J H E P 1 2 ( 2 0 1 6 ) 1 2 3 Published for SISSA by Springer Received: August 11, 2016 Accepted: December 14, 2016 Published: December 22, 2016 Measurement of the mass of the top quark in decays with a J/ψ meson in pp collisions at 8TeV The CMS collaboration E-mail: cms-publication-committee-chair@cern.ch Abstract: A first measurement of the top quark mass in the decay channel t → (W → `ν)(b → J/ψ + X → µ+µ− + X) is presented. The analysis uses events selected from the proton-proton collisions recorded by the CMS detector at the LHC at a center-of- mass energy of 8 TeV. The data correspond to an integrated luminosity of 19.7 fb−1, with 666 tt̄ and single top quark candidate events containing a reconstructed J/ψ candidate decaying into an oppositely-charged muon pair. The mass of the (J/ψ + `) system, where ` is an electron or a muon from W boson decay, is used to extract a top quark mass of 173.5± 3.0 (stat)± 0.9 (syst) GeV. Keywords: Hadron-Hadron scattering (experiments), Top physics ArXiv ePrint: 1608.03560 Open Access, Copyright CERN, for the benefit of the CMS Collaboration. Article funded by SCOAP3. doi:10.1007/JHEP12(2016)123 mailto:cms-publication-committee-chair@cern.ch https://arxiv.org/abs/1608.03560 http://dx.doi.org/10.1007/JHEP12(2016)123 J H E P 1 2 ( 2 0 1 6 ) 1 2 3 Contents 1 Introduction 1 2 Experimental setup 2 2.1 The CMS detector 2 2.2 Data and simulation 3 2.3 Event reconstruction and selection 4 3 Extraction of the top quark mass 6 3.1 Fitting procedure 6 3.2 Validation of the procedure to extract the top quark mass 7 3.3 Modeling heavy-quark fragmentation 9 3.4 Results 9 4 Systematic uncertainties 11 4.1 Experimental uncertainties 11 4.2 Theoretical uncertainties 13 5 Summary 15 The CMS collaboration 20 1 Introduction The top quark is the most massive particle in the standard model (SM), with the largest Yukawa coupling to the Higgs boson. The mass of the top quark (mt) is a fundamental parameter of the SM, playing a key role in radiative electroweak corrections [1, 2] and likely in the mechanism of electroweak symmetry breaking [3]. Therefore, a precise determination of mt is essential for a better understanding of the SM. Since the first observation of the top quark [4, 5], measurements of its mass have relied on the reconstruction of its decay products. These measurements are currently dominated by systematic uncertainties, related to the b-jet energy scale and the mod- eling of soft quantum chromodynamics (QCD) effects such as b quark hadronization and the underlying event [6, 7]. Currently, the most precise measurement of mt, 172.44± 0.13 (stat)± 0.47 (syst) GeV, is from the combination of measurements at 7 and 8 TeV by the CMS experiment [7]. In this paper, a measurement is presented of mt from partial reconstruction of top quarks in leptonic final states that contain a J/ψ meson from a b hadron decay. Both top quark-antiquark pair (tt) and single top quark production are considered to be signal in this study. The decay mode of interest is t→ (W→ `ν) (b→ J/ψ + X→ µ+µ− + X) and – 1 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 t̄ b̄ W− j/ℓ− j/ν̄ t W+ b b hadron ν µ+ (e+) J/ψ µ+ µ− Figure 1. Pictorial view of the J/ψ meson produced in a tt system. The kinematic properties of the particles represented with dashed lines are used to infer mt. is shown (for tt production) in figure 1. Here and everywhere, the charge conjugation is implicit. As suggested in ref. [8] and refined in ref. [9], the value of mt is determined through its correlation with the mass of the J/ψ + ` system, where ` is either an electron or muon produced in the decay of the accompanying W boson (either directly or via a τ lepton) in the same top quark decay. The branching fraction is expected to be (1.5± 0.1)× 10−4, but the presence of three leptons in the final state, two of which originate from the J/ψ meson decay, provides a nearly background-free sample of events. This measurement is based on data collected in pp collisions at a center-of-mass energy of 8 TeV with the CMS detector at the CERN LHC. Simulated events generated at different top quark masses are used to calibrate the method and evaluate its performance, as well as to estimate systematic uncertainties. The main advantage of this analysis lies in the determination of mt using only leptons. In this way, the dependence of the measurement on several dominant systematic uncertainties linked to initial- and final-state radiation, jet reconstruction and b tagging techniques, is considerably reduced. The drawback is the expected sensitivity to the modeling of b quark fragmentation, and the limited number of events in the selected sample on account of the small branching fraction. 2 Experimental setup 2.1 The CMS detector The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. The tracker has a track-finding efficiency of more than 99% for muons with transverse momentum pT > 1 GeV and |η| < 2.5. The ECAL is a fine-grained calorimeter with quasi-projective geometry, and consists of a barrel – 2 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 region of |η| < 1.48 and two endcaps that extend up to |η| of 3.0. The HCAL barrel and endcaps similarly cover the region |η| < 3.0. Muons are measured in the |η| < 2.4 range, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. Matching muons to tracks measured in the silicon tracker results in a relative pT resolution for muons with 20 < pT < 100 GeV of 1–2% in the barrel and better than 6% in the endcaps. The pT resolution in the barrel is better than 10% for muons with pT up to 1 TeV [10]. A more detailed description of the CMS detector, together with a definition of the coordinate systems and kinematic variables, can be found in ref. [11]. 2.2 Data and simulation This measurement is performed using the data recorded by the CMS detector at √ s=8 TeV, corresponding to an integrated luminosity of 19.7±0.5 fb−1 [12]. Events are required to pass a single-muon (single-electron) trigger with a minimum muon (electron) pT of 24 (27) GeV. The method used to extract mt has been developed and optimized using simulated events, without accessing the final data. We use simulated events to develop the analysis method and estimate its perfor- mance. The tt, W+jets, and Z+jets processes are generated with the leading-order (LO) MadGraph [13] generator (v5.1.3.30) matched to LO pythia 6 [14] (v6.426) for parton showering and fragmentation. The τ lepton decays are simulated with the tauola [15] program (v27.121.5). The LO CTEQ6L1 [16] parton distribution function (PDF) set and the Z2* underlying event tune are used in the generation. The most recent pythia Z2* tune is derived from the Z1 tune [17], which uses the CTEQ5L parton distribution set, whereas Z2* adopts CTEQ6L. Matrix elements describing up to three partons in addition to the tt pair are included in the MadGraph generator, and the MLM prescription [18] is used for matching of matrix-element jets to parton showers. The Lund string model [19] is used for the simulation of the hadronization, and to determine the fraction of the quark energy carried by unstable hadrons. For heavy quarks, the Lund symmetric fragmentation function is modified according to the Bowler space-time picture of string evolution [20]. Assuming fragmentation universality [21, 22], the values of the parameters of the frag- mentation function obtained from fits to the LEP data [23] are used, without assigning a systematic uncertainty associated to the universality assumption. The single top quark t-channel, s-channel, and tW processes are simulated with the next-to-leading-order (NLO) MadGraph [24, 25] generator (v1.0, r1380) with the CTEQ6M PDF set. Diboson WW, WZ, and ZZ processes are generated with pythia 6 (v6.426). The simulated processes are normalized to their theoretical cross sections. Except for single top quark processes, the higher-order calculation is used, and associated sys- tematic uncertainties are discussed in section 4.2. The tt cross section is computed at next-to-next-to-leading-order (NNLO) [26], while single top quark processes are computed at approximate NNLO [27]. The W+jets and Z+jets cross sections are computed with fewz (v3.1) [28, 29] at NNLO, while the diboson cross sections are computed at NLO with mcfm (v6.6) [30]. – 3 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 For tt→ b`−νbqq′ (lepton+jets), tt→ b`−νb`+ν (dilepton), tt→ bqq′bqq′ (all jets), and single top quark processes, six samples with mt values between 166.5 and 178.5 GeV are generated. The evaluation of systematic uncertainties related to color reconnection, the modeling of the underlying event, the factorization (µF) and renormalization (µR) scales, and the matching of the parton from the matrix element to parton showers, is based on studies of dedicated samples of simulated events. A full simulation of the CMS detector based on Geant4 [31] (v9.4p03) is used. Effects of additional overlapping minimum-bias events (pileup) are included in the simulation in such a way that the vertex multiplicity distribution is matched to the data. Single-lepton trigger efficiencies are applied to the simulation to match the trigger selection. 2.3 Event reconstruction and selection Events are reconstructed using a particle-flow (PF) algorithm [32, 33] that optimally com- bines the information from all CMS subdetectors to identify and reconstruct individual objects produced in pp collisions. The particle candidates include muons, electrons, pho- tons, charged hadrons, and neutral hadrons. Charged particles are required to originate from the primary collision vertex, identified as the reconstructed vertex with the largest value of ∑ p2T for its associated tracks. Once isolated muons [10] and electrons [34] are identified and removed from the list of PF particles, charged hadrons are rejected if their tracks do not originate from the primary vertex of the event. Finally, jets are reconstructed from the remaining PF particles using the anti-kT algorithm [35] with a distance parameter of 0.5 in the η–φ plane. Jet energy corrections are applied to all the jets in data and simula- tion [36]. The muon pT scale is corrected to account for possible geometrical effects, such as deformation of tracker geometry still present after implementing the alignment procedure. The selection criteria are optimized for lepton+jets and dilepton tt events with a J/ψ meson resulting in two additional non-isolated muons. Lepton+jets events are required to have exactly one isolated lepton with pT > 26 (30) GeV and |η| < 2.1 (2.5) in the case of the muon (electron). A muon (electron) is considered isolated if the scalar pT sum of all reconstructed particle candidates (not including the lepton itself) within a cone of size ∆R = √ (∆η)2 + (∆φ)2 = 0.4 (0.3) (where the φ is azimuthal angle in radians) around the lepton direction is less than 12% (10%) of the lepton pT. An event-by-event correction is applied to the scalar sum to take into account possible contributions from pileup events [37]. Dilepton events are required to have exactly two isolated leptons: at least one isolated lepton defined as above, and either an isolated muon with pT > 20 GeV and |η| < 2.4, or an isolated electron with pT > 20 GeV and |η| < 2.5. In case of a second electron, the isolation threshold is relaxed to less than 15%. The two leptons are required to be of opposite charge and have an invariant mass above 20 GeV. Pairs with the same flavor and invariant mass between 76 and 106 GeV are rejected to remove poorly reconstructed leptonic Z boson decays. In addition to these criteria, at least 2 jets with pT > 40 GeV and |η| < 2.4 are required. Exactly one J/ψ meson candidate, with a mass between 3.0 and 3.2 GeV, is required in the event, reconstructed from two muons of opposite sign, with pT > 4 GeV and |η| < 2.4, – 4 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 Process Number of events Leading µ Leading e tt→ b`−νbqq′ 228.1± 4.0 195.6± 3.7 tt→ b`−νb`+ν 66.3± 1.7 56.9± 1.6 tt→ bqq’bqq′ negligible negligible Single top quark 39.4± 3.8 30.6± 3.3 W→ `ν + jets 18.3± 3.2 12.1± 2.7 Z/γ∗ → `+`− + jets 4.5± 0.9 6.3± 1.0 WW, WZ, ZZ 1.1± 0.3 1.2± 0.3 Predicted yield 357.7± 6.6 302.7± 5.9 Data 355 311 Table 1. Number of selected events from simulation and observed in data. The uncertainties are statistical. that emanate from the same jet. To reduce the combinatorial background, a Kalman vertex fit [38, 39] with one degree of freedom is performed and the χ2 of the vertex is required to be less than 5. The significance (i.e., the number of standard deviations) of the distance between the secondary vertex — formed by the products of the b quark fragmentation — and the primary vertex of the event is required to be above 20. These criteria select 666 events in data. The numbers of events expected from the SM processes are evaluated using Monte Carlo (MC) simulation and the results are normalized to their theoretical cross sections. These are noted in table 1, where a distinction is made between events in which the isolated lepton with the largest pT is a muon, labeled “Leading µ”, and events in which the leading isolated lepton is an electron, labeled “Leading e”, but not between lepton+jets and dileptonic event candidates. The rates predicted by the default simulation are in fair agreement with those observed in data. The event sample is dominated by contributions from lepton+jets and dilepton tt events, with a lesser contribution from single top quark processes. Figure 2 shows the dimuon invariant mass spectrum (for a wider mass range than the acceptance window for the J/ψ meson candidates) and the pT distribution of the J/ψ meson candidates. The simulation used in this figure and the following ones is for mt = 172.5 GeV. The ratio in the number of events observed in data to the number expected from simulation is presented in the lower panel. The shaded band includes statistical and systematic uncertainties, which are discussed below, as well as the uncertainty in the integrated luminosity. The number of J/ψ meson candidates is roughly the same in data and simulation. Despite the corrections applied to the muon pT scale, a worse resolution is observed in data than in simulation. This is caused by final-state radiation emitted by the muons originating from the J/ψ meson decay, which is not included in the simulation [40] and which results in a shift of the reconstructed dimuon invariant mass in the simulation to larger values. This effect is included in the systematic uncertainties discussed in section 4.1. – 5 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 E v e n ts / ( 0 .0 2 5 G e V ) 0 50 100 150 200 250 Data tt Single t Background Uncertainties (8 TeV)-119.7 fbCMS mass (GeV)−µ+µ 2.8 2.9 3 3.1 3.2 3.3 3.4 D a ta / M C 0 1 2 3 E v e n ts / ( 5 G e V ) 0 20 40 60 80 100 120 Data tt Single t Background Uncertainties (8 TeV)-119.7 fbCMS ) (GeV)ψ (J/ T p 0 20 40 60 80 100 120 140 D a ta / M C 0 1 2 3 Figure 2. Distributions of the dimuon invariant mass between 2.8 and 3.4 GeV (left) and of the pT of the J/ψ meson candidate (right). Processes are normalized to their theoretical cross sections. The simulation assumes a value of mt = 172.5 GeV. The lower panel shows the ratio of the number of events observed in data to the number expected from simulation. One point is not visible in the lower panel of the right plot, as it would require to enlarge the y-axis range up to 3.5 units. The invariant mass, mJ/ψ+`, is computed from the combination of the J/ψ meson candidate and the leading lepton. The distributions are shown in figure 3. 3 Extraction of the top quark mass 3.1 Fitting procedure Since no significant differences are observed between J/ψ+µ and J/ψ+ e events, no further distinction is made on the flavor of the leading lepton. In associating the leading lepton to a J/ψ meson in a tt event, there are configurations where both particles arise from the same top quark decay chain or from different top quarks (referred to as “wrong pairings”). The right and wrong pairings are considered simultaneously in the analysis. While wrong pairings are less sensitive to mt, they remain weakly correlated with it. The expected mJ/ψ+` distributions for tt and single top quark processes are simulated for different values of mt. The background contribution is considered to be the same for each mt value. The simulated mJ/ψ+` distributions thus obtained are fitted simultaneously, between 0 and 250 GeV. The signal and background contributions are modelled by the following analytic probability density function: Psig+bkg(mJ/ψ+`) = α 1 σg √ 2π exp ( − (mJ/ψ+` − µg)2 2σ2g ) + (1− α) β −γγ γ Γ(γγ) (mJ/ψ+` − µγ)γγ−1 exp ( − mJ/ψ+` − µγ βγ ) . (3.1) – 6 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 E v e n ts / ( 1 0 G e V ) 0 10 20 30 40 50 60 Data tt Single t Background Uncertainties (8 TeV)-119.7 fbCMS (GeV) µ+ψJ/m 0 50 100 150 200 250 D a ta / M C 0 1 2 3 µLeading E v e n ts / ( 1 0 G e V ) 0 10 20 30 40 50 Data tt Single t Background Uncertainties (8 TeV)-119.7 fbCMS (GeV)+eψJ/m 0 50 100 150 200 250 D a ta / M C 0 1 2 3 Leading e Figure 3. Distributions of the invariant mass of the J/ψ meson candidate and the leading lepton combination, in the leading µ (left) and leading e (right) combinations. Processes are normalized to their theoretical cross sections. The simulation assumes a value of mt = 172.5 GeV. The lower panel shows the ratio of the number of events observed in data to the number expected from simulation. Two points are not visible in the lower panel of the left plot and one for the right plot, as it would require to enlarge the y-axis range up to 5.5 and 18 units, respectively. This function is the sum of a Gaussian distribution (i.e., the first term of the right-hand side in eq. (3.1)) with the free parameters µg (mean) and σg (standard deviation), which describes mostly the peak in the mJ/ψ+` distribution, and a gamma distribution (i.e., the whole second term of the right-hand side in eq. (3.1)), whose definition involves the Gamma function Γ. The gamma distribution has three free parameters: its shape parameter γγ , scale parameter βγ , and shift parameter µγ . The relative contribution of the Gaussian distribution is described by the parameter α. Each of the six parameters is implemented as a linear function of mt, taking the form of c1 + c2mt. The MJ/ψ+` distributions for each of the samples with different values of mt are simultaneously fitted to obtain the slope and intercept for each of the six parameters. Then, when the mJ/ψ+` distribution obtained from data is fitted, the linear coefficients c1 and c2 are fixed and mt becomes the only free parameter of Psig+bkg. Figure 4 shows the six parameters of eq. (3.1) with respect to mt. The two parameters showing the strongest dependence on mt are µg and σg. 3.2 Validation of the procedure to extract the top quark mass Different tests are used to validate the procedure to extract mt. First, the parameters of Psig+bkg are fitted for each of the mt values independently, without any specific assumption about their dependence on mt. The result, superimposed as the dots in figure 4, confirms the assumed linear dependence. Then the mJ/ψ+` distribution obtained for mt = 172.5 GeV is fitted to Psig+bkg fixing thereby the dependence of µg, σg, γγ , βγ , µγ , and α on mt, only leaving mt free. The result is statistically compatible with 172.5 GeV. – 7 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 (GeV)tm 166 168 170 172 174 176 178 ( G e V ) g µ 66 68 70 72 74 76 78 80 t m⋅ 0.46+5 − = g µ Alternative fit method SimulationCMS (8 TeV) (GeV)tm 166 168 170 172 174 176 178 ( G e V ) g σ 18 18.5 19 19.5 20 20.5 21 21.5 22 t m⋅ 0.15+6 − = gσ Alternative fit method SimulationCMS (8 TeV) (GeV)tm 166 168 170 172 174 176 178 α 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 t m⋅ 0.0031+0.07 − = α Alternative fit method SimulationCMS (8 TeV) (GeV)tm 166 168 170 172 174 176 178 γ γ 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 t m⋅ 0.0026+ = 2.1 γ γ Alternative fit method SimulationCMS (8 TeV) (GeV)tm 166 168 170 172 174 176 178 ( G e V ) γ β 30 31 32 33 34 35 36 t m⋅ 0.18+ = 1.96 γ β Alternative fit method SimulationCMS (8 TeV) (GeV)tm 166 168 170 172 174 176 178 ( G e V ) γ µ 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10 t m⋅ 0.01+ = 8 γ µ Alternative fit method SimulationCMS (8 TeV) Figure 4. Mean (upper left) and standard deviation (upper middle) of the Gaussian distribution describing the peak of the mJ/ψ+` distributions, relative contribution of the Gaussian distribution to Psig+bkg (upper right), and shape (lower left), scale (lower middle), and shift (lower right) parameters of the gamma distribution, as a function of input mt. The solid lines are the result of the simultaneous fit described in section 3.1, while the dashed lines indicate the 68% confidence level of the fit. The superimposed data points are the result of the alternative fitting method described in section 3.2. The performance of this fitting method is evaluated with pseudo-data experiments. From Psig+bkg, described by eq. (3.1), with mt fixed at 172.5 GeV, 3 000 pseudo-data ex- periments of Nevt events are drawn, where Nevt follows a Poisson distribution around the 666 events observed in data. Each pseudo-data experiment is fitted to Psig+bkg, with mt being once again the only free parameter. The same procedure is reproduced for different mt values in Psig+bkg. The residual and the pull, respectively defined as the difference between the fit result and the input value and the difference between the fit result and the input value relative to the fit uncertainty, are computed for each pseudo-data event. The mean and width of the pull and residual distributions obtained for each pseudo-data experiment are rescaled to propagate uncertainties due to the limited numbers of pseudo- data experiments and simulated events. The means and widths of the pull distributions are found to be constant in mt and compatible with 0 and 1 within their respective statistical uncertainties. The method to extract mt from the mJ/ψ+` distribution can therefore be considered as unbiased. Each of the six mass points results in a mean and width from the residual distribution, which are interpolated to mt = 172.5 GeV. The spread of the mean values is used to estimate the systematic uncertainty arising from the size of the simulated event samples (0.22 GeV) and the width values are used to derive the expected statistical uncertainty for the data (2.9 GeV). – 8 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 3.3 Modeling heavy-quark fragmentation Since this measurement is expected to be particularly sensitive to heavy-quark fragmenta- tion, its corresponding modeling in simulated events is studied in detail. The tt simulated event samples in the measurement are generated using the Z2* tune. The pT distribution of the b hadron at the generator level (pgenT (B)), relative to that of the jet the hadron is matched to (pgenT (jet)), is used to compare the Z2* tune to two alternative tunes and their variants: 1. An updated version of the Z2* tune, which better describes fragmentation in e+e− data, is denoted Z2* LEP rb [41]. The rb parameter in the Bowler extension of the fragmentation function [20] changes from rb = 1.0 for Z2* to 0.591 for Z2* LEP rb. Values that provide 1 standard deviation changes in the rb parameter, respectively of rb = 0.317 (Z2∗ LEP r+b ) and 0.807 (Z2∗ LEP r−b ), are also considered; 2. The Perugia 12 (P12) tune is used along with two variants [42] for which the frag- mentation process is altered to be harder in the longitudinal (“FL”) and transverse (“FT”) directions by changing for all quarks the a and b parameters of the Lund fragmentation function [19]. The P12 tune is an update of the Perugia 11 tune, used in other analyses, e.g. ref. [41]. Figure 5 shows the ratio of pgenT (B)/pgenT (jet) distribution for the Z2* LEP rb tune. For the Z2*, Z2* LEP r−b , Z2∗ LEP r+b , P12, P12FT, and P12FL tunes, the ratio to Z2* LEP rb is shown. Since this distribution reflects how the pT of the b quark is transferred to the b hadron, it is a good probe of fragmentation modeling. A reweighting procedure, based on the pT distribution of the b hadron at generator level relative to that of the jet the hadron belongs to, is applied to the mJ/ψ+` distribution generated with the Z2* tune at mt = 172.5 GeV. This provides a consistent modeling of the underlying event and color reconnection effects in the Z2* tune, while the description of fragmentation changes. Each reweighted mJ/ψ+` distribution is then fitted to Psig+bkg, with mt being its only free parameter. Figure 6 shows the dependence of the fitted mt on the average jet pT fraction carried by the b hadron in exclusive decays. In ref. [41], it was found that the default Z2* tune is softer than the data for tt events, and the Z2* LEP rb tune is a better match to the data. It appears in figure 6 that P12 and Z2* tune families give compatible results within statistical uncertainties. The Z2* LEP rb tune is therefore chosen as the baseline, implying a shift of −0.71 GeV to the fit results. The difference between the mt values obtained for its soft and hard variants is assigned as a systematic uncertainty. A closure test on the reweighting procedure has been done using simulated event samples generated with the P12 tune family. It validates the strategy of reweighting only the pT transfer pgenT (B)/pgenT (jet). 3.4 Results Figure 7 shows the mJ/ψ+` data distribution together with the results of a maximum- likelihood fit to eq. (3.1). The fit gives a good description of the data, apart from the low mass region, where the missing radiation correction becomes important (see section 2.3). – 9 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 A rb it ra ry u n it s 0 0.02 0.04 0.06 b rZ2* LEP ψB decays with J/ SimulationCMS (8 TeV) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 b r R a ti o t o Z 2 * L E P 0.6 0.8 1 1.2 1.4 − b rZ2* LEP + b rZ2* LEP Z2* (jet) gen T (B)/p gen T p 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 b r R a ti o t o Z 2 * L E P 0.6 0.8 1 1.2 1.4 P12FT P12 P12FL Figure 5. Ratio of the pT of the b hadrons to the pT of the matched generator-level jet for the Z2* LEP rb tune (upper), the ratio to Z2* LEP rb for the Z2*, Z2*;LEP r−b , and Z2* LEP r+b tunes (middle), and the ratio to Z2* LEP rb for the P12, P12FT, and P12FL tunes (lower). As neutrinos are not clustered within jets, it happens in very rare cases that pgenT (B) > pgenT (jet). For this effect to be visible, the horizontal axis range is extended beyond 1 unit. 〉(jet) gen T (B)/p gen T p〈 0.73 0.735 0.74 0.745 0.75 0.755 0.76 0.765 0.77 (o th e r tu n e ) (G e V ) t m − ) b r (Z 2 * L E P t = m t m ∆ 1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 〉(jet) gen T (B)/p gen T p〈∆ × = (0.30 GeV/1%) tm∆ Z2* brZ2* LEP − brZ2* LEP + brZ2* LEP P12FT P12FL P12 ψB decays with J/ SimulationCMS (8 TeV) Figure 6. Dependence of the extracted mt value on the average fragmentation ratio 〈pgenT (B)/pgenT (jet)〉, fitted to a linear function. – 10 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 (GeV)l+ψJ/m 0 50 100 150 200 250 E v e n ts / ( 1 0 G e V ) 0 20 40 60 80 100 3.0) GeV± = (173.5 tm CMS (8 TeV)-119.7 fb (GeV)tm 170 180 ) m a x l o g (L /L − 0 1 2 3 4 Data Fit result Statistical uncertainty gamma component Gaussian component 3.0) GeV± = (173.5 tm Figure 7. Distribution in the invariant mass of the J/ψ meson candidate and the leading lepton combination, fitted to Psig+bkg of eq. (3.1) through the maximization of a likelihood function. The inset shows the negative logarithm of the likelihood function L relative to its maximum Lmax as a function of the only free parameter, which is mt. The inset shows the negative logarithm of the likelihood function L relative to its maximum Lmax as a function of mt, which is the only free parameter in the fit. The value of the fitted mass, after implementing the shift of −0.71 GeV described in section 3.3, is 173.5 GeV, with a 68% confidence level statistical uncertainty of 3.0 GeV. 4 Systematic uncertainties The size of each systematic uncertainty is evaluated from its impact on the mJ/ψ+` shape and its propagation to the fit to extract mt. For each source of uncertainty, the mJ/ψ+` distributions are generated for the corresponding variations and then fitted to the nominal parametrization of Psig+bkg obtained without variation. A cross-check is performed using pseudo-data experiments. The average shift of mt with respect to the reference is taken as an estimate of the magnitude of the systematic uncertainty. Both methods are always in good agreement within the statistical uncertainty. Table 2 summarizes the results obtained for the evaluation of the systematic uncertain- ties, which are described in detail in sections 4.1 and 4.2, and considered as uncorrelated. 4.1 Experimental uncertainties Limited size of the simulation samples. As described in section 3.2, pseudo-data experiments are drawn from Psig+bkg for seven different mt values. The spread of the residual mean is interpreted as the uncertainty due to the finite size of the simulated event – 11 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 Source Value (GeV) Experimental uncertainties Limited size of the simulation samples ±0.22 Muon momentum scale ±0.09 Electron momentum scale ±0.11 Modeling of the J/ψ meson candidate mass distribution +0.09 Jet energy scale <0.01 Jet energy resolution <0.01 Trigger efficiencies ±0.02 Pileup ±0.07 Theoretical uncertainties Background normalization ±0.01 Matrix-element generator −0.37 Factorization and renormalization scales +0.12,−0.46 Matching of matrix element and parton shower +0.12,−0.58 Top quark transverse momentum +0.64 b quark fragmentation ±0.30 Underlying event ±0.13 Modeling of color reconnection +0.12 Parton distribution functions +0.39,−0.11 Total (in quadrature) +0.89,−0.94 Table 2. Summary of the impact of systematic uncertainties on the top quark mass according to the contributions from each source. samples used for the calibration. No systematic uncertainty stemming from the shape parametrization is added. Leading lepton momentum scale. The average uncertainties in the leading lepton transverse momentum scale are below 0.1% in the case of muons [10] and 0.3% in the case of electrons [34]. This uncertainty, given as a function of pT and η, is propagated to mJ/ψ+` and the effect on the mt fit is evaluated. Modeling of the J/ψ meson candidate mass distribution. Despite the corrections applied to the muon pT scale, the shape of the J/ψ meson candidate mass distribution observed in data is not exactly reproduced in the simulation, in which final-state radiation from soft muons is not modelled. Conservatively, the full difference is treated as a potential systematic uncertainty. Thus, the mJ/ψ+` distribution is recomputed for a reweighted J/ψ meson candidate mass, such that the peak position and the width of the simulated distribu- tion are the same as for the data. The uncertainty associated with this effect is computed as the difference between the top quark masses fitted before and after reweighting. – 12 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 Jet energy scale and resolution. In this analysis, the jet energy scale and resolution affect only the event yield. The effect of the jet energy scale uncertainty is studied by scaling the reconstructed jet energy by a pT- and η-dependent scale factor before the event selection is applied. Similarly, the effect of the jet energy resolution uncertainty is studied by varying the jet energy resolution of the simulated events according to the estimated uncertainty. Trigger efficiencies. As reported in section 2.2, the single-lepton trigger efficiencies are applied to simulated events. A conservative systematic uncertainty of ±3% is assumed for the trigger efficiencies. The difference between the top quark masses fitted with upwards and downwards variations is taken as the uncertainty. Pileup. Simulated events are reweighted event by event to reproduce the number of pileup events observed in data. A 5% variation on the minimum-bias cross section [43] used is propagated to mJ/ψ+` and mt. 4.2 Theoretical uncertainties Background normalization. Processes are normalized to their theoretical cross sec- tions. To evaluate the effect of the uncertainties in these cross sections, obtained from scale variations in the theoretical calculation, the main background contributions, i.e. W/Z+jets and WW/ZZ/WZ, are varied by ±20% and ±5%, respectively. Variations in the theoretical cross sections of other processes have negligible impact on the measurement. Matrix-element generator. The MadGraph LO matrix-element predictions used for the calibration of the measurement are compared with the NLO powheg predictions for mt = 172.5 GeV. The difference, propagated to the measured mass, is assigned as a systematic uncertainty. Factorization and renormalization scales. In the signal simulation, µF and µR are set to a common value Q2 = m2 t + ∑ (ppartonT )2, where ppartonT is the transverse momentum of the partons. Alternative samples with Q varied by a factor of 0.5 or 2 are used to estimate the effect of the uncertainties in the factorization and renormalization scales. Matrix element/parton shower matching threshold. This matching threshold is a parameter used in the simulation to define the limit at which the generation of extra jets is made by pythia instead of the matrix-element generator MadGraph, and therefore controls the hardest initial- and final-state radiation in the event. The effect of the choice of this threshold is evaluated using dedicated samples in which the parameter is changed from the default value of 40 GeV down to 30 GeV and up to 60 GeV, as discussed in ref. [44]. Top quark transverse momentum. Evidence of a mismodeling of the top quark pT by MadGraph has been obtained by the differential cross sections measurements in CMS [45, 46]. To quantify the effect of this mismodeling on mt, an event-by-event reweight- ing is applied to the simulation to reproduce the top quark pT shape observed in data. The difference between the top quark masses fitted with and without this reweighting is taken as the uncertainty. – 13 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 Fragmentation functions. The tt simulated event samples used for the measurement are produced with the default Z2* tune, with a correction applied to the fitted result so as to use the Z2* LEP rb tune as a baseline. These two tunes are based upon data collected at LEP and elsewhere. Porting an MC simulation tune from LEP to LHC implies the assumption of the factorization between the perturbative and nonperturbative parts in the shower evolution, which are typically fitted together, and the noncorrelation of these fits with the color structure of the event, which is clearly different in e+e− → bb and pp → tt → bW−bW+ events. These differences are considered to be covered by the underlying event and color reconnection modeling uncertainty. The uncertainty stemming from the modeling of the b hadron decay induces variations of the b hadron relative pT that are much smaller than the uncertainty in rb for the Z2* LEP rb tune [47]. Thus, only the effect of fragmentation parameters constrained by the LEP data is considered as an additional source of systematic uncertainty, assigning the maximum difference between the mt values obtained for the Z2* LEP r±b and Z2* LEP rb tunes, shown in figure 6, as the systematic uncertainty stemming from the fragmentation modeling. The size of the uncertainty is found to be comparable to the one estimated in a different way in ref. [9]. Hadronization modeling. A generator-level study using sherpa (v2.1.0) [48] has been carried out in the context of ref. [41]. The sherpa generator allows us to use the same pT-ordered shower model (csshower++ [49]), while interfacing with two alternative had- ronization/fragmentation models. The difference between the cluster and the string mod- els on the mJ/ψ+` shape is much smaller than the difference between the Z2* LEP r+b and Z2* LEP r−b tunes. Thus, only the difference between the two fragmentation tunes is con- sidered as a source of systematic uncertainty and no extra uncertainty stemming from the hadronization model is assigned. Underlying event and color reconnection modeling. These effects are evaluated using variations of the Perugia 12 (P12) underlying event tune [42]. Two variations (“ueHi” and “ueLo”) are compared to the nominal P12 tune to evaluate the effect of the underlying event in the measurement. The nominal P12 tune is taken here as the reference as it contains not only a dedicated parametrization of the fragmentation function, but also different parametrizations for the hadron multiplicities. The difference between the nominal P12 tune and a separate variation where color reconnection effects are smaller (“crLo”) is assigned as the systematic uncertainty due to this effect. Parton distribution functions. As stated in section 2.2, the default PDF tune is CTEQ6L1 for tt simulated events in this analysis. The mt value fitted in this tune is compared to the one obtained for the CT14 NLO [50], MMHT2014 NCL 68CL [51], and NNPDF30 NLO AS0118 [52] tunes, applying the PDF4LHC recommendations [53, 54]. Diagonalized uncertainty sources of each PDF set are used to derive event-by-event weights, which are then applied to obtain a variation of the MJ/ψ+` shape. The maximal difference with respect to the nominal MJ/ψ+` shape is quoted as the systematic uncertainty. – 14 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 5 Summary The first measurement of the mass of the top quark is presented in the decay channel t → (W → `ν) (b → J/ψ + X → µ+µ− + X). An event selection is implemented in proton-proton collisions recorded with the CMS detector at √ s = 8 TeV, to obtain a sample of high purity leptonically-decaying top quarks in tt and single top quark production events containing one J/ψ meson candidate that decays into an oppositely-charged muon pair. The data correspond to an integrated luminosity of 19.7 fb−1. There are 355 events observed with a muon and 311 with an electron as leading isolated lepton, in agreement with expectations from simulation. The top quark mass is extracted from an unbinned maximum-likelihood fit to the invariant mass of the leading lepton and J/ψ meson candidate. The resulting mt measure- ment is 173.5 GeV, with a statistical uncertainty of 3.0 GeV and a systematic uncertainty of 0.9 GeV. This is the first time that this method has been applied to a physics analysis and the systematic uncertainty is of the same order of magnitude as that estimated in ref. [9]. Even though the results are statistically limited, the dominant systematic uncer- tainties are different from those of the most precise direct reconstruction methods. As the sensitivity to jet-related uncertainties is negligible, this allows the possibility to contribute significantly in combination with other mt measurements. Furthermore, with the larger data set expected in the next runs of the LHC, the method described in this paper will provide a result which will be more competitive with those obtained from the conventional reconstruction techniques. Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In ad- dition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COL- CIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and – 15 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Sci- ence Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Tech- nologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS pro- gram of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Edu- cation, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonata- bis 2012/07/E/ST2/01406; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Claŕın-COFUND del Principado de Asturias; the Rachadapisek Som- pot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. References [1] Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE]. [2] A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the Standard Model prediction for BR(Bs,d → µ+µ−), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE]. [3] G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE]. [4] CDF collaboration, F. Abe et al., Observation of top quark production in p̄p collisions, Phys. Rev. Lett. 74 (1995) 2626 [hep-ex/9503002] [INSPIRE]. [5] D0 collaboration, S. Abachi et al., Observation of the top quark, Phys. Rev. Lett. 74 (1995) 2632 [hep-ex/9503003] [INSPIRE]. [6] ATLAS collaboration, Measurement of the top quark mass in the tt̄→ lepton+jets and tt̄→ dilepton channels using √ s = 7 TeV ATLAS data, Eur. Phys. J. C 75 (2015) 330 [arXiv:1503.05427] [INSPIRE]. [7] CMS collaboration, Measurement of the top quark mass using proton-proton data at√ (s) = 7 and 8 TeV, Phys. Rev. D 93 (2016) 072004 [arXiv:1509.04044] [INSPIRE]. – 16 – http://creativecommons.org/licenses/by/4.0/ http://dx.doi.org/10.1140/epjc/s10052-014-3046-5 https://arxiv.org/abs/1407.3792 http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3792 http://dx.doi.org/10.1140/epjc/s10052-012-2172-1 https://arxiv.org/abs/1208.0934 http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.0934 http://dx.doi.org/10.1007/JHEP08(2012)098 http://dx.doi.org/10.1007/JHEP08(2012)098 https://arxiv.org/abs/1205.6497 http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.6497 http://dx.doi.org/10.1103/PhysRevLett.74.2626 http://dx.doi.org/10.1103/PhysRevLett.74.2626 https://arxiv.org/abs/hep-ex/9503002 http://inspirehep.net/search?p=find+EPRINT+hep-ex/9503002 http://dx.doi.org/10.1103/PhysRevLett.74.2632 http://dx.doi.org/10.1103/PhysRevLett.74.2632 https://arxiv.org/abs/hep-ex/9503003 http://inspirehep.net/search?p=find+EPRINT+hep-ex/9503003 http://dx.doi.org/10.1140/epjc/s10052-015-3544-0 https://arxiv.org/abs/1503.05427 http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.05427 http://dx.doi.org/10.1103/PhysRevD.93.072004 https://arxiv.org/abs/1509.04044 http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.04044 J H E P 1 2 ( 2 0 1 6 ) 1 2 3 [8] CMS collaboration, Letter of intent: by the CMS Collaboration for a general purpose detector at LHC, CERN-LHCC-92-003 (1992). [9] A. Kharchilava, Top mass determination in leptonic final states with J/ψ, Phys. Lett. B 476 (2000) 73 [hep-ph/9912320] [INSPIRE]. [10] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at√ s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE]. [11] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [INSPIRE]. [12] CMS collaboration, CMS Luminosity Based on Pixel Cluster Counting — Summer 2013 Update, CMS-PAS-LUM-13-001 (2013). [13] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. [14] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE]. [15] N. Davidson, G. Nanava, T. Przedzinski, E. Richter-Was and Z. Was, Universal Interface of TAUOLA Technical and Physics Documentation, Comput. Phys. Commun. 183 (2012) 821 [arXiv:1002.0543] [INSPIRE]. [16] J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE]. [17] R. Field, Early LHC Underlying Event Data — Findings and Surprises, arXiv:1010.3558 [INSPIRE]. [18] M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE]. [19] B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton Fragmentation and String Dynamics, Phys. Rept. 97 (1983) 31 [INSPIRE]. [20] M.G. Bowler, e+e− Production of Heavy Quarks in the String Model, Z. Phys. C 11 (1981) 169 [INSPIRE]. [21] T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE]. [22] T.D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE]. [23] G. Altarelli, R.H.P. Kleiss and C. Verzegnassi eds., Z physics at LEP 1, vol. 3: Event generators and software, CERN Yellow Report CERN-YELLOW-89-08-V-3 (1989). [24] S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 02 (2010) 011] [arXiv:0907.4076] [INSPIRE]. [25] E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE]. – 17 – http://cds.cern.ch/record/290808 http://dx.doi.org/10.1016/S0370-2693(00)00120-9 http://dx.doi.org/10.1016/S0370-2693(00)00120-9 https://arxiv.org/abs/hep-ph/9912320 http://inspirehep.net/search?p=find+EPRINT+hep-ph/9912320 http://dx.doi.org/10.1088/1748-0221/7/10/P10002 https://arxiv.org/abs/1206.4071 http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.4071 http://dx.doi.org/10.1088/1748-0221/3/08/S08004 http://inspirehep.net/search?p=find+J+%22JINST,3,S08004%22 http://cds.cern.ch/record/1598864 http://dx.doi.org/10.1007/JHEP07(2014)079 http://dx.doi.org/10.1007/JHEP07(2014)079 https://arxiv.org/abs/1405.0301 http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.0301 http://dx.doi.org/10.1088/1126-6708/2006/05/026 http://dx.doi.org/10.1088/1126-6708/2006/05/026 https://arxiv.org/abs/hep-ph/0603175 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603175 http://dx.doi.org/10.1016/j.cpc.2011.12.009 https://arxiv.org/abs/1002.0543 http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0543 http://dx.doi.org/10.1088/1126-6708/2002/07/012 http://dx.doi.org/10.1088/1126-6708/2002/07/012 https://arxiv.org/abs/hep-ph/0201195 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0201195 https://arxiv.org/abs/1010.3558 http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.3558 http://dx.doi.org/10.1088/1126-6708/2007/01/013 https://arxiv.org/abs/hep-ph/0611129 http://inspirehep.net/search?p=find+EPRINT+hep-ph/0611129 http://dx.doi.org/10.1016/0370-1573(83)90080-7 http://inspirehep.net/search?p=find+J+%22Phys.Rep.,97,31%22 http://dx.doi.org/10.1007/BF01574001 http://dx.doi.org/10.1007/BF01574001 http://inspirehep.net/search?p=find+J+%22Z.Physik,C11,169%22 http://dx.doi.org/10.1063/1.1724268 http://inspirehep.net/search?p=find+J+%22J.Math.Phys.,3,650%22 http://dx.doi.org/10.1103/PhysRev.133.B1549 http://dx.doi.org/10.1103/PhysRev.133.B1549 http://inspirehep.net/search?p=find+IRN+1816497 http://dx.doi.org/10.5170/CERN-1989-008-V-3 http://dx.doi.org/10.1088/1126-6708/2009/09/111 https://arxiv.org/abs/0907.4076 http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.4076 http://dx.doi.org/10.1140/epjc/s10052-011-1547-z https://arxiv.org/abs/1009.2450 http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.2450 J H E P 1 2 ( 2 0 1 6 ) 1 2 3 [26] M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross section at Hadron Colliders Through O(α4 S), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE]. [27] N. Kidonakis, NNLL threshold resummation for top-pair and single-top production, Phys. Part. Nucl. 45 (2014) 714 [arXiv:1210.7813] [INSPIRE]. [28] R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE]. [29] R. Gavin, Y. Li, F. Petriello and S. Quackenbush, W Physics at the LHC with FEWZ 2.1, Comput. Phys. Commun. 184 (2013) 208 [arXiv:1201.5896] [INSPIRE]. [30] J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE]. [31] GEANT4 collaboration, S. Agostinelli et al., GEANT4: A simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. [32] CMS collaboration, Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus and MET, CMS-PAS-PFT-09-001 (2009). [33] CMS collaboration, Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector, CMS-PAS-PFT-10-001 (2010). [34] CMS collaboration, Performance of Electron Reconstruction and Selection with the CMS Detector in Proton-Proton Collisions at √ s = 8 TeV, 2015 JINST 10 P06005 [arXiv:1502.02701] [INSPIRE]. [35] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE]. [36] CMS collaboration, Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE]. [37] CMS collaboration, Measurement of the tt̄ production cross section in the e-µ channel in proton-proton collisions at √ s = 7 and 8 TeV, JHEP 08 (2016) 029 [arXiv:1603.02303] [INSPIRE]. [38] R. Fruhwirth, Application of Kalman filtering to track and vertex fitting, Nucl. Instrum. Meth. A 262 (1987) 444 [INSPIRE]. [39] R. Fruhwirth, W. Waltenberger and P. Vanlaer, Adaptive vertex fitting, J. Phys. G 34 (2007) N343 [INSPIRE]. [40] CMS collaboration, Measurement of J/ψ and ψ(2S) Prompt Double-Differential Cross sections in pp Collisions at √ s = 7 TeV, Phys. Rev. Lett. 114 (2015) 191802 [arXiv:1502.04155] [INSPIRE]. [41] CMS collaboration, Measurement of the top quark mass using charged particles in pp collisions at √ s = 8 TeV, Phys. Rev. D 93 (2016) 092006 [arXiv:1603.06536] [INSPIRE]. [42] P.Z. Skands, Tuning Monte Carlo Generators: The Perugia Tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE]. [43] CMS collaboration, Measurement of the inelastic proton-proton cross section at √ s = 7 TeV, Phys. Lett. B 722 (2013) 5 [arXiv:1210.6718] [INSPIRE]. – 18 – http://dx.doi.org/10.1103/PhysRevLett.110.252004 https://arxiv.org/abs/1303.6254 http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6254 http://dx.doi.org/10.1134/S1063779614040091 http://dx.doi.org/10.1134/S1063779614040091 https://arxiv.org/abs/1210.7813 http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.7813 http://dx.doi.org/10.1016/j.cpc.2011.06.008 https://arxiv.org/abs/1011.3540 http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.3540 http://dx.doi.org/10.1016/j.cpc.2012.09.005 https://arxiv.org/abs/1201.5896 http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5896 http://dx.doi.org/10.1007/JHEP07(2011)018 http://dx.doi.org/10.1007/JHEP07(2011)018 https://arxiv.org/abs/1105.0020 http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0020 http://dx.doi.org/10.1016/S0168-9002(03)01368-8 http://dx.doi.org/10.1016/S0168-9002(03)01368-8 http://inspirehep.net/search?p=find+J+%22Nucl.Instrum.Meth.,A506,250%22 http://cds.cern.ch/record/1194487 http://cds.cern.ch/record/1247373 http://dx.doi.org/10.1088/1748-0221/10/06/P06005 https://arxiv.org/abs/1502.02701 http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.02701 http://dx.doi.org/10.1088/1126-6708/2008/04/063 http://dx.doi.org/10.1088/1126-6708/2008/04/063 https://arxiv.org/abs/0802.1189 http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.1189 http://dx.doi.org/10.1088/1748-0221/6/11/P11002 https://arxiv.org/abs/1107.4277 http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.4277 http://dx.doi.org/10.1007/JHEP08(2016)029 https://arxiv.org/abs/1603.02303 http://inspirehep.net/search?p=find+EPRINT+arXiv:1603.02303 http://dx.doi.org/10.1016/0168-9002(87)90887-4 http://dx.doi.org/10.1016/0168-9002(87)90887-4 http://inspirehep.net/search?p=find+J+%22Nucl.Instrum.Meth.,A262,444%22 http://dx.doi.org/10.1088/0954-3899/34/12/N01 http://dx.doi.org/10.1088/0954-3899/34/12/N01 http://inspirehep.net/search?p=find+J+%22J.Phys.,G34,N343%22 http://dx.doi.org/10.1103/PhysRevLett.114.191802 https://arxiv.org/abs/1502.04155 http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.04155 http://dx.doi.org/10.1103/PhysRevD.93.092006 https://arxiv.org/abs/1603.06536 http://inspirehep.net/search?p=find+EPRINT+arXiv:1603.06536 http://dx.doi.org/10.1103/PhysRevD.82.074018 http://dx.doi.org/10.1103/PhysRevD.82.074018 https://arxiv.org/abs/1005.3457 http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.3457 http://dx.doi.org/10.1016/j.physletb.2013.03.024 https://arxiv.org/abs/1210.6718 http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6718 J H E P 1 2 ( 2 0 1 6 ) 1 2 3 [44] CMS collaboration, Measurement of tt production with additional jet activity, including b quark jets, in the dilepton decay channel using pp collisions at √ s = 8 TeV, Eur. Phys. J. C 76 (2016) 379 [arXiv:1510.03072] [INSPIRE]. [45] CMS collaboration, Measurement of the differential cross section for top quark pair production in pp collisions at √ s = 8 TeV, Eur. Phys. J. C 75 (2015) 542 [arXiv:1505.04480] [INSPIRE]. [46] CMS collaboration, Measurement of the tt production cross section in the all-jets final state in pp collisions at √ s = 8 TeV, Eur. Phys. J. C 76 (2016) 128 [arXiv:1509.06076] [INSPIRE]. [47] BaBar collaboration, B. Aubert et al., Study of inclusive production of charmonium mesons in B decay, Phys. Rev. D 67 (2003) 032002 [hep-ex/0207097] [INSPIRE]. [48] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE]. [49] S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE]. [50] S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE]. [51] L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE]. [52] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE]. [53] S. Alekhin et al., The PDF4LHC Working Group Interim Report, arXiv:1101.0536 [INSPIRE]. [54] M. Botje et al., The PDF4LHC Working Group Interim Recommendations, arXiv:1101.0538 [INSPIRE]. – 19 – http://dx.doi.org/10.1140/epjc/s10052-016-4105-x http://dx.doi.org/10.1140/epjc/s10052-016-4105-x https://arxiv.org/abs/1510.03072 http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.03072 http://dx.doi.org/10.1140/epjc/s10052-015-3709-x https://arxiv.org/abs/1505.04480 http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.04480 http://dx.doi.org/10.1140/epjc/s10052-016-3956-5 https://arxiv.org/abs/1509.06076 http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.06076 http://dx.doi.org/10.1103/PhysRevD.67.032002 https://arxiv.org/abs/hep-ex/0207097 http://inspirehep.net/search?p=find+EPRINT+hep-ex/0207097 http://dx.doi.org/10.1088/1126-6708/2009/02/007 https://arxiv.org/abs/0811.4622 http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.4622 http://dx.doi.org/10.1088/1126-6708/2008/03/038 https://arxiv.org/abs/0709.1027 http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.1027 http://dx.doi.org/10.1103/PhysRevD.93.033006 https://arxiv.org/abs/1506.07443 http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.07443 http://dx.doi.org/10.1140/epjc/s10052-015-3397-6 https://arxiv.org/abs/1412.3989 http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3989 http://dx.doi.org/10.1007/JHEP04(2015)040 http://dx.doi.org/10.1007/JHEP04(2015)040 https://arxiv.org/abs/1410.8849 http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8849 https://arxiv.org/abs/1101.0536 http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0536 https://arxiv.org/abs/1101.0538 http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0538 J H E P 1 2 ( 2 0 1 6 ) 1 2 3 The CMS collaboration Yerevan Physics Institute, Yerevan, Armenia V. Khachatryan, A.M. Sirunyan, A. Tumasyan Institut für Hochenergiephysik der OeAW, Wien, Austria W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler1, A. König, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz1 National Centre for Particle and High Energy Physics, Minsk, Belarus V. Mossolov, N. Shumeiko, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Université Libre de Bruxelles, Bruxelles, Belgium H. Brun, C. Caillol, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maer- schalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang2 Ghent University, Ghent, Belgium A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, D. Poyraz, S. Salva, R. Schöfbeck, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Université Catholique de Louvain, Louvain-la-Neuve, Belgium H. Bakhshiansohi, C. Beluffi3, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz Université de Mons, Mons, Belgium N. Beliy Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles – 20 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, A. Custódio, E.M. Da Costa, G.G. Da Silveira5, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote4, A. Vilela Pereira Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil S. Ahujaa, C.A. Bernardesb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, C.S. Moona, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, J.C. Ruiz Vargas Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vu- tova University of Sofia, Sofia, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China W. Fang6 Institute of High Energy Physics, Beijing, China M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen7, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang, J. Zhao State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. González Hernández, J.D. Ruiz Alvarez, J.C. Sanabria University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic, T. Susa University of Cyprus, Nicosia, Cyprus A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski – 21 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 Charles University, Prague, Czech Republic M. Finger8, M. Finger Jr.8 Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt E. El-khateeb9, S. Elgammal10, A. Mohamed11 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Peltola, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Miné, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Univer- sité de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France J.-L. Agram12, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte12, X. Coubez, J.-C. Fontaine12, D. Gelé, U. Goerlach, A.-C. Le Bihan, J.A. Merlin13, K. Skovpen, P. Van Hove Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France S. Gadrat Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, – 22 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov14, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret Georgian Technical University, Tbilisi, Georgia T. Toriashvili15 Tbilisi State University, Tbilisi, Georgia D. Lomidze RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany C. Autermann, S. Beranek, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, C. Schomakers, J.F. Schulte, J. Schulz, T. Verlage, H. Weber, V. Zhukov14 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thüer RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, G. Flügge, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl13 Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras16, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, E. Eren, E. Gallo17, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, P. Gunnellini, A. Harb, J. Hauk, M. Hempel18, H. Jung, A. Kalogeropoulos, O. Karacheban18, M. Kasemann, J. Keaveney, J. Kieseler, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann18, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.Ö. Sahin, P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, K.D. Trippkewitz, G.P. Van Onsem, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Hoffmann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo13, T. Peiffer, A. Perieanu, J. Poehlsen, C. Sander, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald – 23 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 Institut für Experimentelle Kernphysik, Karlsruhe, Germany C. Barth, C. Baus, J. Berger, E. Butz, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, S. Fink, R. Friese, M. Giffels, A. Gilbert, P. Goldenzweig, D. Haitz, F. Hartmann13, S.M. Heindl, U. Husemann, I. Katkov14, P. Lobelle Pardo, B. Maier, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, S. Röcker, F. Roscher, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis National and Kapodistrian University of Athens, Athens, Greece A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Ioánnina, Ioánnina, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary N. Filipovic Wigner Research Centre for Physics, Budapest, Hungary G. Bencze, C. Hajdu, P. Hidas, D. Horvath19, F. Sikler, V. Veszpremi, G. Vesztergombi20, A.J. Zsigmond Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi21, A. Makovec, J. Molnar, Z. Szillasi University of Debrecen, Debrecen, Hungary M. Bartók20, P. Raics, Z.L. Trocsanyi, B. Ujvari National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati, S. Choudhury22, P. Mal, K. Mandal, A. Nayak23, D.K. Sahoo, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, A. Mehta, M. Mittal, J.B. Singh, G. Walia University of Delhi, Delhi, India Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma – 24 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 Saha Institute of Nuclear Physics, Kolkata, India R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India P.K. Behera Bhabha Atomic Research Centre, Mumbai, India R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty13, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, B. Sutar Tata Institute of Fundamental Research-B, Mumbai, India S. Banerjee, S. Bhowmik24, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity24, G. Majumder, K. Mazumdar, T. Sarkar24, N. Wickramage25 Indian Institute of Science Education and Research (IISER), Pune, India S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM), Tehran, Iran H. Behnamian, S. Chenarani26, E. Eskandari Tadavani, S.M. Etesami26, A. Fahim27, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi28, F. Rezaei Hosseinabadi, B. Safarzadeh29, M. Zeinali University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy M. Abbresciaa,b, C. Calabriaa,b, C. Caputoa,b, A. Colaleoa, D. Creanzaa,c, L. Cristellaa,b, N. De Filippisa,c, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, G. Maggia,c, M. Maggia, G. Minielloa,b, S. Mya,b, S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c, R. Radognaa,b, A. Ranieria, G. Selvaggia,b, L. Silvestrisa,13, R. Vendittia,b, P. Verwilligena INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy G. Abbiendia, C. Battilana, D. Bonacorsia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, S.S. Chhibraa,b, G. Codispotia,b, M. Cuffiania,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa,b, P. Giacomellia, C. Grandia, L. Guiduccia,b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa,b, A. Perrottaa, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b, N. Tosia,b,13 INFN Sezione di Catania a, Università di Catania b, Catania, Italy S. Albergoa,b, M. Chiorbolia,b, S. Costaa,b, A. Di Mattiaa, F. Giordanoa,b, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b – 25 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy G. Barbaglia, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, V. Goria,b, P. Lenzia,b, M. Meschinia, S. Paolettia, G. Sguazzonia, L. Viliania,b,13 INFN Laboratori Nazionali di Frascati, Frascati, Italy L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera13 INFN Sezione di Genova a, Università di Genova b, Genova, Italy V. Calvellia,b, F. Ferroa, M. Lo Veterea,b, M.R. Mongea,b, E. Robuttia, S. Tosia,b INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy L. Brianza13, M.E. Dinardoa,b, S. Fiorendia,b, S. Gennaia, A. Ghezzia,b, P. Govonia,b, M. Malberti, S. Malvezzia, R.A. Manzonia,b,13, B. Marzocchia,b, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Pigazzini, S. Ragazzia,b, T. Tabarelli de Fatisa,b INFN Sezione di Napoli a, Università di Napoli ’Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy S. Buontempoa, N. Cavalloa,c, G. De Nardo, S. Di Guidaa,d,13, M. Espositoa,b, F. Fabozzia,c, A.O.M. Iorioa,b, G. Lanzaa, L. Listaa, S. Meolaa,d,13, P. Paoluccia,13, C. Sciaccaa,b, F. Thyssen INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy P. Azzia,13, N. Bacchettaa, L. Benatoa,b, M. Biasottoa,30, D. Biselloa,b, A. Bolettia,b, A. Carvalho Antunes De Oliveiraa,b, P. Checchiaa, M. Dall’Ossoa,b, P. De Castro Manzanoa, T. Dorigoa, F. Fanzagoa, U. Gasparinia,b, A. Gozzelinoa, S. Lacapraraa, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia,b,13, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, S. Venturaa, M. Zanetti, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea,b INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy A. Braghieria, A. Magnania,b, P. Montagnaa,b, S.P. Rattia,b, V. Rea, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vituloa,b INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy L. Alunni Solestizia,b, G.M. Bileia, D. Ciangottinia,b, L. Fanòa,b, P. Laricciaa,b, R. Leonardia,b, G. Mantovania,b, M. Menichellia, A. Sahaa, A. Santocchiaa,b INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy K. Androsova,31, P. Azzurria,13, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia, M.A. Cioccia,31, R. Dell’Orsoa, S. Donatoa,c, G. Fedi, A. Giassia, M.T. Grippoa,31, F. Ligabuea,c, T. Lomtadzea, L. Martinia,b, A. Messineoa,b, F. Pallaa, A. Rizzia,b, A. Savoy- Navarroa,32, P. Spagnoloa, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia – 26 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 INFN Sezione di Roma a, Università di Roma b, Roma, Italy L. Baronea,b, F. Cavallaria, M. Cipriania,b, G. D’imperioa,b,13, D. Del Rea,b,13, M. Diemoza, S. Gellia,b, E. Longoa,b, F. Margarolia,b, P. Meridiania, G. Organtinia,b, R. Paramattia, F. Preiatoa,b, S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b INFN Sezione di Torino a, Università di Torino b, Torino, Italy, Università del Piemonte Orientale c, Novara, Italy N. Amapanea,b, R. Arcidiaconoa,c,13, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, C. Biinoa, N. Cartigliaa, F. Cennaa,b, M. Costaa,b, R. Covarellia,b, A. Deganoa,b, N. Demariaa, L. Fincoa,b, B. Kiania,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M.M. Obertinoa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, F. Raveraa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b, A. Staianoa, P. Traczyka,b INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, C. La Licataa,b, A. Schizzia,b, A. Zanettia Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang Chonbuk National University, Jeonju, Korea A. Lee Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, T.J. Kim Korea University, Seoul, Korea S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, B. Lee, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea M. Choi, H. Kim, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu Sungkyunkwan University, Suwon, Korea Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali33, F. Mohamad Idris34, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli – 27 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz35, A. Hernandez-Almada, R. Lopez-Fernandez, R. Magaña Villalba, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autónoma de San Luis Potośı, San Luis Potośı, Mexico A. Morelos Pineda University of Auckland, Auckland, New Zealand D. Krofcheck University of Canterbury, Christchurch, New Zealand P.H. Butler National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk36, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak Laboratório de Instrumentação e F́ısica Experimental de Part́ıculas, Lisboa, Portugal P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia Joint Institute for Nuclear Research, Dubna, Russia M. Gavrilenko, A. Golunov, I. Golutvin, N. Gorbounov, A. Kamenev, V. Karjavin, V. Ko- renkov, A. Lanev, A. Malakhov, V. Matveev37,38, V.V. Mitsyn, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, N. Skatchkov, V. Smirnov, E. Tikhonenko, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim39, E. Kuznetsova40, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin – 28 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 Institute for Theoretical and Experimental Physics, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology A. Bylinkin38 National Research Nuclear University ’Moscow Engineering Physics Insti- tute’ (MEPhI), Moscow, Russia M. Chadeeva41, O. Markin, E. Tarkovskii P.N. Lebedev Physical Institute, Moscow, Russia V. Andreev, M. Azarkin38, I. Dremin38, M. Kirakosyan, A. Leonidov38, S.V. Rusakov, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin42, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, N. Korneeva, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Perfilov, V. Savrin Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov43, Y.Skovpen43 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Kon- stantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic44, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic Centro de Investigaciones Energéticas Medioambientales y Tec- nológicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Col- ino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autónoma de Madrid, Madrid, Spain J.F. de Trocóniz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, I. Suárez Andrés, J.M. Vizan Garcia – 29 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 Instituto de F́ısica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain I.J. Cabrillo, A. Calderon, J.R. Castiñeiras De Saa, E. Curras, M. Fernandez, J. Garcia- Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, A. Bonato, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, M. D’Alfonso, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco45, M. Dobson, B. Dorney, T. du Pree, D. Duggan, M. Dünser, N. Dupont, A. Elliott-Peisert, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Guthoff, J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, H. Kirschenmann, V. Knünz, A. Kornmayer13, M.J. Kortelainen, K. Kousouris, M. Krammer1, P. Lecoq, C. Lourenço, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, A. Racz, T. Reis, G. Rolandi46, M. Rovere, M. Ruan, H. Sakulin, J.B. Sauvan, C. Schäfer, C. Schwick, M. Seidel, A. Sharma, P. Silva, P. Sphicas47, J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns48, G.I. Veres20, N. Wardle, A. Zagozdzinska36, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe Institute for Particle Physics, ETH Zurich, Zurich, Switzerland F. Bachmair, L. Bäni, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, P. Eller, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomte†, W. Lus- termann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schönenberger, A. Starodumov49, V.R. Tavolaro, K. Theofilatos, R. Wallny Universität Zürich, Zurich, Switzerland T.K. Aarrestad, C. Amsler50, L. Caminada, M.F. Canelli, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, Y. Yang National Central University, Chung-Li, Taiwan V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdnyakov, S.S. Yu – 30 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 National Taiwan University (NTU), Taipei, Taiwan Arun Kumar, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Paganis, A. Psallidas, J.f. Tsai, Y.M. Tzeng Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University, Adana, Turkey A. Adiguzel, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal51, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut52, K. Ozdemir53, S. Ozturk54, A. Polatoz, B. Tali55, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey B. Bilin, S. Bilmis, B. Isildak56, G. Karapinar57, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey E. Gülmez, M. Kaya58, O. Kaya59, E.A. Yetkin60, T. Yetkin61 Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak, S. Sen62 Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk, P. Sorokin University of Bristol, Bristol, United Kingdom R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold63, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom K.W. Bell, A. Belyaev64, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, R. Lucas63, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, – 31 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 A. Nikitenko49, J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta65, T. Virdee13, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. Teodor- escu, M. Turner Baylor University, Waco, U.S.A. A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika The University of Alabama, Tuscaloosa, U.S.A. O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, U.S.A. D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou Brown University, Providence, U.S.A. G. Benelli, E. Berry, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, R. Syarif University of California, Davis, Davis, U.S.A. R. Breedon, G. Breto, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay University of California, Los Angeles, U.S.A. R. Cousins, P. Everaerts, A. Florent, J. Hauser, M. Ignatenko, D. Saltzberg, E. Takasugi, V. Valuev, M. Weber University of California, Riverside, Riverside, U.S.A. K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, H. Wei, S. Wim- penny, B. R. Yates University of California, San Diego, La Jolla, U.S.A. J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech66, C. Welke, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara, Santa Barbara, U.S.A. R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, N. Mccoll, S.D. Mullin, A. Ovcharova, J. Richman, D. Stuart, I. Suarez, J. Yoo – 32 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 California Institute of Technology, Pasadena, U.S.A. D. Anderson, A. Apresyan, J. Bendavid, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, V. Azzolini, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev University of Colorado Boulder, Boulder, U.S.A. J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, S.R. Wagner Cornell University, Ithaca, U.S.A. J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek Fairfield University, Fairfield, U.S.A. D. Winn Fermi National Accelerator Laboratory, Batavia, U.S.A. S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir†, M. Cremonesi, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, C. Newman-Holmes†, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck University of Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, P. Ma, K. Matchev, H. Mei, P. Milenovic67, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, U.S.A. S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, U.S.A. A. Ackert, J.R. Adams, T. Adams, A. Askew, S. Bein, B. Diamond, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, A. Santra, M. Weinberg – 33 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 Florida Institute of Technology, Melbourne, U.S.A. M.M. Baarmand, V. Bhopatkar, S. Colafranceschi68, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC), Chicago, U.S.A. M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O’Brien, I.D. Sandoval Gonzalez, P. Turner, N. Varelas, H. Wang, Z. Wu, M. Zakaria, J. Zhang The University of Iowa, Iowa City, U.S.A. B. Bilki69, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khris- tenko, J.-P. Merlo, H. Mermerkaya70, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok71, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, U.S.A. I. Anderson, B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, M. Osherson, J. Roskes, U. Sarica, M. Swartz, M. Xiao, Y. Xin, C. You The University of Kansas, Lawrence, U.S.A. A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, C. Bruner, J. Castle, L. Forthomme, R.P. Kenny III, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, U.S.A. A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, U.S.A. F. Rebassoo, D. Wright University of Maryland, College Park, U.S.A. C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, U.S.A. D. Abercrombie, B. Allen, A. Apyan, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, K. Tatar, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova University of Minnesota, Minneapolis, U.S.A. A.C. Benvenuti, R.M. Chatterjee, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz – 34 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 University of Mississippi, Oxford, U.S.A. J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, R. Bartek, K. Bloom, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, F. Meier, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Buffalo, Buffalo, U.S.A. M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, U.S.A. G. Alverson, E. Barberis, D. Baumgartel, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood Northwestern University, Evanston, U.S.A. S. Bhattacharya, K.A. Hahn, A. Kubik, A. Kumar, J.F. Low, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, U.S.A. N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko37, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, U.S.A. J. Alimena, L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, R. Hughes, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, U.S.A. S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Mar- low, T. Medvedeva, K. Mei, M. Mooney, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully, A. Zuranski University of Puerto Rico, Mayaguez, U.S.A. S. Malik Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, K. Jung, D.H. Miller, N. Neumeister, X. Shi, J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu Purdue University Calumet, Hammond, U.S.A. N. Parashar, J. Stupak Rice University, Houston, U.S.A. A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel – 35 – J H E P 1 2 ( 2 0 1 6 ) 1 2 3 University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti Rutgers, The State University of New Jersey, Piscataway, U.S.A. J.P. Chou, E. Contreras-Campana, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, K. Nash, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, U.S.A. O. Bouhali72, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon73, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, U.S.A. N. Akchurin, C. Cowden, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, U.S.A. A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, U.S.A. M.W. Arenton, P. Barria, B. Cox, J. Good