ANA MARIA CHAUX GUTIÉRREZ CRIOGÉIS DE PROTEÍNA-PECTINA COMO CARREADORES DE ÓLEO ESSENCIAL DE PIMENTA ROSA: APLICAÇÃO EM EMBALAGENS ATIVAS Relatório de Pós-doutorado realizado na Universidade Estadual Paulista (UNESP), Faculdade de Engenharia (FEIS), Ilha Solteira. Supervisor(a): Profa. Dra. Marcia Regina de Moura Aouada Cossupervisor(a): Profa. Dra. Natália Soares Janzantti CAPES-PrInt - Nº do Processo 00.889.834/0001-08 Ilha Solteira 2024 1 Relatório de atividades referente ao período de Outubro/2023 a Setembro/2024 Jovem Talento com experiência no exterior (JTEE): Projeto CAPES-PrInt- Unesp Edital PROPG/PROPE/AREX nº 40/2023 Criogéis de proteína-pectina como carreadores de óleo essencial de pimenta rosa: aplicação em embalagens ativas Dra. Ana María Chaux Gutiérrez Dra. Marcia Regina de Moura Aouada Bolsista Supervisora Instituição Sede: Universidade Estadual Paulista “Júlio de Mesquita Filho” – Facultade de Engenharia (FEIS) - Departamento de Química e Física PPG Ciência dos Materiais (PPGCM) 2024 2 Resumo do plano da proposta original O projeto busca desenvolver uma nova tecnologia de embalagem ativa para aumentar a vida útil de morangos, utilizando criogéis de proteína-pectina como carreadores do óleo essencial de pimenta rosa. Os criogéis, que são hidrogéis secos por liofilização, serão produzidos a partir de duas proteínas diferentes: albumina e proteína de grão de bico, combinadas com pectina. A escolha dessas proteínas se baseia em suas propriedades funcionais e capacidade de formar géis com características específicas. O óleo essencial de pimenta rosa, rico em compostos bioativos como monoterpenos e sesquiterpenos, será incorporado aos criogéis durante o processo de produção. A encapsulação do óleo essencial visa protegê-lo da degradação e permitir sua liberação gradual na embalagem, garantindo a atividade antimicrobiana por um período prolongado. A pesquisa investigará a influência da composição dos criogéis (tipo de proteína e concentração de pectina) nas propriedades físico-químicas, térmicas, atividade antimicrobiana e antioxidante. Além disso, será avaliada a eficiência de encapsulação do óleo essencial e sua liberação em diferentes condições de armazenamento. A aplicação dos criogéis em embalagens de morangos será avaliada em estudos de vida útil, monitorando as características físico-químicas (cor, textura, pH) e microbiológicas dos frutos durante o armazenamento. Espera-se que os resultados da pesquisa contribuam para o desenvolvimento de uma alternativa inovadora e sustentável para a conservação de alimentos, com potencial aplicação em diferentes frutas e hortaliças, além de gerar conhecimento científico sobre a interação entre biopolímeros, óleos essenciais e microrganismos em sistemas de embalagens ativas. . 3 Etapas realizadas durante o período 01/10/2023 a 30/09/2024 Atividade Descrição 1 Compra das matérias primas e insumos para a pesquisa. 2 Avaliação da albumina, a proteína de grão de bico e a pectina de baixo metoxilo amidada para a obtenção de géis. 3 Submissão do curso tópicos especiais “Aplicação de biopolímeros em embalagens ativas para alimentos” ao conselho do PPGCM. 4 Produção dos criogéis a partir de albumina e pectina carregados com óleo essencial de pimenta rosa. 5 Avaliação das propriedades físico-químicas, térmicas e microbiológicas dos criogéis carregados com óleo de pimenta rosa. 6 Ministrar o curso tópicos especiais “Aplicação de biopolímeros em embalagens ativas para alimentos” 7 Análises de resultados, redação e submissão do artigo científico a periódico qualis A. 8 Treinamento em cromatografia gasosa. 9 Início etapa de aplicação dos criogéis carregados com óleo de pimenta rosa em embalagens ativas. Descrição das atividades desenvolvidas durante o período 01/10/2023 a 30/09/2024 Durante o período foram desenvolvidas todas as etapas descritas anteriormente, a fim de dar cumprimento aos objetivos planejados para o projeto de pesquisa. A atividade 1 consistiu na aquisição das matérias-primas e insumos necessários para o desenvolvimento da pesquisa. A seleção dos fornecedores priorizou empresas com prazos de entrega mais curtos, os quais variaram, em média, entre duas e quatro semanas. A atividade 2 consistiu em testar diferentes concentrações de albumina (ALB) e proteína de grão de bico (BIC), bem como a temperatura de desnaturação da proteína. Diante da indisponibilidade comercial da proteína de grão de bico, 4 procedeu-se à sua extração a partir da farinha, visando à obtenção da proteína isolada. Adicionalmente, foram avaliadas diferentes proporções de pectina de baixa metoxilação amidada (PEC) para a formação dos géis. Os testes preliminares indicaram que a concentração de 5% de ALB e a temperatura de desnaturação de 85°C foram as mais adequadas para a formação de géis. Com base nesses resultados, foram preparados géis de ALB pura e com as seguintes proporções de ALB:PEC: 70:30, 50:50 e 30:70. Cabe ressaltar que a proteína de grão de bico, após extraída, não apresentou propriedades adequadas para a formação de géis, sendo, portanto, descartada para as etapas subsequentes da pesquisa. Em relação à atividade 3, foi elaborado o plano de aula da disciplina "Tópicos Especiais: Aplicação de biopolímeros em embalagens ativas para alimentos", com carga horária de 8 créditos e 120 horas. O plano foi submetido à aprovação do Conselho do Programa de Pós-Graduação em Ciência dos Materiais, obtendo parecer favorável, conforme registrado na Deliberação nº 283/2023. A atividade 4 dedicou-se à obtenção dos criogéis carregados com óleo essencial de pimenta rosa. Os testes realizados determinaram que a concentração ideal de óleo essencial para incorporação nos criogéis seria de 3% (m/m). A atividade 5 consistiu na caracterização dos criogéis obtidos, utilizando as condições definidas nas atividades 2 e 4. Foram avaliadas a eficiência de encapsulação, propriedades térmicas, atividade antioxidante e antimicrobiana, microestrutura e estruturais. Os dados completos da caracterização dos criogéis encontram-se disponíveis no repositório institucional, acessível através do seguinte link: https://drive.google.com/drive/folders/1WtASxq41gSNy9Dm9xc54anGqzo3GvYEZ ?usp=drive_link A atividade 6, realizada entre 15 de abril e 03 de maio de 2024, consistiu em ministrar a disciplina "Tópicos Especiais: Aplicação de biopolímeros em embalagens ativas para alimentos". Com carga horária de 26 horas, a disciplina foi oferecida aos https://drive.google.com/drive/folders/1WtASxq41gSNy9Dm9xc54anGqzo3GvYEZ?usp=drive_link https://drive.google.com/drive/folders/1WtASxq41gSNy9Dm9xc54anGqzo3GvYEZ?usp=drive_link 5 alunos de mestrado e doutorado do Programa de Ciência dos Materiais, contando com a participação de 6 discentes. A atividade 7 compreendeu a análise dos resultados obtidos na atividade 5, culminando na redação e submissão de um artigo científico ao periódico “Processes”, o que resultou na publicação. Chaux-Gutiérrez, A.M.; Pérez- Monterroza, E.J.; Cattelan, M.G.; Nicoletti, V.R.; Moura, M.R.d. Encapsulation of Pink Pepper Essential Oil (Schinus terebinthifolius Raddi) in Albumin and Low- Methoxyl Amidated Pectin Cryogels. Processes 2024, 12, 1681. https://doi.org/10.3390/pr12081681. A publicação em questão possui Qualis A4, atestando sua relevância e contribuição científica. A atividade 8, que visa dar continuidade à fase de aplicação dos criogéis em embalagens ativas, depende da análise dos compostos voláteis do óleo essencial por cromatografia gasosa. Essa técnica permite identificar e quantificar os compostos com potencial antimicrobiano para a conservação do morango. No entanto, o cronograma da atividade sofreu atrasos devido a alguns imprevistos. Inicialmente, houve atraso na entrega do ar sintético, essencial para o funcionamento do cromatógrafo. Posteriormente, o equipamento apresentou problemas com a bateria e vazamentos, demandando a contratação de um técnico especializado. A liberação da verba para o serviço e o agendamento da visita do técnico também contribuíram para o atraso na execução da atividade. Superadas essas dificuldades, o treinamento para utilização do equipamento foi realizado e a fase de aplicação dos criogéis conseguiu ser iniciada. A atividade 9 marcou o início da fase de aplicação dos criogéis como embalagens ativas. Com base nos resultados da atividade 5, foram selecionados dois tipos de criogéis, com proporções 50:50 e 30:70 de ALB:PEC, para serem aplicados nas embalagens. Os testes foram conduzidos a 4°C durante 7 dias, e as seguintes propriedades físico-químicas foram avaliadas cor, pH, acidez titulável, textura e conteúdo de antocianinas. Além disso, foram realizadas análises microbiológicas para avaliar a eficácia dos criogéis na inibição do crescimento microbiano. https://doi.org/10.3390/pr12081681 6 Apesar de todos os dados terem sido coletados, o período de pós-doutorado se encerrou antes que fosse possível analisar os resultados e redigir um segundo artigo científico. Os dados encontram-se no link https://drive.google.com/drive/folders/1WtASxq41gSNy9Dm9xc54anGqzo3GvYEZ ?usp=drive_link Além das atividades descritas anteriormente para o desenvolvimento da pesquisa, outras atividades foram realizadas durante este período, incluindo a coautoria do seguinte artigo científico: Cavalcante Neto, A.A., Chaux-Gutiérrez, A.M., Pérez-Monterroza, E.J. et al. Powdered cuxá sauce from Hibiscus sabdariffa L. leaves obtained by foam-mat drying. J Food Sci Technol (2024). https://doi.org/10.1007/s13197-024-06067-0. https://drive.google.com/drive/folders/1WtASxq41gSNy9Dm9xc54anGqzo3GvYEZ?usp=drive_link https://drive.google.com/drive/folders/1WtASxq41gSNy9Dm9xc54anGqzo3GvYEZ?usp=drive_link https://doi.org/10.1007/s13197-024-06067-0 7 1. Introdução Atualmente, tem crescido o interesse pelas substâncias extraídas de fontes naturais como ervas e especiarias, devido a que apresentam propriedades antimicrobiana, antioxidante, antiviral e inseticida (Asbahani et al., 2015; Calo et al., 2015; Cook & Lanaras, 2016; Gonçalves et al., 2017). Especificamente, a pimenta rosa (Schinus terebinthifolia Raddi), um fruto nativo do Brasil, é usada na cozinha como condimento devido a seu sabor adocicado e picante, destaca-se pelas suas propriedades antioxidantes, antidiabéticas e anti-inflamatórias (Barreira et al., 2023; Oliveira et al., 2020). O óleo essencial extraído da pimenta rosa, possui atividade antimicrobiana, devido aos monoterpenos β-mirceno, β-pineno, α-pineno e limoneno e ao sesquiterpeno β-cubebeno, os quais têm a capacidade de reduzir a quantidade de células viáveis de L. monocytogenes, Escherichia coli, S. Typhimurium (Dannenberg et al., 2019) (Dannenberg e de bactérias mesófilas aeróbias (Locali-Pereira et al., 2021). Porém, a estabilidade destes compostos se vê afetada por fatores tais como temperatura, luz e umidade o que acelera a degradação e diminui a suas propriedades antioxidante e antimicrobiana (Ali Shabkhiz et al., 2021; Bao et al., 2019; Benavides et al., 2016; Deng et al., 2020; Locali-Pereira et al., 2020). Por esta razão, tem-se usados os criogels (materiais obtidos por liofilização de hidrogéis) (Betz et al., 2012; Horvat et al., 2017), produzidos a partir de biopolímeros como os polissacarídeos e as proteínas, os quais fornecem grande proteção como material de parede, ajudando a reter compostos voláteis (Ali Shabkhiz et al., 2021; Alsakhawy et al., 2022; Atencio et al., 2020; Caló & Khutoryanskiy, 2014; Cui et al., 2021; Farjami et al., 2015). Em esta proposta pretende-se desenvolver criogéis a partir de proteína de albumina (ALB) e de grão de bico (BIC) junto à pectina de baixa metoxilação amidada (PEC), com boa capacidade para manter a atividade antioxidante e antimicrobiana do óleo essencial de pimenta rosa. Além disso, deseja-se estudar a aplicabilidade dessa matriz (proteína-óleo-polissacarídeo) em forma de sachê para ser incorporado em um sistema de embalagem do tipo ativa, para seu uso na proteção do morango, com o objetivo de inibir ou reduzir o crescimento microbiano e aumentar o tempo de vida de prateleira (Batista et al., 2019; Locali-Pereira et al., 2021; Manzoor et al., 2022). 8 2. Objetivos • Desenvolver criogéis de albumina - pectina de baixa metoxilação amidada (ALB-PEC), e de proteína de grão de bico - pectina de baixa metoxilação amidada (BIC-PEC), com características estruturais adequadas para a encapsulação e liberação controlada dos compostos bioativos de óleo de pimenta rosa. • Desenvolver embalagens ativas a partir dos criogéis e do óleo essencial de pimenta rosa para aumentar o tempo de vida de prateleira do morango. 3. Materiais Óleo essencial de pimenta rosa foi fornecido por Ferquima (Vargem Grande Paulista, SP, Brasil). A farinha de grão de bico (BIC) e a pectina de baixa metoxilação amidada foram obtidas de Ingredientes Online (São Paulo, SP, Brasil). A albumina comercial de clara de ovo foi obtida de Natuovos Ltda. 3.1 Obtenção de proteína de grão de bico O processo de obtenção da proteína isolada de grão de bico foi realizado segundo Papalamprou et al. (2010) com modificações. A farinha de grão de bico foi submetida a um processo de eliminação da gordura. Posteriormente, foi preparada uma suspensão ao 10% m/v, e o pH foi ajustado a 8 com uma solução de NaOH 2M. A suspensão foi submetida a agitação constante por 1 hora, e posteriormente centrifugada a 4500 x g durante 30 minutos a 25°C, o pH do sobrenadante foi ajustado a 4,3 com HCL 2N e centrifugado a 4500 x g por 20 minutos a 4°C. O sedimento obtido foi dissolvido em água e neutralizado com NaOH 0.1 M, depois foi liofilizado e armazenado a 8°C para as posteriores análises. O conteúdo de proteína do extrato concentrado foi determinado pelo método Kjeldahl. 9 3.2 Preparação do criogel A encapsulação do óleo essencial de pimenta rosa foi realizada acordo com a metodologia proposta por Volic et al. (2018) e Chaux-Gutiérrez et al. (2019) com algumas modificações. Inicialmente foram preparadas soluções de albumina (ALB) (5 % m/m), proteína de grão de bico (BIC) (5 % m/m) e de pectina de baixa metoxilação amidada (PEC) (5 % m/m) separadamente, as quais foram mantidas sob agitação até dissolução completa. O pH das soluções foi ajustado em 8 usando HCl (0,1 M) ou NaOH (0,1 M). As soluções de ALB e BIC foram aquecidas a 85 °C por 15 minutos e resfriadas até 40°C e, posteriormente, foram misturadas com a de PEC segundo o planejamento experimental (Chaux-Gutiérrez 2019). Finalmente, foi adicionado o óleo de pimenta rosa (3 % m/m), e emulsionado usando um homogeneizador (T-25 ULTRATURRAX®, IKA, Alemanha) a 18.000 rpm por 4 minutos (Locali Pereira et al., 2019). À dispersão preparada foi adicionado cloreto de cálcio (2 % m/v). Os géis foram colocados em caixas de Petri e armazenados a 4 °C até a formação do gel. Finalmente os géis foram congelados a -18 °C e liofilizados. 3.2 Caracterização dos criogéis carregados com óleo de pimenta rosa 3.2.1 Espectrometria de infravermelho FTIR Os espectros de infravermelho foram obtidos em um espectrômetro Spectrum One Spectrum (Perkin-Elmer Corp, Shelton, CT, USA). A varredura será conduzida de 4000 a 400 cm-1. 3.2.2 Conteúdo de óleo de pimenta rosa e eficiência de encapsulação (EE) A eficiência de encapsulamento dos criogéis foi determinada de acordo com a metodologia de Abreu et al. (2012) com algumas modificações. Cem miligramas de criogéis foram dispersos em 5 mL de etanol. A mistura foi centrifugada a 9000 rpm por 5 min a 25 °C usando uma separação centrífuga (Z 326 K, HERMLE Labortechnik GmbH, WehinGen, Baden-Würtemberg, Alemanha). O teor de óleo essencial de pimenta rosa foi medido usando um espectrofotômetro UV-vis (SP-200, Biospectro, Curitiba, Paraná, Brasil) em um comprimento de onda de 291 nm, 10 usando uma curva de calibração (y = 0,7269x + 0,223, R2 = 0,9949) de óleo essencial em solução de etanol (0,2–1,2 mg/mL). A eficiência de encapsulamento (EE%) foi calculada de acordo com a Equação 1. 𝐸𝐸(%) = 𝑀 𝑀0 × 100 (1) onde M é a quantidade (mg) de óleo nos criogéis carregados e Mo é a quantidade inicial de óleo (mg) adicionada à preparação do criogéis. 3.2.3 Atividade antioxidante Método de DPPH A capacidade antioxidante do óleo essencial encapsulado e não encapsulado foi determinada pelo método de DPPH. Os extratos serão misturados com 1 mL de uma solução de DPHH (90 μM), depois será completado até volume final de 4 mL com metanol ao 95 %. A absorbância foi determinada a 515 nm em espectrofotômetro UV/vis (Hussain et al., 2008). Método ABTS*+ A capacidade antioxidante do óleo essencial encapsulado e não encapsulado foi também determinada pelo método ABTS*+ segundo a metodologia proposta por Re et al. (1999). Os extratos foram preparados usando uma solução de metanol: água. A leitura da absorbância será realizada a 730 nm em espectrofotômetro. A quantificação foi realizada por meio de uma curva padrão usando uma solução aquosa de Trolox (0-200 μM/L). Compostos fenólicos totais O conteúdo de compostos fenólicos presentes no emulgel foi determinado usando o método de Folin-Ciocalteu (Singleton et al., 1999). Os extratos foram preparados usando metanol. As medidas de absorbância foram realizadas a 725 nm em espectrofotómetro UV/vis. A quantificação foi realizada usando una curva de calibração de soluciones aquosas de ácido gálico (0-500 ppm). Os resultados foram 11 expressos em mg de ácido gálico equivalente (EAG) por gramo. As análises foram realizadas em triplicata. 3.2.4 Análises térmicas O comportamento térmico do óleo essencial de pimenta rosa e dos criogéis foi avaliado em um calorímetro diferencial de varredura (Pyris Series, Perkin Elmer), previamente calibrado com índio. A varredura foi realizada de 50 a 200 °C a uma velocidade de 10 °C/ min (Locali-Pereira et al., 2020) 3.2.5 Atividade Antimicrobiana O efeito antimicrobiano in vitro dos criogéis contendo óleo de pimenta rosa foi determinado segundo a metodologia descrita por Locali-Pereira et al. (2020) para bactérias Gram-positivas (Staphylococcus aureus e Bacillus cereus) e Gram- negativas (Escherichia coli). 3.3 Aplicação dos criogéis carregados com óleo de pimenta rosa na embalagem do morango A avaliação dos efeitos de embalagens ativas contendo óleo essencial de pimenta rosa encapsulado em criogéis no armazenamento de morangos foi feita ao longo de 7 dias, a 4 ºC. Amostras foram coletadas para avaliação de suas características físico-químicas em intervalos de 0, 3, 5 e 7 dias a partir do armazenamento. Amostras de cerca de 100 g de morango serão armazenadas em pequenas caixas de poli(tereftalato de etileno) termo formadas. Partículas de criogéis liofilizados contendo óleo de pimenta rosa serão colocadas em pequenos envoltórios de tecido (sachês) no fundo das embalagens (Locali-Pereira et al., 2021) As caixas (duas para cada período de amostragem) foram armazenadas em câmaras de temperatura controlada. Também foram avaliadas amostras controle, isto é, armazenadas sem a presença de criogel. Durante o armazenamento foram avaliadas as seguintes propriedades físico- químicas dos morangos: perda de massa, sólidos solúveis, acidez triturável, pH, cor, firmeza, e análises microbiológicas. 12 3.3.1 Perda de massa A perda de massa foi expressa como uma porcentagem da massa inicial. A mudança será calculada seguindo a equação 2 (Wigati et al., 2023). 𝑃𝑒𝑟𝑑𝑎 𝑑𝑒 𝑚𝑎𝑠𝑠𝑎 (%) = 𝑀𝑎𝑠𝑠𝑎 𝑖𝑛𝑖𝑐𝑖𝑎𝑙−𝑀𝑎𝑠𝑠𝑎 𝑑𝑢𝑟𝑎𝑛𝑡𝑒 𝑜 𝑎𝑟𝑚𝑎𝑧𝑒𝑛𝑎𝑚𝑒𝑛𝑡𝑜 𝑀𝑎𝑠𝑠𝑎 𝑖𝑛𝑖𝑐𝑖𝑎𝑙 × 100 (2) 3.3.2 Sólidos solúveis totais, pH e acidez titulável Os sólidos solúveis foram determinados usando um refratômetro (Atago, Japão) e o pH usando pHmetro Pro-03-0820 (Akso, Brasil) a 25 °C. A acidez titulável foi determinada pesando-se 2 g de morangos previamente homogeneizados e diluídos em 20 mL de água destilada, a mistura foi titulada usando uma solução de NaOH (0.1 M) e fenolftaleína (0.1 %) como indicador (AOAC, 1995) 3.3.3 Análises de antocianinas A extração das antocianinas foi realizada utilizando solução aquosa de metanol e acetona (2:2:1 v/v) acidificada com ácido fórmico (0,1%). O teor de antocianina monomérica foi determinado pelo método espectrofotométrico diferencial de pH. O pH foi ajustado para 1,0 e 4,5 utilizando tampão cloreto de potássio (0,025 M) e tampão acetato de sódio (0,04 M). A absorbância foi medida a 520 e 700 nm usando espectrômetro UV/Vis (UV-3000, Shanghai Mapada Instruments Co., Ltd., Shanghai, China) (Martynenko & Chen, 2016). 3.3.4 Cor A cor da superfície dos morangos será medida com um colorímetro ((Konica Minolta, Japão), previamente calibrado. Os parâmetros de cor obtidos serão L*, a* e b* ((Wigati et al., 2023)a partir dos quais serão calculados o chroma e o ângulo hue. 3.3.5 Firmeza A firmeza das frutas foi medida usando analisador de textura (TA.XT/Plus/50), com probe do tipo êmbolo cilíndrico. Os valores serão apresentados em Newton (Locali- Pereira et al., 2021). 13 3.3.6 Análises microbiológicas As análises microbiológicas dos morangos foram realizadas para a quantificação de bolores e leveduras e mesófilos anaeróbios. 3.3.7 Cromatografia gasosa A quantificação dos compostos presentes no óleo essencial de pimenta rosa e dos respectivos teores conteúdos nos criogéis será realizada usando um cromatógrafo equipado com detector de ionização de chama (GC-FID) (CG-2014, Shimadzu, Japan), usando uma coluna capilar de sílica Rtx-5 (30 m X 0.25 mm X 0.25 µm); o nitrogênio será usado como gás de arrastre a uma velocidade de 1 mL/min. A identificação dos compostos voláteis foi realizada por cromatografia gasosa acoplada à espectrofotometria de massa (GC – MS QP2010 SE, Shimadzu, Japão). Uma coluna capilar de sílica fundida Rtx-5MS (30 m × 0,25 mm × 0,25 μm) foi usado com hélio como gás de arraste a uma vazão constante de 1 mL/min. Os mesmos parâmetros cromatográficos descritos para GC-FID foram utilizados em GC-MS. As temperaturas da interface e da fonte de ionização foram 240 °C e 230 °C, respectivamente, com impacto de elétrons a 70 eV e massa entre 35 e 350 m/z. A identificação do pico foi realizada por comparação do índice de retenção linear usando o NIST Chemistry WebBook e bibliotecas espectrais de massa (NIST MS Search versão 2.0 e banco de dados Wiley). Uma mistura padrão de alcanos (C7- C30) (Sigma-Aldrich®), diluída 1:2 em hexano, foi injetada em GC-FID e GC-MS nas mesmas condições para cálculo do índice de retenção linear (Locali-Pereira et al., 2020) 4. Resultados Os resultados e discussão do objetivo: Desenvolver criogéis de albumina - pectina de baixa metoxilação amidada (ALB-PEC), e de proteína de grão de bico - pectina de baixa metoxilação amidada (BIC-PEC), com características estruturais adequadas para a encapsulação e liberação controlada dos compostos bioativos de 14 óleo de pimenta rosa, são apresentados no artigo Encapsulation of Pink Pepper Essential Oil (Schinus terebinthifolius Raddi) in Albumin and Low-Methoxyl Amidated Pectin Cryogels https://doi.org/10.3390/pr12081681. Em relação ao objetivo: Desenvolver embalagens ativas a partir dos criogéis e do óleo essencial de pimenta rosa para aumentar o tempo de vida de prateleira do morango são apresentados a seguir: Para atingir o objetivo proposto, inicialmente foram avaliadas diferentes condições de operação do cromatógrafo gasoso, incluindo parâmetros como fluxo de gás de arraste, split (30, 50 e 100), temperatura do injetor e do detector, e taxa de aquecimento. A Figura 1 apresenta o cromatograma do óleo essencial de pimenta rosa, obtido com as seguintes condições cromatográficas, selecionadas por sua capacidade de separação dos compostos: temperatura do injetor: 240°C, volume de injeção: 1 µL, taxa de injeção (modo split): 1:30, temperatura inicial da coluna: 60°C (mantida por 2 minutos), rampa de aquecimento: 2°C/min até 180°C (permanecendo por 4 minutos), seguida de 10°C/min até 240°C. Após a definição das condições cromatográficas, foram identificados os compostos majoritários presentes no óleo essencial de pimenta rosa: α-pineno, β-pineno, α-felandreno e D-limoneno. Figura 1. Cromatograma do óleo essencial de pimenta rosa. https://doi.org/10.3390/pr12081681 15 Posteriormente, foi aplicado os criogéis nas embalagens ativas para a conservação de morango. Na Tabela 1 são apresentados os parâmetros de cor do morango durante o armazenamento usando os criogéis como embalagem ativas. Tabela 1. Parâmetros de cor do morango armazenado em embalagens ativas usando criogéis carregados com óleo de pimenta rosa. Parâmetros de cor Tempo armazenamento (dia) Tratamentos Controle 50:50 30:70 L* 0 33,32 ± 3,30 33,32 ± 3,30 33,32 ± 3,30 3 34,50 ± 3,11 33,04 ± 3,42 33,93 ± 4,68 5 36,66 ± 4,77 32,28 ± 3,03 31,69 ± 3,78 7 33,15 ± 2,89 32,91 ± 5,14 32,69 ± 2,93 a* 0 36,77 ± 2,23 36,77 ± 2,23 36,77 ± 2,23 3 39,92 ± 2,12 39,61 ± 2,30 38,75 ± 2,56 5 38,38 ± 4,76 37,19 ± 2,32 37,83 ± 2,61 7 38,43 ± 2,65 37,27 ± 2,71 37,14 ± 2,56 b* 0 27,14 ± 3,96 27,14 ± 3,96 27,14 ± 3,96 3 31,03 ± 3,31 29,16 ± 3,81 28,51 ± 5,19 5 32,93 ± 2,88 26,76 ± 4.09 29,99 ± 4,50 7 29,34 ± 3,36 28,51 ± 5,76 28,31 ± 4,11 Croma 0 45,79 ± 3.53 45,79 ± 3.53 45,79 ± 3.53 3 50,62 ± 3,22 49,24 ± 3,85 48,24 ± 4,53 5 50,57 ± 5,56 45,88 ± 4,00 48,34 ± 4,62 7 48,13 ± 3,52 47,04 ± 5,46 46,75 ± 4,32 Hue 0 36,27 ± 3,60 36,27 ± 3,60 36,27 ± 3,60 3 37,79 ± 2,57 36,21 ± 2,63 36,75 ± 4.37 5 40,82 ± 4,16 35,54 ± 3,01 38,20 ± 2,81 7 37,15 ± 2,53 37,00 ± 3,96 37,14 ± 2,64 Os resultados demonstraram que a cor dos morangos foi preservada durante todo o período de armazenamento (7 dias), mantendo a coloração avermelhada característica da fruta (Figura 2). Isso indica que a presença do criogel na 16 embalagem não interfere na cor, um parâmetro de grande importância na pós- colheita do morango, pois influencia diretamente a sua qualidade e a percepção do consumidor. Esse resultado é promissor, uma vez que sugere a viabilidade da aplicação dos criogéis como embalagens ativas para a conservação da fruta. Controle 50:50 30:70 0d 3d 5d 7d 17 No que diz respeito à textura, observou-se que a presença do criogel na embalagem ativa influenciou essa característica (Tabela 2). Embora a firmeza dos morangos tenha diminuído com o aumento do tempo de armazenamento, a presença do óleo essencial provocou uma redução ainda mais acentuada nesse parâmetro, em comparação com a amostra controle. Essa diferença sugere que o óleo essencial pode ter causado danos fitotóxicos aos morangos, resultando em amolecimento dos frutos durante o armazenamento (Wigati et al., 2023). Tabela 2. Firmeza do morango armazenado em embalagens ativas usando criogéis carregados com óleo de pimenta rosa. Tempo armazenamento (dia) Firmeza Controle 50:50 30:70 0 1,613 ± 0,357 1,613 ± 0,357 1,613 ± 0,357 3 1,535 ± 0,387 1,168 ± 0,491 0,634 ± 0,153 5 1,690 ± 0,742 0,694 ± 0,172 0,840 ± 0,290 7 0,869 ± 0,349 0,593 ± 0,344 0,565 ± 0,198 Com relação ao conteúdo de antocianinas presentes nos morangos (Tabela 3), observou-se que todas as amostras mantiveram altos níveis desses compostos bioativos durante o armazenamento. É importante destacar que a presença dos criogéis carregados com óleo essencial de pimenta rosa não interferiu na concentração de antocianinas nos frutos, indicando que a tecnologia de embalagem ativa não prejudicou os compostos bioativos presentes no morango. 18 Tabela 3. Conteúdo de antocianinas no morango armazenado em embalagens ativas usando criogéis carregados com óleo de pimenta rosa. Tempo armazenamento (dia) Antocianinas (mg cianidina-3-O-glicosídeo) /g amostra) Controle 50:50 30:70 0 80,462 ± 10,838 80,462 ± 10,838 80,462 ± 10,838 3 86,275 ± 6,941 88,201 ± 4,294 96,230 ± 4,558 5 79,912 ± 5,182 80,902 ± 3,830 94,738 ± 5,270 7 82,454 ± 12,606 95,666 ± 6,771 80,350 ± 10,338 5. Conclusão Os criogéis demonstram ser uma alternativa promissora para a encapsulação do óleo essencial de pimenta rosa. A composição da matriz do criogel influencia diretamente a capacidade de carregamento do óleo, a eficiência de encapsulação e as atividades antimicrobiana e antioxidante. Embora os criogéis possam ser utilizados como embalagens ativas para morangos, estudos mais aprofundados sobre o amolecimento dos frutos durante o armazenamento são necessários. 19 Referências Abreu, F. O. M. S., Oliveira, E. F., Paula, H. C. B., & De Paula, R. C. M. (2012). Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydrate Polymers, 89(4), 1277–1282. https://doi.org/10.1016/j.carbpol.2012.04.048 Ali Shabkhiz, M., Pirouzifard, M. K., Pirsa, S., & Reza, G. (2021). Alginate hydrogel beads containing Thymus daenensis essential oils / Glycyrrhizic acid loaded in b -cyclodextrin . Investigation of structural , antioxidant / antimicrobial properties and release assessment. Journal of Molecular Liquids, 344, 117738. https://doi.org/10.1016/j.molliq.2021.117738 Alsakhawy, S. A., Baghdadi, H. H., El-shenawy, M. A., Sabra, S. A., & El-hosseiny, S. (2022). Encapsulation of thymus vulgaris essential oil in caseinate / gelatin nanocomposite hydrogel : In vitro antibacterial activity and in vivo wound healing potential. International Journal of Pharmaceutics, 628(July), 122280. https://doi.org/10.1016/j.ijpharm.2022.122280 AOAC. (1995). Official Methods of Analysis (16th ed.). Association of Official Analytical Chemists. Asbahani, A. El, Miladi, K., Badri, W., Sala, M., Addi, E. H. A., Casabianca, H., Mousadik, A. El, Hartmann, D., Jilale, A., Renaud, F. N. R., Elaissari, A., & Lyon, C. B. (2015). Essential oils : From extraction to encapsulation. International Journal of Pharmaceutics, 483(1–2), 220–243. https://doi.org/10.1016/j.ijpharm.2014.12.069 Atencio, S., Maestro, A., Santamaría, E., & Gonz, C. (2020). Encapsulation of ginger oil in alginate-based shell materials. Food Bioscience, 37(July), 100714. https://doi.org/10.1016/j.fbio.2020.100714 Bao, C., Jiang, P., Chai, J., Jiang, Y., Li, D., & Bao, W. (2019). The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Research International, 120(September 2018), 130–140. https://doi.org/10.1016/j.foodres.2019.02.024 Barreira, C. F. T., de Oliveira, V. S., Hidalgo Chávez, D. W., Gamallo, O. D., Castro, R. N., Damasceno Júnior, P. C., Sawaya, A. C. H. F., Ferreira, M. da S., Sampaio, G. R., Torres, E. A. F. da S., & Saldanha, T. (2023). The impacts of pink pepper ( Schinus terebinthifolius Raddi ) on fatty acids and cholesterol oxides formation in canned sardines during thermal processing. Food Chemistry, 403, 134347. https://doi.org/10.1016/j.foodchem.2022.134347 Batista, R. A., Judith, P., Espitia, P., Souza, J. De, Quintans, S., Machado, M., Ângelo, M., António, J., & Cordeiro, J. (2019). Hydrogel as an alternative 20 structure for food packaging systems. Carbohydrate Polymers, 205(September 2018), 106–116. https://doi.org/10.1016/j.carbpol.2018.10.006 Benavides, S., Cortés, P., Parada, J., & Franco, W. (2016). Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chemistry, 204, 77–83. https://doi.org/10.1016/j.foodchem.2016.02.104 Betz, M., García-González, C. A., Subrahmanyam, R. P., Smirnova, I., & Kulozik, U. (2012). Preparation of novel whey protein-based aerogels as drug carriers for life science applications. Journal of Supercritical Fluids, 72, 111–119. Caló, E., & Khutoryanskiy, V. V. (2014). Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 65, 252–267. Calo, R. J., Crandall, P. G., O´Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems - A review. Food Control, 54, 111–119. https://doi.org/10.1016/j.foodcont.2014.12.040 Chaux-Gutiérrez, A. M., Pérez-Monterroza, E. J., & Mauro, M. A. (2019). Rheological and structural characterization of gels from albumin and low methoxyl amidated pectin mixtures. Food Hydrocolloids, 92, 60–68. https://doi.org/10.1016/j.foodhyd.2019.01.025 Cook, C., & Lanaras, T. (2016). Essential Oils : Isolation , Production and Uses. In Encyclopedia of Food and Health (1st ed.). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-384947-2.00261-0 Cui, H., Wang, Y., Li, C., Chen, X., & Lin, L. (2021). Antibacterial efficacy of Satureja montana L . essential oil encapsulated in methyl- β -cyclodextrin / soy soluble polysaccharide hydrogel and its assessment as meat preservative. LWT-Food Science and Technology, 152(June), 112427. https://doi.org/10.1016/j.lwt.2021.112427 Dannenberg, S., Funck, G. D., Padilha, W., & Fiorentini, Â. M. (2019). Essential oil from pink pepper ( Schinus terebinthifolius Raddi ): Chemical composition , antibacterial activity and mechanism of action. Food Control, 95(June 2018), 115–120. https://doi.org/10.1016/j.foodcont.2018.07.034 Deng, X., Chen, J., & Chen, W. (2020). Hydrogel particles as a controlled release delivery system for lavender essential oil using pH triggers. Colloids and Surfaces A, 603, 125134. https://doi.org/10.1016/j.colsurfa.2020.125134 Farjami, T., Madadlou, A., & Labbafi, M. (2015). Characteristics of the bulk hydrogels made of the citric acid cross-linked whey protein microgels. Food Hydrocolloids, 50, 159–165. 21 Gonçalves, N. D., Pena, F. de L., Sartoratto, A., Derlamelina, C., Duarte, M. C. T., Antunes, A. E. C., & Prata, A. S. (2017). Encapsulated thyme (Thymus vulgaris) essential oil used as a natural preservative in bakery product. Food Research International, 96, 154–160. https://doi.org/10.1016/j.foodres.2017.03.006 Horvat, G., Xhanari, K., Finšgar, M., Gradišnik, L., Maver, U., Knez, Ž., & Novak, Z. (2017). Novel ethanol-induced pectin-xanthan aerogel coatings for orthopedic applications. Carbohydrate Polymers, 166, 365–376. https://doi.org/10.1016/j.carbpol.2017.03.008 Hussain, A. I., Anwar, F., Hussain Sherazi, S. T., & Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chemistry, 108(3), 986– 995. https://doi.org/10.1016/j.foodchem.2007.12.010 Locali Pereira, A. R., Gonçalves Cattelan, M., & Nicoletti, V. R. (2019). Microencapsulation of pink pepper essential oil: Properties of spray-dried pectin/SPI double-layer versus SPI single-layer stabilized emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 581. https://doi.org/10.1016/j.colsurfa.2019.123806 Locali-Pereira, A. R., Lopes, N. A., Menis-Henrique, M. E. C., Janzantti, N. S., & Nicoletti, V. R. (2020). Modulation of volatile release and antimicrobial properties of pink pepper essential oil by microencapsulation in single- and double-layer structured matrices. International Journal of Food Microbiology, 335, 108890. https://doi.org/10.1016/j.ijfoodmicro.2020.108890 Locali-Pereira, A. R., Scarpin Guazi, J., Conti-Silva, A. C., & Nicoletti, V. R. (2021). Active packaging for postharvest storage of cherry tomatoes : Different strategies for application of microencapsulated essential oil. Food Packaging and Shelf Life, 29, 100723. https://doi.org/10.1016/j.fpsl.2021.100723 Manzoor, A., Hussain, A., Kumar, V., Shams, R., Khan, S., Panesar, P. S., Kennedy, J. F., Fayaz, U., & Khan, S. A. (2022). Recent insights into polysaccharide-based hydrogels and their potential applications in food sector : A review. International Journal of Biological Macromolecules, 213, 987–1006. https://doi.org/10.1016/j.ijbiomac.2022.06.044 Martynenko, A., & Chen, Y. (2016). Degradation kinetics of total anthocyanins and formation of polymeric color in blueberry hydrothermodynamic ( HTD ) processing. Journal of Food Engineering, 171, 44–51. Oliveira, R. F. de, Henry, F. da C., Valle, F. do, Oliveira, D. B. de, Santos Junior, A. C. do, Resende, E. D. de, Maia Junior, J. de A., & Martins, M. L. L. (2020). Effect of the fruit aqueous extract of Brazilian pepper tree (Schinus terebinthifolius, Raddi) on selected quality parameters of frozen fresh pork sausage. Journal of Agriculture and Food Research, 2. https://doi.org/10.1016/j.jafr.2020.100055 22 Papalamprou, E. M., Doxastakis, G. I., & Kiosseoglou, V. (2010). Chickpea protein isolates obtained by wet extraction as emulsifying agents. Journal of the Science of Food and Agriculture, 90(2), 304–313. https://doi.org/10.1002/jsfa.3816 Re, R., Pellegrini, N., Proteggent, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(98), 1231–1237. Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin- ciocalteu reagent. Methods in Enzymology, 299(1974), 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1 Volić, M., Pajić-Lijaković, I., Djordjević, V., Knežević-Jugović, Z., Pećinar, I., Stevanović-Dajić, Z., Veljović, Đ., Hadnadjev, M., & Bugarski, B. (2018). Alginate/soy protein system for essential oil encapsulation with intestinal delivery. Carbohydrate Polymers, 200, 15–24. https://doi.org/10.1016/j.carbpol.2018.07.033 Wigati, L. P., Wardana, A. A., Tanaka, F., & Tanaka, F. (2023). Strawberry preservation using combination of yam bean starch, agarwood Aetoxylon bouya essential oil, and calcium propionate edible coating during cold storage evaluated by TOPSIS-Shannon entropy. Progress in Organic Coatings, 175. https://doi.org/10.1016/j.porgcoat.2022.107347 Citation: Chaux-Gutiérrez, A.M.; Pérez-Monterroza, E.J.; Cattelan, M.G.; Nicoletti, V.R.; Moura, M.R.d. Encapsulation of Pink Pepper Essential Oil (Schinus terebinthifolius Raddi) in Albumin and Low-Methoxyl Amidated Pectin Cryogels. Processes 2024, 12, 1681. https://doi.org/10.3390/pr12081681 Academic Editor: Renata Różyło Received: 21 July 2024 Revised: 6 August 2024 Accepted: 6 August 2024 Published: 12 August 2024 Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). processes Article Encapsulation of Pink Pepper Essential Oil (Schinus terebinthifolius Raddi) in Albumin and Low-Methoxyl Amidated Pectin Cryogels Ana María Chaux-Gutiérrez 1,*, Ezequiel José Pérez-Monterroza 2, Marília Gonçalves Cattelan 2, Vânia Regina Nicoletti 2 and Márcia Regina de Moura 1 1 Faculdade de Engenharia, Universidade Estadual Paulista (UNESP), Ilha Solteira 15385-007, Brazil; marcia.aouada@unesp.br 2 Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, Brazil; eperez494@gmail.com (E.J.P.-M.); marilia.cattelan@unesp.br (M.G.C.); vania.nicoletti@unesp.br (V.R.N.) * Correspondence: ana.chaux@unesp.br or anachauxg@gmail.com Abstract: This study evaluated cryogels from albumin (ALB) and albumin–pectin (ALB:PEC) as carriers for pink pepper (Schinus terebinthifolius Raddi) essential oil. Cryogels were evaluated through infrared spectrophotometry, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. The bioactivity of the cryogels was analyzed by mea- suring their encapsulation efficiency (EE%), the antimicrobial activity of the encapsulated oil against S. aureus, E. coli, and B. cereus using the agar diffusion method; total phenolic content and antioxidant activity were analyzed by UV-vis spectrophotometry. The EE% varied between 59.61% and 77.41%. The cryogel with only ALB had the highest total phenolic content with 2.802 mg GAE/g, while the cryogel with the 30:70 ratio (ALB:PEC) presented a value of 0.822 mg GAE/g. A higher proportion of PEC resulted in a more significant inhibitory activity against S. aureus, reaching an inhibition zone of 18.67 mm. The cryogels with ALB and 70:30 ratio (ALB:PEC) presented fusion endotherms at 137.16 ◦C and 134.15 ◦C, respectively, and semicrystalline structures. The interaction between ALB and PEC increased with their concentration, as evidenced by the decreased intensity of the O-H stretching peak, leading to lower encapsulation efficiency. The cryogels obtained can be considered a suitable matrix for encapsulating pink pepper oil. Keywords: antimicrobial activity; polysaccharides; biopolymers; phenolic compounds; S. aureus 1. Introduction The interest in technological applications of essential oils (EOs) has been increasing due to their antioxidant properties and antimicrobial action against foodborne pathogens [1]. Among the EOs, pink pepper essential oil (Schinus terebinthifolius Raddi) stands out for its antioxidant, antimicrobial, and anti-inflammatory properties, and anticancer capacity [2], which are attributed to its major constituents that include α-pinene, β-pinene, β-myrcene, β-cubebene, and limonene, in addition to monoterpenes and sesquiterpenes [3,4]. Pink pepper essential oil can be affected by external factors such as oxygen, light, humidity, and pH, which reduce biological activity [5], so encapsulation processes have become a tool to increase its stability and even improve its release profile [6]. Different technologies, includ- ing spray drying [7–14], complex coacervation [15–21], emulsion extrusion technique [15], and emulsification-ionic gelation [22–24] may be used for encapsulating pink pepper essen- tial oil. However, recently, researchers have become interested in protecting essential oils using hydrogels and cryogels because they are produced from biopolymers without using crosslinker agents, while at the same time allowing the design of a controlled release system. Cryogels are obtained from hydrogels prepared from proteins or polysaccharides dried Processes 2024, 12, 1681. https://doi.org/10.3390/pr12081681 https://www.mdpi.com/journal/processes https://doi.org/10.3390/pr12081681 https://creativecommons.org/ https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/ https://www.mdpi.com/journal/processes https://www.mdpi.com https://orcid.org/0000-0002-2553-4629 https://orcid.org/0000-0002-2534-5553 https://doi.org/10.3390/pr12081681 https://www.mdpi.com/journal/processes https://www.mdpi.com/article/10.3390/pr12081681?type=check_update&version=1 Processes 2024, 12, 1681 2 of 14 by lyophilization [25]. Cinnamon essential oil encapsulated in gelatin hydrogels offers a constant release over a long period while it maintains a high antimicrobial capacity against S. aureus and E. coli [26]. Also, the microgels obtained from chitosan maintain the biological activity of the essential oil of Gaultheria procumbens against the secretion of aflatoxins from A. flavus [27]. The cryogels offer advantages due to high load capacity and encapsulation efficiency. Volić et al. [28] reported that calcium alginate used as wall material reached an encapsulation efficiency of about 85% for thyme essential oil, and the combination of calcium alginate and soy protein resulted in an efficiency of 80%. Egg albumin, a globular protein, possesses excellent gel-forming properties. Heat treatment above 82 ◦C induces protein denaturation, disrupting its structural integrity and facilitating the formation of high molecular weight aggregates. These aggregates, stabilized by disulfide, hydrogen, hydrophobic, and electrostatic interactions, contribute to increased solution viscosity and subsequent gelation [29–31]. Low-methoxyl amidated pectin, a polysaccharide containing amino groups, exhibits superior gelling characteristics compared to standard low-methoxyl pectin. It forms strong gels at low calcium concentrations and can gel under acidic conditions (pH < 3) [32]. There are few studies on the encapsulation of essential oils in cryogels of egg albumin and low-methoxyl amidated pectin; these biopolymers stand out for their ability to form gels and protect bioactive compounds [33]. From these considerations, this study aimed to encapsulate pink pepper essential oil in cryogels prepared from egg albumin and low-methoxyl amidated pectin, as well as to evaluate the inhibitory properties of this encapsulation system on S. aureus, E. coli, and B. cereus. In addition, to better understand the performance of the supramolecular assembly, we analyzed the microstructure and bioactivity of the produced cryogels. 2. Materials and Methods Pink pepper (Schinus terebinthifolius Raddi) essential oil extract from fruits was ob- tained from Ferquima (Vargem Grande Paulista, São Paulo, Brazil). Powdered egg al- bumin (ALB) was purchased from Neovita Foods Eirelli (São Paulo, São Paulo, Brazil; 83.3% protein, 5.0% carbohydrates, and 0.0% fat). Amidated low-methoxyl pectin (PEC) was purchased from Danisco (GRINDSTED LA 210; 34% esterification degree and 17% amidation, Barueri, São Paulo, Brazil). Sodium hydroxide, calcium chloride, and hydrochlo- ric acid were obtained from Panreac (Química, S.A, Castellar de Vallès, Barcelona, Spain). Mueller–Hinton agar (HiMedia, Sumaré, São Paulo, Brazil). Ethanol (95%, vol/vol) was supplied by Synth (Diadema, São Paulo, Brazil). All reagents were analytical grade. 2.1. Encapsulation of Pink Pepper Essential Oil in Cryogels The encapsulation of pink pepper essential oil was carried out according to the method- ology proposed by Chaux-Gutiérrez et al. [33] and Volić et al. [28] with some modifications. Individual dispersions of ALB (5% w/w, based on the total mass of the dispersion) and PEC (5% w/w, based on the total mass of the dispersion) were prepared at room temperature, maintaining constant stirring for 3 h until complete dispersion using a magnetic stirrer. For preparing ALB hydrogels, the ALB dispersion was adjusted to pH 8 using HCl (0.1 M) and NaOH (0.1 M) solutions, heated to 85 ◦C, kept under constant stirring for 15 min, and cooled to 40 ◦C. Then, 3% of pink pepper essential oil (% w/w, based on the total mass of the dispersion) was dispersed into the ALB hydrogel at 14000 rpm for 5 min (Ultra-Turrax® IKA T25, IKA-Werke GmbH, Staufen, Baden-Württemberg, Germany). Finally, the mixture was stored in a Petri dish at 4 ◦C until gel formation. For preparing ALB-PEC gels, ALB and PEC dispersions were first prepared as described above, and then mixed at different ALB:PEC ratios—70:30, 50:50, and 30:70—maintaining constant stirring for 5 min. After that, 3% of the pink pepper essential oil (% w/w, based on the total mass of the dispersion) was added, and the mixture was homogenized at 14,000 rpm for 5 min (Ultra-Turrax® IKA T25, IKA-Werke GmbH, Staufen, Baden-Württemberg Bodense, Germany). Then, 2% (w/w) calcium chloride solution (prepared previously at 2% w/v) was incorporated, maintaining constant stirring for 10 min. The mixture was stored in a Petri dish at 4 ◦C Processes 2024, 12, 1681 3 of 14 until gel formation. Finally, the gels were frozen at −18 ◦C for 24 h and then freeze-dried (model L-101, Liotop, São Carlos, São Paulo, Brazil) at 40 µmHg for 48 h. The lyophilized samples were stored in metalized bags within desiccators at 25 ◦C. (Figure 1). Processes 2024, 12, x FOR PEER REVIEW 3 of 15 constant stirring for 5 min. After that, 3% of the pink pepper essential oil (% w/w, based on the total mass of the dispersion) was added, and the mixture was homogenized at 14,000 rpm for 5 min (Ultra-Turrax® IKA T25, IKA-Werke GmbH, Staufen, Baden- Württemberg Bodense, Germany). Then, 2% (w/w) calcium chloride solution (prepared previously at 2% w/v) was incorporated, maintaining constant stirring for 10 min. The mixture was stored in a Petri dish at 4 °C until gel formation. Finally, the gels were frozen at −18 °C for 24 h and then freeze-dried (model L-101, Liotop, São Carlos, São Paulo, Brazil) at 40 µmHg for 48 h. The lyophilized samples were stored in metalized bags within desiccators at 25 °C. (Figure 1). Figure 1. Schematic diagram for the preparation of ALB and ALB:PEC cryogels. 2.2. Encapsulation Efficiency (EE%) The encapsulation efficiency of the cryogels was determined according to the methodology of Abreu et al. [34] with some modifications. One hundred milligrams of cryogels was dispersed in 5 mL of ethanol. The mixture was centrifuged at 9000 rpm for 5 min at 25 °C using a centrifugal separation (Z 326 K, HERMLE Labortechnik GmbH, WehinGen, Baden-Würtemberg, Germany). The pink pepper essential oil content was measured using a UV-vis spectrophotometer (SP-200, Biospectro, Curitiba, Paraná, Brazil) at a wavelength of 291 nm, using a calibration curve (y = 0.7269x + 0.223, R2 = 0.9949) of essential oil in ethanol solution (0.2–1.2 mg/mL). The encapsulation efficiency (EE%) was calculated according to Equation (1): 𝐸𝐸 % 100 (1) where M is the amount (mg) of oil in loaded cryogels and Mo is the initial oil amount (mg) added to cryogel preparation. 2.3. Total Phenolic Content Figure 1. Schematic diagram for the preparation of ALB and ALB:PEC cryogels. 2.2. Encapsulation Efficiency (EE%) The encapsulation efficiency of the cryogels was determined according to the method- ology of Abreu et al. [34] with some modifications. One hundred milligrams of cryogels was dispersed in 5 mL of ethanol. The mixture was centrifuged at 9000 rpm for 5 min at 25 ◦C using a centrifugal separation (Z 326 K, HERMLE Labortechnik GmbH, WehinGen, Baden-Würtemberg, Germany). The pink pepper essential oil content was measured using a UV-vis spectrophotometer (SP-200, Biospectro, Curitiba, Paraná, Brazil) at a wavelength of 291 nm, using a calibration curve (y = 0.7269x + 0.223, R2 = 0.9949) of essential oil in ethanol solution (0.2–1.2 mg/mL). The encapsulation efficiency (EE%) was calculated according to Equation (1): EE(%) = M M0 × 100 (1) where M is the amount (mg) of oil in loaded cryogels and Mo is the initial oil amount (mg) added to cryogel preparation. 2.3. Total Phenolic Content The phenolic content of the cryogels was determined using the Folin–Ciocalteu method [35]. Extracts were prepared using methanol, and the absorbance was read at 725 nm in a UV/VIS spectrophotometer (SP-200, Biospectro, Curitiba, Paraná, Brazil). Quantification was performed using a calibration curve of aqueous solutions of gallic acid (0–500 ppm). The results were expressed in mg of gallic acid equivalent per gram (mg GAE/g). Processes 2024, 12, 1681 4 of 14 2.4. Antioxidant Activity The antioxidant activity was determined by radical ABTS*+ capture methodology, according to a method proposed by Re et al. [36]. Extracts were prepared using methanol and the absorbance was measured at 730 nm (SP-200, Biospectro, Brazil). The antioxidant activity was determined using a calibration curve prepared with an aqueous solution of Trolox (0–200 µmol/L) and expressed as micromoles of Trolox equivalents (TEs) per gram (µmol TEs/g). 2.5. In Vitro Antimicrobial Activity Evaluation of the inhibitory effects of essential oil encapsulated in cryogels on selected bacteria was performed in vitro using the agar diffusion method according to the Clinical and Laboratory Standards Institute [37], with some adaptations. Three bacteria were se- lected: two Gram-positive (Staphylococcus aureus ATCC6538 and Bacillus cereus ATCC11778), and one Gram-negative (Escherichia coli ATCC8739). Suspensions were prepared for each of the bacteria at a concentration of 108 CFU/mL. The culture medium used in the Petri dishes for microbial strains was MMA Growth Agar. In the inoculated agar, wells of 7 mm diameter were made using a sterile metal cylinder; subsequently, these were filled with different amounts of the cryogels (1.25, 2.5, 5, 10, 20, and 30 mg). Cryogel without essential oil was used as blank. The inoculated material was incubated at 37 ◦C for 24 h. After incubation, inhibition zone diameters were measured in millimeters. 2.6. Fourier Transform Infrared Spectrometry (FT-IR) FT-IR spectra of cryogels were recorded using a Spectrum One (Perkin-Elmer Corp., Shelton, CT, USA) device with an attenuated total reflectance accessory with a ZnSe crystal. Cryogels were ground into a fine powder using mortar and pestle. Then, samples were analyzed directly after pressing them on the crystal (80 psi). The scanning was conducted from 4000 to 400 cm−1 using 20 scans, with a resolution of 4 cm−1 [33]. 2.7. X-ray Diffraction The X-ray diffraction (XRD) patterns of cryogels were determined using a RINT 2000 diffractometer (Rigaku, Tokio, Japan) equipped with a Cu Kα radiation source (λ = 1.542 Å). Operating conditions were 45 kV and 30 mA. Data were collected from 5◦ and 50◦ (2θ), with step sizes of 0.02◦ and a scan rate of 1 s per step. Before analysis, cryogel samples were ground into a fine powder using a mortar and pestle. 2.8. Thermal Analysis Thermogravimetric analysis (TGA) (SDT Q600 Thermogravimetric Analyzers, TA Instrument, New Castle, DE, USA) was used to estimate the thermal stability of cryogels. Each 5 mg sample was placed in the platinum pan and heated up by a TGA furnace at 10 ◦C/min under a nitrogen atmosphere from 25 to 200 ◦C. Differential scanning calorime- try was carried out using a calorimeter (DSC-25, TA Instrument, New Castle, DE, USA) previously calibrated with indium. An empty aluminum pan was used as a reference. Each 3 mg sample was weighed, cooled from 25 to −50 ◦C at 35 ◦C/min, maintained at this temperature for 1 min, and subsequently heated at 35 ◦C/min from −50 to 200 ◦C. 2.9. Scanning Electron Microscopy (SEM) The morphology of the cryogels was examined using scanning electron microscopy (SEM, EVO LS15, Zeiss, Carl Zeiss, Ostalbkreis, Baden-Württerberg, Germany) at 20 kV. Samples were prepared by mounting cryogels on double-sided carbon tape and coating them with a thin layer of gold using a sputter coater (Quorum, model Q150 T, Lewes, UK) for 1.5 min. Micrographs were acquired from both the surface and the cross-section of cryogels. Processes 2024, 12, 1681 5 of 14 2.10. Statistical Analysis All measurements were performed in triplicate and results were expressed as mean ± standard deviation. Statistical analyses were performed with one-way analy- sis of variance (ANOVA) using the Minitab 21® program, considering a significance level of 5%. Tukey’s test was used to compare differences among the mean values of samples. 3. Results and Discussion 3.1. Encapsulation Efficiency (EE%) Encapsulation efficiency is crucial for assessing the potential of ALB and PEC as suitable materials for encapsulating pink pepper essential oil. Higher efficiency indicates a better encapsulation process. It is also considered a measure of the essential oil that could reach its target site. However, this depends on wall structural characteristics and its affinity for the essential oil. The encapsulation efficiency of the cryogels with varying ALB:PEC ratios ranged between 59.6 and 77.4% (Table 1), being almost constant for the cryogels with higher contents of ALB (pure ALB, 70:30 and 50:50 ALB:PEC). However, an increase in the PEC concentration, as in the 30:70 (ALB:PEC) ratio, led to a decrease in efficiency. This suggests a limited concentration for pectin, beyond which the EE% decreases. These results are attributed to the superior ability of proteins to form films and trap oil compared to polysaccharides [38]. Studies on oregano essential oil (Origanum vulgare Linneus) encapsulation exemplify this effect: a 79% encapsulation efficiency was achieved using zein at 0.2% (w/v) in the wall material [21]. In contrast, chitosan at 1% (w/v) resulted in a lower efficiency of 24.72% [39]. Similarly, increasing the protein concentration in systems composed of whey protein isolate (WPI) and carboxymethylcellulose (CMC) for encapsulation of orange essential oil leads to higher efficiency: the encapsulation efficiency increased from 3% in the 1:1 (WPI:CMC) ratio to 86% in the 3:1 (WPI:CMC) [40]. Bastos et al. [41] reported a similar trend when encapsulating black pepper essential oil (Piper nigrum L) using a wall material composed of gelatin and alginate: a ratio of 0.3:0.05 (gelatin: alginate) resulted in an efficiency of 52.26%, while increasing the protein content to a ratio of 0.9:0.15 (gelatin:alginate) increased efficiency to 82.20%. The encapsulation efficiency obtained in the present study is within a similar range to those reported by Chen and Zhong [42] and Rajkumar et al. [43] for encapsulation of mint essential oil in chitosan nanoparticles, for which they achieved an efficiency of 64%. Table 1. Encapsulation efficiency, total phenolic content, and antioxidant activity of pink pepper essential oil encapsulated in ALB and ALB: PEC cryogels. Sample EE (%) Total Phenolic Content (mg GAE/g) ABTS (µmol TEs/g) ALB 75.0 ± 5.5 a 2.80 ± 0.23 a 6.28 ± 0.49 a 70:30 ALB:PEC 75.2 ± 4.9 a 2.31 ± 0.18 b 1.16 ± 0.16 b 50:50 ALB:PEC 77.4 ± 1.9 a 1.41 ± 0.11 c 0.84 ± 0.05 b 30:70 ALB:PEC 59.6 ± 2.3 b 0.82 ± 0.17 d 0.99 ± 0.24 b Results expressed as mean (n = 3) ± standard deviation. Different lowercase letters in the column indicate significant differences between treatments. GAE: gallic acid equivalent. TEs: Trolox equivalents. 3.2. Total Phenolic Compound Content and Antioxidant Activity Phenolic compounds, abundant secondary metabolites in plants and recognized for their antioxidant properties, include flavonoids, phenolic acids, and terpenes such as car- vacrol, eugenol, and p-cinene [44,45]. This study examined the influence of wall material composition on total phenolic content and their antioxidant activity in cryogels prepared with either ALB or ALB:PEC. Phenolic content ranged from 2.80 to 0.82 mg GAE/g (Table 1), with higher values observed in the cryogels with greater ALB content. This result could be related to protein denaturation during the production of the cryogels. Thermal treatment enhances protein–polyphenol interactions via hydrogen bonding [46]. Unfolded polypep- tide chains in the heat-treated protein expose hydrophobic amino acid residues, creating Processes 2024, 12, 1681 6 of 14 a hydrophobic site for entrapped phenolic compounds within the three-dimensional net- work [47]. Conversely, the negatively charged PEC electrostatically interacts with positively charged sites on ALB [29], altering protein–phenolic compound interaction and reducing encapsulation efficiency; this explains the decreasing total phenolic content observed in cryogels with increasing PEC ratios (70:30, 50:50, 30:70 ALB:PEC). Similarly, Volić et al. [28] reported greater encapsulation efficiency (80% of the total phenolics) for thyme essential oil in a 1:1.5 (% w/w) alginate:soy protein blend compared to alginate alone (72% of the total phenolics). On the other hand, the antioxidant activity did not show significant differences in cryogels prepared with PEC (p < 0.05). It was observed that the presence of PEC in the wall material, even at the lower level, decreased the encapsulation of phenolic compounds contained in the essential oil, which then contributed to a decrease in the antioxidant activ- ity, ranging from 6.28 to 0.99 µmol TEs/g (Table 1). Authors such as Arslan and Çelik [48] report that the antioxidant activity of Salvia cidronella Boiss essential oil is associated with its phenolic compound content. 3.3. Antimicrobial Activity Pink pepper oil has known antimicrobial properties due to the presence of monoter- penes such as α-pinene, D-Limonene, α-phellandrene, γ-terpene, and p-cymene, and sesquiterpenes such as caryophyllene, germacrene-D, and α-Muurolene that can damage microbial cell walls [49,50]. In the present study, the antimicrobial activity of the pro- posed encapsulation system was evaluated by measuring inhibition zones formed around cryogels in contact with gram-positive and gram-negative bacteria cultures [37]. The in- hibition zone size reflects the amount of essential oil diffusing through the cryogel and inhibiting microbial growth. The results showed that none of the cryogels were able to inhibit B. cereus or E. coli growth even at the higher amounts applied. The resistance of E. coli (gram-negative) cells is due to the envelope; the complex structure, including the lipopolysaccharide membrane, hinders the penetration of monoterpenes like D-limonene and γ-terpinene found in pink pepper oil [50,51]. The B. cereus, an endospore-forming bacterium, offers increased resistance to monoterpenes found in pink pepper essential oil [52]. However, Dannenberg et al. [53] reported pink pepper essential oil inhibiting B. cereus, suggesting variations in essential oil composition. Encapsulated pink pepper oil inhibited the growth of S. aureus, but this effect depended on the mass of cryogels used. The sensitivity of S. aureus is likely due to its cell wall, which is around 90% peptidoglycan. This composition makes it less resistant to hydrophobic molecules, allowing them to destabilize the cell wall and cytoplasm [51]. Phenolic compounds in the essential oil can further alter the bacteria cell membrane by binding to proteins and disrupting their function [52]. The study also found a relationship between the concentration of ALB and PEC in the cryogel wall material and the size of the inhibition zone (Figure 2 and Table 2). Cryogels with a 30:70 (ALB:PEC) ratio required the least mass (only 5 mg) to show inhibition. Conversely, cryogels with 50:50 (ALB:PEC) ratio, ALB alone, and 70:30 (ALB:PEC) required a minimum of 10 and 20 mg, respectively. Interestingly, although the cryogels prepared with ALB alone and with 70:30 and 50:50 (ALB:PEC) ratios had a higher encapsulation efficiency (Table 1), their required mass for the same inhibitory effect was higher, suggesting that some of the essential oil was unavailable as an antimicrobial agent, possibly due to interaction with the unfolded protein in the cryogel wall. Evans et al. [38] suggested that these interactions correspond to hydrophobic bonds. A higher pectin ratio in the cryogel wall material led to larger pores, as observed in the SEM analysis (as discussed in Section 3.7), which facilitated the release and diffusion of the encapsulated oil. The cryogel with a 30:70 (ALB:PEC) ratio showed a significant increase in the inhibition zone (from 9.33 mm to 18.67 mm) when the mass increased from 5 mg to 30 mg, compared to cryogels with only ALB or a 70:30 (ALB:PEC) ratio. These results align with previous findings of S. aureus inhibition by pink pepper oil encapsulated in soy protein isolate/high methoxyl pectin [4]. These results suggest that amidated low methoxyl pectin is crucial in designing a controlled release system for pink pepper oil by acting as the release trigger. Processes 2024, 12, 1681 7 of 14 Processes 2024, 12, x FOR PEER REVIEW 7 of 15 suggested that these interactions correspond to hydrophobic bonds. A higher pectin ratio in the cryogel wall material led to larger pores, as observed in the SEM analysis (as discussed in Section 3.7), which facilitated the release and diffusion of the encapsulated oil. The cryogel with a 30:70 (ALB:PEC) ratio showed a significant increase in the inhibition zone (from 9.33 mm to 18.67 mm) when the mass increased from 5 mg to 30 mg, compared to cryogels with only ALB or a 70:30 (ALB:PEC) ratio. These results align with previous findings of S. aureus inhibition by pink pepper oil encapsulated in soy protein isolate/high methoxyl pectin [4]. These results suggest that amidated low methoxyl pectin is crucial in designing a controlled release system for pink pepper oil by acting as the release trigger. Figure 2. Inhibitory activity assay agar disk diffusion of pink pepper essential oil encapsulated in ALB (a), 70:30 ALB:PEC (b), 50:50 ALB:PEC (c), and 30:70 (d) cryogels against S. aureus (ATCC 6538). Table 2. Inhibitory activity (agar disk diffusion) against S. aureus (ATCC 6538) of pink pepper essential oil encapsulated in ALB and ALB:PEC cryogels. Inhibition Zone (mm) Mass Cryogel (mg) ALB 70:30 ALB:PEC 50:50 ALB:PEC 30:70 ALB:PEC 1.25 n.d n.d n.d n.d 2.5 n.d n.d n.d n.d 5 n.d n.d n.d 9.33 ± 1.12 d 10 0.50 ± 0.43 ef n.d 9.44 ± 0.88 d 12.44 ± 3.54 c 20 1.33 ± 0.50 ef 1.89 ± 0.60 ef 15.56 ± 1.94 b 17.22 ± 2.59 ab 30 1.17 ± 0.41 ef 2.44 ± 0.73 e 18.22 ± 1.39 a 18.67 ± 2.83 a Results expressed as mean (n = 6) ± standard deviation. Different lowercase letters in the row indicate significant differences between treatments. n.d = not detected. 3.4. FT-IR Spectroscopy The Fourier-transform infrared (FTIR) spectra of the cryogels loaded with essential oil revealed characteristic peaks from the stretching of the C–H bond at 2934 and 2872 cm−1, typically associated with alkenes; peaks between 1440 and 1447 cm−1, indicative of C–H and C–O stretching; as well as a peak at 884 cm−1 associated with the C–H out-of- plane bending vibration due to the presence of monoterpenes present in essential oil Figure 2. Inhibitory activity assay agar disk diffusion of pink pepper essential oil encapsulated in ALB (a), 70:30 ALB:PEC (b), 50:50 ALB:PEC (c), and 30:70 (d) cryogels against S. aureus (ATCC 6538). Table 2. Inhibitory activity (agar disk diffusion) against S. aureus (ATCC 6538) of pink pepper essential oil encapsulated in ALB and ALB:PEC cryogels. Inhibition Zone (mm) Mass Cryogel (mg) ALB 70:30 ALB:PEC 50:50 ALB:PEC 30:70 ALB:PEC 1.25 n.d n.d n.d n.d 2.5 n.d n.d n.d n.d 5 n.d n.d n.d 9.33 ± 1.12 d 10 0.50 ± 0.43 ef n.d 9.44 ± 0.88 d 12.44 ± 3.54 c 20 1.33 ± 0.50 ef 1.89 ± 0.60 ef 15.56 ± 1.94 b 17.22 ± 2.59 ab 30 1.17 ± 0.41 ef 2.44 ± 0.73 e 18.22 ± 1.39 a 18.67 ± 2.83 a Results expressed as mean (n = 6) ± standard deviation. Different lowercase letters in the row indicate significant differences between treatments. n.d = not detected. 3.4. FT-IR Spectroscopy The Fourier-transform infrared (FTIR) spectra of the cryogels loaded with essential oil revealed characteristic peaks from the stretching of the C–H bond at 2934 and 2872 cm−1, typically associated with alkenes; peaks between 1440 and 1447 cm−1, indicative of C– H and C–O stretching; as well as a peak at 884 cm−1 associated with the C–H out-of- plane bending vibration due to the presence of monoterpenes present in essential oil (Figure 3) [54,55]. The intensity of the peak at 3275 cm−1, assigned to O-H stretching corresponding to the stretching of the O–H hydroxyl group [56], decreased with increasing PEC concentration in the 50:50 and 30:70 (ALB:PEC) cryogels, suggesting a more significant interaction between the ALB and PEC components in the wall material; this could explain the lower encapsulation efficiency observed for these formulations. Conversely, in the ALB and 70:30 (ALB:PEC) cryogels, the absorption bands at 1600 cm−1 corresponding to the amide I group, which represents the secondary structure of the protein, were shifted to lower wavenumber. This shift, associated with the stretching vibration of C-N bonds [57] in the cryogels, suggests an interaction between polyphenols and protein, as evidenced by the higher phenolic compounds content in these cryogels. Processes 2024, 12, 1681 8 of 14 Processes 2024, 12, x FOR PEER REVIEW 8 of 15 (Figure 3) [54,55]. The intensity of the peak at 3275 cm−1, assigned to O-H stretching corresponding to the stretching of the O–H hydroxyl group [56], decreased with increasing PEC concentration in the 50:50 and 30:70 (ALB:PEC) cryogels, suggesting a more significant interaction between the ALB and PEC components in the wall material; this could explain the lower encapsulation efficiency observed for these formulations. Conversely, in the ALB and 70:30 (ALB:PEC) cryogels, the absorption bands at 1600 cm−1 corresponding to the amide I group, which represents the secondary structure of the protein, were shifted to lower wavenumber. This shift, associated with the stretching vibration of C-N bonds [57] in the cryogels, suggests an interaction between polyphenols and protein, as evidenced by the higher phenolic compounds content in these cryogels. Figure 3. Infrared spectra of albumin (ALB) and albumin:pectin (ALB:PEC) cryogels with and without pink pepper essential oil encapsulated. 3.5. X-ray Diffraction Figure 4 shows the X-ray diffraction (XRD) of the cryogels. All cryogels showed characteristic diffraction patterns of semicrystalline structures. Compared to pure albumin, the disappearance of the broad peak at 9° in the cryogels indicates alterations to the secondary structure of the protein [58]. The intensity of the peaks increased with the presence of PEC, due to the more crystalline nature of this polysaccharide (Figure 4f). This behavior resembles that observed in studies of edible films produced with egg albumin protein (5% w/v) and pectin (5% w/v) [59]. However, the characteristic diffraction pattern of pure PEC (Figure 4f) practically disappears in ALB:PEC cryogels due to interactions between the unfolded protein chains and the polysaccharide, which alters the crystalline regions of the PEC and decreases the crystallinity of the sample, as was also observed by Mebarki et al. [60], who found that the casein–pectin interaction leads to a decrease in crystallinity. This reduction in crystallinity is generally advantageous for encapsulation systems, as it can improve bioactive compound release and bioavailability, according to Chen et al. [58] and Ghobadi et al. [61]. Wavenumber (cm-1) Figure 3. Infrared spectra of albumin (ALB) and albumin:pectin (ALB:PEC) cryogels with and without pink pepper essential oil encapsulated. 3.5. X-ray Diffraction Figure 4 shows the X-ray diffraction (XRD) of the cryogels. All cryogels showed characteristic diffraction patterns of semicrystalline structures. Compared to pure albumin, the disappearance of the broad peak at 9◦ in the cryogels indicates alterations to the secondary structure of the protein [58]. The intensity of the peaks increased with the presence of PEC, due to the more crystalline nature of this polysaccharide (Figure 4f). This behavior resembles that observed in studies of edible films produced with egg albumin protein (5% w/v) and pectin (5% w/v) [59]. However, the characteristic diffraction pattern of pure PEC (Figure 4f) practically disappears in ALB:PEC cryogels due to interactions between the unfolded protein chains and the polysaccharide, which alters the crystalline regions of the PEC and decreases the crystallinity of the sample, as was also observed by Mebarki et al. [60], who found that the casein–pectin interaction leads to a decrease in crystallinity. This reduction in crystallinity is generally advantageous for encapsulation systems, as it can improve bioactive compound release and bioavailability, according to Chen et al. [58] and Ghobadi et al. [61]. Processes 2024, 12, x FOR PEER REVIEW 9 of 15 Figure 4. X-ray diffraction patterns of albumin (ALB) (a), 70:30 (ALB:PEC) (b), 50:50 (ALB:PEC) (c), and 30:70 (ALB:PEC) (d) cryogels with pink pepper essential oil encapsulated, albumin pure (e), and amidated low methoxyl pectin (PEC) pure (f). 3.6. Thermal Analysis Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were employed to investigate the thermal behavior of the cryogels. These techniques provide valuable insights into the material thermal stability and potential first-order or second- order transitions [62]. TGA analysis showed distinct mass loss patterns between cryogels (Figure 5a). The cryogel containing only albumin (ALB) exhibited the lowest overall mass loss (7.66%) and the most excellent thermal stability above 80 °C. Conversely, cryogels formulated with ALB and PEC displayed higher mass losses of 11.5% (70:30), 12.4% (50:50), and 12.5% (30:70). The derivative TGA curves indicated a single significant mass loss event for the ALB-only cryogel. In contrast, PEC-containing cryogels showed multiple events, suggesting a more complex degradation process (Figure 5b). The analysis of DTG curves (the first derivative of TGA) revealed distinct mass loss patterns for the cryogels (Figure 5b). The cryogel with only ALB exhibited the highest mass loss rate within the 40– 70 °C temperature range, followed by cryogels with ALB:PEC ratios of 50:50, 70:30, and 30:70, respectively. Notably, the 70:30 ALB:PEC cryogel displayed two distinct peaks at 59.13 °C and 154.87 °C, while the others showed three events at 54.59 °C, 101.82 °C, and 151.48 °C for the ratio 50:50, and 53.84 °C, 122.39 °C, and 148.80 °C for the 30:70 ratio (ALB:PEC). The presence of PEC influenced the degradation profile. Cryogels with PEC exhibited lower mass loss rates between 20 and 80 °C than the ALB-only cryogel, indicating enhanced stability in this range. However, ALB provided superior thermal stability at higher temperatures (>80 °C). Finally, all PEC-containing cryogels underwent degradation between 170 and 190 °C, with higher PEC content correlating to a lower degradation temperature (176.6 °C); this suggests the depolymerization and decomposition of PEC units within the cryogel matrix, as previously reported by Liu et Figure 4. Cont. Processes 2024, 12, 1681 9 of 14 Processes 2024, 12, x FOR PEER REVIEW 9 of 15 Figure 4. X-ray diffraction patterns of albumin (ALB) (a), 70:30 (ALB:PEC) (b), 50:50 (ALB:PEC) (c), and 30:70 (ALB:PEC) (d) cryogels with pink pepper essential oil encapsulated, albumin pure (e), and amidated low methoxyl pectin (PEC) pure (f). 3.6. Thermal Analysis Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were employed to investigate the thermal behavior of the cryogels. These techniques provide valuable insights into the material thermal stability and potential first-order or second- order transitions [62]. TGA analysis showed distinct mass loss patterns between cryogels (Figure 5a). The cryogel containing only albumin (ALB) exhibited the lowest overall mass loss (7.66%) and the most excellent thermal stability above 80 °C. Conversely, cryogels formulated with ALB and PEC displayed higher mass losses of 11.5% (70:30), 12.4% (50:50), and 12.5% (30:70). The derivative TGA curves indicated a single significant mass loss event for the ALB-only cryogel. In contrast, PEC-containing cryogels showed multiple events, suggesting a more complex degradation process (Figure 5b). The analysis of DTG curves (the first derivative of TGA) revealed distinct mass loss patterns for the cryogels (Figure 5b). The cryogel with only ALB exhibited the highest mass loss rate within the 40– 70 °C temperature range, followed by cryogels with ALB:PEC ratios of 50:50, 70:30, and 30:70, respectively. Notably, the 70:30 ALB:PEC cryogel displayed two distinct peaks at 59.13 °C and 154.87 °C, while the others showed three events at 54.59 °C, 101.82 °C, and 151.48 °C for the ratio 50:50, and 53.84 °C, 122.39 °C, and 148.80 °C for the 30:70 ratio (ALB:PEC). The presence of PEC influenced the degradation profile. Cryogels with PEC exhibited lower mass loss rates between 20 and 80 °C than the ALB-only cryogel, indicating enhanced stability in this range. However, ALB provided superior thermal stability at higher temperatures (>80 °C). Finally, all PEC-containing cryogels underwent degradation between 170 and 190 °C, with higher PEC content correlating to a lower degradation temperature (176.6 °C); this suggests the depolymerization and decomposition of PEC units within the cryogel matrix, as previously reported by Liu et Figure 4. X-ray diffraction patterns of albumin (ALB) (a), 70:30 (ALB:PEC) (b), 50:50 (ALB:PEC) (c), and 30:70 (ALB:PEC) (d) cryogels with pink pepper essential oil encapsulated, albumin pure (e), and amidated low methoxyl pectin (PEC) pure (f). 3.6. Thermal Analysis Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were employed to investigate the thermal behavior of the cryogels. These techniques provide valuable insights into the material thermal stability and potential first-order or second- order transitions [62]. TGA analysis showed distinct mass loss patterns between cryogels (Figure 5a). The cryogel containing only albumin (ALB) exhibited the lowest overall mass loss (7.66%) and the most excellent thermal stability above 80 ◦C. Conversely, cryogels formulated with ALB and PEC displayed higher mass losses of 11.5% (70:30), 12.4% (50:50), and 12.5% (30:70). The derivative TGA curves indicated a single significant mass loss event for the ALB-only cryogel. In contrast, PEC-containing cryogels showed multiple events, suggesting a more complex degradation process (Figure 5b). The analysis of DTG curves (the first derivative of TGA) revealed distinct mass loss patterns for the cryogels (Figure 5b). The cryogel with only ALB exhibited the highest mass loss rate within the 40–70 ◦C temperature range, followed by cryogels with ALB:PEC ratios of 50:50, 70:30, and 30:70, respectively. Notably, the 70:30 ALB:PEC cryogel displayed two distinct peaks at 59.13 ◦C and 154.87 ◦C, while the others showed three events at 54.59 ◦C, 101.82 ◦C, and 151.48 ◦C for the ratio 50:50, and 53.84 ◦C, 122.39 ◦C, and 148.80 ◦C for the 30:70 ratio (ALB:PEC). The presence of PEC influenced the degradation profile. Cryogels with PEC exhibited lower mass loss rates between 20 and 80 ◦C than the ALB-only cryogel, indicating enhanced stability in this range. However, ALB provided superior thermal stability at higher temperatures (>80 ◦C). Finally, all PEC-containing cryogels underwent degradation between 170 and 190 ◦C, with higher PEC content correlating to a lower degradation temperature (176.6 ◦C); this suggests the depolymerization and decomposition of PEC units within the cryogel matrix, as previously reported by Liu et al. [63]. Table 3 shows the Tpeak onset, Tpeak endset values, and enthalpy of cryogels. The thermograms (Figure 5c,d) for cryogels prepared only with ALB and with a 70:30 ALB:PEC ratio revealed a single endothermic event at 137.16 ◦C and 134.15 ◦C, respectively, attributed to the formation of agglomerates during cryogel preparation via intermolecular hydrophobic and hydrogen-bonding interactions between unfolded ALB chains (ALB-ALB and ALB- PEC). As Jacob et al. [64] suggested, these intermolecular interactions are essential in stabilizing the denatured protein. These structures exhibit high fusion temperatures and fusion enthalpies (Table 3) and enhanced thermal stability. In cryogels prepared with ALB:PEC ratios of 50:50 and 30:70, peaks at 159.54 ◦C and 168.69 ◦C, respectively, were observed. This peak corresponds to the thermal degradation of the wall material rather than protein unfolding, suggesting the disruptive effect of PEC on protein assembly within the cryogel matrix. Processes 2024, 12, 1681 10 of 14 Processes 2024, 12, x FOR PEER REVIEW 10 of 15 al. [63]. Table 3 shows the Tpeak onset, Tpeak endset values, and enthalpy of cryogels. The thermo- grams (Figure 5c,d) for cryogels prepared only with ALB and with a 70:30 ALB:PEC ratio revealed a single endothermic event at 137.16 °C and 134.15 °C, respectively, attributed to the formation of agglomerates during cryogel preparation via intermolecular hydropho- bic and hydrogen-bonding interactions between unfolded ALB chains (ALB-ALB and ALB-PEC). As Jacob et al. [64] suggested, these intermolecular interactions are essential in stabilizing the denatured protein. These structures exhibit high fusion temperatures and fusion enthalpies (Table 3) and enhanced thermal stability. In cryogels prepared with ALB:PEC ratios of 50:50 and 30:70, peaks at 159.54 °C and 168.69 °C, respectively, were observed. This peak corresponds to the thermal degradation of the wall material rather than protein unfolding, suggesting the disruptive effect of PEC on protein assembly within the cryogel matrix. Figure 5. TGA curves (a) and DTG (b) of ALB and ALB:PEC cryogels with pink pepper essential oil encapsulated and thermogram DSC of ALB cryogel (c), and 70:30 (ALB:PEC) (d), 50:50 (ALB:PEC) (e), and 30:70 (ALB:PEC) (f) cryogels with pink pepper essential oil encapsulated. Table 3. Thermal behavior of the ALB and ALB: PEC cryogels loaded with pink pepper essential oil. Sample Tpeak onset (°C) Tpeak (°C) Tpeak endset (°C) ΔH (W/g) ALB 79.58 137.16 193.05 62.83 70:30 51.18 134.15 169.81 70.96 50:50 110.7 159.54 193.05 29.52 30:70 114.89 168.69 193.05 56.43 Figure 5. TGA curves (a) and DTG (b) of ALB and ALB:PEC cryogels with pink pepper essential oil encapsulated and thermogram DSC of ALB cryogel (c), and 70:30 (ALB:PEC) (d), 50:50 (ALB:PEC) (e), and 30:70 (ALB:PEC) (f) cryogels with pink pepper essential oil encapsulated. Table 3. Thermal behavior of the ALB and ALB: PEC cryogels loaded with pink pepper essential oil. Sample Tpeak onset (◦C) Tpeak (◦C) Tpeak endset (◦C) ∆H (W/g) ALB 79.58 137.16 193.05 62.83 70:30 51.18 134.15 169.81 70.96 50:50 110.7 159.54 193.05 29.52 30:70 114.89 168.69 193.05 56.43 3.7. Scanning Electron Microscopy Figure 6 shows the cross-sectional micrographs of the cryogels containing pink pep- per essential oil. The microparticles exhibit irregular morphology and varied sizes. The cryogel only with ALB displays a dense, heterogeneous structure (Figure 6(a1,a2)) with essential oil droplets on its surface (Figure 6(a4)). As the proportion of PEC increases, the cryogels develop a more porous structure, entrapping essential oil particles within their cavities (Figure 6(c3,d3)). These structural changes correspond to the essential oil release profiles, particularly in the 50:50 and 30:70 ALB:PEC cryogels, which exhibited enhanced antimicrobial activity against S. aureus. The soy protein isolate–pectin encapsula- tion system demonstrates increased porosity due to pectin presence, enhancing the release of encapsulated bioactive compounds [65,66]. Processes 2024, 12, 1681 11 of 14 Processes 2024, 12, x FOR PEER REVIEW 11 of 15 3.7. Scanning Electron Microscopy Figure 6 shows the cross-sectional micrographs of the cryogels containing pink pepper essential oil. The microparticles exhibit irregular morphology and varied sizes. The cryogel only with ALB displays a dense, heterogeneous structure (Figure 6(a1,a2)) with essential oil droplets on its surface (Figure 6(a4)). As the proportion of PEC increases, the cryogels develop a more porous structure, entrapping essential oil particles within their cavities (Figure 6(c3,d3)). These structural changes correspond to the essential oil release profiles, particularly in the 50:50 and 30:70 ALB:PEC cryogels, which exhibited enhanced antimicrobial activity against S. aureus. The soy protein isolate–pectin encapsulation system demonstrates increased porosity due to pectin presence, enhancing the release of encapsulated bioactive compounds [65,66]. Figure 6. SEM micrographs of ALB (a), 70:30 ALB:PEC (b), 50:50 ALB:PEC (c), and 30:70 ALB:PEC (d) (magnification 150× (1), 400× (2), 1000× (3), and 2500× (4)). 4. Conclusions ALB and ALB:PEC cryogels are suitable matrices for encapsulating the essential oil of pink pepper (Schinus terebinthifolius Raddi) and demonstrated antimicrobial activity primarily against S. aureus. The inhibition zone size was influenced by both cryogel com- position and mass, with higher pectin content correlating to larger inhibition zones. The pectin plays a crucial role in oil release and diffusion. PEC acts as a trigger in the proposed encapsulation system. Its concentration in the wall material significantly influences the encapsulation efficiency and total phenolic compound protection. More importantly, it can be harnessed to control the release of the essential oil, thereby enhancing its inhibitory effects against S. aureus. The interaction between ALB, PEC, and essential oil alters the wall material, thermal properties, and morphology. The PEC introduced led to multiple degradation steps and a more complex degradation process, reducing the thermal stabil- ity and increasing its porosity. It is still necessary to establish the optimal concentrations Figure 6. SEM micrographs of ALB (a), 70:30 ALB:PEC (b), 50:50 ALB:PEC (c), and 30:70 ALB:PEC (d) (magnification 150× (1), 400× (2), 1000× (3), and 2500× (4)). 4. Conclusions ALB and ALB:PEC cryogels are suitable matrices for encapsulating the essential oil of pink pepper (Schinus terebinthifolius Raddi) and demonstrated antimicrobial activity primarily against S. aureus. The inhibition zone size was influenced by both cryogel composition and mass, with higher pectin content correlating to larger inhibition zones. The pectin plays a crucial role in oil release and diffusion. PEC acts as a trigger in the proposed encapsulation system. Its concentration in the wall material significantly influences the encapsulation efficiency and total phenolic compound protection. More importantly, it can be harnessed to control the release of the essential oil, thereby enhancing its inhibitory effects against S. aureus. The interaction between ALB, PEC, and essential oil alters the wall material, thermal properties, and morphology. The PEC introduced led to multiple degradation steps and a more complex degradation process, reducing the thermal stability and increasing its porosity. It is still necessary to establish the optimal concentrations of PEC in the proposed encapsulation system to determine the kinetics and release profile and to establish its use in food matrices as an alternative for food preservation. Author Contributions: Conceptualization, A.M.C.-G., E.J.P.-M. and V.R.N.; methodology, A.M.C.-G. and M.G.C.; formal analysis, A.M.C.-G. and E.J.P.-M.; investigation, A.M.C.-G., E.J.P.-M. and M.G.C.; resources, V.R.N. and M.R.d.M.; data curation, A.M.C.-G. and E.J.P.-M.; writing—original draft preparation, A.M.C.-G. and E.J.P.-M.; writing—review and editing, A.M.C.-G., E.J.P.-M., V.R.N., M.G.C. and M.R.d.M.; visualization, A.M.C.-G.; supervision, M.R.d.M.; project administration, M.R.d.M.; funding acquisition, A.M.C.-G. All authors have read and agreed to the published version of the manuscript. Funding: This research was funded by the Coordination for the Improvement of Higher Education Personnel (CAPES) and Capes-Print program for a scholarship (code 88887.890935/2023-00). Processes 2024, 12, 1681 12 of 14 Data Availability Statement: The original contributions presented in the study are included in the article; further inquiries can be directed to the corresponding author. Acknowledgments: The authors are grateful to Mauricio Boscolo for the use of the FT-IR spectrophotometer. Conflicts of Interest: The authors declare no conflicts of interest. References 1. Torres Neto, L.; Monteiro, M.L.G.; Mutz, Y.d.S.; Tonon, R.V.; Conte-Junior, C.A. Nanoemulsification of Essential Oil Blend by Ultrasound: Optimization of Physicochemical, Antioxidant Properties, and Activity Against Escherichia Coli. Food Bioprocess Technol. 2023. [CrossRef] 2. Andrade, S.; Poncelet, D.; Ferreira, S.R.S. Sustainable Extraction and Encapsulation of Pink Pepper Oil. J. Food Eng. 2017, 204, 38–45. [CrossRef] 3. Bernardi, J.L.; Ferreira, J.A.; Puton, B.M.S.; Camargo, S.D.; Dal Magro, J.; Junges, A.; Cansian, R.L.; Steffens, C.; Zeni, J.; Paroul, N. Potential Agrochemical Applications of Schinus Terebinthifolius Essential Oil. J. Stored Prod. Res. 2024, 105, 102260. [CrossRef] 4. Locali-Pereira, A.R.; Lopes, N.A.; Menis-Henrique, M.E.C.; Janzantti, N.S.; Nicoletti, V.R. Modulation of Volatile Release and Antimicrobial Properties of Pink Pepper Essential Oil by Microencapsulation in Single- and Double-Layer Structured Matrices. Int. J. Food Microbiol. 2020, 335, 108890. [CrossRef] 5. Dima, C.; Dima, S. Essential Oils in Foods: Extraction, Stabilization, and Toxicity. Curr. Opin. Food Sci. 2015, 5, 29–35. [CrossRef] 6. Maraulo, G.E.; dos Santos Ferreira, C.; Beaufort, C.E.; Ugarte, M.G.; Mazzobre, M.F. Encapsulation of Bergamot Essential Oil Components in β-Cyclodextrin by Ultrasound-Assisted Co-Precipitation Method: Optimization, Characterization, and Antibacterial Activity. Food Bioprocess Technol. 2024. [CrossRef] 7. Silva, E.K.; Fernandes, R.V.D.B.; Borges, S.V.; Botrel, D.A.; Queiroz, F. Water Adsorption in Rosemary Essential Oil Microparticles: Kinetics, Thermodynamics and Storage Conditions. J. Food Eng. 2014, 140, 39–45. [CrossRef] 8. Fernandes, R.V.d.B.; Borges, S.V.; Botrel, D.A. Gum Arabic/Starch/Maltodextrin/Inulin as Wall Materials on the Microencapsula- tion of Rosemary Essential Oil. Carbohydr. Polym. 2014, 101, 524–532. [CrossRef] [PubMed] 9. Talón, E.; Lampi, A.M.; Vargas, M.; Chiralt, A.; Jouppila, K.; González-Martínez, C. Encapsulation of Eugenol by Spray-Drying Using Whey Protein Isolate or Lecithin: Release Kinetics, Antioxidant and Antimicrobial Properties. Food Chem. 2019, 295, 588–598. [CrossRef] 10. Sharif, H.R.; Goff, H.D.; Majeed, H.; Shamoon, M.; Liu, F.; Nsor-Atindana, J.; Haider, J.; Liang, R.; Zhong, F. Physicochemical Properties of β-Carotene and Eugenol Co-Encapsulated Flax Seed Oil Powders Using OSA Starches as Wall Material. Food Hydrocoll. 2017, 73, 274–283. [CrossRef] 11. Dima, C.; Patrascu, L.; Cantaragiu, A.; Alexe, P.; Dima, S. The Kinetics of the Swelling Process and the Release Mechanisms of Coriandrum Sativum L. Essential Oil from Chitosan/Alginate/Inulin Microcapsules. Food Chem. 2016, 195, 39–48. [CrossRef] [PubMed] 12. Locali Pereira, A.R.; Gonçalves Cattelan, M.; Nicoletti, V.R. Microencapsulation of Pink Pepper Essential Oil: Properties of Spray-Dried Pectin/SPI Double-Layer versus SPI Single-Layer Stabilized Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 581, 123806. [CrossRef] 13. Campelo, P.H.; Sanchez, E.A.; Fernandes, R.V.d.B.; Botrel, D.A.; Borges, S.V. Stability of Lime Essential Oil Microparticles Produced with Protein-Carbohydrate Blends. Food Res. Int. 2018, 105, 936–944. [CrossRef] [PubMed] 14. Beirão da Costa, S.; Duarte, C.; Bourbon, A.I.; Pinheiro, A.C.; Serra, A.T.; Martins, M.M.; Januário, M.I.N.; Vicente, A.A.; Delgadillo, I.; Duarte, C.; et al. Effect of the Matrix System in the Delivery and in Vitro Bioactivity of Microencapsulated Oregano Essential Oil. J. Food Eng. 2012, 110, 190–199. [CrossRef] 15. Hussein, A.M.S.; Mahmoud, K.F.; Hegazy, N.A.; Kamil, M.M.; Mohammad, A.A.; Mehaya, F.M. Efficiency of Micro and Nano Encapsulated Orange Peel Essential Oils on Quality of Sponge Cake. J. Environ. Sci. Technol. 2018, 12, 26–37. [CrossRef] 16. Veneranda, M.; Hu, Q.; Wang, T.; Luo, Y.; Castro, K.; Madariaga, J.M. Formation and Characterization of Zein-Caseinate-Pectin Complex Nanoparticles for Encapsulation of Eugenol. LWT-Food Sci. Technol. 2018, 89, 596–603. [CrossRef] 17. Ghasemi, S.; Jafari, S.M.; Assadpour, E.; Khomeiri, M. Production of Pectin-Whey Protein Nano-Complexes as Carriers of Orange Peel Oil. Carbohydr. Polym. 2017, 177, 369–377. [CrossRef] [PubMed] 18. Feyzioglu, G.C.; Tornuk, F. Development of Chitosan Nanoparticles Loaded with Summer Savory (Satureja hortensis L.) Essential Oil for Antimicrobial and Antioxidant Delivery Applications. LWT-Food Sci. Technol. 2016, 70, 104–110. [CrossRef] 19. Hasheminejad, N.; Khodaiyan, F.; Safari, M. Improving the Antifungal Activity of Clove Essential Oil Encapsulated by Chitosan Nanoparticles. Food Chem. 2019, 275, 113–122. [CrossRef] 20. Gonçalves, N.D.; Pena, F.d.L.; Sartoratto, A.; Derlamelina, C.; Duarte, M.C.T.; Antunes, A.E.C.; Prata, A.S. Encapsulated Thyme (Thymus vulgaris) Essential Oil Used as a Natural Preservative in Bakery Product. Food Res. Int. 2017, 96, 154–160. [CrossRef] 21. Gonçalves da Rosa, C.; Zapelini de Melo, A.P.; Sganzerla, W.G.; Machado, M.H.; Nunes, M.R.; Vinicius de Oliveira Brisola Maciel, M.; Bertoldi, F.C.; Manique Barreto, P.L. Application in Situ of Zein Nanocapsules Loaded with Origanum Vulgare Linneus and Thymus Vulgaris as a Preservative in Bread. Food Hydrocoll. 2020, 99, 105339. [CrossRef] https://doi.org/10.1007/s11947-023-03297-6 https://doi.org/10.1016/j.jfoodeng.2017.02.020 https://doi.org/10.1016/j.jspr.2024.102260 https://doi.org/10.1016/j.ijfoodmicro.2020.108890 https://doi.org/10.1016/j.cofs.2015.07.003 https://doi.org/10.1007/s11947-024-03442-9 https://doi.org/10.1016/j.jfoodeng.2014.05.003 https://doi.org/10.1016/j.carbpol.2013.09.083 https://www.ncbi.nlm.nih.gov/pubmed/24299808 https://doi.org/10.1016/j.foodchem.2019.05.115 https://doi.org/10.1016/j.foodhyd.2017.07.002 https://doi.org/10.1016/j.foodchem.2015.05.044 https://www.ncbi.nlm.nih.gov/pubmed/26575710 https://doi.org/10.1016/j.colsurfa.2019.123806 https://doi.org/10.1016/j.foodres.2017.12.034 https://www.ncbi.nlm.nih.gov/pubmed/29433291 https://doi.org/10.1016/j.jfoodeng.2011.05.043 https://doi.org/10.3923/jest.2019.26.37 https://doi.org/10.1016/j.lwt.2017.11.040 https://doi.org/10.1016/j.carbpol.2017.09.009 https://www.ncbi.nlm.nih.gov/pubmed/28962781 https://doi.org/10.1016/j.lwt.2016.02.037 https://doi.org/10.1016/j.foodchem.2018.09.085 https://doi.org/10.1016/j.foodres.2017.03.006 https://doi.org/10.1016/j.foodhyd.2019.105339 Processes 2024, 12, 1681 13 of 14 22. Li, Y.; Wu, C.; Wu, T.; Wang, L.; Chen, S.; Ding, T.; Hu, Y. Preparation and Characterization of Citrus Essential Oils Loaded in Chitosan Microcapsules by Using Different Emulsifiers. J. Food Eng. 2018, 217, 108–114. [CrossRef] 23. Hosseini, S.M.; Hosseini, H.; Mohammadifar, M.A.; Mortazavian, A.M.; Mohammadi, A.; Khosravi-Darani, K.; Shojaee-Aliabadi, S.; Dehghan, S.; Khaksar, R. Incorporation of Essential Oil in Alginate Microparticles by Multiple Emulsion/Ionic Gelation Process. Int. J. Biol. Macromol. 2013, 62, 582–588. [CrossRef] [PubMed] 24. Noppakundilograt, S.; Piboon, P.; Graisuwan, W.; Nuisin, R.; Kiatkamjornwong, S. Encapsulated Eucalyptus Oil in Ionically Cross-Linked Alginate Microcapsules and Its Controlled Release. Carbohydr. Polym. 2015, 131, 23–33. [CrossRef] [PubMed] 25. Betz, M.; García-González, C.A.; Subrahmanyam, R.P.; Smirnova, I.; Kulozik, U. Preparation of Novel Whey Protein-Based Aerogels as Drug Carriers for Life Science Applications. J. Supercrit. Fluids 2012, 72, 111–119. [CrossRef] 26. Wang, J.; Li, Y.; Gao, Y.; Xie, Z.; Zhou, M.; He, Y.; Wu, H.; Zhou, W.; Dong, X.; Yang, Z.; et al. Cinnamon Oil-Loaded Composite Emulsion Hydrogels with Antibacterial Activity Prepared Using Concentrated Emulsion Templates. Ind. Crops Prod. 2018, 112, 281–289. [CrossRef] 27. Kujur, A.; Kiran, S.; Dubey, N.K.; Prakash, B. Microencapsulation of Gaultheria Procumbens Essential Oil Using Chitosan- Cinnamic Acid Microgel: Improvement of Antimicrobial Activity, Stability and Mode of Action. LWT-Food Sci. Technol. 2017, 86, 132–138. [CrossRef] 28. Volić, M.; Pajić-Lijaković, I.; Djordjević, V.; Knežević-Jugović, Z.; Pećinar, I.; Stevanović-Dajić, Z.; Veljović, Ð.; Hadnadjev, M.; Bugarski, B. Alginate/Soy Protein System for Essential Oil Encapsulation with Intestinal Delivery. Carbohydr. Polym. 2018, 200, 15–24. [CrossRef] [PubMed] 29. Chaux-Gutiérrez, A.M.; Pérez-Monterroza, E.J.; Mauro, M.A. Rheological and Structural Characterization of Gels from Albumin and Low Methoxyl Amidated Pectin Mixtures. Food Hydrocoll. 2019, 92, 60–68. [CrossRef] 30. Croguennec, T.; Nau, F.; Brulé, G. Influence of PH and Salts on Egg White Gelation. J. Food Sci. 2002, 67, 608–614. [CrossRef] 31. Foegeding, E.A.; Li, H.; Bottcher, S. Gelation of Globular Proteins. In Phase/State Transition in Foods Chemical, Structural and Rheological Changes; Rao, M.A., Ed.; Marcel Dekker: New York, NY, USA, 1998; pp. 253–260. 32. Haro-González, J.N.; de Alba, B.N.S.; Morales-Hernández, N.; Espinosa-Andrews, H. Type A Gelatin-Amidated Low Methoxyl Pectin Complex Coacervates for Probiotics Protection: Formation, Characterization, and Viability. Food Chem. 2024, 453, 139644. [CrossRef] [PubMed] 33. Chaux-Gutiérrez, A.M.; Pérez-Monterroza, E.J.; Granda-Restrepo, D.M.; Mauro, M.A. Cryogels from Albumin and Low Methoxyl Amidated Pectin as a Matrix for Betalain Encapsulation. J. Food Process. Preserv. 2020, 44, e14843. [CrossRef] 34. Abreu, F.O.M.S.; Oliveira, E.F.; Paula, H.C.B.; De Paula, R.C.M. Chitosan/Cashew Gum Nanogels for Essential Oil Encapsulation. Carbohydr. Polym. 2012, 89, 1277–1282. [CrossRef] 35. Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [CrossRef] 36. Re, R.; Pellegrini, N.; Proteggent, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [CrossRef] 37. CLSI. Performance Standards for Antimicrobial Susceptibility Testing: 25th Informational Supplement; CLSI Document M100–S25; CLSI: Wayne, PA, USA, 2015. 38. Evans, M.; Ratcliffe, I.; Williams, P.A. Emulsion Stabilisation Using Polysaccharide-Protein Complexes. Curr. Opin. Colloid Interface Sci. 2013, 18, 272–282. [CrossRef] 39. Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-Step Method for Encapsulation of Oregano Essential Oil in Chitosan Nanoparticles: Preparation, Characterization and in Vitro Release Study. Carbohydr. Polym. 2013, 95, 50–56. [CrossRef] [PubMed] 40. Rojas-Moreno, S.; Osorio-Revilla, G.; Gallardo-Velázquez, T.; Cárdenas-Bailón, F.; Meza-Márquez, G. Effect of the Cross-Linking Agent and Drying Method on Encapsulation Efficiency of Orange Essential Oil by Complex Coacervation Using Whey Protein Isolate with Different Polysaccharides. J. Microencapsul. 2018, 35, 165–180. [CrossRef] 41. Bastos, L.P.H.; dos Santos, C.H.C.; de Carvalho, M.G.; Garcia-Rojas, E.E. Encapsulation of the Black Pepper (Piper nigrum L.) Essential Oil by Lactoferrin-Sodium Alginate Complex Coacervates: Structural Characterization and Simulated Gastrointestinal Conditions. Food Chem. 2020, 316, 126345. [CrossRef] 42. Chen, H.; Zhong, Q. A Novel Method of Preparing Stable Z