Thematic Section: Reservoirs Ecology
Acta Limnologica Brasiliensia, 2018, vol. 30, e306
https://doi.org/10.1590/S2179-975X13717
ISSN 2179-975X on-line version
This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Is it possible to evaluate the ecological status of a reservoir using
the phytoplankton community?
É possível avaliar o Potencial Ecológico de um reservatório usando a comunidade
fitoplanctônica?
Aline Martins Vicentin1*, Eduardo Henrique Costa Rodrigues1, Viviane Moschini-Carlos1
and Marcelo Luiz Martins Pompêo2
1 Universidade Estadual Paulista – UNESP, Campus Experimental de Sorocaba, Av. Três de Março,
511, Iperó, CEP 18087-180, Sorocaba, SP, Brasil
2 Departamento de Ecologia, Instituto de Biociências – IB, Universidade de São Paulo – USP,
Rua do Matão, 321, Travessa 14, CEP 05508-900, São Paulo, SP, Brasil
*e-mail: line_vicentin@hotmail.com
Cite as: Vicentin, A.M. et al. Is it possible to evaluate the ecological status of a reservoir using the
phytoplankton community? Acta Limnologica Brasiliensia, 2018, vol. 30, e306
Abstract: Aim: The present study aims to evaluate the ecological status of the Broa reservoir through
the application of the ecological index Evenness E2 on phytoplankton. Methods: Phytoplankton
samples from surface were obtained during the dry period (June/2015) in 9 points (P1 to P9),
along a longitudinal transect in the reservoir. The qualitative analysis was performed using binocular
optical microscope, and the quantitative analysis was performed using the sedimentation chamber
method and inverted microscope analysis. The Uniformity Index was calculated on density and
richness data. The reference values used in this study were set according to the literature covering
5 classifications (High, Good, Moderate, Low and Bad) for the water quality from Evenness E2 index
for phytoplankton, being 1 the maximum value. Results: The values observed ranged from 0.1142 in
P1 to 0.1468 in P3, being both classified as “Bad”, since values were less than 0.21. Conclusions: The
result reinforces the sanitary problem of the reservoir, the occurrence of consecutive algae blooms
because the amount of nutrients in the region. A massive occurrence of Cyanobacteria was observed,
with emphasis on the species Aphanizomenon gracile, which may be related to the adaptive advantages
that this class presents on the community in eutrophic environments. Activities in the basin can
contribute effectively to the eutrophication process of the reservoir, such as agriculture, sand mining
and livestock. The water quality is compromised due to the dense presence of potentially toxic species,
reflects of the eutrophication process, pointing commitments for the multiple uses of the reservoir,
as well as human and ecosystem health. These processes could be corroborated by the application of
the index and indication of poor water quality.
Keywords: phytoplankton; Ecological Uniformity Index; Evenness Index E2; water quality;
eutrophication.
Resumo: Objetivo: O presente trabalho objetiva avaliar o potencial ecológico do reservatório
Broa através da aplicação do índice ecológico Evenness E2 no fitoplâncton. Métodos: Amostras
fitoplanctônicas de superfície foram obtidas no período seco (Jun./2015) em nove pontos (P1 ao P9)
ao longo do eixo longitudinal do reservatório. A análise qualitativa foi feita usando microscópio
óptico binocular e a análise quantitativa foi realizada pelo método de câmaras de sedimentação e
análise em microscópio invertido. O Índice de Uniformidade foi calculado a partir dos dados de
2 Vicentin, A.M. et al.
Acta Limnologica Brasiliensia, 2018, vol. 30, e306
resulting in modifications that directly affect
the hydro-sedimentological dynamics between
river-dam (Coelho, 2008). In response to these
changing conditions, the environment becomes
conducive to colonization by species that are
tolerant to disturbances, and that may establish
a relationship of dominance with other species,
making that dams act as modulators of taxa richness
and abundance (Smith et al., 2017).
The maintenance of the water resource quality
depends on the dynamics of the aquatic ecosystem
and on the organisms that compose it, which are
able to act in the nutrient cycling, gas exchange,
sediment stabilization, composition and structure
of the community (Lewis, 1995). This approach
requires the interpretation of biotic and abiotic data
to understand the existing ecological processes and,
consequently, the functioning of the ecosystem and
the concept of biodiversity (Lanari & Coutinho,
2010). According to the same authors, concepts
related to the ecology of communities and ecosystems
must be worked in an integrated way to derive the
effects of species diversity on the representative
parameters of the environment. Thus, biodiversity
responds to the environmental condition generated
by the ecosystem and determined by its ecological
functioning.
The phytoplankton community is a part of the
aquatic ecosystems biota and contributes actively
to primary productivity and to biogeochemical
cycles (Miller et al., 2012). Phytoplankton can
present spatial and temporal variations, both
qualitative and quantitative. These characteristics
are influenced by other conditions of the system:
thermal stratification, water circulation, season of
the year, and others (Esteves, 2011). Due to the
environmental factors and individual advantages
1. Introduction
The construction of multiple-use water reservoirs
contributes significantly to the regularity of water
supply, and to the development and maintenance
of various economic activities (e. g. industrial,
agricultural, aquiculture, navigation). However,
these environments are facing different impacts
involving water quality and consequently the
ecological balance of these ecosystems. The main
impacts affecting the water quality of the reservoirs
are due to the discharge of domestic and industrial
effluents, such as the surface runoff of agricultural
and urban areas, which also contributes to
the pollutants disposal to the interior of these
environments (Cunha et al., 2013). Currently,
aquatic and terrestrial ecosystems have been greatly
modified by anthropic activities, direct or indirectly,
leading to changes in ecosystem dynamics,
including water quality, and consequently, the
biological communities, which may compromise
the multiple uses of the water body (Lewis, 1995;
Sant’anna et al., 2008; Tundisi et al., 2015; Pompêo,
2017).
Reservoirs are considered transition ecosystems
between lotic and lentic environments, depending
on the characteristics of the hydrographic basin
where they are inserted which presents specific
operating mechanisms (Pompêo, 2017). The impact
on the environment from the rupture of the
hydrological continuum changes the dynamics in
its totality. These changes occur because the system
components are altered, including the flow regime,
channel size, substrate present and biotic diversity
(Bunn & Arthington, 2002).
The damming of a river means an interruption
of a transportation open system by a more closed
and accumulation system (Junk & Mello, 1990),
densidade e riqueza. Os valores de referência utilizados foram estabelecidos de acordo com a literatura
abrangendo cinco classificações (Alto, Bom, Moderado, Baixo e Ruim) do índice Evenness E2 para
fitoplâncton, sendo 1 valor máximo indicando as classificações de qualidade da água. Resultados: Os
valores observados variaram entre 0,1142 em P1 a 0,1468 em P3, sendo ambos classificados como
“Ruim”, visto valores inferiores a 0,21. Conclusões: O resultado reforça a problemática sanitária do
reservatório, pela ocorrência de consecutivas florações algais (“blooms”), pelo aporte e concentração de
nutrientes na região. Ocorrência massiva de Cianobactérias foi observada, com ênfase para a espécie
Aphanizomenon gracile, podendo estar relacionada às vantagens adaptativas que esta classe apresenta
sobre a comunidade em ambientes eutrofizados. As atividades na bacia contribuem efetivamente
para o processo de eutrofização do reservatório, como atividades agrícolas, de mineração de areia e
pecuária. A qualidade da água está comprometida devido à densa presença de espécies potencialmente
tóxicas, refletindo no processo de eutrofização, apontando comprometimento aos múltiplos usos do
reservatório, além da saúde humana e ecossistêmica. Esses processos podem ser corroborados pela
aplicação do índice e indicação de má qualidade da água.
Palavras-chave: fitoplâncton; Índice Ecológico de Uniformidade; Índice Evenness E2; qualidade
da água; eutrofização.
3 Is it possible to evaluate…
Acta Limnologica Brasiliensia, 2018, vol. 30, e306
of each family, or even of an organism of the
community, phytoplankton can have its structure
and composition rapidly changed under human
effects due to the sensitivity of organisms, since
planktons are profoundly sensitive to natural
change they are best markers of water quality and
particularly lake conditions (Parmar et al., 2016),
by being well documented in the literature the use
of these organisms, with greater importance given to
phytoplankton, in studies of biomonitoring (using
different methodologies) in aquatic environments,
mainly reservoirs (Yuan et al., 2018; Santana et al.,
2017; Machado et al., 2016; Hu et al., 2016; Silva
& Costa, 2015; Padisák et al., 2006).
The biodiversity of the phytoplankton
community is influenced and it has the capacity to
influence the ecological processes of the ecosystem
based on the functional characteristics of each
species that make up the community (Lanari &
Coutinho, 2010). This biodiversity is responsible
for the intense blooms occurrence and the
eutrophication process of water bodies, which may
worsen the water quality and the risks associated
with its composition, considering the presence of
Cyanobacteria. Currently, the alterations in the
reservoirs have become more common and intense,
generated or accelerated by anthropic activities,
assuring a greater number of water pollution
forms (Straskraba & Tundisi, 2013). It becomes
challenging because the degradation speed is
higher than the evaluation of the damage impact,
complicating the decision-making process for water
recovery (Miller et al., 2017).
Although the Broa reservoir is intended for
recreation and research purposes, it is inserted
in the Tietê-Jacaré hydrographic basin that has
potentially polluting activities, such as agriculture,
sand mining, livestock, and other point and diffuse
sources (Periotto & Tundisi, 2013). The activities
includes the disposal of untreated residential
effluent, deforestation, sand mining, tourism,
intensive sport fishing (Cervi et al., 2016) and
agricultural activities, also with areas under legal
protection (Tundisi & Tundisi, 2016). There are
also reforestation initiatives in the region, besides
the natural maintenance from the vegetation cover,
highlighting the mosaic vegetation acting as a buffer
zone (Tundisi & Tundisi, 2016). Despite these
notes, the authors Tundisi and Matsumura-Tundisi
(2014) point out that the reservoir maintains its
main characteristics.
This environment is considered one of the
most studied reservoirs in Limnology, for at least
40 years of information and data applied to several
areas of knowledge, contributing to the region
development related to social, economic and
environmental issues (Periotto & Tundisi, 2013).
The phytoplankton community was commonly
characterized by the dominance of diatoms and
chlorophytes (Tundisi & Matsumura-Tundisi,
2014), except for the year 2014 that presented a
pioneering bloom of cyanobacteria (Tundisi et al.,
2015). Emphasizing the importance of the study
of the phytoplankton community, especially of the
Cyanobacteria, due to their capacity to produce
toxins (Cyanotoxins) with adverse health effects.
Knowing that the phytoplankton composition of
the reservoir depends on the environmental variables
and their interactions, and that the eutrophication
process can alter the occurrence and distribution
of phytoplankton (Esteves, 2011), the application
of Evenness E2 was performed understand these
changes.
T h e B r o a r e s e r v o i r i s c o n s i d e r e d
oligo-mesotrophic (Calijuri & Tundisi, 1990;
Tundisi & Matsumura-Tundisi, 2014; Tundisi et al.,
2015), presenting oscillations in their trophic
condition according to the period and specific site
of sampling, but remaining between the bands
of oligotrophic and mesotrophic (Tundisi, 1977;
Luzia, 2009; Tundisi et al., 2015), with a tendency
of trophic enrichment coming from the tributaries
(Luzia, 2009). Considering the trophic history
of the reservoir, the hypothesis is based on the
dominance of Cyanobacteria along the longitudinal
axis, resulting in low values for the Evenness E2
index. This index of equitability aims to express
the way in which the amount of individuals is
distributed among the different species, it will be
used as an alternative to evaluate the water quality
of the reservoir and to verify if it is corroborated by
other obtained information.
2. Materials and Methods
2.1. Study area
Carlos Botelho Hydroelectric Power Station,
also known as the Broa or Lobo Reservoir, is an
artificial water body located between the cities of
Itirapina and Brotas, inserted in the Tietê-Jacaré
hydrographic basin in the State of São Paulo,
Brazil (between 49°32’-47°30’ longitude and
21°37’-22°51’ latitude). The reservoir was built in
1936 with the purpose of producing electric energy,
with an surface area of 6 km2, maximum length of
8 km, average width of 0.9 km and average depth
of 3 m (Cervi et al., 2016), considered shallow,
4 Vicentin, A.M. et al.
Acta Limnologica Brasiliensia, 2018, vol. 30, e306
polymictic and presenting a retention time of less
than 25 days (Tundisi & Tundisi, 2016).
According to the Decree nº. 10.755/77, the
Carlos Botelho reservoir is classified as class 2
(São Paulo, 1977), and is destined, according to
CONAMA resolution no. 20/86, to water domestic
supply (considering the conventional water
treatment), to aquatic communities protection, to
recreation of primary contact, to vegetable and fruit
plant irrigation, to natural and intensive plantations
for human consumption (Brasil, 1986). As well as
the purposes that were pre-determined by law, the
regulations regarding limnological variables are also
clearly established in the CONAMA Resolution
357/05 (Brasil, 2005).
2.2. Sampling and analysis of samples
The single collecting of five-liter sampling
consisted of water from the surface during the
dry season (June/2015), at nine points distributed
along the longitudinal axis (P1 to P9). These
points comprised the lotic (P1, P2 and P3), central
(P4, P5 and P6) and lentic (P7, P8 and P9) region
of the reservoir (Thornton et al., 1990) (Figure 1),
and each one was meant for the physicochemical
and biological analyzes. The collected material was
stored and conditioned in thermal bags and sent to
the Limnology Laboratory, University of São Paulo
(USP). The GPS coordinates (UTM, Datum WGS
84), depth (m), water surface temperature (°C),
dissolved oxygen (mg.L-1), electrical conductivity
(µS.cm-1), pH and Secchi depth (m) of the water
were measured in the field using the YSI 556 MPS
multi-parameter probe (HORIBA). The euphotic
zone was measured as 2.7 times the depth of
Secchi (Cole, 1994). The physicochemical analyzes
were performed in the laboratory, following a
specific methodology: chlorophyll-a (Chlor. a)
(Lorenzen, 1967), nitrite (NO2
-) and nitrate
(NO3
-) (Mackereth et al., 1978), ammonium
Figure 1. Representation of the sampling points (P1 to P9) in the Broa reservoir and its respective tributaries,
located in the State of São Paulo, Brazil. The different shades of gray highlighting the following sets of sample points
(P1 – P3; P4 – P6; and P7 – P9) indicate the theoretical zones of river, center and dam, respectively. From: Adapted
from Tundisi et al. (2004).
5 Is it possible to evaluate…
Acta Limnologica Brasiliensia, 2018, vol. 30, e306
(NH4
+) (Koroleff, 1976), total nitrogen (T.N.),
total phosphorus (T.P.) (Valderrama, 1981) and
Orthophosphate (P-ortho) (Strickland & Parsons,
1960).
For the phytoplankton sampling, mesh net
with 20 µm was used in horizontal trawls at the
water surface (one point per zone), and fixed with
formaldehyde (4%); and by direct collection in the
photic zone, fixed with 1% acetic lugol, the material
was subsequently identified according to current
works (Sant’anna et al., 2006; Biolo et al., 2008;
Dellamano-Oliveira et al., 2008; Menezes et al.,
2011; Nogueira et al., 2011; Ramos et al., 2012;
Rosini et al., 2013; Aquino et al., 2014; Souza
& Felisberto, 2014; Alves-da-Silva & Klein,
2015), and counted according to Utermöhl
(1958) methodology, in sedimentation chambers
(Lund et al., 1958) and inverted microscope Zeiss
(Axiovert 40C). The density of the phytoplankton
community (cel.L-1) was obtained from the count
of the organisms in relation to the area of the used
sample container (INAG, I.P., 2009), following the
Equation 1.
=
A*dN X*
a*v
(1)
Where, N: number of units per volume in the
sample (units.mL-1), X: average number of units
per square or transept (or total number of units in
the chamber), A: chamber area, v: sample volume
sedimented in chamber, a: area of the counting field
(grid, transept or chamber), and d: dilution factor
or sample concentration, if applicable. For colonies
and filaments, it was necessary to estimate the
average number of cells present and to multiply by
the number of times they occur.
2.3. Data analysis
The application of Principal Component
Analysis (PCA) was performed by using correlation
matrix to verify the environmental variability
in Carlos Botelho reservoir. The use of row
color/symbols, convex hulls and filled regions in
order to improve the visualization of the areas
formed by the polygons, and associated with the
limnological variables, using the PAST program
(3.13) (Hammer, 2001).
The Trophic State Index (TSI) proposed
by Lamparelli (2004) was applied, and it was
determined from the weighting between values of
chlorophyll-a and total phosphorus, and classified
as Ultra-oligotrophic, Oligotrophic, Mesotrophic,
Eutrophic, Super-eutrophic and Hyper-eutrophic.
The reference values to determinate the trophic
limits are shown in Table 1.
Data analysis consisted in application of
Evenness E2 uniformity index, proposed by Sheldon
(1969). Using software PAST (3.13) (Hammer,
2001), the following equation (Equation 2) is
applied to the phytoplankton and the index values
are generated.
( )
=
′exp H
E2 S
(2)
The reference values used for the water quality
classification from the application of the index
to phytoplankton were proposed by Spatharis &
Tsirtsis (2010), establishing five (5) classifications
(High, Good, Moderate, Low and Bad), where 1 is
the maximum value (Table 2).
3. Results
3.1. Phytoplankton characterization
The qualitative analysis of the phytoplankton
community from Broa Reservoir was represented
by 92 species, distributed in 52 genera and
10 taxonomic classes. The percentage distribution
of the community classes is represented in
Figure 2. The following taxonomic classes and
their respective percentage distribution were
identified: Chlorophyceae (38%), Cyanophyceae
(28%), Trebouxiophyceae (11%), Bacillariophyceae
(8%), Coscinodiscophyceae (5%), Cryptophyceae
(3%), Dinophyceae (3%), Euglenophyceae (2%),
Xanthophyceae (1%) e Zygnematophyceae (1%)
(Figure 2). The Chlorophyceae class presented the
greatest richness, grouping 35 species in 13 genera,
Table 1. Trophic state classification for reservoirs (modified by Pompêo, 2017).
Category (Trophic State) Range P-Total – P (mg.m-3) Chlor. a (mg.m-3)
Ultraoligotrophic TSI ≤ 47 P ≤ 8 CL ≤ 1.17
Oligotrophic 47 < TSI ≤ 52 8 < P ≤ 19 1.17 < CL ≤ 3.24
Mesotrophic 52 < TSI ≤ 59 19 < P ≤ 52 3.24 < CL ≤ 11.03
Eutrophic 59 < TSI ≤ 63 52 < P ≤ 120 11.03 < CL ≤30.55
Supereutrophic 63 < TSI ≤ 67 120 < P ≤ 233 30.55 < CL ≤ 69.05
Hypereutrophic TSI > 67 233 < P 69.05 < CL
6 Vicentin, A.M. et al.
Acta Limnologica Brasiliensia, 2018, vol. 30, e306
of which the genus Desmodesmus sp. included
8 different species.
The values of the phytoplankton community
density are shown in Figure 3, distributed by
sample point and taxonomic class, ranging from
32.2. 107 cel.L-1 in P8 to 67.6. 107 cel.L-1 in P4,
following the decreasing order: Cyanophyceae,
C h l o ro p h yc e a e , C o s c i n o d i s c o p h yc e a e ,
Tr e b o u x i o p h yc e a e , Ba c i l l a r i o p h yc e a e ,
Cryptophyceae, Dinophyceae, Xantophyceae,
Euglenophyceae and Zygnematophyceae. The cell
density of Cyanobacteria corresponded to 43.6.
108 cel.L-1 in relation to 8.4. 103 cel.L-1 of
Zygnematophyceae class. The Cyanophyceae
class was more representative due to the large
number of cells of mature colonies of Microcystis
sp. and Aphanocapsa sp. by sample, as well as of
filamentous species of Dolichospermum sp. and
Aphanizomenon gracile.
3.2. Limnological characterization
The results from the field and research
laboratory analyzes of the following variables
(Var.): depth, water surface temperature (T.),
dissolved oxygen (D.O.), electrical conductivity
(E.C.), hydrogenation potential (pH), Secchi depth
(S.D.), chlorophyll-a (Chlor. α), nitrite (N02
-),
nitrate (NO3
-), ammonium (NH4
+), total nitrogen
(T.N.), total phosphorus (T.P.) and Orthophosphate
(P-ortho) are shown in Table 3, with their units,
mean values, minimum (min.) and maximum
(max.) values.
The average depth observed in Carlos Botelho
reservoir was slightly high (6.7 m), with lower depth
in P1 (3.2 m) and gradually increasing towards
the dam (13.0 m). The surface temperature of
the water had thermal amplitude lower than 3ºC.
The concentration of dissolved oxygen showed
low values in all the sampled points, except for
the peak in P1 (8.37 mg.L-1). The values of pH,
electrical conductivity and Secchi depth were
quite homogeneous along the longitudinal axis
observed in the water body, presenting small
amplitude of variation, with average values of
8.59, 0.02 mS.cm-1 and 0.61 m, respectively.
The inorganic nutrients analysis indicated low
values of nitrate (12.95 µg.L-1) and total phosphorus
(26.56 µg.L-1) in the environment. The nitrite,
ammonium and orthophosphate analyzes indicated
Table 2. Reference values of Evenness E2 index to
phytoplankton classifying the water quality (Spatharis
& Tsirtsis, 2010).
Water quality classification Evenness E2
High 0.96-0.77
Good 0.77-0.46
Moderate 0.46-0.30
Low 0.30-0.21
Bad 0.21-0.09
Table 3. Data from physicochemical analyzes obtained
in the field and posterior laboratory analysis.
Var. Units Mean Min. Max.
Depth m 6.71 3.20 13.00
T. °C 22.68 21.79 24.72
D.O. mg.L-1 4.34 3.36 8.37
pH - 8.59 8.09 9.07
E.C. mS.cm-1 0.020 0.017 0.032
S.D. m 0.61 0.48 0.78
NO3
- μg.L-1 12.95 10.46 18.20
NO2
- μg.L-1
20. Since the community included
92 identified and counted species, the application
result was considered valid. Borges et al. (2008)
observed a scenario closed to the present work in a
study of daily variation in eutrophic environment,
highlighting the low equitability with occurrence
and dominance of Cyanobacteria in one arm of
the Rosana reservoir (Ribeirão do Corvo, Paraná,
Brazil).
From a comparative analysis between the
TSI and Evenness E2, both were applied to
measure the water quality status from different
approaches. The first index relates the availability of
nutrients in relation to algal growth, correlating an
11 Is it possible to evaluate…
Acta Limnologica Brasiliensia, 2018, vol. 30, e306
environmental condition variable corresponding to
the total phosphorus concentration and a biological
response variable (Chlorophyll-a). The trophic
levels are associated with the intensity of the
eutrophication process, so it can be considered
a more robust index to evaluate the ecological
potential of a reservoir. However, considering that
Evenness E2 is an index of equitability applicable
to the phytoplankton community, it is a more
accurate biological indicator than a metric of
abundance obtained from the quantification of
photosynthetic pigments, although satisfactory.
This index, individually analyzed, is able to derive
a biological response and to identify ecological
imbalances, but it is not robust in integrated
environmental approaches, since it does not
accompany any physical-chemical variables in its
composition, being necessary the accomplishment
of complementary analyzes.
Thus, it is possible to apply the Evenness E2
index in the evaluation of the ecological potential
combined with complementary environmental
analyzes, so that can robustly measure water quality.
For both indexes, the knowledge of the composition
of the community enriches the results, since
different taxa imply different measures of flowering
containment and modulate the risk with which
the water quality is associated. In this study, the
hypothesis of dominance of Cyanobacteria along the
longitudinal axis was corroborated from indicative
of the trophic degree associated with the TSI and
low values for the Evenness E2 index.
5. Conclusion
The results are associated to the sanitary problem
of the reservoir, giving margin to the occurrence
of blooms and consequently to the presence of
Cyanobacteria. Despite the diffuse sources of
phosphorus and nitrogen, Cyanobacteria can
develop more efficiently in environments with a
higher trophic level, as observed by the massive
presence of Aphanizomenon gracile in the eutrophic
environment, with high concentrations of nitrogen,
chlorophyll-a, Cyanobacteria density and low
concentrations of dissolved oxygen.
The control of the effluents from the basin
activities and other nutrient sources, mainly nitrogen
and phosphorus, is determinant in the control of the
eutrophication process. This process prioritizes the
phosphorus concentration, since nitrogen sources
can be difficult to identify, because it includes the
fixation of atmospheric nitrogen by some algae.
The use of biological communities and application
of Evenness E2 proved to be satisfactory when
compared to limnological analysis, since it made
the environmental analysis more accomplished and
it also assisted in better understanding of the other
results, contributing to more robust information
for the decision maker.
The application of the Evenness E2 index
using the phytoplankton community indicated
that the water quality of the Broa reservoir is
compromised by the presence of potentially toxic
species. This condition may influence the multiple
uses of the reservoir and bring risks to human and
ecosystem health. Complementary studies should
be performed to determine the toxicity that the
ecosystem is subject.
Acknowledgements
The authors are grateful to CAPES, to FAPESP
(Processes 2014/22581-8; 2016/17266-1), to the
research group of the Limnology Laboratory, to
the Institute of Biosciences (IB) of the University
of São Paulo (USP), to the Environmental Sciences
Program (PROPG), to the Institute of Science
and Technology of the São Paulo State University
“Júlio de Mesquita Filho” (UNESP), for direct and
indirect collaboration in the present work. The study
is part of the Dissertation Project “Assessment of the
spatial heterogeneity of the Carlos Botelho Reservoir
(Lobo/Broa), with emphasis on the phytoplankton
community”.
References
ALVES-DA-SILVA, S .M. and KLEIN, I .C.
Euglenophyceae na Área de Proteção Ambiental do
Rio Ibirapuitã, sudoeste do Estado do Rio Grande
do Sul, Brasil. 1. Cryptoglena Marin & Melkonian
emend. Kosmala & Zakrýs, Monomorphina
(Ehrenberg) Mereschkowsky emend. Kosmala &
Zackýs e Phacus Durjardin. Hoehnea, 2015, 42(3),
471-496. http://dx.doi.org/10.1590/2236-8906-
12/2015.
AQUINO, C.A.N., BUENO, N.C. and MENEZES, V.C.
Desmidioflórula (Zygnemaphyceae, Desmidiales) do
rio Cascavel, Oeste do Estado do Paraná, Brasil.
Hoehnea, 2014, 41(3), 365-392. http://dx.doi.
org/10.1590/S2236-89062014000300005.
BEGHELLI, F.G.S., FRASCARELI, D., POMPÊO,
M.L.M. and MOSCHINI-CARLOS, V. Trophic
state evolution over 15 years in a Tropical reservoir
with low nitrogen concentrations and Cyanobacteria
predominance. Water, Air, and Soil Pollution, 2016,
227(3), 95-110. http://dx.doi.org/10.1007/s11270-
016-2795-1.
https://doi.org/10.1590/2236-8906-12/2015
https://doi.org/10.1590/2236-8906-12/2015
https://doi.org/10.1590/S2236-89062014000300005
https://doi.org/10.1590/S2236-89062014000300005
https://doi.org/10.1007/s11270-016-2795-1
https://doi.org/10.1007/s11270-016-2795-1
12 Vicentin, A.M. et al.
Acta Limnologica Brasiliensia, 2018, vol. 30, e306
BELLINGER, E.G. and SIGEE, D.C. Freshwater algae:
identification and use as bioindocators. Hoboken:
Wiley-Blackwell, 2010, 164 p. http://dx.doi.
org/10.1002/9780470689554.
BIOLO, S., SIQUEIRA, N.S., BORTOLINI, J.C. and
BUENO, N.C. Desmidiaceae (exceto Cosmarium)
na comunidade perifítica em um tributário do
reservatório Itaipu, Paraná, Brasil. Revista Brasileira
de Biociências, 2008, 6(1), 8-10.
BORGES, P.A.F., TRAIN, S. and RODRIGUES,
L.C. Estrutura do fitoplâncton, em curto período
de tempo, em um braço do reservatório de Rosana
(ribeirão do Corvo, Paraná, Brasil). Acta Scientiarum.
Biological Sciences, 2008, 30(1), 57-65. http://dx.doi.
org/10.4025/actascibiolsci.v30i1.1449.
BRASIL. Conselho Nacional de Meio Ambiente.
Resolução CONAMA nº 20, de 18 de junho de 1986.
Diário Oficial da União [da] República Federativa
do Brasil [online], Poder Executivo, Brasília, DF,
30 jul. 1986 [viewed 2 Apr. 2016]. Available from:
http://www.mma.gov.br/port/conama/res/res86/
res2086.html
BRASIL. Conselho Nacional de Meio Ambiente.
Resolução nº 357, de 17 de março de 2005. Diário
Oficial da União [da] República Federativa do Brasil
[online], Poder Executivo, Brasília, DF, 18 mar. 2005,
pp. 58-63 [viewed 10 Oct. 2017]. Available from:
http://www.mma.gov.br/port/conama/res/res05/
res35705.pdf
BUNN, S.E. and ARTHINGTON, A.H. Basic
principles and ecological consequences of altered
flow regimes for aquatic biodiversity. Environmental
Management, 2002, 30(4), 492-507. http://dx.doi.
org/10.1007/s00267-002-2737-0. PMid:12481916.
CALIJURI, M.C. and TUNDISI, J.G. Limnologia
comparada das represas do Lobo (Broa) e Barra
Bonita, Estado de São Paulo: mecanismos de
funcionamento e bases para o gerenciamento.
Brazilian Journal of Biology = Revista Brasileira de
Biologia, 1990, 50(4), 893-913.
CARVALHO, L.R., SANT’ANNA, C.L., GEMELGO,
M.C.P. and AZEVEDO, M.T.P. Cyanobacterial
occurrence and detection of microcystin by planar
chromatography in surface water of Billings and
Guarapiranga Reservoirs, SP, Brazil. Brazilian Journal
of Botany, 2007, 30(1), 141-148. http://dx.doi.
org/10.1590/S0100-84042007000100014.
CERVI, E.C., FERNANDES, F., MIRANDA, R.B.,
MAUAD, F.F., MICHALOVICZ, L. and POLETO,
C. Geochemical speciation and risk assessment of
metals in sediments of the Lobo-Broa Reservoir,
Brazil. Management of Environmental Quality, 2016,
28(3), 430-443. http://dx.doi.org/10.1108/MEQ-
09-2015-0171.
CHALAR, G. The use of phytoplankton patterns of
diversity for algal bloom management. Limnologica,
2009, 39(3), 200-208. http://dx.doi.org/10.1016/j.
limno.2008.04.001.
CIRÉS, S. and BALLOT, A. A review of the phylogeny,
ecology and toxin production of bloom-forming
Aphanizomenon spp. and related species within
the Nostocales (Cyanobacteria). Harmful Algae,
2016, 54, 21-43. http://dx.doi.org/10.1016/j.
hal.2015.09.007. PMid:28073477.
COELHO, A.L.N. Geomorfologia fluvial de rios
impactados por barragens. Caminhos de Geografia,
2008, 9(26), 16-32.
COLE, G.A. Textbook of limnology. Illinois: Waveland
Press, 1994. 412 p.
CUNHA, D.G.F., CALIJURI, M.C. and LAMPARELLI,
M.C. A trophic state index for tropical/subtropical
reservoirs (TSItsr). Ecological Engineering, 2013,
60, 126-134. http://dx.doi.org/10.1016/j.
ecoleng.2013.07.058.
DELLAMANO-OLIVEIRA, M.J., SANT’ANNA,
C.L., TANIGUCHI, G.M. and SENNA, P.A.C.
Os gêneros Staurastrum, Staurodesmus e Xanthidium
(Desmidiaceae, Zygnemaphyceae) da Lagoa do Caçó,
Estado do Maranhão, Nordeste do Brasil. Hoehnea,
2008, 35(3), 333-350. http://dx.doi.org/10.1590/
S2236-89062008000300001.
ESTEVES, F. A. Fundamentos de limnologia. 3. ed. Rio
de Janeiro: Interciência, 2011. 826 p.
EUBA NETO, M., SILVA, W.O., RAMEIRO, F.C.,
NASCIMENTO, E.S. and ALVES, A.S. Análises
físicas, químicas e microbiológicas das águas do
balneário Veneza na bacia hidrográfica do médio
Itapecuru, MA. Arquivos do Instituto Biológico, 2012,
79(3), 397-403. http://dx.doi.org/10.1590/S1808-
16572012000300010.
HAMMER, Ø.D. PAST: paleontological statistics software
package for education and data analysis [online]. 2001
[viewed 20 Sep. 2016]. Available from: http://folk.
uio.no/ohammer/past
HU, R., LI, Q., HAN, B.-P., NASELLI-FLORES,
L., PADISAK, J. and SALMASO, N. Tracking
management-related water quality alterations by
phytoplankton assemblages in a tropical reservoir.
Hydrobiologia, 2016, 763(1), 109-124. http://dx.doi.
org/10.1007/s10750-015-2366-2.
INSTITUTO DA ÁGUA – INAG, I.P. Manual para
a avaliação da qualidade biológica da água: Protocolo
de amostragem e análise para o fitoplâncton [online].
Brasília: Ministério do Ambiente, do Ordenamento
do Território e do Desenvolvimento Regional,
Instituto da Água, I.P., 2009 [viewed 3 July 2018].
Available from: https://www.apambiente.pt/dqa/
assets/protocolo-de-amostragem-e-an%C3%A1lise-
para-o-fitopl%C3%A2ncton.pdf
JUNK, W.J. and MELLO, J.A.S.N. Impactos ecológicos
das represas hidrelétricas na bacia amazônica brasileira.
file:///C:\Users\User-PC\Downloads\Hoboken
https://doi.org/10.1002/9780470689554
https://doi.org/10.1002/9780470689554
https://doi.org/10.1007/s00267-002-2737-0
https://doi.org/10.1007/s00267-002-2737-0
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12481916&dopt=Abstract
https://doi.org/10.1590/S0100-84042007000100014
https://doi.org/10.1590/S0100-84042007000100014
https://doi.org/10.1108/MEQ-09-2015-0171
https://doi.org/10.1108/MEQ-09-2015-0171
https://doi.org/10.1016/j.limno.2008.04.001
https://doi.org/10.1016/j.limno.2008.04.001
https://doi.org/10.1016/j.hal.2015.09.007
https://doi.org/10.1016/j.hal.2015.09.007
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28073477&dopt=Abstract
https://doi.org/10.1016/j.ecoleng.2013.07.058
https://doi.org/10.1016/j.ecoleng.2013.07.058
https://doi.org/10.1590/S2236-89062008000300001
https://doi.org/10.1590/S2236-89062008000300001
https://doi.org/10.1590/S1808-16572012000300010
https://doi.org/10.1590/S1808-16572012000300010
https://doi.org/10.1007/s10750-015-2366-2
https://doi.org/10.1007/s10750-015-2366-2
13 Is it possible to evaluate…
Acta Limnologica Brasiliensia, 2018, vol. 30, e306
Estudos Avançados, 1990, 4(8), 126-143. http://
dx.doi.org/10.1590/S0103-40141990000100010.
KOROLEFF, F. Determination of nutrients. In: K.
Grasshoff (Ed.). Methods of seawater analisys.
Weinhein: Verlag Chemie, 1976. p. 117-181.
LAMPARELLI, M.C. Grau de trofia em corpos d’água
do estado de São Paulo: avaliação dos métodos de
monitoramento [Tese de Doutorado em Ecologia
Aplicada]. São Paulo: Universidade de São Paulo,
2004.
LANARI, M.O. and COUTINHO, R. Biodiversidade
e Funcionamento de Ecossistemas: síntese de um
paradigma e sua expansão em ambientes marinhos.
Oecologia Australis, 2010, 14(4), 959-988. http://
dx.doi.org/10.4257/oeco.2010.1404.09.
LEWIS, M.A. Use of freshwater plants for phytotoxicity
testing: a review. Environmental Pollution, 1995,
87(3), 319-336. http://dx.doi.org/10.1016/0269-
7491(94)P4164-J. PMid:15091582.
LORENZEN, C.J. Determination of chlorophyll and
pheo-pigments: Spectrophotometric equations.
Limnology and Oceanography, 1967, 12(2), 343-346.
http://dx.doi.org/10.4319/lo.1967.12.2.0343.
LUND, J.W.G., KIPLING, C. and LE CREN, E.D.
The inverted microscope method of estimating
algal numbers and the statistical basis of estimations
by counting. Hydrobiologia, 1958, 11(1), 143-170.
http://dx.doi.org/10.1007/BF00007865.
LUZIA, A.P. Estrutura organizacional do fitoplâncton
nos sistemas lóticos e lênticos da bacia do Tietê-Jacaré
(UGRHI Tietê-Jacaré) em relação à qualidade da água
e estado trófico [Tese de Doutorado em Ciências]. São
Carlos: Universidade Federal de São Carlos, 2009.
MACHADO, L.S., SANTOS, L.G., LOPEZ-DOVAL,
J.C., POMPEO, M.L.M. and MOSCHINI-
CARLOS, V. Fatores ambientais relacionados à
ocorrência de cianobactérias potencialmente tóxicas
no reservatório de Guarapiranga. Revista Ambiente
& Água, 2016, 11(4), 810-818. http://dx.doi.
org/10.4136/ambi-agua.1941.
MACKERETH, F.J.H.; HERON, J. and TALLING, J.F.
Water analysis: some revised methods for limnologists.
Ambleside: Freshwater Biological Association, 1978.
MENEZES, V.C., BUENO, N.C., BORTOLINI,
J.C. and GODINHO, L.R. Chlorococcales sensu
lato (Chlorophyceae) em um lago artificial urbano,
Paraná, Brasil. Iheringia. Série Botânica, 2011, 66(2),
227-240.
MILLER, R.J., BENNETT, S., KELLER, A.A., PEASE,
S. and LENIHAN, H.S. TiO2 nanoparticles are
phototoxic to marine phytoplankton. PLoS One,
2012, 7(1), 1-7. http://dx.doi.org/10.1371/journal.
pone.0030321. PMid:22276179.
MILLER, R.J., MULLER, E.B., COLE, B., MARTIN,
T., NISBET, R., BIELMYER-FRASER, G.K.,
JARVIS, T.A., KELLER, A.A., CHERR, G. and
LENIHAN, H.S. Photosynthetic efficiency predicts
toxic effects of metal nanomaterials in phytoplankton.
Aquatic Toxicology (Amsterdam, Netherlands),
2017, 183, 85-93. http://dx.doi.org/10.1016/j.
aquatox.2016.12.009. PMid:28039777.
MOSCHINI-CARLOS, V., FREITAS, L. and
POMPÊO, M.L.M. Limnological evaluation of
water in the Rio Grande and Taquacetuba branches
of the Billings Complex (São Paulo, Brazil) and
management implications. Revista Ambiente & Água,
2010, 5(3), 47-59. http://dx.doi.org/10.4136/ambi-
agua.153.
NOGUEIRA, I.S., GAMA JÚNIOR, W.A. and
D’ALESSANDRO, E.B. Cianobactérias planctônicas
de um lago artificial urbano na cidade de Goiânia,
GO. Brazilian Journal of Botany, 2011, 34(4),
575-592. http://dx.doi.org/10.1590/S0100-
84042011000400011.
PADISÁK, J., BORICS, G., GRIGORSZKY, I. and
SORÓCZKI-PINTÉR, E. Use of phytoplankton
assemblages for monitoring ecological status of
lakes within the Water Framework Directive: the
assemblage index. Hydrobiologia, 2006, 553(1), 1-14.
http://dx.doi.org/10.1007/s10750-005-1393-9.
PAERL, H.W. and OT TEN, T.G. Harmful
cyanobacterial blooms: causes, consequences, and
controls. Microbial Ecology, 2013, 65(4), 995-1010.
http://dx.doi.org/10.1007/s00248-012-0159-y.
PMid:23314096.
PARMAR, T.K., RAWTANI, D. and AGRAWAL, Y.K.
Bioindicators: the natural indicator of environmental
pollution. Frontiers in Life Science, 2016, 9(2), 110-
118. http://dx.doi.org/10.1080/21553769.2016.1
162753.
PERIOTTO, N.A. and TUNDISI, J.G. Ecosystem
services of UHE Carlos Botelho (Lobo/Broa): a new
approach for management and planning of dams
multiple-uses. Brazilian Journal of Biology = Revista
Brasileira de Biologia, 2013, 73(3), 471-482. http://
dx.doi.org/10.1590/S1519-69842013000300003.
PMid:24212686.
POMPÊO, M. Monitoramento e manejo de macrófitas
aquáticas em reservatórios tropicais brasileiros. São Paulo:
Instituto de Biociências, Universidade de São Paulo,
2017. http://dx.doi.org/10.11606/9788585658670.
POMPÊO, M., MOSCHINI- CARLOS, V. ,
NISHIMURA, P.Y., SILVA, S.C. and DOVAL,
J.C.L. Ecologia de reservatórios e interfaces. São Paulo:
Instituto de Biociências, Universidade de São Paulo,
2015. http://dx.doi.org/10.11606/9788585658526.
RAMOS, G.J.P., BICUDO, C.E.M., GÓES NETO,
A. and MOURA, C.W.N. Monoraphidium and
Ankistrodesmus (Chlorophyceae, Chlorophyta) from
Pantanal dos Marimbus, Chapada Diamantina, Bahia
https://doi.org/10.1590/S0103-40141990000100010
https://doi.org/10.1590/S0103-40141990000100010
https://doi.org/10.4257/oeco.2010.1404.09
https://doi.org/10.4257/oeco.2010.1404.09
https://doi.org/10.1016/0269-7491(94)P4164-J
https://doi.org/10.1016/0269-7491(94)P4164-J
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15091582&dopt=Abstract
https://doi.org/10.4319/lo.1967.12.2.0343
https://doi.org/10.1007/BF00007865
https://doi.org/10.4136/ambi-agua.1941
https://doi.org/10.4136/ambi-agua.1941
https://doi.org/10.1371/journal.pone.0030321
https://doi.org/10.1371/journal.pone.0030321
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22276179&dopt=Abstract
https://doi.org/10.1016/j.aquatox.2016.12.009
https://doi.org/10.1016/j.aquatox.2016.12.009
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28039777&dopt=Abstract
https://doi.org/10.4136/ambi-agua.153
https://doi.org/10.4136/ambi-agua.153
https://doi.org/10.1590/S0100-84042011000400011
https://doi.org/10.1590/S0100-84042011000400011
https://doi.org/10.1007/s10750-005-1393-9
https://doi.org/10.1007/s00248-012-0159-y
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23314096&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23314096&dopt=Abstract
https://doi.org/10.1080/21553769.2016.1162753
https://doi.org/10.1080/21553769.2016.1162753
https://doi.org/10.1590/S1519-69842013000300003
https://doi.org/10.1590/S1519-69842013000300003
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24212686&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24212686&dopt=Abstract
https://doi.org/10.11606/9788585658670
https://doi.org/10.11606/9788585658526
14 Vicentin, A.M. et al.
Acta Limnologica Brasiliensia, 2018, vol. 30, e306
State, Brazil. Hoehnea, 2012, 39(3), 421-434. http://
dx.doi.org/10.1590/S2236-89062012000300006.
ROSINI, E.F., SANT’ANNA, C.L. and TUCCI, A.
Scenedesmaceae (Chlorococcales, Chlorophyceae)
de pesqueiros da Região Metropolitana de São Paulo,
SP, Brasil: levantamento florístico. Hoehnea, 2013,
40(4), 661-678. http://dx.doi.org/10.1590/S2236-
89062013000400008.
SANT’ANNA, C.L., AZEVEDO, M.T.P., WERNER,
V.R., DOGO, C.R., RIOS, F.R. and CARVALHO,
L.R. Review of toxic species of Cyanobacteria in
Brazil. Algological Studies, 2008, 126(1), 251-265.
http://dx.doi.org/10.1127/1864-1318/2008/0126-
0251.
SANT’ANNA, C.L., AZEVEDO, M.T. P., AGUJARO,
L.F., CARVALHO, M.C., CARVALHO, L.R. and
SOUZA, R.C.R. Manual ilustrado para identificação
e contagem de cianobactérias planctônicas de águas
continentais brasileiras. São Paulo: Sociedade Brasileira
de Ficologia, 2006. 58 p.
SANTANA, L.M. , CROSSET TI, L .O. and
FERRAGUT, C. Ecological status assessment of
tropical reservoirs through the assemblage index of
phytoplankton functional groups. Brazilian Journal
of Botany, 2017, 40(3), 695-704. http://dx.doi.
org/10.1007/s40415-017-0373-4.
SÃO PAULO. Decreto no 10.755, de 22 de novembro
de 1977. Dispõe sobre o enquadramento dos corpos
de água receptores na classificação prevista no
Decreto nº 8.468, de 8 de setembro de 1976, e dá
providências correlatas. Diário Oficial do Estado de São
Paulo [online], Diário do Executivo, São Paulo, SP,
1977 [viewed 30 Nov. 2017]. Available from: http://
www.sigrh.sp.gov.br/arquivos/enquadramento/
Dec_Est_10755.pdf
SHELDON, A.L. Equitability indices: dependence on
species count. Ecology, 1969, 50(3), 466-467. http://
dx.doi.org/10.2307/1933900.
SILVA, A.P.C. and COSTA, I.A.S. Biomonitoring
ecological status of two reservoirs of the Brazilian
semi-arid using phytoplankton assemblages (Q
index). Acta Limnologica Brasiliensia, 2015, 27(1),
1-14. http://dx.doi.org/10.1590/S2179-975X2014.
SMITH, S.C.F., MEINERS, S.J., HASTINGS, R.P.,
THOMAS, T. and COLOMBO, R.E. Low‐
head dam impacts on habitat and the functional
composition of fish communities. River Research and
Applications, 2017, 33(5), 680-689. http://dx.doi.
org/10.1002/rra.3128.
SOUZA, D.B.S. and FELISBERTO, S.A. Comasiella,
Desmodesmus, Pectinodesmus e Scenedesmus na
comunidade perifítica em ecossistema lêntico
tropical, Brasil Central. Hoehnea, 2014, 41(1),
109-120. http://dx.doi.org/10.1590/S2236-
89062014000100010.
SPATHARIS, S. and TSIRTSIS, G. Ecological
quality scales based on phytoplankton for the
implementation of Water Framework Directive in
the Eastern Mediterranean. Ecological Indicators,
2010, 10(4), 840-847. http://dx.doi.org/10.1016/j.
ecolind.2010.01.005.
STRASKRABA, M. and TUNDISI, J.G. Gerenciamento
da qualidade da água de reservatórios específicos.
In: M. STRASKRABA and J.G. TUNDISI, eds.
Gerenciamento da qualidade da água de represas. 3. ed.
São Carlos: ILEC/IEE, 2013, pp. 183-193.
STRICKLAND, J.D.H. and PARSONS, T.R. A manual
of sea water analysis. Bulletin - Fisheries Research Board
of Canada, 1960, 25, 1-185.
THORNTON, K.W., KIMMEL, L.B. and FONEST,
E.P. Reservoir limnology: ecological perspectives. New
York: John Wiley, 1990.
TUNDISI, J.G. (1977). Produção primária, “Standing-
stock”, fracionamento do fitoplâncton e fatores ecológicos
em ecossistema lacustre artificial (Represa do broa,
São Carlos) [Tese de Livre Docência]. São Paulo:
Universidade de São Paulo, 1977.
TUNDISI, J.G. and MATSUMURA-TUNDISI, T.
The ecology of UHE Carlos Botelho (Lobo-Broa
Reservoir) and its watershed, São Paulo, Brazil.
Freshwater Reviews, 2014, 6(2), 75-91. http://dx.doi.
org/10.1608/FRJ-6.2.727.
TUNDISI, J.G. and TUNDISI, T.M. Integrating
ecohydrology, water management, and watershed
economy: case studies from Brazil. Ecohydrology &
Hydrobiology, 2016, 16(2), 83-91. http://dx.doi.
org/10.1016/j.ecohyd.2016.03.006.
TUNDISI, J.G., MATSUMURA-TUNDISI, T.,
ARANTES JÚNIOR, J.D., TUNDISI, J.E.,
MANZINI, N.F. and DUCROT, R. The response
of Carlos Botelho (Lobo, Broa) reservoir to the
passage of cold fronts as reflected by physical,
chemical, and biological variables. Brazilian Journal
of Biology = Revista Brasileira de Biologia, 2004,
64(1), 177-186. http://dx.doi.org/10.1590/S1519-
69842004000100020. PMid:15195377.
TUNDISI, J.G., MATSUMURA-TUNDISI, T.,
TUNDISI, J.E.M., BLANCO, F.P., ABE, D.S.,
CONTRI CAMPANELLI, L., SIDAGIS GALLI,
G., SILVA, V.T. and LIMA, C.P.P. A bloom of
Cyanobacteria (Cylindrospermopsis raciborskii) in
UHE Carlos Botelho (Lobo/Broa) reservoir: a
consequence of global change? Brazilian Journal
of Biology = Revista Brasileira de Biologia, 2015,
75(2), 507-508. http://dx.doi.org/10.1590/1519-
6984.24914. PMid:26132043.
UTERMÖHL, H. Zur Vervolkomnung der quantitativem
Phy top l ank ton -Method ik . Mit t e i l un g en
Internieationale Vereinigung für Theoretische und
Angewandte Limnology, 1958, 9, 1-38.
https://doi.org/10.1590/S2236-89062012000300006
https://doi.org/10.1590/S2236-89062012000300006
https://doi.org/10.1590/S2236-89062013000400008
https://doi.org/10.1590/S2236-89062013000400008
https://doi.org/10.1127/1864-1318/2008/0126-0251
https://doi.org/10.1127/1864-1318/2008/0126-0251
https://doi.org/10.1007/s40415-017-0373-4
https://doi.org/10.1007/s40415-017-0373-4
https://doi.org/10.2307/1933900
https://doi.org/10.2307/1933900
https://doi.org/10.1590/S2179-975X2014
https://doi.org/10.1002/rra.3128
https://doi.org/10.1002/rra.3128
https://doi.org/10.1590/S2236-89062014000100010
https://doi.org/10.1590/S2236-89062014000100010
https://doi.org/10.1016/j.ecolind.2010.01.005
https://doi.org/10.1016/j.ecolind.2010.01.005
https://doi.org/10.1608/FRJ-6.2.727
https://doi.org/10.1608/FRJ-6.2.727
https://doi.org/10.1016/j.ecohyd.2016.03.006
https://doi.org/10.1016/j.ecohyd.2016.03.006
https://doi.org/10.1590/S1519-69842004000100020
https://doi.org/10.1590/S1519-69842004000100020
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15195377&dopt=Abstract
https://doi.org/10.1590/1519-6984.24914
https://doi.org/10.1590/1519-6984.24914
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26132043&dopt=Abstract
15 Is it possible to evaluate…
Acta Limnologica Brasiliensia, 2018, vol. 30, e306
VALDERRAMA, J.C. The simultaneous analysis of total
nitrogen and total phosphorous in natural waters.
Marine Chemistry, 1981, 10(2), 109-122. http://
dx.doi.org/10.1016/0304-4203(81)90027-X.
YUAN, Y., JIANG, M., LIU, X., YU, H., OTTE,
M.L., MA, C. and HER, Y.G. Environmental
variables influencing phytoplankton communities in
hydrologically connected aquatic habitats in the Lake
Xingkai basin. Ecological Indicators, 2018, 91, 1-12.
http://dx.doi.org/10.1016/j.ecolind.2018.03.085.
Received: 14 December 2017
Accepted: 03 October 2018
https://doi.org/10.1016/0304-4203(81)90027-X
https://doi.org/10.1016/0304-4203(81)90027-X
https://doi.org/10.1016/j.ecolind.2018.03.085