter of 0.5 [20– 22]. In the presence of multiple interactions per beam crossing (“pileup”), we identify the primary vertex in the event as the one that has the highest ∑ p2T of tracks associated with it. Only charged particles originating from the chosen primary vertex are clustered in the jets. The estimated contribution from the neutral-particle energy from the pileup interactions is subtracted on event-by-event basis [23], using FastJet algorithm [21], making the analysis insensitive to the effects of the pileup. Additional selection criteria are applied to jets to remove noise and non-collision background [23]. The PF jets are required to have transverse momentum pT > 50 GeV and to lie within |η| < 2.6. The jet energy response is further corrected using simulated events, as well as dijet and photon+jet collision events [23]. Muons are reconstructed using the PF algorithm by matching the tracks in the silicon detector to segments in the muon chambers. Muons with |η| < 2.1 and pT > 50 GeV are selected. Furthermore, they are required to have an impact parameter less than 0.2 cm to suppress the cosmic ray muon background. In addition, the scalar sum of charged and neutral particle transverse energies, calculated in a cone of ∆R = √ (∆φ)2 + (∆η)2 = 0.3 around the muon direction, should not exceed 20% of the muon transverse momentum. Electrons and photons depositing energy in the ECAL are identified via clustering algorithms, taking into account the expected cluster shapes. Electron reconstruction uses the PF algorithm [19, 24] and requires a silicon tracker trajectory to match an energy cluster found in the ECAL. Photon reconstruction uses ECAL clusters and requires no matching hits in the pixel tracker and an ECAL deposit with a shape consistent with that expected for a photon. Both objects are required to have pT > 50 GeV and to lie within the fiducial region of the barrel (|η| < 1.44) or endcap (1.56 < |η| < 2.4). The barrel-endcap transition region is excluded because the reconstruction of electrons and photons in this region is not optimal; energetic electrons and photons in this region nevertheless contribute to the reconstruction of jets. The separation ∆R between the electron candidate and any muon candidate that has more than 10 hits in the inner tracker is required to be greater than 0.1. We also require the scalar sum of charged and neutral particle transverse energies, calculated in a cone of ∆R = 0.3 around the electron direction, not to exceed 20% of the electron transverse momentum. The ratio of HCAL to ECAL energy deposits is required to be less than 5% for photon candidates. Photons must be isolated in the tracker, ECAL, and HCAL. The scalar sums of transverse energy (momenta in the case of the tracker) are calculated in a cone of ∆R = 0.4 around the candidate photon direction. These sums should not exceed 2.0, 4.2, and 2.2 GeV for the tracker, ECAL, and HCAL, respectively. The missing transverse energy (Emiss T ) is defined as the absolute value of the vector sum of transverse momenta of all the PF objects reconstructed in an event. The Emiss T mea- surement is corrected to account for the jet energy scale calibration [25]. The minimum separation between any two objects (jet, lepton, or photon) in the event is required to be ∆R > 0.3. – 3 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 Simulated samples of semiclassical black hole events are produced using the parton- level BlackMax v2.01 [26, 27] and Charybdis v1.0.3 [28, 29] Monte Carlo event genera- tors. Various models are simulated, including black holes that are produced nonrotating or rotating; those with or without mass and angular momentum loss at the time of formation; and those with or without a stable or “boiling” (i.e., evaporating at a fixed Hawking tem- perature) remnant. In addition, the modified BlackMax generator settings [30] are used to simulate the production of string balls. Detailed descriptions of each model can be found in refs. [12, 13]. All these signal samples are generated using the MSTW2008lo68cl [31] par- ton distribution functions (PDF). Samples of quantum black holes are generated with the qbh v1.03 parton-level generator [32, 33] using the CTEQ6L PDF set [34]. The parton-level events produced by these generators are then used as input to the pythia v6.426 [35] parton showering simulation and a fast parametric simulation of the CMS detector [36, 37]. The fast simulation was validated with the full detector simulation, based on the Geant4 [38] framework, for several benchmark points. The small backgrounds from γ + jets, W/Z + jets (collectively referred to as V + jets in what follows), and tt production are estimated from Monte Carlo simulations using the MadGraph v5 [39] matrix element event generator interfaced with the pythia parton showering simulation, followed by the full detector simulation using Geant4. These back- ground samples are generated using the CTEQ6L PDF set. Other SM backgrounds are negligible and therefore were not accounted for in the analysis. 4 Analysis method The analysis strategy is identical to the one used in the previous analysis at √ s = 7 TeV and is described in detail in ref. [13]. The search for black holes and string balls is performed using events with at least two jets and any number of photons and leptons. There is no explicit requirement of missing transverse energy in the event. The search for black holes is based on a search for a deviation from the SM background predictions in the ST spectra observed in data. The ST variable is defined as the scalar sum of transverse energies of all the final-state objects in the event (jets, leptons, and photons) in excess of 50 GeV. If the Emiss T in the event exceeds 50 GeV, its value is also added to the ST variable. We then determine the multiplicity N of the objects in the final state by counting all the objects in the events (excluding Emiss T ) that enter the calculation of ST [12, 13]. We analyse the data for various inclusive multiplicity bins, from N ≥ 2 to N ≥ 10, and look for deviations from the SM background predictions in each of these bins. We use object definitions and isolation requirements for leptons and photons as de- scribed in section 3. While the isolation requirements are not explicitly used in the analysis (as a non-isolated photon or lepton will be reconstructed as a jet and therefore does not change the values of ST or N in the event), we keep this approach and disambiguate isolated leptons and photons from jets in order to allow clearer interpretation of a signal should one be observed. Indeed, if an excess in the data were observed, the relative fractions of prompt leptons, photons, and jets in the events responsible for the excess could shed light on the nature of the observed signal. – 4 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 The SM background is completely dominated by QCD multijet production and is estimated directly from data using a method based on ST multiplicity invariance [12, 13, 40]. All other backgrounds are negligibly small in the ST range used in this analysis, as shown in figure 1. The multijet background estimation method is based on the empirical observation that the shape of the ST spectrum is approximately independent of N , so the shapes of the ST spectrum for any number of objects can be estimated using a fit to the dijet data (N = 2). The dijet mass spectrum has been previously studied in dedicated analyses [14, 41], as well as in the earlier searches for black holes at lower masses [12, 13] and is known not to exhibit any signal-like features in the range of 1.8 < ST < 2.8 TeV, which is used to obtain the background shape. The central value of the background shape and its uncertainty are determined from the fit to several semi-empirical template functions [13], by taking the best fit function as the central value and the envelope of the alternative fits as the measure of systematic uncertainty in the background shape. The background shape is parameterized with the function P0(1 + x)P1/xP2+P3 log(x), and the uncertainty envelope is defined with two additional functions, P0/(P1 + P2x + x2)P3 and P0/(P1 + x)P2 . Here, Pi are the fit parameters and x = ST/ √ s = ST/8 TeV. We also compare the fits to N = 2 data with fits to N = 3 data as a measure of the ST potential non-invariance of multiplicity. This effect is included in the total systematic uncertainty in the background prediction. Results of the fit can be seen in figure 1. The scaling of the background to higher multiplicities is performed by normalising the background shape to data in each inclusive multiplicity bin in the control range (1.9 < ST < 2.3 TeV), where any significant signal contribution has been already ruled out by earlier analyses [12, 13]. The lower boundary of the control region is chosen to be substantially above the trigger and multiparticle (N × 50 GeV) turn-on regions. The ST distributions for data, for predicted background, and for several semiclassical and quantum black hole signal benchmarks are shown in figures 1–3 for a number of exclusive and inclusive multiplicities. We do not plot the quantum black hole signal ST distributions for inclusive multiplicities of five or more, as the search for quantum black holes is not sensitive in higher inclusive multiplicity bins. No statistically significant excess of events over the expected background is observed in any of these spectra. 5 Results In the absence of an excess of data over the background prediction, we set limits on black hole and string ball production rates. The following systematic uncertainties are taken into account in the limit setting procedure. The total uncertainty in the background includes the uncertainty due to the choice of the fit function (including the uncertainties in the best-fit values of the parameters), the statistics in the normalization region, the uncertainty due to the choice of fit range, and the difference between the fits to N = 2 and N = 3 data as a measure of the potential non- invariance of ST with jet multiplicity. The normalization uncertainty is derived from the number of events in the normalization region in each jet multiplicity bin, and is negligible compared to the shape uncertainty, except for the N ≥ 10 bin. The total uncertainty rises – 5 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 (GeV) T S2000 2500 3000 3500 4000 4500 5000 5500 E ve nt s / 1 00 G eV 1 10 210 310 410 510 610 710 Multiplicity N = 2 Data N=3 Fit Rescaled Background Uncertainty = 5.0 TeV, n = 4 min BH = 2.0 TeV, MDM = 4.5 TeV, n = 2 min BH = 2.5 TeV, MDM = 4.0 TeV, n = 4 min QBH = 3.0 TeV, MDM Photon+Jets ttbar V+Jets -1 = 8 TeV L = 12.1 fbsCMS (GeV) T S 2000 2500 3000 3500 4000 4500 5000 5500 )σ P ul l ( -2 -1 0 1 2 (GeV) T S2000 2500 3000 3500 4000 4500 5000 5500 E ve nt s / 1 00 G eV 1 10 210 310 410 510 610 710 810 2≥Multiplicity N Data Background Uncertainty = 5.5 TeV, n = 6 min BH = 1.5 TeV, MDM = 5.0 TeV, n = 4 min BH = 2.0 TeV, MDM = 4.5 TeV, n = 2 min BH = 2.5 TeV, MDM = 4.0 TeV, n = 4 min QBH = 3.0 TeV, MDM Photon+Jets ttbar V+Jets -1 = 8 TeV L = 12.1 fbsCMS (GeV) T S 2000 2500 3000 3500 4000 4500 5000 5500 )σ P ul l ( -2 -1 0 1 2 Figure 1. Distribution of the scalar sum of transverse energy, ST, for events with multiplicity: (Left) N = 2 and (right) N ≥ 2 objects (photons, electrons, muons, or jets) in the final state. Observed data are depicted as points with statistical error bars; the solid line with a shaded band is the multijet background prediction from N = 2 fit and its systematic uncertainty. Coloured histograms represent the γ+jets (orange), V +jets (red), and tt (green) backgrounds. Also shown are the expected semiclassical black hole signals for three parameter sets of the BlackMax nonrotating semiclassical black hole model, as well as a quantum black hole model. Here, Mmin BH is the minimum black hole mass, Mmin QBH is the minimum quantum black hole mass, MD is the multidimensional Planck scale, and n is the number of extra dimensions. The bottom panels in each plot show the pull distribution (defined as (data− background)/σ(data− background)) based on combined statistical and systematic uncertainty (dominated by the latter). Note that the systematic uncertainty is fully correlated bin-to-bin. Also shown in the N = 2 plot, is the background optimization based on a fit to N = 3 data (dotted line). The difference between the N = 2 and N = 3 background fits are covered by the systematic uncertainty band used in the analysis. with ST from 5% to as much as 200% at very high values of ST, where the background extrapolation is unreliable, owing to insufficient data in the control regions. Typical values of the background uncertainty are 5% at ST = 2 TeV, 18% at ST = 3 TeV, and 95% at ST = 4 TeV. The possible violation of ST invariance with jet multiplicity can be gauged from the bottom panes of figures 2 and 3 and does not show any trends with increasing multiplicity. The effects of possible deviations from ST shape invariance are covered by the above systematic uncertainties in the fit. The uncertainties in the signal include the 8% uncertainty due to the jet energy scale, which is known to ≈ 2% [23]; a 6% uncertainty in the signal acceptance due to the PDF choice, as determined using the prescribed PDF4LHC recipe [42]; and the 4.4% uncertainty in the integrated luminosity [43]. As a result, the total systematic uncertainty in the signal is calculated to be 10%. As the cross section for black hole production is known only approximately and is highly model-dependent, no theoretical uncertainty on the signal cross section is applied, as it is used merely as a benchmark. – 6 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 (GeV) T S2000 2500 3000 3500 4000 4500 5000 5500 E ve nt s / 1 00 G eV 1 10 210 310 410 510 610 710 810 3≥Multiplicity N Data Background Uncertainty = 5.5 TeV, n = 6 min BH = 1.5 TeV, MDM = 5.0 TeV, n = 4 min BH = 2.0 TeV, MDM = 4.5 TeV, n = 2 min BH = 2.5 TeV, MDM = 4.0 TeV, n = 4 min QBH = 3.0 TeV, MDM -1 = 8 TeV L = 12.1 fbsCMS (GeV) T S 2000 2500 3000 3500 4000 4500 5000 5500 )σ P ul l ( -2 -1 0 1 2 (GeV) T S2000 2500 3000 3500 4000 4500 5000 5500 E ve nt s / 1 00 G eV 1 10 210 310 410 510 610 710 810 4≥Multiplicity N Data Background Uncertainty = 5.5 TeV, n = 6 min BH = 1.5 TeV, MDM = 5.0 TeV, n = 4 min BH = 2.0 TeV, MDM = 4.5 TeV, n = 2 min BH = 2.5 TeV, MDM = 4.0 TeV, n = 4 min QBH = 3.0 TeV, MDM -1 = 8 TeV L = 12.1 fbsCMS (GeV) T S 2000 2500 3000 3500 4000 4500 5000 5500 )σ P ul l ( -2 -1 0 1 2 (GeV) T S2000 2500 3000 3500 4000 4500 5000 5500 E ve nt s / 1 00 G eV 1 10 210 310 410 5≥Multiplicity N Data Background Uncertainty = 5.5 TeV, n = 6 min BH = 1.5 TeV, MDM = 5.0 TeV, n = 4 min BH = 2.0 TeV, MDM = 4.5 TeV, n = 2 min BH = 2.5 TeV, MDM -1 = 8 TeV L = 12.1 fbsCMS (GeV) T S 2000 2500 3000 3500 4000 4500 5000 5500 )σ P ul l ( -2 -1 0 1 2 (GeV) T S2000 2500 3000 3500 4000 4500 5000 5500 E ve nt s / 1 00 G eV 1 10 210 310 410 6≥Multiplicity N Data Background Uncertainty = 5.5 TeV, n = 6 min BH = 1.5 TeV, MDM = 5.0 TeV, n = 4 min BH = 2.0 TeV, MDM = 4.5 TeV, n = 2 min BH = 2.5 TeV, MDM -1 = 8 TeV L = 12.1 fbsCMS (GeV) T S 2000 2500 3000 3500 4000 4500 5000 5500 )σ P ul l ( -2 -1 0 1 2 Figure 2. Distribution of the scalar sum of transverse energy, ST, for events with multiplicity: (Top left) N ≥ 3, (top right) N ≥ 4, (bottom left) N ≥ 5, and (bottom right) N ≥ 6 objects (photons, electrons, muons, or jets) in the final state. Observed data are depicted as points with statistical error bars; the solid line with a shaded band is the multijet background prediction and its systematic uncertainty. Also shown are the expected semiclassical black hole signals for three parameter sets of the BlackMax nonrotating black hole model, as well as a quantum black hole signal of the qbh model. Here, Mmin BH is the minimum black hole mass, Mmin QBH is the minimum quantum black hole mass, MD is the multidimensional Planck scale, and n is the number of extra dimensions. The bottom panels in each plot show the pull distribution (defined as (data − background)/σ(data − background)) based on combined statistical and systematic uncertainty (dominated by the latter). Note that the systematic uncertainty is fully correlated bin-to-bin. – 7 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 (GeV) T S2000 2500 3000 3500 4000 4500 5000 5500 E ve nt s / 1 00 G eV 1 10 210 310 7≥Multiplicity N Data Background Uncertainty = 5.5 TeV, n = 6 min BH = 1.5 TeV, MDM = 5.0 TeV, n = 4 min BH = 2.0 TeV, MDM = 4.5 TeV, n = 2 min BH = 2.5 TeV, MDM -1 = 8 TeV L = 12.1 fbsCMS (GeV) T S 2000 2500 3000 3500 4000 4500 5000 5500 )σ P ul l ( -2 -1 0 1 2 (GeV) T S2000 2500 3000 3500 4000 4500 5000 5500 E ve nt s / 1 00 G eV 1 10 210 310 8≥Multiplicity N Data Background Uncertainty = 5.5 TeV, n = 6 min BH = 1.5 TeV, MDM = 5.0 TeV, n = 4 min BH = 2.0 TeV, MDM = 4.5 TeV, n = 2 min BH = 2.5 TeV, MDM -1 = 8 TeV L = 12.1 fbsCMS (GeV) T S 2000 2500 3000 3500 4000 4500 5000 5500 )σ P ul l ( -2 -1 0 1 2 (GeV) T S2000 2500 3000 3500 4000 4500 5000 5500 E ve nt s / 1 00 G eV 1 10 210 9≥Multiplicity N Data Background Uncertainty = 5.5 TeV, n = 6 min BH = 1.5 TeV, MDM = 5.0 TeV, n = 4 min BH = 2.0 TeV, MDM = 4.5 TeV, n = 2 min BH = 2.5 TeV, MDM -1 = 8 TeV L = 12.1 fbsCMS (GeV) T S 2000 2500 3000 3500 4000 4500 5000 5500 )σ P ul l ( -2 -1 0 1 2 (GeV) T S2000 2500 3000 3500 4000 4500 5000 5500 E ve nt s / 1 00 G eV 1 10 210 10≥Multiplicity N Data Background Uncertainty = 5.5 TeV, n = 6 min BH = 1.5 TeV, MDM = 5.0 TeV, n = 4 min BH = 2.0 TeV, MDM = 4.5 TeV, n = 2 min BH = 2.5 TeV, MDM -1 = 8 TeV L = 12.1 fbsCMS (GeV) T S 2000 2500 3000 3500 4000 4500 5000 5500 )σ P ul l ( -2 -1 0 1 2 Figure 3. Distribution of the scalar sum of transverse energy, ST, for events with multiplicity: (Top left) N ≥ 7, (top right) N ≥ 8, (bottom left) N ≥ 9, and (bottom right) N ≥ 10 objects (photons, electrons, muons, or jets) in the final state. Observed data are depicted as points with statistical error bars; the solid line with a shaded band is the multijet background prediction and its systematic uncertainty. Also shown are the expected semiclassical black hole signals for three parameter sets of the BlackMax nonrotating black hole model. Here, Mmin BH is the minimum black hole mass, MD is the multidimensional Planck scale, and n is the number of extra dimensions. The bottom panels in each plot show the pull distribution (defined as (data − background)/σ(data − background)) based on combined statistical and systematic uncertainty (dominated by the latter). Note that the systematic uncertainty is fully correlated bin-to-bin. – 8 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 (TeV)DM 1.5 2 2.5 3 3.5 4 4.5 5 ( Te V ) m in B H E xc lu de d M 4 4.5 5 5.5 6 BlackMax Nonrotating Rotating Rotating (mass and angular momentum loss) -1 = 8 TeV L = 12.1 fbsCMS n = 2 n = 4 n = 6 (TeV)DM 1.5 2 2.5 3 3.5 4 4.5 ( Te V ) m in B H E xc lu de d M 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 Charybdis Rotating Nonrotating Rotating (Yoshino-Rychkov loss) Rotating, low multiplicity regime Boiling remnant (Yoshino-Rychkov loss) Stable remnant (Yoshino-Rychkov loss) -1 = 8 TeV L = 12.1 fbsCMS n = 2 (TeV)DM 1.5 2 2.5 3 3.5 4 4.5 ( Te V ) m in B H E xc lu de d M 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 Charybdis Rotating Nonrotating Rotating (Yoshino-Rychkov loss) Rotating, low multiplicity regime Boiling remnant (Yoshino-Rychkov loss) Stable remnant (Yoshino-Rychkov loss) -1 = 8 TeV L = 12.1 fbsCMS n = 4 (TeV)DM 1.5 2 2.5 3 3.5 4 4.5 5 ( Te V ) m in B H E xc lu de d M 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 Charybdis Rotating Nonrotating Rotating (Yoshino-Rychkov loss) Rotating, low multiplicity regime Boiling remnant (Yoshino-Rychkov loss) Stable remnant (Yoshino-Rychkov loss) -1 = 8 TeV L = 12.1 fbsCMS n = 6 Figure 4. The 95% CL lower limits on the semiclassical black hole mass derived from the upper 95% CL limits on cross section times branching fraction as a function of the fundamental Planck scale MD, for various models. The areas below each curve are excluded by this search. Top left: BlackMax black hole models without the stable remnant. Top right and bottom row: Charybdis black hole models with or without the stable remnant. The number n of extra dimensions is labelled accordingly. For each set of model parameters, a test statistic S/ √ S +B, where S and B are the numbers of signal and background events, is used to choose an optimal combination of minimum ST and multiplicity. Limits are then set using a modified frequentist CLs method [44, 45] with a Poisson likelihood of the observed number of events, given the predicted background multiplied by the likelihoods of a set of measurements of the nuisance parameters that are related to various systematic uncertainties, modelled by log-normal distributions. Counting experiments are performed to set a 95% confidence level (CL) cross section upper limit for each model used in this analysis. These limits can be interpreted in terms of lower mass limits on black holes (figure 4) and string balls (figure 5) that range from 4.3 to 6.2 TeV. The mass limit plots show lower mass limits for a number of benchmark models as a function of the fundamental Planck scale, MD. The areas below each curve are – 9 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 σ Nmin Smin T A N sig Ndata Nbkg σ95 〈σ95〉 (pb) (TeV) (pb) (pb) BlackMax nonrotating BH with MD = 2.5 TeV, MBH = 4.5 TeV, and n = 4 0.15 3 3.2 0.74 1338 213 228± 111 1.3× 10−2 (1.3± 0.5)× 10−2 Charybdis nonrotating BH w/ boiling remnant; MD = 1.5 TeV, MBH = 4.5 TeV, and n = 6 0.23 4 3.0 0.76 2056 244 290± 99 1.0× 10−2 (1.3± 0.4)× 10−2 BlackMax rotating BH; MD = 2.0 TeV, MBH = 5.5 TeV, and n = 6 0.01 3 4.0 0.59 71.2 11 15.6+22.6 −15.6 1.9× 10−3 (2.0± 0.6)× 10−3 BlackMax rotating BH w/ mass loss; MD = 3.0 TeV, MBH = 5.0 TeV, and n = 4 1.4× 10−3 3 4.2 0.41 7.1 4 8.2+15.1 −8.2 1.4× 10−3 (1.5± 0.6)× 10−3 BlackMax SB; MD = 2.1 TeV, MSB = 4.0 TeV, MS = 1.7 TeV, and gS = 0.4 0.08 6 2.8 0.65 656 89 123± 29 3.6× 10−3 (5.0± 1.9)× 10−3 qbh quantum BH; MD = 2.0 TeV, MQBH = 4.0 TeV, and n = 4 1.50 2 2.8 0.67 1211 1168 1180± 274 5.0× 10−2 (5.0± 1.7)× 10−2 Table 1. Typical benchmark signal points for some of the models studied, corresponding leading- order cross sections σ, optimal selections on the minimum decay multiplicity (N ≥ Nmin) and minimum ST, as well as signal acceptance A, expected number of signal events N sig, number of observed events in data Ndata, expected background Nbkg, and observed (σ95) and expected (〈σ95〉) limits on the signal cross section at 95% confidence level. Also here, MD is the multidimensinal Planck scale, MBH is the minimum black hole mass, MQBH is the minimum quantum black hole mass, MSB is the minimum string ball mass, MS is the string scale, gS is the string coupling, and n is the number of extra dimensions. excluded by this analysis. We note that the benchmarks used for semiclassical black holes are subject to large theoretical uncertainties and that the limits on the minimum black hole mass numerically close to MD can not be treated as theoretically reliable. For quantum black holes, which are characterized by a low final-state multiplicity N , the limits come from the N ≥ 2 samples. As the N ≥ 2 sample largely overlaps with the sample used for the background shape determination (N = 2), we use the N ≥ 2 sample only to set limits on quantum black holes with masses above the range used for the background fit, as can be seen in figure 1. Note that the n = 1 case for quantum black holes corresponds to the RS black holes [7]. In this case, MD is the Planck scale times the exponential factor coming from the warping of the anti-deSitter space, and is expected to be of the order of the electroweak symmetry breaking scale, similar to the fundamental Planck scale in the ADD model. The limits on the quantum black holes mass are shown in figure 5. All other benchmark model limits set in this paper correspond to the ADD model. The parameters used in simulations, the optimal combination of ST and multiplicity, signal acceptance, number of expected signal, observed, and background events, as well as observed and expected limits on the signal cross section are shown in table 1. To extend the scope of this search, model-independent limits on the cross section times the acceptance (A) are computed for high-ST inclusive final states for N ≥ 3, 4, 5, 6, 7, 8, 9, and 10, as a function of minimum ST (figures 6, 7). The intersection of these limits with – 10 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 (TeV) minM 4 4.5 5 5.5 6 6.5 7 ( pb ) σ -410 -310 -210 -110 1 10 Observed Cross Section Limits = 0.4 s = 1.1 TeV, g s = 1.4 TeV, MDM = 0.4 s = 1.3 TeV, g s = 1.6 TeV, MDM = 0.4 s = 1.7 TeV, g s = 2.1 TeV, MDM Theoretical Cross Section = 0.4 s = 1.1 TeV, g s = 1.4 TeV, MDM = 0.4 s = 1.3 TeV, g s = 1.6 TeV, MDM = 0.4 s = 1.7 TeV, g s = 2.1 TeV, MDM String Ball (BlackMax) -1 = 8 TeV L = 12.1 fbsCMS (TeV)DM 2 2.5 3 3.5 4 4.5 5 ( Te V ) m in Q B H E xc lu de d M 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 Quantum Black Holes n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 -1 = 8 TeV L = 12.1 fbsCMS Figure 5. (Left) The cross section upper limits at 95% CL from the counting experiments optimized for various string ball parameter sets (solid lines) compared with predicted signal production cross section (dashed lines) as a function of minimum string ball mass. Here, MD is the multidimensional Planck scale, MS is the string scale, and gS = 0.4 is the string coupling. (Right) Lower quantum black hole mass limits at 95% CL as functions of the fundamental Planck scale MD for various qbh black hole models with a number n of extra dimensions from one to six. theoretical predictions for the cross section within the fiducial and kinematic selections used in this analysis could be used to constrain other models of new physics resulting in energetic, multiparticle final states. These model-independent limits on the cross section times acceptance are as low as 0.2 fb at 95% CL for minimum ST values above ∼4.5 TeV, where no data events are observed. 6 Summary A search for microscopic black holes and string balls at the LHC has been conducted, using a data sample corresponding to an integrated luminosity of 12.1±0.5 fb−1 of √ s = 8 TeV pp collisions collected with the CMS detector at the LHC in 2012. Comparing the distributions of the scalar sum of the transverse momenta of all the final-state objects in data events with those from the estimated background, new model-independent limits are set that can be used to constrain a wide variety of models. With this search, semiclassical and quantum black holes with masses below 4.3–6.2 TeV are excluded in the context of a number of benchmark models. Stringent limits on black hole precursors – string balls – are also set. These limits extend significantly the previously probed regime of black hole production at hadron colliders and represent the most restrictive exclusions on these objects to date. Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent per- formance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, – 11 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 (GeV) min TS 2000 3000 4000 5000 A ( pb ) ×) m in T > S T (Sσ -410 -310 -210 -110 -1 = 8 TeV L = 12.1 fbsCMS 3≥Multiplicity N Observed σ 1±Expected σ 2±Expected (GeV) min TS 2000 3000 4000 5000 A ( pb ) ×) m in T > S T (Sσ -410 -310 -210 -110 -1 = 8 TeV L = 12.1 fbsCMS 4≥Multiplicity N Observed σ 1±Expected σ 2±Expected (GeV) min TS 2000 3000 4000 5000 A ( pb ) ×) m in T > S T (Sσ -410 -310 -210 -110 -1 = 8 TeV L = 12.1 fbsCMS 5≥Multiplicity N Observed σ 1±Expected σ 2±Expected (GeV) min TS 2000 3000 4000 5000 A ( pb ) ×) m in T > S T (Sσ -410 -310 -210 -110 -1 = 8 TeV L = 12.1 fbsCMS 6≥Multiplicity N Observed σ 1±Expected σ 2±Expected Figure 6. Model-independent 95% CL cross section times acceptance (A) upper limits for counting experiments with ST > Smin T as a function of Smin T for events with multiplicity: (Top left) N ≥ 3, (top right) N ≥ 4, (bottom left) N ≥ 5, and (bottom right) N ≥ 6. The blue solid (red dotted) lines correspond to an observed (expected) limit for nominal signal acceptance uncertainty of 10%. The green (dark) and yellow (light) bands represent one and two standard deviations from the expected limits. we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Ko- – 12 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 (GeV) min TS 2000 3000 4000 5000 A ( pb ) ×) m in T > S T (Sσ -410 -310 -210 -110 -1 = 8 TeV L = 12.1 fbsCMS 7≥Multiplicity N Observed σ 1±Expected σ 2±Expected (GeV) min TS 2000 3000 4000 5000 A ( pb ) ×) m in T > S T (Sσ -410 -310 -210 -110 -1 = 8 TeV L = 12.1 fbsCMS 8≥Multiplicity N Observed σ 1±Expected σ 2±Expected (GeV) min TS 2000 3000 4000 5000 A ( pb ) ×) m in T > S T (Sσ -410 -310 -210 -110 -1 = 8 TeV L = 12.1 fbsCMS 9≥Multiplicity N Observed σ 1±Expected σ 2±Expected (GeV) min TS 2000 3000 4000 5000 A ( pb ) ×) m in T > S T (Sσ -410 -310 -210 -110 -1 = 8 TeV L = 12.1 fbsCMS 10≥Multiplicity N Observed σ 1±Expected σ 2±Expected Figure 7. Model-independent 95% CL cross section times acceptance (A) upper limits for counting experiments with ST > Smin T as a function of Smin T for events with multiplicity: (Top left) N ≥ 7, (top right) N ≥ 8, (bottom left) N ≥ 9, and (bottom right) N ≥ 10. The blue solid (red dotted) lines correspond to an observed (expected) limit for nominal signal acceptance uncertainty of 10%. The green (dark) and yellow (light) bands represent one and two standard deviations from the expected limits. rea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Ar- menia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. – 13 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 References [1] S. Dimopoulos and G.L. Landsberg, Black holes at the LHC, Phys. Rev. Lett. 87 (2001) 161602 [hep-ph/0106295] [INSPIRE]. [2] S.B. Giddings and S.D. Thomas, High-energy colliders as black hole factories: The End of short distance physics, Phys. Rev. D 65 (2002) 056010 [hep-ph/0106219] [INSPIRE]. [3] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE]. [4] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE]. [5] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE]. [6] L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE]. [7] P. Meade and L. Randall, Black holes and quantum gravity at the LHC, JHEP 05 (2008) 003 [arXiv:0708.3017] [INSPIRE]. [8] H. Georgi, Unparticle physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260] [INSPIRE]. [9] J. Mureika, Unparticle-enhanced black holes at the LHC, Phys. Lett. B 660 (2008) 561 [arXiv:0712.1786] [INSPIRE]. [10] X. Calmet, W. Gong and S.D. Hsu, Colorful quantum black holes at the LHC, Phys. Lett. B 668 (2008) 20 [arXiv:0806.4605] [INSPIRE]. [11] S. Dimopoulos and R. Emparan, String balls at the LHC and beyond, Phys. Lett. B 526 (2002) 393 [hep-ph/0108060] [INSPIRE]. [12] CMS collaboration, Search for microscopic black hole signatures at the Large Hadron Collider, Phys. Lett. B 697 (2011) 434 [arXiv:1012.3375] [INSPIRE]. [13] CMS collaboration, Search for microscopic black holes in pp collisions at √ s = 7 TeV, JHEP 04 (2012) 061 [arXiv:1202.6396] [INSPIRE]. [14] CMS collaboration, Search for narrow resonances and quantum black holes in inclusive and b-tagged dijet mass spectra from pp collisions at √ s = 7 TeV, JHEP 01 (2013) 013 [arXiv:1210.2387] [INSPIRE]. [15] ATLAS collaboration, Search for strong gravity signatures in same-sign dimuon final states using the ATLAS detector at the LHC, Phys. Lett. B 709 (2012) 322 [arXiv:1111.0080] [INSPIRE]. [16] ATLAS collaboration, ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at √ s = 7 TeV, JHEP 01 (2013) 029 [arXiv:1210.1718] [INSPIRE]. [17] ATLAS collaboration, Search for TeV-scale gravity signatures in final states with leptons and jets with the ATLAS detector at √ s = 7 TeV, Phys. Lett. B 716 (2012) 122 [arXiv:1204.4646] [INSPIRE]. – 14 – http://dx.doi.org/10.1103/PhysRevLett.87.161602 http://dx.doi.org/10.1103/PhysRevLett.87.161602 http://arxiv.org/abs/hep-ph/0106295 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0106295 http://dx.doi.org/10.1103/PhysRevD.65.056010 http://arxiv.org/abs/hep-ph/0106219 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0106219 http://dx.doi.org/10.1016/S0370-2693(98)00466-3 http://arxiv.org/abs/hep-ph/9803315 http://inspirehep.net/search?p=find+EPRINT+hep-ph/9803315 http://dx.doi.org/10.1103/PhysRevD.59.086004 http://dx.doi.org/10.1103/PhysRevD.59.086004 http://arxiv.org/abs/hep-ph/9807344 http://inspirehep.net/search?p=find+EPRINT+hep-ph/9807344 http://dx.doi.org/10.1103/PhysRevLett.83.3370 http://dx.doi.org/10.1103/PhysRevLett.83.3370 http://arxiv.org/abs/hep-ph/9905221 http://inspirehep.net/search?p=find+EPRINT+hep-ph/9905221 http://dx.doi.org/10.1103/PhysRevLett.83.4690 http://dx.doi.org/10.1103/PhysRevLett.83.4690 http://arxiv.org/abs/hep-th/9906064 http://inspirehep.net/search?p=find+EPRINT+hep-th/9906064 http://dx.doi.org/10.1088/1126-6708/2008/05/003 http://arxiv.org/abs/0708.3017 http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.3017 http://dx.doi.org/10.1103/PhysRevLett.98.221601 http://arxiv.org/abs/hep-ph/0703260 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0703260 http://dx.doi.org/10.1016/j.physletb.2008.01.050 http://arxiv.org/abs/0712.1786 http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.1786 http://dx.doi.org/10.1016/j.physletb.2008.08.011 http://dx.doi.org/10.1016/j.physletb.2008.08.011 http://arxiv.org/abs/0806.4605 http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.4605 http://dx.doi.org/10.1016/S0370-2693(01)01525-8 http://dx.doi.org/10.1016/S0370-2693(01)01525-8 http://arxiv.org/abs/hep-ph/0108060 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0108060 http://dx.doi.org/10.1016/j.physletb.2011.02.032 http://arxiv.org/abs/1012.3375 http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3375 http://dx.doi.org/10.1007/JHEP04(2012)061 http://dx.doi.org/10.1007/JHEP04(2012)061 http://arxiv.org/abs/1202.6396 http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.6396 http://dx.doi.org/10.1007/JHEP01(2013)013 http://arxiv.org/abs/1210.2387 http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.2387 http://dx.doi.org/10.1016/j.physletb.2012.02.049 http://arxiv.org/abs/1111.0080 http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.0080 http://dx.doi.org/10.1007/JHEP01(2013)029 http://arxiv.org/abs/1210.1718 http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.1718 http://dx.doi.org/10.1016/j.physletb.2012.08.009 http://arxiv.org/abs/1204.4646 http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.4646 J H E P 0 7 ( 2 0 1 3 ) 1 7 8 [18] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [INSPIRE]. [19] CMS collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus and MET, CMS-PAS-PFT-09-001 (2009). [20] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE]. [21] M. Cacciari and G.P. Salam, Dispelling the N3 myth for the kt jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE]. [22] M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE]. [23] CMS collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE]. [24] CMS collaboration, Commissioning of the particle-flow event reconstruction with leptons from J/Ψ and W decays at 7 TeV, CMS-PAS-PFT-10-003 (2010). [25] CMS collaboration, Missing transverse energy performance of the CMS detector, 2011 JINST 6 P09001 [arXiv:1106.5048] [INSPIRE]. [26] D.-C. Dai et al., BlackMax: a black-hole event generator with rotation, recoil, split branes and brane tension, Phys. Rev. D 77 (2008) 076007 [arXiv:0711.3012] [INSPIRE]. [27] D.-C. Dai et al., Manual of BlackMax, a black-hole event generator with rotation, recoil, split branes and brane tension, arXiv:0902.3577 [INSPIRE]. [28] C. Harris, P. Richardson and B. Webber, CHARYBDIS: a black hole event generator, JHEP 08 (2003) 033 [hep-ph/0307305] [INSPIRE]. [29] J.A. Frost et al., Phenomenology of production and decay of spinning extra-dimensional black holes at hadron colliders, JHEP 10 (2009) 014 [arXiv:0904.0979] [INSPIRE]. [30] D.M. Gingrich and K. Martell, Study of highly-excited string states at the Large Hadron Collider, Phys. Rev. D 78 (2008) 115009 [arXiv:0808.2512] [INSPIRE]. [31] A. Martin, W. Stirling, R. Thorne and G. Watt, Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions, Eur. Phys. J. C 70 (2010) 51 [arXiv:1007.2624] [INSPIRE]. [32] D.M. Gingrich, Monte Carlo event generator for black hole production and decay in proton-proton collisions, Comput. Phys. Commun. 181 (2010) 1917 [arXiv:0911.5370] [INSPIRE]. [33] D.M. Gingrich, Quantum black holes with charge, colour and spin at the LHC, J. Phys. G 37 (2010) 105008 [arXiv:0912.0826] [INSPIRE]. [34] P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE]. [35] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE]. [36] D. Orbaker, Fast simulation of the CMS detector, CERN-CMS-CR-2009-074 (2009). [37] S. Abdullin, P. Azzi, F. Beaudette, P. Janot and A. Perrotta, Fast simulation of the CMS detector at the LHC, CERN-CMS-CR-2010-297 (2010). – 15 – http://dx.doi.org/10.1088/1748-0221/3/08/S08004 http://inspirehep.net/search?p=find+J+JINST,3,S08004 http://cds.cern.ch/record/1194487 http://dx.doi.org/10.1088/1126-6708/2008/04/063 http://dx.doi.org/10.1088/1126-6708/2008/04/063 http://arxiv.org/abs/0802.1189 http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.1189 http://dx.doi.org/10.1016/j.physletb.2006.08.037 http://dx.doi.org/10.1016/j.physletb.2006.08.037 http://arxiv.org/abs/hep-ph/0512210 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0512210 http://dx.doi.org/10.1140/epjc/s10052-012-1896-2 http://arxiv.org/abs/1111.6097 http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6097 http://dx.doi.org/10.1088/1748-0221/6/11/P11002 http://arxiv.org/abs/1107.4277 http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.4277 http://cds.cern.ch/record/1279347 http://dx.doi.org/10.1088/1748-0221/6/09/P09001 http://dx.doi.org/10.1088/1748-0221/6/09/P09001 http://arxiv.org/abs/1106.5048 http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.5048 http://dx.doi.org/10.1103/PhysRevD.77.076007 http://arxiv.org/abs/0711.3012 http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.3012 http://arxiv.org/abs/0902.3577 http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.3577 http://dx.doi.org/10.1088/1126-6708/2003/08/033 http://dx.doi.org/10.1088/1126-6708/2003/08/033 http://arxiv.org/abs/hep-ph/0307305 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0307305 http://dx.doi.org/10.1088/1126-6708/2009/10/014 http://arxiv.org/abs/0904.0979 http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.0979 http://dx.doi.org/10.1103/PhysRevD.78.115009 http://arxiv.org/abs/0808.2512 http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.2512 http://dx.doi.org/10.1140/epjc/s10052-010-1462-8 http://arxiv.org/abs/1007.2624 http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2624 http://dx.doi.org/10.1016/j.cpc.2010.07.027 http://arxiv.org/abs/0911.5370 http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.5370 http://dx.doi.org/10.1088/0954-3899/37/10/105008 http://dx.doi.org/10.1088/0954-3899/37/10/105008 http://arxiv.org/abs/0912.0826 http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.0826 http://dx.doi.org/10.1103/PhysRevD.78.013004 http://dx.doi.org/10.1103/PhysRevD.78.013004 http://arxiv.org/abs/0802.0007 http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.0007 http://dx.doi.org/10.1088/1126-6708/2006/05/026 http://dx.doi.org/10.1088/1126-6708/2006/05/026 http://arxiv.org/abs/hep-ph/0603175 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603175 http://cds.cern.ch/record/1196161 http://cds.cern.ch/record/1328345 J H E P 0 7 ( 2 0 1 3 ) 1 7 8 [38] GEANT4 collaboration, S. Agostinelli et al., GEANT4 – A simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. [39] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE]. [40] K.V. Tsang, Search for microscopic black hole signatures at the Large Hadron Collider, Ph.D. thesis, Brown University, U.S.A. (2011), FERMILAB-THESIS-2011-45 [CERN-THESIS-2011-296]. [41] CMS collaboration, Search for narrow resonances using the dijet mass spectrum in pp collisions at √ s = 8 TeV, arXiv:1302.4794 [INSPIRE]. [42] M. Botje et al., The PDF4LHC working group interim recommendations, arXiv:1101.0538 [INSPIRE]. [43] CMS collaboration, CMS luminosity based on pixel cluster counting — Summer 2012 update, CMS-PAS-LUM-12-001 (2012). [44] A.L. Read, Presentation of search results: the CLs technique, J. Phys. G 28 (2002) 2693 [INSPIRE]. [45] T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE]. – 16 – http://dx.doi.org/10.1016/S0168-9002(03)01368-8 http://dx.doi.org/10.1016/S0168-9002(03)01368-8 http://inspirehep.net/search?p=find+J+Nucl.Instrum.Meth.,A506,250 http://dx.doi.org/10.1007/JHEP06(2011)128 http://arxiv.org/abs/1106.0522 http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0522 http://cds.cern.ch/record/1514016 http://arxiv.org/abs/1302.4794 http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.4794 http://arxiv.org/abs/1101.0538 http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0538 http://cds.cern.ch/record/1482193 http://dx.doi.org/10.1088/0954-3899/28/10/313 http://inspirehep.net/search?p=find+J+J.Phys.,G28,2693 http://dx.doi.org/10.1016/S0168-9002(99)00498-2 http://dx.doi.org/10.1016/S0168-9002(99)00498-2 http://arxiv.org/abs/hep-ex/9902006 http://inspirehep.net/search?p=find+EPRINT+hep-ex/9902006 J H E P 0 7 ( 2 0 1 3 ) 1 7 8 The CMS collaboration Yerevan Physics Institute, Yerevan, Armenia S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan Institut für Hochenergiephysik der OeAW, Wien, Austria W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan1, M. Friedl, R. Frühwirth1, V.M. Ghete, N. Hörmann, J. Hrubec, M. Jeitler1, W. Kiesenhofer, V. Knünz, M. Krammer1, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady2, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Treberer-treberspurg, W. Wal- tenberger, C.-E. Wulz1 National Centre for Particle and High Energy Physics, Minsk, Belarus V. Mossolov, N. Shumeiko, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium F. Blekman, S. Blyweert, J. D’Hondt, A. Kalogeropoulos, J. Keaveney, M. Maes, A. Ol- brechts, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella Université Libre de Bruxelles, Bruxelles, Belgium B. Clerbaux, G. De Lentdecker, L. Favart, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, A. Mohammadi, T. Reis, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang Ghent University, Ghent, Belgium V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Dildick, G. Garcia, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, S. Walsh, E. Yazgan, N. Zaganidis Université Catholique de Louvain, Louvain-la-Neuve, Belgium S. Basegmez, C. Beluffi3, G. Bruno, R. Castello, A. Caudron, L. Ceard, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco4, J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, A. Popov5, M. Selvaggi, J.M. Vizan Garcia Université de Mons, Mons, Belgium N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil G.A. Alves, M. Correa Martins Junior, T. Martins, M.E. Pol, M.H.G. Souza Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil W.L. Aldá Júnior, W. Carvalho, J. Chinellato6, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, M. Malek, D. Matos – 17 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, L. Soares Jorge, A. Sznajder, E.J. Tonelli Manganote6, A. Vilela Pereira Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil T.S. Anjosb, C.A. Bernardesb, F.A. Diasa,7, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, C. Laganaa, F. Marinhoa, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria V. Genchev2, P. Iaydjiev2, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova University of Sofia, Sofia, Bulgaria A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov Institute of High Energy Physics, Beijing, China J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China C. Asawatangtrakuldee, Y. Ban, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, D. Wang, L. Zhang, W. Zou Universidad de Los Andes, Bogota, Colombia C. Avila, C.A. Carrillo Montoya, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria Technical University of Split, Split, Croatia N. Godinovic, D. Lelas, R. Plestina8, D. Polic, I. Puljak University of Split, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, S. Duric, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tikvica University of Cyprus, Nicosia, Cyprus A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis Charles University, Prague, Czech Republic M. Finger, M. Finger Jr. Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt Y. Assran9, A. Ellithi Kamel10, A.M. Kuotb Awad11, M.A. Mahmoud11, A. Radi12,13 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia M. Kadastik, M. Müntel, M. Murumaa, M. Raidal, L. Rebane, A. Tiko Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, G. Fedi, M. Voutilainen – 18 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 Helsinki Institute of Physics, Helsinki, Finland J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland A. Korpela, T. Tuuva DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France M. Besancon, S. Choudhury, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, L. Millischer, A. Nayak, J. Rander, A. Rosowsky, M. Titov Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj14, P. Busson, C. Charlot, N. Daci, T. Dahms, M. Dalchenko, L. Dobrzynski, A. Florent, R. Granier de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Veelken, A. Zabi Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Univer- sité de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France J.-L. Agram15, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte15, F. Drouhin15, J.-C. Fontaine15, D. Gelé, U. Goerlach, C. Goetzmann, P. Juillot, A.-C. Le Bihan, P. Van Hove Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France S. Gadrat Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France S. Beauceron, N. Beaupere, G. Boudoul, S. Brochet, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, L. Sgandurra, V. Sordini, Y. Tschudi, M. Vander Donckt, P. Verdier, S. Viret Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia Z. Tsamalaidze16 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, B. Calpas, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, K. Klein, J. Merz, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer, V. Zhukov5 – 19 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, P. Kreuzer, M. Merschmeyer, A. Meyer, M. Olschewski, K. Padeken, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teyssier, S. Thüer, M. Weber RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann2, A. Nowack, I.M. Nugent, L. Perchalla, O. Pooth, A. Stahl Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, M. Bergholz17, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, F. Costanza, C. Diez Pardos, T. Dorland, G. Eckerlin, D. Eckstein, G. Flucke, A. Geiser, I. Glushkov, P. Gunnellini, S. Habib, J. Hauk, G. Hellwig, H. Jung, M. Kasemann, P. Katsas, C. Klein- wort, H. Kluge, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange, J. Leonard, K. Lipka, W. Lohmann17, B. Lutz, R. Mankel, I. Marfin, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme, O. Novgorodova, F. Nowak, J. Olzem, H. Perrey, A. Petrukhin, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, E. Ron, J. Salfeld-Nebgen, R. Schmidt17, T. Schoerner-Sadenius, N. Sen, M. Stein, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany V. Blobel, H. Enderle, J. Erfle, U. Gebbert, M. Görner, M. Gosselink, J. Haller, K. Heine, R.S. Höing, G. Kaussen, H. Kirschenmann, R. Klanner, J. Lange, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, T. Schum, M. Seidel, J. Sibille18, V. Sola, H. Stadie, G. Steinbrück, J. Thomsen, L. Vanelderen Institut für Experimentelle Kernphysik, Karlsruhe, Germany C. Barth, C. Baus, J. Berger, C. Böser, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, M. Guthoff2, C. Hackstein, F. Hartmann2, T. Hauth2, M. Heinrich, H. Held, K.H. Hoffmann, U. Husemann, I. Katkov5, J.R. Komaragiri, A. Kornmayer2, P. Lobelle Pardo, D. Martschei, S. Mueller, Th. Müller, M. Niegel, A. Nürnberg, O. Oberst, J. Ott, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, S. Röcker, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, M. Zeise Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece G. Anagnostou, G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, E. Ntomari University of Athens, Athens, Greece L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou, E. Stiliaris – 20 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 University of Ioánnina, Ioánnina, Greece X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopou- los, E. Paradas KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary G. Bencze, C. Hajdu, P. Hidas, D. Horvath19, B. Radics, F. Sikler, V. Veszpremi, G. Vesztergombi20, A.J. Zsigmond Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi University of Debrecen, Debrecen, Hungary J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari Panjab University, Chandigarh, India S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, M. Mittal, N. Nishu, L.K. Saini, A. Sharma, J.B. Singh University of Delhi, Delhi, India Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, P. Saxena, V. Sharma, R.K. Shivpuri Saha Institute of Nuclear Physics, Kolkata, India S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan Bhabha Atomic Research Centre, Mumbai, India A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty2, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research - EHEP, Mumbai, India T. Aziz, R.M. Chatterjee, S. Ganguly, S. Ghosh, M. Guchait21, A. Gurtu22, G. Kole, S. Ku- mar, M. Maity23, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage Tata Institute of Fundamental Research - HECR, Mumbai, India S. Banerjee, S. Dugad Institute for Research in Fundamental Sciences (IPM), Tehran, Iran H. Arfaei24, H. Bakhshiansohi, S.M. Etesami25, A. Fahim24, H. Hesari, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh26, M. Zeinali University College Dublin, Dublin, Ireland M. Grunewald INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa,b, L. Barbonea,b, C. Calabriaa,b, S.S. Chhibraa,b, A. Colaleoa, D. Creanzaa,c, N. De Filippisa,c,2, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, G. Maggia,c, M. Maggia, – 21 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 B. Marangellia,b, S. Mya,c, S. Nuzzoa,b, N. Pacificoa, A. Pompilia,b, G. Pugliesea,c, G. Selvaggia,b, L. Silvestrisa, G. Singha,b, R. Vendittia,b, P. Verwilligena, G. Zitoa INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy G. Abbiendia, A.C. Benvenutia, D. Bonacorsia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, M. Cuffiania,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa,b, P. Giacomellia, C. Grandia, L. Guiduccia,b, S. Marcellinia, G. Masettia,2, M. Meneghellia,b, A. Montanaria, F.L. Navarriaa,b, F. Odoricia, A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b, N. Tosia,b, R. Travaglinia,b INFN Sezione di Catania a, Università di Catania b, Catania, Italy S. Albergoa,b, M. Chiorbolia,b, S. Costaa,b, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, S. Frosalia,b, E. Galloa, S. Gonzia,b, V. Goria,b, P. Lenzia,b, M. Meschinia, S. Paolettia, G. Sguazzonia, A. Tropianoa,b INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo INFN Sezione di Genova a, Università di Genova b, Genova, Italy P. Fabbricatorea, R. Musenicha, S. Tosia,b INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy A. Benagliaa, F. De Guioa,b, L. Di Matteoa,b, S. Fiorendia,b, S. Gennaia,2, A. Ghezzia,b, P. Govoni, M.T. Lucchini2, S. Malvezzia, R.A. Manzonia,b,2, A. Martellia,b,2, A. Massironia,b, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, N. Redaellia, T. Tabarelli de Fatisa,b INFN Sezione di Napoli a, Università di Napoli ’Federico II’ b, Università della Basilicata (Potenza) c, Università G. Marconi (Roma) d, Napoli, Italy S. Buontempoa, N. Cavalloa,c, A. De Cosaa,b, O. Doganguna,b, F. Fabozzia,c, A.O.M. Iorioa,b, L. Listaa, S. Meolaa,d,2, M. Merolaa, P. Paoluccia,2 INFN Sezione di Padova a, Università di Padova b, Università di Trento (Trento) c, Padova, Italy P. Azzia, N. Bacchettaa, M. Bellatoa, A. Brancaa,b, R. Carlina,b, T. Dorigoa, U. Dossellia, M. Galantia,b,2, F. Gasparinia,b, P. Giubilatoa,b, A. Gozzelinoa, K. Kanishcheva,c, S. Lacapraraa, I. Lazzizzeraa,c, M. Margonia,b, A.T. Meneguzzoa,b, M. Nespoloa, J. Pazzinia,b, M. Pegoraroa, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b, A. Triossia, S. Vaninia,b, S. Venturaa, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea,b INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Vituloa,b – 22 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy M. Biasinia,b, G.M. Bileia, L. Fanòa,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, A. Nappia,b†, F. Romeoa,b, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova,27, P. Azzurria, G. Bagliesia, T. Boccalia, G. Broccoloa,c, R. Castaldia, R.T. D’Agnoloa,c,2, R. Dell’Orsoa, F. Fioria,c, L. Foàa,c, A. Giassia, A. Kraana, F. Ligabuea,c, T. Lomtadzea, L. Martinia,27, A. Messineoa,b, F. Pallaa, A. Rizzia,b, A.T. Serbana, P. Spagnoloa, P. Squillaciotia, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia, C. Vernieria,c INFN Sezione di Roma a, Università di Roma b, Roma, Italy L. Baronea,b, F. Cavallaria, D. Del Rea,b, M. Diemoza, C. Fanellia,b, M. Grassia,b,2, E. Longoa,b, F. Margarolia,b, P. Meridiania, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, L. Soffia,b INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, N. Cartigliaa, S. Casassoa,b, M. Costaa,b, P. De Remigisa, N. Demariaa, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia,2, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, U. Tamponia INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia,2, G. Della Riccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, D. Montaninoa,b, A. Penzoa, A. Schizzia,b, A. Zanettia Kangwon National University, Chunchon, Korea T.Y. Kim, S.K. Nam Kyungpook National University, Daegu, Korea S. Chang, D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, Y.D. Oh, H. Park, D.C. Son Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea J.Y. Kim, Zero J. Kim, S. Song Korea University, Seoul, Korea S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, S.K. Park, Y. Roh University of Seoul, Seoul, Korea M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu – 23 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 Vilnius University, Vilnius, Lithuania I. Grigelionis, A. Juodagalvis Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz28, R. Lopez-Fernandez, J. Mart́ınez-Ortega, A. Sanchez-Hernandez, L.M. Villasenor-Cendejas Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico H.A. Salazar Ibarguen Universidad Autónoma de San Luis Potośı, San Luis Potośı, Mexico E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos University of Auckland, Auckland, New Zealand D. Krofcheck University of Canterbury, Christchurch, New Zealand A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan M. Ahmad, M.I. Asghar, J. Butt, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, W. Wolszczak Laboratório de Instrumentação e F́ısica Experimental de Part́ıculas, Lisboa, Portugal N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Rodrigues Antunes, J. Seixas2, J. Varela, P. Vischia Joint Institute for Nuclear Research, Dubna, Russia I. Belotelov, M. Gavrilenko, I. Golutvin, I. Gorbunov, V. Karjavin, V. Konoplyanikov, V. Korenkov, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, V. Smirnov, E. Tikhonenko, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia S. Evstyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev – 24 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, M. Erofeeva, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Se- menov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia A. Belyaev, E. Boos, V. Bunichev, M. Dubinin7, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, S. Petrushanko, V. Savrin State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic29, M. Ekmedzic, D. Krpic29, J. Milosevic Centro de Investigaciones Energéticas Medioambientales y Tec- nológicas (CIEMAT), Madrid, Spain M. Aguilar-Benitez, J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas2, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domı́nguez Vázquez, C. Fer- nandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, E. Navarro De Martino, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott Universidad Autónoma de Madrid, Madrid, Spain C. Albajar, J.F. de Trocóniz Universidad de Oviedo, Oviedo, Spain H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez Instituto de F́ısica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, C. Jorda, A. Lopez Virto, – 25 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodŕıguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, J.F. Benitez, C. Bernet8, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, S. Colafranceschi30, D. d’Enterria, A. Dabrowski, A. De Roeck, S. De Visscher, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, W. Funk, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Girone, M. Giunta, F. Glege, R. Gomez- Reino Garrido, S. Gowdy, R. Guida, J. Hammer, M. Hansen, P. Harris, C. Hartl, B. Hegner, A. Hinzmann, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, K. Kousouris, K. Krajczar, P. Lecoq, Y.-J. Lee, C. Lourenço, N. Magini, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, R. Moser, M. Mulders, P. Musella, E. Nesvold, L. Orsini, E. Palencia Cortezon, E. Perez, L. Perrozzi, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, G. Rolandi31, C. Rovelli32, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwick, I. Segoni, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas33, D. Spiga, M. Stoye, A. Tsirou, G.I. Veres20, J.R. Vlimant, H.K. Wöhri, S.D. Worm34, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bäni, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, P. Lecomte, W. Lustermann, A.C. Marini, P. Martinez Ruiz del Arbol, N. Mohr, F. Moortgat, C. Nägeli35, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, A. Starodumov36, B. Stieger, M. Takahashi, L. Tauscher†, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, H.A. Weber Universität Zürich, Zurich, Switzerland C. Amsler37, V. Chiochia, C. Favaro, M. Ivova Rikova, B. Kilminster, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Taroni, S. Tupputi, M. Verzetti National Central University, Chung-Li, Taiwan M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, S.W. Li, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu National Taiwan University (NTU), Taipei, Taiwan P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, M. Wang Chulalongkorn University, Bangkok, Thailand B. Asavapibhop, N. Suwonjandee – 26 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 Cukurova University, Adana, Turkey A. Adiguzel, M.N. Bakirci38, S. Cerci39, C. Dozen, I. Dumanoglu, E. Eskut, S. Gir- gis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk40, A. Polatoz, K. Sogut41, D. Sunar Cerci39, B. Tali39, H. Topakli38, M. Vergili Middle East Technical University, Physics Department, Ankara, Turkey I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, G. Karapinar42, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gülmez, B. Isildak43, M. Kaya44, O. Kaya44, S. Ozkorucuklu45, N. Sonmez46 Istanbul Technical University, Istanbul, Turkey H. Bahtiyar47, E. Barlas, K. Cankocak, Y.O. Günaydin48, F.I. Vardarlı, M. Yücel National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk, P. Sorokin University of Bristol, Bristol, United Kingdom J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold34, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams Rutherford Appleton Laboratory, Didcot, United Kingdom L. Basso49, K.W. Bell, A. Belyaev49, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Cough- lan, K. Harder, S. Harper, J. Jackson, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley Imperial College, London, United Kingdom R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas34, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko36, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi50, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp†, A. Sparrow, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, T. Whyntie Brunel University, Uxbridge, United Kingdom M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, USA J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough The University of Alabama, Tuscaloosa, USA O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio – 27 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 Boston University, Boston, USA A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, J. St. John, L. Sulak Brown University, Providence, USA J. Alimena, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer University of California, Davis, Davis, USA R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, R. Houtz, W. Ko, A. Kopecky, R. Lander, O. Mall, T. Miceli, R. Nelson, D. Pellett, F. Ricci-Tam, B. Rutherford, M. Searle, J. Smith, M. Squires, M. Tripathi, S. Wilbur, R. Yohay University of California, Los Angeles, USA V. Andreev, D. Cline, R. Cousins, S. Erhan, P. Everaerts, C. Farrell, M. Felcini, J. Hauser, M. Ignatenko, C. Jarvis, G. Rakness, P. Schlein†, E. Takasugi, P. Traczyk, V. Valuev, M. Weber University of California, Riverside, Riverside, USA J. Babb, R. Clare, M.E. Dinardo, J. Ellison, J.W. Gary, F. Giordano2, G. Hanson, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny University of California, San Diego, La Jolla, USA W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, D. Evans, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, B. Mangano, S. Padhi, C. Palmer, G. Petrucciani, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech51, F. Würthwein, A. Yagil, J. Yoo University of California, Santa Barbara, Santa Barbara, USA D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, C. George, F. Golf, J. Incandela, C. Justus, P. Kalavase, D. Kovalskyi, V. Krutelyov, S. Lowette, R. Magaña Villalba, N. Mccoll, V. Pavlunin, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, C. West California Institute of Technology, Pasadena, USA A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, D. Kcira, Y. Ma, A. Mott, H.B. Newman, C. Rogan, M. Spiropulu, V. Timciuc, J. Veverka, R. Wilkinson, S. Xie, Y. Yang, R.Y. Zhu Carnegie Mellon University, Pittsburgh, USA V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, J. Russ, H. Vogel, I. Vorobiev – 28 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 University of Colorado at Boulder, Boulder, USA J.P. Cumalat, B.R. Drell, W.T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner Cornell University, Ithaca, USA J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, W. Hopkins, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich Fairfield University, Fairfield, USA D. Winn Fermi National Accelerator Laboratory, Batavia, USA S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chle- bana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, L. Gray, D. Green, O. Gutsche, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. John- son, U. Joshi, B. Klima, S. Kunori, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko52, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, J.C. Yun University of Florida, Gainesville, USA D. Acosta, P. Avery, D. Bourilkov, M. Chen, T. Cheng, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic53, G. Mitselmakher, L. Muniz, R. Remington, A. Rinkevicius, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria Florida International University, Miami, USA V. Gaultney, S. Hewamanage, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Ro- driguez Florida State University, Tallahassee, USA T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg Florida Institute of Technology, Melbourne, USA M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, USA M.R. Adams, L. Apanasevich, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, P. Kurt, F. Lacroix, D.H. Moon, C. O’Brien, C. Silkworth, D. Strom, P. Turner, N. Varelas – 29 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 The University of Iowa, Iowa City, USA U. Akgun, E.A. Albayrak, B. Bilki54, W. Clarida, K. Dilsiz, F. Duru, S. Griffiths, J.- P. Merlo, H. Mermerkaya55, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, H. Ogul, Y. Onel, F. Ozok47, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin56, K. Yi Johns Hopkins University, Baltimore, USA B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, G. Hu, P. Maksimovic, M. Swartz, A. Whitbeck The University of Kansas, Lawrence, USA P. Baringer, A. Bean, G. Benelli, R.P. Kenny III, M. Murray, D. Noonan, S. Sanders, R. Stringer, J.S. Wood Kansas State University, Manhattan, USA A.F. Barfuss, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze Lawrence Livermore National Laboratory, Livermore, USA J. Gronberg, D. Lange, F. Rebassoo, D. Wright University of Maryland, College Park, USA A. Baden, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Peterman, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, USA A. Apyan, G. Bauer, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, G. Gomez Ceballos, M. Goncharov, Y. Kim, M. Klute, Y.S. Lai, A. Levin, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephans, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, R. Wolf, B. Wyslouch, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti, V. Zhukova University of Minnesota, Minneapolis, USA B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, J. Haupt, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz University of Mississippi, Oxford, USA L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders, D. Summers University of Nebraska-Lincoln, Lincoln, USA E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, M. Eads, R. Gonzalez Suarez, J. Keller, I. Kravchenko, J. Lazo-Flores, S. Malik, G.R. Snow State University of New York at Buffalo, Buffalo, USA J. Dolen, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S. Rappoccio, Z. Wan – 30 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 Northeastern University, Boston, USA G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, D. Nash, T. Orimoto, D. Trocino, D. Wood, J. Zhang Northwestern University, Evanston, USA A. Anastassov, K.A. Hahn, A. Kubik, L. Lusito, N. Mucia, N. Odell, B. Pollack, A. Pozd- nyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won University of Notre Dame, Notre Dame, USA D. Berry, A. Brinkerhoff, K.M. Chan, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, M. Planer, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf The Ohio State University, Columbus, USA L. Antonelli, B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, G. Smith, C. Vuosalo, G. Williams, B.L. Winer, H. Wolfe Princeton University, Princeton, USA E. Berry, P. Elmer, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, P. Jindal, S.A. Koay, D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, S.C. Zenz, A. Zuranski University of Puerto Rico, Mayaguez, USA E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas Purdue University, West Lafayette, USA E. Alagoz, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, K. Jung, O. Koybasi, M. Kress, N. Leonardo, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, F.W. Wang, L. Xu, H.D. Yoo, J. Zablocki, Y. Zheng Purdue University Calumet, Hammond, USA S. Guragain, N. Parashar Rice University, Houston, USA A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel University of Rochester, Rochester, USA B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, G. Petrillo, D. Vish- nevskiy, M. Zielinski The Rockefeller University, New York, USA A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian Rutgers, The State University of New Jersey, Piscataway, USA S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Dug- gan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, – 31 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 M. Park, R. Patel, V. Rekovic, J. Robles, K. Rose, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, M. Walker University of Tennessee, Knoxville, USA G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York Texas A&M University, College Station, USA R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon57, V. Khotilovich, R. Montalvo, I. Os- ipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, I. Suarez, A. Tatarinov, D. Toback Texas Tech University, Lubbock, USA N. Akchurin, J. Damgov, C. Dragoiu, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, I. Volobouev Vanderbilt University, Nashville, USA E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska University of Virginia, Charlottesville, USA M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood Wayne State University, Detroit, USA S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov University of Wisconsin, Madison, USA M. Anderson, D.A. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, E. Friis, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, R. Loveless, A. Mohapatra, M.U. Mozer, I. Ojalvo, G.A. Pierro, I. Ross, A. Savin, W.H. Smith, J. Swanson †: Deceased 1: Also at Vienna University of Technology, Vienna, Austria 2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland 3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France 4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 6: Also at Universidade Estadual de Campinas, Campinas, Brazil 7: Also at California Institute of Technology, Pasadena, USA 8: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 9: Also at Suez Canal University, Suez, Egypt 10: Also at Cairo University, Cairo, Egypt 11: Also at Fayoum University, El-Fayoum, Egypt 12: Also at British University in Egypt, Cairo, Egypt – 32 – J H E P 0 7 ( 2 0 1 3 ) 1 7 8 13: Now at Ain Shams University, Cairo, Egypt 14: Also at National Centre for Nuclear Research, Swierk, Poland 15: Also at Université de Haute Alsace, Mulhouse, France 16: Also at Joint Institute for Nuclear Research, Dubna, Russia 17: Also at Brandenburg University of Technology, Cottbus, Germany 18: Also at The University of Kansas, Lawrence, USA 19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary 20: Also at Eötvös Loránd University, Budapest, Hungary 21: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India 22: Now at King Abdulaziz University, Jeddah, Saudi Arabia 23: Also at University of Visva-Bharati, Santiniketan, India 24: Also at Sharif University of Technology, Tehran, Iran 25: Also at Isfahan University of Technology, Isfahan, Iran 26: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 27: Also at Università degli Studi di Siena, Siena, Italy 28: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico 29: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia 30: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy 31: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy 32: Also at INFN Sezione di Roma, Roma, Italy 33: Also at University of Athens, Athens, Greece 34: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom 35: Also at Paul Scherrer Institut, Villigen, Switzerland 36: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia 37: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland 38: Also at Gaziosmanpasa University, Tokat, Turkey 39: Also at Adiyaman University, Adiyaman, Turkey 40: Also at The University of Iowa, Iowa City, USA 41: Also at Mersin University, Mersin, Turkey 42: Also at Izmir Institute of Technology, Izmir, Turkey 43: Also at Ozyegin University, Istanbul, Turkey 44: Also at Kafkas University, Kars, Turkey 45: Also at Suleyman Demirel University, Isparta, Turkey 46: Also at Ege University, Izmir, Turkey 47: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey 48: Also at Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey 49: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom 50: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy 51: Also at Utah Valley University, Orem, USA 52: Also at Institute for Nuclear Research, Moscow, Russia 53: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 54: Also at Argonne National Laboratory, Argonne, USA 55: Also at Erzincan University, Erzincan, Turkey 56: Also at Yildiz Technical University, Istanbul, Turkey 57: Also at Kyungpook National University, Daegu, Korea – 33 – Introduction The CMS detector Event reconstruction and Monte Carlo samples Analysis method Results Summary The CMS collaboration