(Z)-Ethyl 2-hydroxyimino-2-(4-nitro- benzyl)ethanoate Ignez Caracelli,a* Antonio C. Trindade,b Paulo J. S. Moran,c Luciana Hinoue,c Julio Zukerman-Schpectord and Edward R. T. Tiekinke aBioMat-Physics Department, UNESP – Univ Estadual Paulista, 17033-360 Bauru, SP, Brazil, bInstituto de Quı́mica e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil, cInstituto de Quı́mica, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil, dDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: ignez@fc.unesp.br Received 29 November 2009; accepted 5 December 2009 Key indicators: single-crystal X-ray study; T = 290 K; mean �(C–C) = 0.002 Å; disorder in main residue; R factor = 0.048; wR factor = 0.128; data-to-parameter ratio = 14.6. The title molecule, C11H10N2O6, has a Z conformation about the C N bond of the oxime unit. There are significant twists from planarity throughout the molecule, the most significant being between the hydroxyimino and ester groups which are effectively orthogonal with an N—C—C—Ocarbonyl torsion angle of 91.4 (2)�. The crystal packing features oxime–benzoyl O—H� � �O contacts that lead to chains along [010] and C— H� � �O interactions also occur. Related literature For background to the synthesis of chiral hydroxyaminoacids and hydroxyaminoalcohols, see: Corrêa & Moran (1999); Kreutz et al. (1997, 2000). For related structures, see: Ramos Silva et al. (2004); Forsyth et al. (2006). For the synthesis, see: Adkins & Reeve (1938). Experimental Crystal data C11H10N2O6 Mr = 266.21 Monoclinic, C2=c a = 23.2347 (7) Å b = 12.0698 (6) Å c = 8.9698 (4) Å � = 106.100 (2)� V = 2416.82 (18) Å3 Z = 8 Mo K� radiation � = 0.12 mm�1 T = 290 K 0.18 � 0.15 � 0.12 mm Data collection Nonius KappaCCD diffractometer 8147 measured reflections 2752 independent reflections 2004 reflections with I > 2�(I) Rint = 0.033 Refinement R[F 2 > 2�(F 2)] = 0.048 wR(F 2) = 0.128 S = 1.05 2752 reflections 189 parameters H-atom parameters constrained ��max = 0.20 e Å�3 ��min = �0.19 e Å�3 Table 1 Hydrogen-bond geometry (Å, �). D—H� � �A D—H H� � �A D� � �A D—H� � �A O4—H4o� � �O3i 0.82 1.91 2.7165 (16) 166 C5—H5� � �O5i 0.93 2.58 3.371 (2) 144 C2—H2� � �O1ii 0.93 2.55 3.393 (3) 151 C11—H11a� � �O1iii 0.96 2.52 3.426 (5) 158 Symmetry codes: (i) �xþ 1 2; y þ 1 2;�zþ 1 2; (ii) �xþ 1;�y;�zþ 2; (iii) x � 1 2; y� 1 2; z� 1. Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and publCIF (Westrip, 2009). We thank FAPESP, CNPq and CAPES for financial support. Publication costs were met by FAPESP (Proc. 2008/02531–5). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2614). References Adkins, H. & Reeve, E. W. (1938). J. Am. Chem. Soc. 60, 1328–1331. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Corrêa, I. R. & Moran, P. J. S. (1999). Tetrahedron, 55, 14221–14232. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. Forsyth, C. M., Langford, S. J. & Lee, K. A. (2006). Acta Cryst. E62, o5654– o5655. Kreutz, O. C., Moran, P. J. S. & Rodrigues, J. A. R. (1997). Tetrahedron Asymmetry, 8, 2649–2653. Kreutz, O. C., Segura, R. C. M., Rodrigues, J. A. R. & Moran, P. J. S. (2000). Tetrahedron Asymmetry, 11, 2107–2115. Nardelli, M. (1995). J. Appl. Cryst. 28, 659. Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Ramos Silva, M., Matos Beja, A., Paixão, J. A., Lopes, S. H., Cabral, A. M. T. D. P. V., d’A. Rocha Gonsalves, A. M. & Sobral, A. J. F. N. (2004). Z. Kristallogr. New Cryst. Struct. 219, 145–146. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Westrip, S. P. (2009). publCIF. In preparation. organic compounds Acta Cryst. (2010). E66, o137 doi:10.1107/S1600536809052386 Caracelli et al. o137 Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB1 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB2 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB2 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB2 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB3 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB4 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB5 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB6 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB6 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB7 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB7 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB8 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB8 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB9 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB10 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB11 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB11 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB11 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB12 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB12 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB12 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB13 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hg2614&bbid=BB14 http://crossmark.crossref.org/dialog/?doi=10.1107/S1600536809052386&domain=pdf&date_stamp=2009-12-16 supplementary materials supplementary materials sup-1 Acta Cryst. (2010). E66, o137 [ doi:10.1107/S1600536809052386 ] (Z)-Ethyl 2-hydroxyimino-2-(4-nitrobenzyl)ethanoate I. Caracelli, A. C. Trindade, P. J. S. Moran, L. Hinoue, J. Zukerman-Schpector and E. R. T. Tiekink Comment The title compound (I) was prepared as an intermediary during the synthesis of chiral hydroxyaminoacids and hy- droxyaminoalcohols, as α-ketomethoxyimino compounds are reduced by sodium borohydride (Corrêa & Moran, 1999) and enantioselectively bio-reduced by whole cells of yeast (Kreutz et al., 1997; Kreutz et al., 2000). The structure of (I) is non-planar as seen by the values of the C3–C4–C7–O3 and C4–C7–C8–N2 torsion angles within the central moiety of 8.8 (2) and 15.8 (2) °, respectively. The peripheral residues are twisted with respect to the inner atoms. Thus, the nitro ring is twisted out of the plane of the benzene ring to which it is connected: the C2–C1–N1–O1 torsion angle is -13.7 (3) °. Even more dramatic is the twist about the C8—C9 bond with the C7–C8–C9–O6 torsion angle being 94.77 (17)°, indicating the terminal ester group is orthogonal to the hydroxyimino residue. With respect to the C8═N2 bond, the conformation is Z. There are two other structures in the literature containing the basic C(═O)C(═NOH)C(═O)OC frame- work. In benzyl 2-(hydroxyimino)acetoacetate a Z conformation is found for the oxime group (Forsyth et al., 2006) whereas in each of the two independent molecules comprising the asymmetric unit in ethyl 2-(hydroxyimino)-3-oxo-3-phenylpropi- onate, an E conformation is found (Ramos Silva et al., 2004). The crystal packing of (I) is dominated by O—H···O hydrogen bonding involving the oxime-O4—H and benzoyl-O3 atoms which leads to the formation of supramolecular chains along [0 1 0] with a flat topology, Fig. 2 and Table 1. The pres- ence of C–H···O contacts provide stability to the chain. These C5–H···O5 contacts close 13-membered {···OC3O···HC4NOH} synthons, Fig. 3 and Table 1. The chains are linked into 2-D arrays in the [3 0 1] plane by further C–H···O contacts involving the nitro groups and centrosymmetric 10-membered {···ONC2H}2 synthons, Fig. 3 and Table 1. The resultant layer is es- sentially flat with the ethoxy groups lying above and below the layer. The methyl-H atoms of one of the disordered ethoxy groups form C–H···O contacts with the nitro-O1 atoms providing stability to the stacked layers, Fig. 4 and Table 1. Experimental The title compound, (I), was prepared following a modified literature method (Adkins and Reeve, 1938). A solution of sodium nitrite (5 mmol) and water (2 ml) was added drop-wise to a solution of ethyl 3-oxo-3-(4-nitrophenyl)propanoate (2 mmol) in glacial acetic acid (3 ml) at 273 K. The resulting solution was stirred for 1 h at 273 K. The temperature was then raised to 303 K and the reaction left for a further hour. The reaction mixture was quenched with water (2.5 ml) and treated with ether (4 x 5 ml). The organic layer was dried with Mg(SO4) and the solvent evaporated to afford a mixture of Z:E (40:60) isomers in 87% yield that were separated by dissolving in ethyl acetate and precipitating with hexane. Refinement The O– and C-bound H atoms were geometrically placed (O–H = 0.82 Å and C–H = 0.9–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and methyl-C). http://dx.doi.org/10.1107/S1600536809052386 http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Caracelli,%20I. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Trindade,%20A.C. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Moran,%20P.J.S. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Hinoue,%20L. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Zukerman-Schpector,%20J. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Tiekink,%20E.R.T. supplementary materials sup-2 Disorder was modelled for the ethyl group with two positions resolved for each of the C10 and C11 atoms. Fractional refinement (anisotropic) showed that the site occupancy factors were equal within experimental error and thus these were fixed at 0.5 in the final cycles of refinement. Figures Fig. 1. Molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms). Only one component of the disordered ethyl group is shown for reasons of clarity. Fig. 2. Supramolecular chain aligned along [0 1 0] in (I) mediated by oxime-O—H···O-ben- zoyl hydrogen bonding (orange dashed lines). Colour code: O, red; N, blue; C, grey; and H, green. Fig. 3. 2-D array in (I) whereby the chains shown in Fig. 2 are reinforced by and are connec- ted by C–H···O contacts (blue dashed lines). Colour code as for Fig. 2. Fig. 4. A view of the crystal packing in (I) showing the stacking of layers. Colour code as for Fig. 2. (Z)-Ethyl 2-hydroxyimino-2-(4-nitrobenzyl)ethanoate Crystal data C11H10N2O6 F(000) = 1104 Mr = 266.21 Dx = 1.463 Mg m−3 Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å Hall symbol: -C 2yc Cell parameters from 4194 reflections supplementary materials sup-3 a = 23.2347 (7) Å θ = 27.5–1.0° b = 12.0698 (6) Å µ = 0.12 mm−1 c = 8.9698 (4) Å T = 290 K β = 106.100 (2)° Irregular, colourless V = 2416.82 (18) Å3 0.18 × 0.15 × 0.12 mm Z = 8 Data collection Nonius KappaCCD diffractometer 2004 reflections with I > 2σ(I) Radiation source: fine-focus sealed tube Rint = 0.033 graphite θmax = 27.5°, θmin = 1.9° CCD rotation images, thick slices scans h = −30→28 8147 measured reflections k = −15→14 2752 independent reflections l = −8→11 Refinement Refinement on F2 Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites wR(F2) = 0.128 H-atom parameters constrained S = 1.05 w = 1/[σ2(Fo 2) + (0.0493P)2 + 1.3639P] where P = (Fo 2 + 2Fc 2)/3 2752 reflections (Δ/σ)max < 0.001 189 parameters Δρmax = 0.20 e Å−3 0 restraints Δρmin = −0.19 e Å−3 Special details Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) x y z Uiso*/Ueq Occ. (<1) O1 0.50114 (9) 0.16899 (16) 1.0271 (2) 0.1080 (7) O2 0.47793 (8) 0.32527 (15) 0.9163 (2) 0.0950 (6) supplementary materials sup-4 O3 0.29936 (6) −0.09600 (9) 0.44259 (15) 0.0585 (4) O4 0.21512 (6) 0.18581 (10) 0.13275 (15) 0.0581 (4) H4O 0.2168 0.2525 0.1169 0.087* O5 0.21223 (6) −0.07843 (11) 0.10633 (16) 0.0652 (4) O6 0.15870 (6) −0.01284 (12) 0.25941 (16) 0.0662 (4) N1 0.47188 (8) 0.22595 (16) 0.9220 (2) 0.0685 (5) N2 0.26049 (6) 0.15679 (11) 0.26243 (16) 0.0477 (3) C1 0.42724 (8) 0.17138 (15) 0.7937 (2) 0.0517 (4) C2 0.42939 (8) 0.05779 (16) 0.7813 (2) 0.0586 (5) H2 0.4580 0.0165 0.8527 0.070* C3 0.38815 (8) 0.00701 (15) 0.6605 (2) 0.0539 (4) H3 0.3893 −0.0695 0.6489 0.065* C4 0.34459 (7) 0.06915 (13) 0.55497 (18) 0.0426 (4) C5 0.34325 (8) 0.18320 (13) 0.5725 (2) 0.0489 (4) H5 0.3140 0.2249 0.5036 0.059* C6 0.38527 (8) 0.23516 (15) 0.6919 (2) 0.0537 (4) H6 0.3851 0.3118 0.7030 0.064* C7 0.30018 (7) 0.00492 (13) 0.43324 (19) 0.0434 (4) C8 0.25518 (7) 0.05606 (13) 0.29990 (18) 0.0423 (4) C9 0.20639 (7) −0.02027 (13) 0.2087 (2) 0.0460 (4) C10 0.1039 (4) −0.0815 (6) 0.1899 (9) 0.066 (2) 0.50 H10A 0.0680 −0.0394 0.1868 0.079* 0.50 H10B 0.1026 −0.1031 0.0849 0.079* 0.50 C11 0.1074 (2) −0.1772 (4) 0.2855 (6) 0.0772 (13) 0.50 H11A 0.0750 −0.2264 0.2390 0.116* 0.50 H11B 0.1048 −0.1552 0.3863 0.116* 0.50 H11C 0.1448 −0.2143 0.2954 0.116* 0.50 C10A 0.1143 (2) −0.0975 (4) 0.1926 (6) 0.093 (5) 0.50 H10C 0.1335 −0.1679 0.1858 0.112* 0.50 H10D 0.0907 −0.0761 0.0895 0.112* 0.50 C11A 0.0755 (3) −0.1055 (8) 0.3013 (8) 0.127 (3) 0.50 H11D 0.0423 −0.1540 0.2578 0.190* 0.50 H11E 0.0607 −0.0333 0.3162 0.190* 0.50 H11F 0.0986 −0.1344 0.3993 0.190* 0.50 Atomic displacement parameters (Å2) U11 U22 U33 U12 U13 U23 O1 0.1132 (14) 0.0968 (14) 0.0788 (11) 0.0063 (10) −0.0320 (10) −0.0089 (10) O2 0.1013 (13) 0.0768 (12) 0.0881 (12) −0.0268 (9) −0.0050 (9) −0.0171 (9) O3 0.0739 (8) 0.0300 (6) 0.0639 (8) −0.0020 (5) 0.0064 (6) 0.0004 (5) O4 0.0661 (8) 0.0380 (6) 0.0606 (8) 0.0033 (6) 0.0019 (6) 0.0087 (6) O5 0.0750 (9) 0.0528 (8) 0.0690 (9) −0.0128 (6) 0.0219 (7) −0.0214 (7) O6 0.0567 (8) 0.0706 (9) 0.0725 (9) −0.0230 (6) 0.0200 (7) −0.0229 (7) N1 0.0640 (10) 0.0740 (12) 0.0597 (10) −0.0055 (9) 0.0045 (8) −0.0137 (9) N2 0.0525 (8) 0.0343 (7) 0.0530 (8) −0.0005 (6) 0.0090 (6) 0.0020 (6) C1 0.0474 (9) 0.0570 (11) 0.0489 (9) −0.0046 (8) 0.0102 (7) −0.0072 (8) C2 0.0537 (10) 0.0581 (11) 0.0564 (11) 0.0083 (8) 0.0026 (8) 0.0019 (9) supplementary materials sup-5 C3 0.0572 (10) 0.0403 (9) 0.0599 (11) 0.0054 (8) 0.0090 (8) 0.0003 (8) C4 0.0437 (8) 0.0358 (8) 0.0483 (9) −0.0003 (6) 0.0127 (7) −0.0003 (6) C5 0.0513 (9) 0.0356 (8) 0.0553 (10) 0.0010 (7) 0.0071 (7) −0.0010 (7) C6 0.0604 (10) 0.0399 (9) 0.0581 (10) −0.0047 (8) 0.0120 (8) −0.0070 (8) C7 0.0482 (9) 0.0328 (8) 0.0496 (9) −0.0010 (7) 0.0144 (7) −0.0007 (6) C8 0.0463 (8) 0.0328 (8) 0.0474 (9) −0.0017 (6) 0.0126 (7) −0.0028 (6) C9 0.0515 (9) 0.0344 (8) 0.0492 (9) −0.0023 (7) 0.0089 (7) 0.0022 (7) C10 0.043 (2) 0.057 (3) 0.087 (5) −0.016 (2) 0.001 (3) −0.004 (3) C11 0.068 (3) 0.074 (3) 0.081 (3) −0.027 (2) 0.005 (2) 0.007 (3) C10A 0.061 (5) 0.139 (10) 0.085 (6) −0.044 (5) 0.031 (4) −0.056 (6) C11A 0.105 (5) 0.187 (8) 0.105 (4) −0.088 (5) 0.057 (4) −0.057 (5) Geometric parameters (Å, °) O1—N1 1.212 (2) C4—C7 1.494 (2) O2—N1 1.210 (2) C5—C6 1.384 (2) O3—C7 1.2215 (19) C5—H5 0.9300 O4—N2 1.3809 (18) C6—H6 0.9300 O4—H4O 0.8200 C7—C8 1.487 (2) O5—C9 1.193 (2) C8—C9 1.513 (2) O6—C9 1.312 (2) C10—C11 1.427 (10) O6—C10A 1.458 (5) C10—H10A 0.9700 O6—C10 1.502 (6) C10—H10B 0.9700 N1—C1 1.474 (2) C11—H11A 0.9600 N2—C8 1.276 (2) C11—H11B 0.9600 C1—C6 1.372 (3) C11—H11C 0.9600 C1—C2 1.378 (3) C10A—C11A 1.503 (8) C2—C3 1.376 (3) C10A—H10C 0.9700 C2—H2 0.9300 C10A—H10D 0.9700 C3—C4 1.397 (2) C11A—H11D 0.9600 C3—H3 0.9300 C11A—H11E 0.9600 C4—C5 1.387 (2) C11A—H11F 0.9600 N2—O4—H4O 109.5 N2—C8—C9 123.39 (14) C9—O6—C10A 112.3 (3) C7—C8—C9 115.87 (13) C9—O6—C10 121.3 (4) O5—C9—O6 126.44 (16) O2—N1—O1 123.25 (18) O5—C9—C8 123.10 (16) O2—N1—C1 118.35 (18) O6—C9—C8 110.45 (14) O1—N1—C1 118.39 (19) C11—C10—O6 107.2 (6) C8—N2—O4 110.88 (13) C11—C10—H10A 110.3 C6—C1—C2 122.63 (16) O6—C10—H10A 110.3 C6—C1—N1 119.02 (17) C11—C10—H10B 110.3 C2—C1—N1 118.35 (17) O6—C10—H10B 110.3 C3—C2—C1 118.33 (17) H10A—C10—H10B 108.5 C3—C2—H2 120.8 C10—C11—H11A 109.5 C1—C2—H2 120.8 C10—C11—H11B 109.5 C2—C3—C4 120.66 (17) H11A—C11—H11B 109.5 C2—C3—H3 119.7 C10—C11—H11C 109.5 C4—C3—H3 119.7 H11A—C11—H11C 109.5 C5—C4—C3 119.42 (16) H11B—C11—H11C 109.5 supplementary materials sup-6 C5—C4—C7 124.40 (15) O6—C10A—C11A 105.2 (4) C3—C4—C7 116.12 (15) O6—C10A—H10C 110.7 C6—C5—C4 120.29 (16) C11A—C10A—H10C 110.7 C6—C5—H5 119.9 O6—C10A—H10D 110.7 C4—C5—H5 119.9 C11A—C10A—H10D 110.7 C1—C6—C5 118.66 (16) H10C—C10A—H10D 108.8 C1—C6—H6 120.7 C10A—C11A—H11D 109.5 C5—C6—H6 120.7 C10A—C11A—H11E 109.5 O3—C7—C8 116.64 (14) H11D—C11A—H11E 109.5 O3—C7—C4 119.20 (15) C10A—C11A—H11F 109.5 C8—C7—C4 124.15 (14) H11D—C11A—H11F 109.5 N2—C8—C7 120.63 (14) H11E—C11A—H11F 109.5 O2—N1—C1—C6 −14.5 (3) O4—N2—C8—C7 177.96 (13) O1—N1—C1—C6 166.2 (2) O4—N2—C8—C9 1.9 (2) O2—N1—C1—C2 165.6 (2) O3—C7—C8—N2 −165.30 (16) O1—N1—C1—C2 −13.7 (3) C4—C7—C8—N2 15.8 (2) C6—C1—C2—C3 0.9 (3) O3—C7—C8—C9 11.0 (2) N1—C1—C2—C3 −179.25 (16) C4—C7—C8—C9 −167.90 (14) C1—C2—C3—C4 −1.1 (3) C10A—O6—C9—O5 8.9 (3) C2—C3—C4—C5 0.2 (3) C10—O6—C9—O5 0.4 (4) C2—C3—C4—C7 −176.95 (16) C10A—O6—C9—C8 −170.7 (2) C3—C4—C5—C6 1.0 (3) C10—O6—C9—C8 −179.1 (3) C7—C4—C5—C6 177.94 (15) N2—C8—C9—O5 91.4 (2) C2—C1—C6—C5 0.3 (3) C7—C8—C9—O5 −84.8 (2) N1—C1—C6—C5 −179.55 (16) N2—C8—C9—O6 −89.0 (2) C4—C5—C6—C1 −1.3 (3) C7—C8—C9—O6 94.77 (17) C5—C4—C7—O3 −168.26 (17) C9—O6—C10—C11 96.0 (7) C3—C4—C7—O3 8.8 (2) C10A—O6—C10—C11 53.9 (18) C5—C4—C7—C8 10.7 (2) C9—O6—C10A—C11A 159.5 (4) C3—C4—C7—C8 −172.33 (15) C10—O6—C10A—C11A −59 (2) Hydrogen-bond geometry (Å, °) D—H···A D—H H···A D···A D—H···A O4—H4o···O3i 0.82 1.91 2.7165 (16) 166 C5—H5···O5i 0.93 2.58 3.371 (2) 144 C2—H2···O1ii 0.93 2.55 3.393 (3) 151 C11—H11a···O1iii 0.96 2.52 3.426 (5) 158 Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1, −y, −z+2; (iii) x−1/2, y−1/2, z−1. supplementary materials sup-7 Fig. 1 supplementary materials sup-8 Fig. 2 supplementary materials sup-9 Fig. 3 supplementary materials sup-10 Fig. 4