Physics Letters B 755 (2016) 196–216 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Search for W′ decaying to tau lepton and neutrino in proton–proton collisions at √ s = 8 TeV .CMS Collaboration � CERN, Switzerland a r t i c l e i n f o a b s t r a c t Article history: Received 17 September 2015 Received in revised form 20 December 2015 Accepted 1 February 2016 Available online 3 February 2016 Editor: M. Doser Keywords: CMS Physics W′ decays The first search for a heavy charged vector boson in the final state with a tau lepton and a neutrino is reported, using 19.7 fb−1 of LHC data at √ s = 8 TeV. A signal would appear as an excess of events with high transverse mass, where the standard model background is low. No excess is observed. Limits are set on a model in which the W′ decays preferentially to fermions of the third generation. These results substantially extend previous constraints on this model. Masses below 2.0 to 2.7 TeV are excluded, depending on the model parameters. In addition, the existence of a W′ boson with universal fermion couplings is excluded at 95% confidence level, for W′ masses below 2.7 TeV. For further reinterpretation a model-independent limit on potential signals for various transverse mass thresholds is also presented. © 2016 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. 1. Introduction New heavy gauge bosons are predicted by various extensions of the standard model (SM). Charged heavy gauge bosons are gener- ally referred to as W′ [1]. Non-universal gauge interaction mod- els (NUGIM) [2–5] predict a larger W′-boson branching fraction to the third generation of fermions. Searches for a W′ boson de- caying to a tau lepton and neutrino have never been performed before, while the electron and muon channels have been studied extensively at the Tevatron [6,7] and by the ATLAS and CMS ex- periments at the LHC [8,9]. This Letter describes a search for a W′ boson decaying to a tau lepton and a neutrino with the CMS detector [10] at the CERN LHC, using proton–proton collisions col- lected in 2012 at a center-of-mass energy of 8 TeV. The data set corresponds to an integrated luminosity of 19.7 ± 0.5 fb−1. The results are interpreted in the context of the sequential standard model (SSM) W′ boson [1] as well as an extended gauge group NUGIM [2,11,12]. The signature of a W′-boson event is similar to that of a W-boson event in which the W boson is produced “off shell” with a high mass. Events of interest are those in which the only detectable products of the W′ decay form a single hadron- ically decaying tau (τh). The hadronic decays of the tau lepton are experimentally distinctive because they result in low charged hadron multiplicity, unlike QCD jets, which have high hadron mul- tiplicity, or other leptonic W′ decays, which have none. In contrast, the decays W′ → τντ → eνeντ ντ and W′ → τντ → μνμντ ντ can- � E-mail address: cms-publication-committee-chair@cern.ch. not be distinguished from W′ → eνe and W′ → μνμ , thus they suffer from low significance and are not selected in this analysis but rather in the corresponding leptonic (e, μ) W′ searches. 2. Physics models In the SSM, the W′ boson is a heavy analogue of the W boson. It is a narrow resonance with fermionic decay modes and branching fractions similar to those of the SM W boson, with the addition of the decay W′ → tb, which becomes relevant for W′-boson masses larger than 180 GeV. If the W′ boson is heavy enough to decay to top and bottom quarks, the SSM branching fraction for the decay W′ → τν is 8.5%. Under these assumptions, the total width of a 1 TeV W′ boson is about 33 GeV. Decays of the W′ boson into WZ bosons depend on the specific model assumptions and are usually considered to be suppressed in the SSM, as assumed by the cur- rent search and by previous searches in other final states [9,13]. If the W′ interacts with left-handed particles and right-handed anti- particles (V − A coupling), interference with the SM W boson is expected [14–16]. Models with non-universal couplings predict an enhanced branching fraction to the third generation of fermions and explain the large mass of the top quark. In the other model studied in this analysis, NUGIM [2,11,12], the weak SM SU(2)W group is a low-energy limit of two gauge groups, a light SU(2)l and a heavy SU(2)h , which couple only to the light fermions of the first two generations and to the heavy fermions of the third generation, re- spectively. These two groups mix such that an SM-like SU(2)W and an extended group SU(2)E exist. The second SU(2)E extended http://dx.doi.org/10.1016/j.physletb.2016.02.002 0370-2693/© 2016 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. http://dx.doi.org/10.1016/j.physletb.2016.02.002 http://www.ScienceDirect.com/ http://www.elsevier.com/locate/physletb http://creativecommons.org/licenses/by/4.0/ mailto:cms-publication-committee-chair@cern.ch http://dx.doi.org/10.1016/j.physletb.2016.02.002 http://creativecommons.org/licenses/by/4.0/ http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2016.02.002&domain=pdf CMS Collaboration / Physics Letters B 755 (2016) 196–216 197 Fig. 1. Branching fractions (left-hand scale and solid lines) and total width (right- hand scale and dotted lines) for W′ decays in the NUGIM, as calculated in Refs. [2, 11,12]. For cot θE = 1 the values are the same as those in the SSM, rescaled to ac- commodate the WH decay channel. gauge group gives rise to additional gauge bosons such as a W′ . The mixing of the two gauge groups is described by a mixing an- gle of the extended group θE , which modifies the coupling to the heavy bosons. Hence the mixing changes the production cross sec- tion and, as illustrated in Fig. 1, the branching fractions of the W′ . For cot θE � 3 the W′ boson decays to fermions of the third generation only, whereas at cot θE = 1 the branching fractions are identical to those of the SSM, and the W′ couples democratically to all fermions. For cot θE < 1 the decays into light fermions are dominant. In the NUGIM, the decay into WZ bosons is negligible by construction. In either the SSM or the NUGIM, the presence of a W′-boson signal over the W-boson background could be observed in the distribution of the transverse mass (MT) of the τh and the missing transverse energy (Emiss T ): MT = √ 2 pτ T Emiss T [1 − cos�φ(τ , �pmiss T )], (1) where pτ T denotes the pT of the τh and Emiss T = |�pmiss T |, where �pmiss T is defined as − ∑ �pT of all reconstructed particles. The angle in the transverse plane between �pmiss T and the direction of τh is denoted �φ(τ , �pmiss T ). 3. Generation of background and signal samples The major SM backgrounds are dominated by W and Z+jets production and are generated using MadGraph 5.1 [17] (for on- shell W and Z+jets backgrounds), pythia 6.426 [18] (for off-shell W, WW, WZ, and ZZ backgrounds) and powheg 1.0 [19–23] (for tt̄ and single t+jets). The tau decay is simulated by tauola [24] for all samples. For the hadronization of the MadGraph background, pythia is used. The response of these events in the CMS detec- tor is simulated using Geant4 [25]. The backgrounds are produced at leading-order (LO), but reweighted to higher order cross sec- tions. For the main W+jets background, a differential cross sec- tion as a function of the mass of the W-boson decay products is reweighted, incorporating next-to-next-to-leading-order (NNLO) QCD and next-to-leading-order (NLO) electroweak corrections. The effect with respect to the LO calculation corresponds to a K-factor of 1.3 at a mass of 0.3 TeV and drops for higher masses to 1.1 for a mass of 1 TeV. The calculation uses Monte Carlo genera- tors mcsanc 1.01 [26] and fewz 3.1 [27], following the recom- mended combination from Ref. [28]. For the Z+jets background, the inclusive NNLO QCD cross section is calculated using fewz. For tt̄ events, the inclusive NNLO calculation from [29] is used. For the diboson (VV) backgrounds, inclusive NLO QCD cross sections are calculated using mcfm 6.6 [30]. The background contribution from multijet events is estimated from control samples in data. The signal events for the SSM W′ are generated with pythia with NNLO cross sections from fewz. The NUGIM signals are generated with MadGraph 4.5.1 [17] and hadronized with pythia. The par- ton distribution functions (PDFs) used are CTEQ6L1 [31] for lead- ing order simulation and CTEQ10 [32] for (N)NLO simulation. The electroweak NLO calculation NNPDF 2.3 at NNLO QCD with and without QED contributions [33] are used. 4. The CMS detector The central feature of the CMS apparatus is a superconduct- ing solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each com- posed of a barrel and two endcap sections. Muons are mea- sured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry comple- ments the coverage provided by the barrel and endcap detectors. A particle-flow (PF) event algorithm [34] is used to reconstruct the events, identify the tau candidates and determine the missing ET. The algorithm reconstructs and identifies single particles with an optimized combination of all subdetector information. The events are triggered by the CMS trigger system, which is split into two levels, a first level (L1) composed of custom hardware processors, and a high-level trigger (HLT) processor farm. For this analysis a “jet plus Emiss T ” trigger is used, with thresholds of pT > 80 GeV for the jet and Emiss T > 105 GeV, where the latter is seeded at L1 in the calorimeter with Emiss T above 40 GeV. Both objects are recon- structed at the HLT level using the PF event reconstruction. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [10]. 5. Reconstruction and identification of physics objects Tau reconstruction in CMS [35] is applied to jets clustered from PF objects, using the anti-kT algorithm with a parameter R = 0.5. Tau candidates must be distinguished from quark or gluon jets (QCD jets in the following). The hadronic tau decays, τh, are re- constructed using the “hadron-plus-strips” (HPS) algorithm, which is based on decay modes proceeding via specific intermediate res- onances, with a combined branching fraction of 65%. They include modes with either one or three charged hadrons, and up to two neutral pions. Neutral pions are reconstructed via their decay into pairs of photons detected in the ECAL. The pattern of energy de- position in the ECAL typically occurs in “strips”, elongated in the φ direction as a result of interactions in the tracker material and the effect of the axial magnetic field. The τh candidate is reconstructed from strips and charged hadrons, which are combined using the mass ranges expected from the intermediate resonances. A more detailed discussion of the HPS algorithm can be found in [35]. The reconstruction of hadronic tau decays has been optimized for tau leptons with large pT where different tracks potentially merge. This occurs because either the track reconstruction seed cannot be resolved or the tracks share so many hits that one track cannot be reconstructed. This leads to reconstructed decay modes with only 198 CMS Collaboration / Physics Letters B 755 (2016) 196–216 two charged hadrons (instead of three) being accepted to accom- modate the boosted topology. The energy measurement of these high-pT objects is dominated by the calorimeter and therefore has a good pT resolution. The allowed mass range for the intermediate state reconstruction is broadened for high-pT tau leptons, to com- pensate for the mass resolution. With these adaptations the tau reconstruction efficiency is constant at 60% ± 6% for pT > 80 GeV, as has been checked in simulations up to pT = 3 TeV. Hadronic tau decays identified by the HPS algorithm are required to be within the tracking acceptance, |η| < 2.3, and the tau pT is required to be larger than 50 GeV to reduce the contamination from QCD jets. Ad- ditionally the pT of the leading charged hadron is required to be larger than 20 GeV. Subsequently, τh is distinguished from other objects that could mimic a tau candidate, such as QCD jets, elec- trons, or muons. The discriminator against QCD jets is the most important, since the rate of QCD jets at the LHC is several orders of magnitude larger than the tau production rate. Discrimination is based on isolation criteria: no additional PF charged hadrons or photons with | ∑ �pT| above 2 GeV are allowed in an isolation cone of �R = √ (�φ)2 + (�η)2 = 0.3 (where φ is the azimuthal angle in radians and η is the pseudorapidity) around the τh can- didate direction. Particle-flow objects are corrected for additional collisions in the same bunch crossing (pileup). Charged hadrons are identified as pileup objects by vertex association. Neutral par- ticle candidates are corrected by using an average pT subtraction from the charged hadrons identified as pileup in a �R = 0.6 cone. Details can be found in Ref. [35]. Discrimination against elec- trons is obtained using a multivariate technique, based on various tau, photon, track and electron properties. The muon discrimina- tor searches for hits in the muon system associated with the track of the τh candidate. Both discriminators suppress light leptons by three orders of magnitude, without a significant reduction of the tau efficiency. Events of interest for this analysis are required not to contain identified electrons or muons. Electrons are required to satisfy shape and isolation criteria as well as pT > 20 GeV, and |η| < 1.44 or 1.56 < |η| < 2.50. Muons are required to be isolated and to have pT > 20 GeV and |η| < 2.4. 6. Analysis strategy The strategy of this analysis is to select a heavy boson decay- ing almost at rest into τh and Emiss T . In the tau channel, the impact of the interference between W′ and W bosons is expected to be substantially lower than that previously found in the electron and muon channels [9]. This occurs because the signal shape of a W′ boson with hadronically decaying tau leptons does not show a Ja- cobian peak structure, because of the presence of two neutrinos in the final state. The interference effect has therefore not been con- sidered in this analysis. For the “jet+Emiss T ” trigger, analysis thresh- olds of pT > 100 GeV for the leading jet and Emiss T > 140 GeV are applied to account for differences of trigger and reconstructed en- ergy definitions. These analysis thresholds on the tau pT and Emiss T , along with the kinematic selection on the ratio of pτ T /Emiss T , yield an implicit lower threshold on the transverse mass. The event is required to contain one isolated tau lepton. Two kinematic crite- ria are applied to select signal events: the ratio of the τh pT to the Emiss T is required to satisfy 0.7 < pτ T /Emiss T < 1.5 and the angle �φ(τ , �pmiss T ) has to be greater than 2.4 radians. This event selec- tion mainly reduces the background in the low-MT region, which has the largest background, while the signal efficiency at high W′ masses is only reduced by about 5%. The efficiency and acceptance for a W′ → τν event depend on the mass. For MW′ = 2.2 TeV, 21% of the events pass all identification and selection criteria. This reduces to 17% for MW′ = 1 TeV, 7% for MW′ = 0.5 TeV, and, at Fig. 2. The MT distribution after the final selection. Data points with error bars show LHC data. The horizontal error bar on each point indicates the width of the bin, which is 25 GeV for the first three bins and 50 GeV for all other bins. The filled histogram shows the background estimate discussed in the text, and the hatched area the uncertainty in this estimate. The signal shapes for different SSM W′ boson masses are shown as open histograms. The cross section for SSM MW′ = 500 GeV is scaled by 0.2. In the ratio plot the bin-width is increased where needed to have at least one expected background event in each bin. higher masses, to 16% at MW′ = 3 TeV. The reduction for lower masses occurs because of the change in shape of the MT distri- bution illustrated in Fig. 2, while for higher masses the off-shell production becomes dominant and shifts the events to lower MT. From the simulation of hadronic tau events with large MT values, above the kinematic turn-on, 42% are accepted once all selection and identification criteria are taken into account. This acceptance is independent of the W′ mass. For the example case of W′ → τν with MW′ = 2.2 TeV, the cross section calculated in the SSM is 13.5 fb. This yields 54.8 predicted signal events in the τh + Emiss T final state, with the 21% acceptance quoted above for this MW′ value. The variation of the predicted SSM cross section with W′ mass can be seen in Fig. 3. 7. Background estimation The transverse mass distribution with the observed data and expected background events and uncertainties is shown in Fig. 2 and Table 1. The dominant background, contributing almost two thirds of the total, comes from the off-shell tail of the SM W bo- son. This background is indistinguishable from the signal, and is estimated from simulation. The contribution from W → e/μ + ν events, in which the electron or muon is not identified, is also taken from simulation. The background contribution from events with one QCD jet falsely identified as a τh is suppressed by the pτ T /Emiss T requirement. Nonetheless it is the second largest back- ground for this search and is estimated from data using reference regions, separated from the signal region using the uncorrelated quantities, pτ T /Emiss T and τh isolation. The shape of the QCD jet background is estimated using data events with a jet identified as a τh, fulfilling all kinematic criteria described earlier, apart from the isolation requirement. Its normalization is based on the ratio CMS Collaboration / Physics Letters B 755 (2016) 196–216 199 Table 1 The event yields for observed data and estimated backgrounds, and the product of acceptance and efficiency for the signal (W′ → τν) for different threshold values Mmin T . Mmin T [GeV] Data VV DY Top QCD jets W Sum of backgrounds Efficiency for MW′ = 2.2 TeV 200 1990 10 10 54 620 1380 2080 ± 34(stat) ± 250(syst) 0.21 400 364 2.3 2.9 7.6 151 234 398 ± 5.5(stat) ± 63(syst) 0.19 600 41 0.61 0.37 0.34 18.2 32.2 51.7 ± 1.3(stat) ± 9(syst) 0.16 800 10 0.064 0.072 0 3.6 7.4 11.1 ± 0.49(stat) ± 2.1(syst) 0.12 1000 4 0.0091 0.027 0 1.07 1.94 3.05 ± 0.19(stat) ± 0.66(syst) 0.096 1200 1 0.0031 0.016 0 0.31 0.61 0.94 ± 0.095(stat) ± 0.22(syst) 0.071 1400 0 0.0011 0.0076 0 0.130 0.180 0.319 ± 0.046(stat) ± 0.081(syst) 0.047 Fig. 3. Limits on the product of cross section and branching fraction into τν for a SSM W′ boson. The solid line shows the limit observed with 19.7 fb−1 of data while the dashed line corresponds to the expected limit. The shaded bands indicate the 68% and 95% confidence intervals of the expected limit. The dotted and the long-dashed lines show the cross section prediction in the SSM as a function of the W′ boson mass, in NNLO and LO, respectively. of the numbers of events with an isolated τh (Niso) to those con- taining a non-isolated τh (Nnon-iso), determined in a signal-free reference region with pτ T /Emiss T > 1.5. This ratio is evaluated as a function of the hadronic decay modes of the tau lepton. The mean ratio of isolated to non-isolated events is R = Niso/Nnon-iso = 0.0066 ± 0.12%(stat) ± 0.16%(syst). Here the contribution of non- QCD events is subtracted. It amounts to 24% for Niso and 11% for Nnon-iso. The systematic uncertainty is estimated by chang- ing the pτ T /Emiss T threshold and the variable in which the ratio R is binned. The number of QCD jet events in the signal region is estimated, using this method, to be 620 ± 124 after subtract- ing the contamination of 32% from electroweak background events. An additional systematic uncertainty of 20% is included, derived from the normalization uncertainty in the electroweak background. Other sources of background considered include top quark pro- duction, either in pairs or singly; Drell–Yan (DY) events; and tau leptons produced in diboson (WW, WZ, ZZ) events. A large frac- tion of these are suppressed by requiring the back-to-back decay topology. These backgrounds are shown in Fig. 2 as Top, DY, and Diboson, respectively. They contribute a total of 3% to the back- ground. 8. Systematic uncertainties Most of the systematic uncertainties in this analysis affect the shape of the MT distribution by changing the background and sig- nal predictions. Others influence the overall normalization; these include the uncertainty of 2.6% [36] in the integrated luminosity. Simulated event samples are used to evaluate shape-dependent uncertainties arising from the measurement of individual parti- cles and jets in the events. The kinematic variables of the indi- vidual objects are varied and the effect of the changes on the final MT distribution is evaluated. In the following, the shape- dependent uncertainties are listed in decreasing order of their importance for the high-MT region. The main uncertainty in the background yield for MT ≥ 1 TeV is due to the momentum mea- surement of the tau lepton [37], important for estimating the con- tribution from off-shell SM W-boson decays. Using Z → ττ events and tau-mass fits, the uncertainty in the momentum scale is es- timated to be 3% of the tau pT. This estimation is confirmed by comparing energy measurements from tau and jet reconstruction algorithms for high-pT taus. This results in a 15% scale uncer- tainty in the background event yield, primarily from the tail of off-shell SM W bosons, which is correlated with the uncertainty in the signal prediction. There is an 8% uncertainty in the event yield from the theoretical prediction of the background. One con- tribution to this theory uncertainty comes from the NNLO QCD and NLO electroweak calculations and is evaluated following the prescription described in Ref. [28]; there is an additional contri- bution from the PDFs, for which the prescriptions of Refs. [38,39] are used. The uncertainty in the event yield from the jet energy calibration is estimated to be 6%. The calibration uncertainty is de- pendent on the jet η and pT, and is determined using dijet and Z → μμ + jets events [40]. The knowledge of the reconstruction efficiency for high-pT tau leptons is a source of uncertainty in- fluencing the background and signal normalization. The efficiency is determined by studying Z → ττ and tt̄ processes [37]. The resulting uncertainty in the normalization is 6%. There is an un- certainty of 20% in the QCD jet contribution to the background, which is estimated from statistical uncertainties in the control re- gions and cross checks of the method, and which results in a 4–6% uncertainty in the overall background yield. Other sources of un- certainty are the jet energy resolution (η and pT dependent) [40], pileup modeling (5% on the estimated number of additional in- teractions), and other factors affecting the Emiss T determination, such as low-energy deposits not associated with a jet (10% un- certainty in the energy of deposits smaller than 10 GeV). The overall impact of these effects is a 6% background uncertainty. The impact of all these uncertainties on the signal acceptance has been evaluated using the simulated samples. The size and rela- tive importance of the effects observed are similar to those for the background yield, and depend on the shape of the MT distribu- tion. 9. Results The final transverse mass distribution in Fig. 2 shows no sig- nificant deviations from the predicted background. A multibin ap- proach is used to derive a limit on the W′-boson mass. A likelihood 200 CMS Collaboration / Physics Letters B 755 (2016) 196–216 Fig. 4. Limits on the NUGIM parameter space are shown from various analyses. The solid line refers to this analysis. The non-LHC limits (CKM and Lepton flavor viola- tion) are calculated in Ref. [11]. The W′ results are from Ref. [13] for the tb final state and Ref. [9] for eν as reinterpreted in Ref. [12]. The lines correspond to 95% CL limits. function is evaluated separately using the numbers of events in each MT bin. The likelihood functions from all bins are combined to extract the mass limit. For a more model-independent limit, a single-bin approach is used, counting all events above a threshold Mmin T and comparing the number with the expected SM back- ground. The parameter of interest is the product of the signal cross section and the branching fraction, σ B(W′ → τν). Limits are ob- tained at 95% confidence level (CL) using a Bayesian approach [41] with a uniform prior. The limit on σ B(W′ → τν) as a function of the SSM W′-boson mass is shown in Fig. 3. The observed and expected limits are in agreement. The SSM W′ boson is excluded for masses 0.3 < MW′ < 2.7 TeV at 95% CL in the tau channel. The lower mass limit is due to the trigger threshold and rising background. The W′ mass limit obtained at 95% CL is 400 GeV lower for a sig- nal cross section calculated to leading order. In the high mass region, off-shell production of W′ bosons becomes dominant, shift- ing the signal MT distribution to lower MT. In comparison, anal- yses of the muon and electron channels have set limits of 3.0 and 3.2 TeV on the SSM W′ mass, respectively [9]. In addition to the limit on the SSM W′ boson, limits are set on the param- eter space of the NUGIM. Only leading-order signal cross sections are available in the NUGIM. A separate cross section limit is de- rived for each value of the model parameter cot θE , since the signal efficiency depends on this parameter. The actual width of the W′ resonance for a given mass, as shown in Fig. 1, is taken into account. From these limits, constraints on the mass of the W′ boson as a function of the coupling parameter cot θE are de- rived in the same way as described previously for the SSM W′ boson. The resulting constraints from these mass exclusion lim- its on the parameter space can be seen in Fig. 4. The W′ mass limit is 2.0 TeV for cot θE = 5.5, rising to a W′ boson mass of 2.7 TeV for cot θE = 1. This variation is due in part to the change in coupling strength to the tau lepton, which affects the decay, as shown in Fig. 1, and in part to the change in coupling to light quarks, which affects the production. For cot θE > 5.5 the width of the W′ becomes very broad, and large virtual corrections are needed. This search sets significantly better limits than the previ- ous constraints from direct and indirect searches for large cot θE [9, 11,13] reinterpreted in [12]. For cot θE < 1, the light families yield Fig. 5. Model independent limits, on the effective cross section for a W′-like signal above a threshold value Mmin T , for different Mmin T . The solid line shows the limit ob- served with 19.7 fb−1 of data while the dashed line corresponds to the expected limit. The shaded bands indicate the 68% and 95% confidence intervals of the ex- pected limit. The region above the curve is excluded. a better sensitivity because of their higher efficiency and branch- ing fraction as shown for the case of the electron channel in Fig. 4. The multibin approach assumes a certain signal shape in MT. However, new physics processes yielding a tau+Emiss T final state could cause an excess of a different shape. To be independent of models, a single-bin approach compares the number of ob- served events above a sliding MT threshold, denoted Mmin T , with the SM expectation for this MT range. The resulting cross section limit as a function of Mmin T is shown in Fig. 5. The reconstruc- tion efficiency is estimated to be 42% for W′ events satisfying the condition MT > Mmin T . It may be noted that the fraction of the sig- nal that satisfies the Mmin T requirement depends on the particular model, and is mass-dependent. The reconstruction efficiency has an uncertainty corresponding to that of a typical W′-like signal at different Mmin T thresholds. This allows a reinterpretation in vari- ous models by evaluating the signal efficiency, εsignal , for the Mmin T threshold, defined as the number of events in the signal region with MT > Mmin T divided by the total number of generated events: εsignal = NMT>Mmin T /Ntotal. 10. Summary In summary, the first search for an excess in the transverse mass distribution of the tau+Emiss T channel has been performed. The data sample was collected with the CMS detector in proton– proton collisions at √ s = 8 TeV, and corresponds to an integrated luminosity of 19.7 fb−1. No significant excess beyond the SM ex- pectation is observed. An SSM W′ boson is excluded in the mass range 0.3 TeV < MW′ < 2.7 TeV at 95% confidence level. Within the NUGIM the lower limit on the W′-boson mass depends on the coupling constant cot θE and varies from 2.0 to 2.7 TeV at 95% con- fidence level. Acknowledgements We congratulate our colleagues in the CERN accelerator de- partments for the excellent performance of the LHC and thank CMS Collaboration / Physics Letters B 755 (2016) 196–216 201 the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS ef- fort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for de- livering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detec- tor provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Fin- land, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). References [1] G. Altarelli, B. Mele, M. Ruiz-Altaba, Searching for new heavy vector bosons in pp̄ colliders, Z. Phys. C 45 (1989) 109, http://dx.doi.org/10.1007/BF01556677. [2] C.-W. Chiang, N.G. Deshpande, X.-G. He, J. Jiang, Family SU(2)l × SU(2)h × U (1) model, Phys. Rev. D 81 (2010) 015006, http://dx.doi.org/10.1103/ PhysRevD.81.015006, arXiv:0911.1480. [3] X. Li, E. Ma, Gauge model of generation nonuniversality, Phys. Rev. Lett. 47 (1981) 1788, http://dx.doi.org/10.1103/PhysRevLett.47.1788. [4] D.J. Muller, S. Nandi, Top flavor: a separate SU(2) for the third family, Phys. Lett. B 383 (1996) 345, http://dx.doi.org/10.1016/0370-2693(96)00745-9, arXiv:hep-ph/9602390. [5] E. Malkawi, T.M.P. Tait, C.P. Yuan, A model of strong flavor dynamics for the top quark, Phys. Lett. B 385 (1996) 304, http://dx.doi.org/10.1016/ 0370-2693(96)00859-3, arXiv:hep-ph/9603349. [6] T. Aaltonen, et al., CDF, Search for a new heavy gauge boson W ′ with even sig- nature electron + missing transverse energy in pp̄ collisions at √s = 1.96 TeV, Phys. Rev. D 83 (2011) 031102, http://dx.doi.org/10.1103/PhysRevD.83.031102, arXiv:1012.5145. [7] V.M. Abazov, et al., D0, Search for W ′ bosons decaying to an electron and a neutrino with the D0 detector, Phys. Rev. Lett. 100 (2008) 031804, http:// dx.doi.org/10.1103/PhysRevLett.100.031804, arXiv:0710.2966. [8] ATLAS Collaboration, Search for new particles in events with one lepton and missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector, J. High Energy Phys. 09 (2014) 37, http://dx.doi.org/ 10.1007/JHEP09(2014)037, arXiv:1407.7494. [9] V. Khachatryan, et al., CMS Collaboration, Search for physics beyond the stan- dard model in final states with a lepton and missing transverse energy in proton–proton collisions at √s = 8 TeV, Phys. Rev. D 91 (2015) 092005, http:// dx.doi.org/10.1103/PhysRevD.91.092005, arXiv:1408.2745. [10] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3 (2008) S08004, http://dx.doi.org/10.1088/1748-0221/3/08/S08004. [11] Y.G. Kim, K.Y. Lee, Early LHC bound on W′ boson in the nonuniversal gauge interaction model, Phys. Lett. B 706 (2012) 367, http://dx.doi.org/10.1016/ j.physletb.2011.11.032, arXiv:1105.2653. [12] L. Edelhäuser, A. Knochel, Observing nonstandard W′ and Z′ through the third generation and Higgs lens, arXiv:1408.0914, 2014. [13] CMS Collaboration, Search for W′ → tb decays in the lepton + jets final state in pp collisions at √ s = 8 TeV, J. High Energy Phys. 05 (2014) 108, http://dx.doi.org/10.1007/JHEP05(2014)108, arXiv:1402.2176. [14] E. Boos, V. Bunichev, L. Dudko, M. Perfilov, Interference between W′ and W in single-top quark production processes, Phys. Lett. B 655 (2007) 245, http:// dx.doi.org/10.1016/j.physletb.2007.03.064, arXiv:hep-ph/0610080. [15] E. Accomando, D. Becciolini, S. De Curtis, D. Dominici, L. Fedeli, C. Shepherd- Themistocleous, Interference effects in heavy W ′-boson searches at the LHC, Phys. Rev. D 85 (2012) 115017, http://dx.doi.org/10.1103/PhysRevD.85.115017, arXiv:1110.0713. [16] T.G. Rizzo, The determination of the helicity of W′ boson couplings at the LHC, J. High Energy Phys. 05 (2007) 037, http://dx.doi.org/10.1088/ 1126-6708/2007/05/037, arXiv:0704.0235. [17] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: go- ing beyond, J. High Energy Phys. 06 (2011) 128, http://dx.doi.org/10.1007/ JHEP06(2011)128, arXiv:1106.0522. [18] T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 05 (2006) 26, http://dx.doi.org/10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175. [19] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, J. High Energy Phys. 11 (2004) 040, http://dx.doi.org/10.1088/ 1126-6708/2004/11/040, arXiv:hep-ph/0409146. [20] S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, J. High Energy Phys. 11 (2007) 070, http://dx.doi.org/10.1088/1126-6708/2007/11/070, arXiv:0709.2092. [21] E. Re, Single-top W t-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547, http://dx.doi.org/10.1140/ epjc/s10052-011-1547-z, arXiv:1009.2450. [22] R. Frederix, E. Re, P. Torrielli, Single-top t-channel hadroproduction in the four- flavour scheme with POWHEG and aMC@NLO, J. High Energy Phys. 09 (2012) 130, http://dx.doi.org/10.1007/JHEP09(2012)130, arXiv:1207.5391. [23] S. Alioli, S.-O. Moch, P. Uwer, Hadronic top-quark pair-production with one jet and parton showering, J. High Energy Phys. 01 (2012) 137, http://dx.doi.org/ 10.1007/JHEP01(2012)137, arXiv:1110.5251. [24] N. Davidson, G. Nanava, T. Przedzinski, E. Richter-Wąs, Z. Wąs, Universal interface of TAUOLA: technical and physics documentation, Comput. Phys. Commun. 183 (2012) 821, http://dx.doi.org/10.1016/j.cpc.2011.12.009, arXiv: 1002.0543. [25] S. Agostinelli, et al., GEANT4, GEANT4—a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250, http://dx.doi.org/10.1016/S0168-9002(03)01368-8. [26] S.G. Bondarenko, A.A. Sapronov, NLO EW and QCD proton–proton cross sec- tion calculations with mcsanc-v1.01, Comput. Phys. Commun. 184 (2013) 2343, http://dx.doi.org/10.1016/j.cpc.2013.05.010, arXiv:1301.3687. [27] R. Gavin, Y. Li, F. Petriello, S. Quackenbush, W physics at the LHC with FEWZ 2.1, Comput. Phys. Commun. 184 (2013) 208, http://dx.doi.org/10.1016/ j.cpc.2012.09.005, arXiv:1201.5896. [28] J. Butterworth, et al., Les Houches 2013: physics at TeV colliders: standard model working group report, arXiv:1405.1067, 2014. [29] M. Czakon, P. Fiedler, A. Mitov, Total top-quark pair-production cross section at hadron colliders through O (α4 s ), Phys. Rev. Lett. 110 (2013) 252004, http:// dx.doi.org/10.1103/PhysRevLett.110.252004, arXiv:1303.6254. [30] J.M. Campbell, R.K. Ellis, C. Williams, Vector boson pair production at the LHC, J. High Energy Phys. 07 (2011) 18, http://dx.doi.org/10.1007/JHEP07(2011)018, arXiv:1105.0020. [31] J. Pumplin, D.R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, W.-K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, J. High Energy Phys. 07 (2002) 012, http://dx.doi.org/10.1088/ 1126-6708/2002/07/012, arXiv:hep-ph/0201195. [32] J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, C.-P. Yuan, CT10 next-to-next-to-leading order global analysis of QCD, Phys. Rev. D 89 (2014) 033009, http://dx.doi.org/10.1103/PhysRevD.89.033009, arXiv:1302.6246. [33] R.D. Ball, et al., NNPDF, Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290, http://dx.doi.org/10.1016/j.nuclphysb.2013.10.010, arXiv: 1308.0598. [34] CMS Collaboration, Commissioning of the particle-flow event reconstruction with the first LHC collisions recorded in the CMS detector, CMS physics analy- sis summary CMS-PAS-PFT-10-001, URL: http://cdsweb.cern.ch/record/1247373, 2010. [35] CMS Collaboration, Reconstruction and identification of tau lepton de- cays to hadrons and tau neutrino at CMS, J. Instrum. 11 (2016) P01019, http://dx.doi.org/10.1088/1748-0221/11/01/P01019, arXiv:1510.07488. [36] CMS Collaboration, CMS luminosity based on pixel cluster counting – Sum- mer 2013 update, CMS physics analysis summary CMS-PAS-LUM-13-001, URL: http://cdsweb.cern.ch/record/1598864, 2013. [37] CMS Collaboration, Performance of τ -lepton reconstruction and identifica- tion in CMS, J. Instrum. 7 (2012) P01001, http://dx.doi.org/10.1088/1748-0221/ 7/01/P01001, arXiv:1109.6034. [38] S. Alekhin, et al., The PDF4LHC working group interim report, arXiv:1101.0536, 2011. [39] M. Botje, J. Butterworth, A. Cooper-Sarkar, A. de Roeck, J. Feltesse, S. Forte, A. Glazov, J. Huston, R. McNulty, T. Sjöstrand, R.S. Thorne, The PDF4LHC work- ing group interim recommendations, arXiv:1101.0538, 2011. [40] CMS Collaboration, Determination of jet energy calibration and transverse mo- mentum resolution in CMS, J. Instrum. 6 (2011) P11002, http://dx.doi.org/ 10.1088/1748-0221/6/11/P11002, arXiv:1107.4277. [41] Particle Data Group, K.A. Olive, et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001, http://dx.doi.org/10.1088/1674-1137/38/9/090001, Chap. 38. http://dx.doi.org/10.1007/BF01556677 http://dx.doi.org/10.1103/PhysRevD.81.015006 http://dx.doi.org/10.1103/PhysRevLett.47.1788 http://dx.doi.org/10.1016/0370-2693(96)00745-9 http://dx.doi.org/10.1016/0370-2693(96)00859-3 http://dx.doi.org/10.1103/PhysRevD.83.031102 http://dx.doi.org/10.1103/PhysRevLett.100.031804 http://dx.doi.org/10.1007/JHEP09(2014)037 http://dx.doi.org/10.1103/PhysRevD.91.092005 http://dx.doi.org/10.1088/1748-0221/3/08/S08004 http://dx.doi.org/10.1016/j.physletb.2011.11.032 http://refhub.elsevier.com/S0370-2693(16)00088-5/bib416C65784C6973615061706572s1 http://refhub.elsevier.com/S0370-2693(16)00088-5/bib416C65784C6973615061706572s1 http://dx.doi.org/10.1007/JHEP05(2014)108 http://dx.doi.org/10.1016/j.physletb.2007.03.064 http://dx.doi.org/10.1103/PhysRevD.85.115017 http://dx.doi.org/10.1088/1126-6708/2007/05/037 http://dx.doi.org/10.1007/JHEP06(2011)128 http://dx.doi.org/10.1088/1126-6708/2006/05/026 http://dx.doi.org/10.1088/1126-6708/2004/11/040 http://dx.doi.org/10.1088/1126-6708/2007/11/070 http://dx.doi.org/10.1140/epjc/s10052-011-1547-z http://dx.doi.org/10.1007/JHEP09(2012)130 http://dx.doi.org/10.1007/JHEP01(2012)137 http://dx.doi.org/10.1016/j.cpc.2011.12.009 http://dx.doi.org/10.1016/S0168-9002(03)01368-8 http://dx.doi.org/10.1016/j.cpc.2013.05.010 http://dx.doi.org/10.1016/j.cpc.2012.09.005 http://refhub.elsevier.com/S0370-2693(16)00088-5/bib6C6573686F756368657332303133534Ds1 http://refhub.elsevier.com/S0370-2693(16)00088-5/bib6C6573686F756368657332303133534Ds1 http://dx.doi.org/10.1103/PhysRevLett.110.252004 http://dx.doi.org/10.1007/JHEP07(2011)018 http://dx.doi.org/10.1088/1126-6708/2002/07/012 http://dx.doi.org/10.1103/PhysRevD.89.033009 http://dx.doi.org/10.1016/j.nuclphysb.2013.10.010 http://cdsweb.cern.ch/record/1247373 http://dx.doi.org/10.1088/1748-0221/11/01/P01019 http://cdsweb.cern.ch/record/1598864 http://dx.doi.org/10.1088/1748-0221/7/01/P01001 http://refhub.elsevier.com/S0370-2693(16)00088-5/bib416C656B68696E3A32303131736Bs1 http://refhub.elsevier.com/S0370-2693(16)00088-5/bib416C656B68696E3A32303131736Bs1 http://refhub.elsevier.com/S0370-2693(16)00088-5/bib426F746A653A32303131736Es1 http://refhub.elsevier.com/S0370-2693(16)00088-5/bib426F746A653A32303131736Es1 http://refhub.elsevier.com/S0370-2693(16)00088-5/bib426F746A653A32303131736Es1 http://dx.doi.org/10.1088/1748-0221/6/11/P11002 http://dx.doi.org/10.1088/1674-1137/38/9/090001 http://dx.doi.org/10.1103/PhysRevD.81.015006 http://dx.doi.org/10.1016/0370-2693(96)00859-3 http://dx.doi.org/10.1103/PhysRevLett.100.031804 http://dx.doi.org/10.1007/JHEP09(2014)037 http://dx.doi.org/10.1103/PhysRevD.91.092005 http://dx.doi.org/10.1016/j.physletb.2011.11.032 http://dx.doi.org/10.1016/j.physletb.2007.03.064 http://dx.doi.org/10.1088/1126-6708/2007/05/037 http://dx.doi.org/10.1007/JHEP06(2011)128 http://dx.doi.org/10.1088/1126-6708/2004/11/040 http://dx.doi.org/10.1140/epjc/s10052-011-1547-z http://dx.doi.org/10.1007/JHEP01(2012)137 http://dx.doi.org/10.1016/j.cpc.2012.09.005 http://dx.doi.org/10.1103/PhysRevLett.110.252004 http://dx.doi.org/10.1088/1126-6708/2002/07/012 http://dx.doi.org/10.1088/1748-0221/7/01/P01001 http://dx.doi.org/10.1088/1748-0221/6/11/P11002 202 CMS Collaboration / Physics Letters B 755 (2016) 196–216 CMS Collaboration V. Khachatryan, A.M. Sirunyan, A. Tumasyan Yerevan Physics Institute, Yerevan, Armenia W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth 1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler 1, V. Knünz, A. König, M. Krammer 1, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady 2, B. Rahbaran, H. Rohringer, J. Schieck 1, R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz 1 Institut für Hochenergiephysik der OeAW, Wien, Austria V. Mossolov, N. Shumeiko, J. Suarez Gonzalez National Centre for Particle and High Energy Physics, Minsk, Belarus S. Alderweireldt, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, S. Ochesanu, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Universiteit Antwerpen, Antwerpen, Belgium S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous, J. Keaveney, S. Lowette, L. Moreels, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Van Parijs Vrije Universiteit Brussel, Brussel, Belgium P. Barria, C. Caillol, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, A.P.R. Gay, A. Grebenyuk, T. Lenzi, A. Léonard, T. Maerschalk, A. Marinov, L. Perniè, A. Randle-conde, T. Reis, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang 3 Université Libre de Bruxelles, Bruxelles, Belgium K. Beernaert, L. Benucci, A. Cimmino, S. Crucy, D. Dobur, A. Fagot, G. Garcia, M. Gul, J. Mccartin, A.A. Ocampo Rios, D. Poyraz, D. Ryckbosch, S. Salva, M. Sigamani, N. Strobbe, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Ghent University, Ghent, Belgium S. Basegmez, C. Beluffi 4, O. Bondu, S. Brochet, G. Bruno, R. Castello, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere, D. Favart, L. Forthomme, A. Giammanco 5, J. Hollar, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Mertens, C. Nuttens, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov 6, L. Quertenmont, M. Selvaggi, M. Vidal Marono Université Catholique de Louvain, Louvain-la-Neuve, Belgium N. Beliy, G.H. Hammad Université de Mons, Mons, Belgium W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, C. Mora Herrera, A. Moraes, M.E. Pol, P. Rebello Teles Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato 7, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote 7, A. Vilela Pereira Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil CMS Collaboration / Physics Letters B 755 (2016) 196–216 203 S. Ahuja a, C.A. Bernardes b, A. De Souza Santos b, S. Dogra a, T.R. Fernandez Perez Tomei a, E.M. Gregores b, P.G. Mercadante b, C.S. Moon a,8, S.F. Novaes a, Sandra S. Padula a, D. Romero Abad, J.C. Ruiz Vargas a Universidade Estadual Paulista, São Paulo, Brazil b Universidade Federal do ABC, São Paulo, Brazil A. Aleksandrov, V. Genchev †, R. Hadjiiska, P. Iaydjiev, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov University of Sofia, Sofia, Bulgaria M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, T. Cheng, R. Du, C.H. Jiang, R. Plestina 9, F. Romeo, S.M. Shaheen, J. Tao, C. Wang, Z. Wang, H. Zhang Institute of High Energy Physics, Beijing, China C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, W. Zou State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria Universidad de Los Andes, Bogota, Colombia N. Godinovic, D. Lelas, D. Polic, I. Puljak, P.M. Ribeiro Cipriano University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia Z. Antunovic, M. Kovac University of Split, Faculty of Science, Split, Croatia V. Brigljevic, K. Kadija, J. Luetic, S. Micanovic, L. Sudic Institute Rudjer Boskovic, Zagreb, Croatia A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski University of Cyprus, Nicosia, Cyprus M. Bodlak, M. Finger 10, M. Finger Jr. 10 Charles University, Prague, Czech Republic Y. Assran 11, S. Elgammal 12, M.A. Mahmoud 13 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt B. Calpas, M. Kadastik, M. Murumaa, M. Raidal, A. Tiko, C. Veelken National Institute of Chemical Physics and Biophysics, Tallinn, Estonia P. Eerola, J. Pekkanen, M. Voutilainen Department of Physics, University of Helsinki, Helsinki, Finland J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland Helsinki Institute of Physics, Helsinki, Finland 204 CMS Collaboration / Physics Letters B 755 (2016) 196–216 J. Talvitie, T. Tuuva Lappeenranta University of Technology, Lappeenranta, Finland M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, T. Dahms, O. Davignon, N. Filipovic, A. Florent, R. Granier de Cassagnac, S. Lisniak, L. Mastrolorenzo, P. Miné, I.N. Naranjo, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France J.-L. Agram 14, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte 14, X. Coubez, J.-C. Fontaine 14, D. Gelé, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, J.A. Merlin 2, K. Skovpen, P. Van Hove Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France S. Gadrat Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, J. Chasserat, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France T. Toriashvili 15 Georgian Technical University, Tbilisi, Georgia Z. Tsamalaidze 10 Tbilisi State University, Tbilisi, Georgia C. Autermann, S. Beranek, M. Edelhoff, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, J.F. Schulte, T. Verlage, H. Weber, B. Wittmer, V. Zhukov 6 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany M. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, L. Edelhäuser, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, A. Knochel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Padeken, P. Papacz, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thüer RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Künsken, J. Lingemann 2, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany M. Aldaya Martin, I. Asin, N. Bartosik, O. Behnke, U. Behrens, A.J. Bell, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, G. Dolinska, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, E. Gallo, J. Garay Garcia, A. Geiser, A. Gizhko, CMS Collaboration / Physics Letters B 755 (2016) 196–216 205 P. Gunnellini, J. Hauk, M. Hempel 16, H. Jung, A. Kalogeropoulos, O. Karacheban 16, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann 16, R. Mankel, I. Marfin 16, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.Ö. Sahin, P. Saxena, T. Schoerner-Sadenius, M. Schröder, C. Seitz, S. Spannagel, K.D. Trippkewitz, R. Walsh, C. Wissing Deutsches Elektronen-Synchrotron, Hamburg, Germany V. Blobel, M. Centis Vignali, A.R. Draeger, J. Erfle, E. Garutti, K. Goebel, D. Gonzalez, M. Görner, J. Haller, M. Hoffmann, R.S. Höing, A. Junkes, R. Klanner, R. Kogler, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, D. Nowatschin, J. Ott, F. Pantaleo 2, T. Peiffer, A. Perieanu, N. Pietsch, J. Poehlsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, J. Schwandt, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer University of Hamburg, Hamburg, Germany M. Akbiyik, C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, F. Colombo, W. De Boer, A. Descroix, A. Dierlamm, S. Fink, F. Frensch, M. Giffels, A. Gilbert, F. Hartmann 2, S.M. Heindl, U. Husemann, F. Kassel 2, I. Katkov 6, A. Kornmayer 2, P. Lobelle Pardo, B. Maier, H. Mildner, M.U. Mozer, T. Müller, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, S. Röcker, F. Roscher, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, C. Wöhrmann, R. Wolf Institut für Experimentelle Kernphysik, Karlsruhe, Germany G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Psallidas, I. Topsis-Giotis Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Athens, Athens, Greece I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas University of Ioánnina, Ioánnina, Greece G. Bencze, C. Hajdu, A. Hazi, P. Hidas, D. Horvath 17, F. Sikler, V. Veszpremi, G. Vesztergombi 18, A.J. Zsigmond Wigner Research Centre for Physics, Budapest, Hungary N. Beni, S. Czellar, J. Karancsi 19, J. Molnar, Z. Szillasi Institute of Nuclear Research ATOMKI, Debrecen, Hungary M. Bartók 20, A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari University of Debrecen, Debrecen, Hungary P. Mal, K. Mandal, N. Sahoo, S.K. Swain National Institute of Science Education and Research, Bhubaneswar, India S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, R. Gupta, U. Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, A. Mehta, M. Mittal, J.B. Singh, G. Walia Panjab University, Chandigarh, India 206 CMS Collaboration / Physics Letters B 755 (2016) 196–216 Ashok Kumar, Arun Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, A. Kumar, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma University of Delhi, Delhi, India S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutta, Sa. Jain, N. Majumdar, A. Modak, K. Mondal, S. Mukherjee, S. Mukhopadhyay, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan Saha Institute of Nuclear Physics, Kolkata, India A. Abdulsalam, R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty 2, L.M. Pant, P. Shukla, A. Topkar Bhabha Atomic Research Centre, Mumbai, India T. Aziz, S. Banerjee, S. Bhowmik 21, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtu 22, G. Kole, S. Kumar, B. Mahakud, M. Maity 21, G. Majumder, K. Mazumdar, S. Mitra, G.B. Mohanty, B. Parida, T. Sarkar 21, K. Sudhakar, N. Sur, B. Sutar, N. Wickramage 23 Tata Institute of Fundamental Research, Mumbai, India S. Chauhan, S. Dube, S. Sharma Indian Institute of Science Education and Research (IISER), Pune, India H. Bakhshiansohi, H. Behnamian, S.M. Etesami 24, A. Fahim 25, R. Goldouzian, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh 26, M. Zeinali Institute for Research in Fundamental Sciences (IPM), Tehran, Iran M. Felcini, M. Grunewald University College Dublin, Dublin, Ireland M. Abbrescia a,b, C. Calabria a,b, C. Caputo a,b, S.S. Chhibra a,b, A. Colaleo a, D. Creanza a,c, L. Cristella a,b, N. De Filippis a,c, M. De Palma a,b, L. Fiore a, G. Iaselli a,c, G. Maggi a,c, M. Maggi a, G. Miniello a,b, S. My a,c, S. Nuzzo a,b, A. Pompili a,b, G. Pugliese a,c, R. Radogna a,b, A. Ranieri a, G. Selvaggi a,b, L. Silvestris a,2, R. Venditti a,b, P. Verwilligen a a INFN Sezione di Bari, Bari, Italy b Università di Bari, Bari, Italy c Politecnico di Bari, Bari, Italy G. Abbiendi a, C. Battilana 2, A.C. Benvenuti a, D. Bonacorsi a,b, S. Braibant-Giacomelli a,b, L. Brigliadori a,b, R. Campanini a,b, P. Capiluppi a,b, A. Castro a,b, F.R. Cavallo a, G. Codispoti a,b, M. Cuffiani a,b, G.M. Dallavalle a, F. Fabbri a, A. Fanfani a,b, D. Fasanella a,b, P. Giacomelli a, C. Grandi a, L. Guiducci a,b, S. Marcellini a, G. Masetti a, A. Montanari a, F.L. Navarria a,b, A. Perrotta a, A.M. Rossi a,b, T. Rovelli a,b, G.P. Siroli a,b, N. Tosi a,b, R. Travaglini a,b a INFN Sezione di Bologna, Bologna, Italy b Università di Bologna, Bologna, Italy G. Cappello a, M. Chiorboli a,b, S. Costa a,b, F. Giordano a,c, R. Potenza a,b, A. Tricomi a,b, C. Tuve a,b a INFN Sezione di Catania, Catania, Italy b Università di Catania, Catania, Italy c CSFNSM, Catania, Italy G. Barbagli a, V. Ciulli a,b, C. Civinini a, R. D’Alessandro a,b, E. Focardi a,b, S. Gonzi a,b, V. Gori a,b, P. Lenzi a,b, M. Meschini a, S. Paoletti a, G. Sguazzoni a, A. Tropiano a,b, L. Viliani a,b a INFN Sezione di Firenze, Firenze, Italy b Università di Firenze, Firenze, Italy CMS Collaboration / Physics Letters B 755 (2016) 196–216 207 L. Benussi, S. Bianco, F. Fabbri, D. Piccolo INFN Laboratori Nazionali di Frascati, Frascati, Italy V. Calvelli a,b, F. Ferro a, M. Lo Vetere a,b, M.R. Monge a,b, E. Robutti a, S. Tosi a,b a INFN Sezione di Genova, Genova, Italy b Università di Genova, Genova, Italy L. Brianza, M.E. Dinardo a,b, S. Fiorendi a,b, S. Gennai a, R. Gerosa a,b, A. Ghezzi a,b, P. Govoni a,b, S. Malvezzi a, R.A. Manzoni a,b, B. Marzocchi a,b,2, D. Menasce a, L. Moroni a, M. Paganoni a,b, D. Pedrini a, S. Ragazzi a,b, N. Redaelli a, T. Tabarelli de Fatis a,b a INFN Sezione di Milano-Bicocca, Milano, Italy b Università di Milano-Bicocca, Milano, Italy S. Buontempo a, N. Cavallo a,c, S. Di Guida a,d,2, M. Esposito a,b, F. Fabozzi a,c, A.O.M. Iorio a,b, G. Lanza a, L. Lista a, S. Meola a,d,2, M. Merola a, P. Paolucci a,2, C. Sciacca a,b, F. Thyssen a INFN Sezione di Napoli, Napoli, Italy b Università di Napoli ’Federico II’, Napoli, Italy c Università della Basilicata, Potenza, Italy d Università G. Marconi, Roma, Italy P. Azzi a,2, N. Bacchetta a, L. Benato a,b, D. Bisello a,b, A. Boletti a,b, A. Branca a,b, R. Carlin a,b, P. Checchia a, M. Dall’Osso a,b,2, T. Dorigo a, F. Gasparini a,b, U. Gasparini a,b, A. Gozzelino a, K. Kanishchev a,c, S. Lacaprara a, M. Margoni a,b, A.T. Meneguzzo a,b, F. Montecassiano a, M. Passaseo a, J. Pazzini a,b, N. Pozzobon a,b, P. Ronchese a,b, F. Simonetto a,b, E. Torassa a, M. Tosi a,b, M. Zanetti, P. Zotto a,b, A. Zucchetta a,b,2, G. Zumerle a,b a INFN Sezione di Padova, Padova, Italy b Università di Padova, Padova, Italy c Università di Trento, Trento, Italy A. Braghieri a, A. Magnani a, P. Montagna a,b, S.P. Ratti a,b, V. Re a, C. Riccardi a,b, P. Salvini a, I. Vai a, P. Vitulo a,b a INFN Sezione di Pavia, Pavia, Italy b Università di Pavia, Pavia, Italy L. Alunni Solestizi a,b, M. Biasini a,b, G.M. Bilei a, D. Ciangottini a,b,2, L. Fanò a,b, P. Lariccia a,b, G. Mantovani a,b, M. Menichelli a, A. Saha a, A. Santocchia a,b, A. Spiezia a,b a INFN Sezione di Perugia, Perugia, Italy b Università di Perugia, Perugia, Italy K. Androsov a,27, P. Azzurri a, G. Bagliesi a, J. Bernardini a, T. Boccali a, G. Broccolo a,c, R. Castaldi a, M.A. Ciocci a,27, R. Dell’Orso a, S. Donato a,c,2, G. Fedi, L. Foà a,c,†, A. Giassi a, M.T. Grippo a,27, F. Ligabue a,c, T. Lomtadze a, L. Martini a,b, A. Messineo a,b, F. Palla a, A. Rizzi a,b, A. Savoy-Navarro a,28, A.T. Serban a, P. Spagnolo a, P. Squillacioti a,27, R. Tenchini a, G. Tonelli a,b, A. Venturi a, P.G. Verdini a a INFN Sezione di Pisa, Pisa, Italy b Università di Pisa, Pisa, Italy c Scuola Normale Superiore di Pisa, Pisa, Italy L. Barone a,b, F. Cavallari a, G. D’imperio a,b,2, D. Del Re a,b, M. Diemoz a, S. Gelli a,b, C. Jorda a, E. Longo a,b, F. Margaroli a,b, P. Meridiani a, F. Micheli a,b, G. Organtini a,b, R. Paramatti a, F. Preiato a,b, S. Rahatlou a,b, C. Rovelli a, F. Santanastasio a,b, P. Traczyk a,b,2 a INFN Sezione di Roma, Roma, Italy b Università di Roma, Roma, Italy N. Amapane a,b, R. Arcidiacono a,c,2, S. Argiro a,b, M. Arneodo a,c, R. Bellan a,b, C. Biino a, N. Cartiglia a, M. Costa a,b, R. Covarelli a,b, P. De Remigis a, A. Degano a,b, N. Demaria a, L. Finco a,b,2, C. Mariotti a, S. Maselli a, E. Migliore a,b, V. Monaco a,b, E. Monteil a,b, M. Musich a, M.M. Obertino a,b, L. Pacher a,b, 208 CMS Collaboration / Physics Letters B 755 (2016) 196–216 N. Pastrone a, M. Pelliccioni a, G.L. Pinna Angioni a,b, F. Ravera a,b, A. Romero a,b, M. Ruspa a,c, R. Sacchi a,b, A. Solano a,b, A. Staiano a, U. Tamponi a a INFN Sezione di Torino, Torino, Italy b Università di Torino, Torino, Italy c Università del Piemonte Orientale, Novara, Italy S. Belforte a, V. Candelise a,b,2, M. Casarsa a, F. Cossutti a, G. Della Ricca a,b, B. Gobbo a, C. La Licata a,b, M. Marone a,b, A. Schizzi a,b, T. Umer a,b, A. Zanetti a a INFN Sezione di Trieste, Trieste, Italy b Università di Trieste, Trieste, Italy S. Chang, A. Kropivnitskaya, S.K. Nam Kangwon National University, Chunchon, Republic of Korea D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, A. Sakharov, D.C. Son Kyungpook National University, Daegu, Republic of Korea J.A. Brochero Cifuentes, H. Kim, T.J. Kim, M.S. Ryu Chonbuk National University, Jeonju, Republic of Korea S. Song Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea S. Choi, Y. Go, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K. Lee, K.S. Lee, S. Lee, S.K. Park, Y. Roh Korea University, Seoul, Republic of Korea H.D. Yoo Seoul National University, Seoul, Republic of Korea M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu University of Seoul, Seoul, Republic of Korea Y. Choi, Y.K. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu Sungkyunkwan University, Suwon, Republic of Korea A. Juodagalvis, J. Vaitkus Vilnius University, Vilnius, Lithuania I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali 29, F. Mohamad Idris 30, W.A.T. Wan Abdullah, M.N. Yusli National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz 31, A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico S. Carrillo Moreno, F. Vazquez Valencia Universidad Iberoamericana, Mexico City, Mexico S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen Benemerita Universidad Autonoma de Puebla, Puebla, Mexico CMS Collaboration / Physics Letters B 755 (2016) 196–216 209 A. Morelos Pineda Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico D. Krofcheck University of Auckland, Auckland, New Zealand P.H. Butler, S. Reucroft University of Canterbury, Christchurch, New Zealand A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski National Centre for Nuclear Research, Swierk, Poland G. Brona, K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, N. Leonardo, L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev 32, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin Joint Institute for Nuclear Research, Dubna, Russia V. Golovtsov, Y. Ivanov, V. Kim 33, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Nuclear Research, Moscow, Russia V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin Institute for Theoretical and Experimental Physics, Moscow, Russia A. Bylinkin National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia V. Andreev, M. Azarkin 34, I. Dremin 34, M. Kirakosyan, A. Leonidov 34, G. Mesyats, S.V. Rusakov, A. Vinogradov P.N. Lebedev Physical Institute, Moscow, Russia A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin 35, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Myagkov, S. Obraztsov, M. Perfilov, V. Savrin Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 210 CMS Collaboration / Physics Letters B 755 (2016) 196–216 I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia P. Adzic 36, M. Ekmedzic, J. Milosevic, V. Rekovic University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia J. Alcaraz Maestre, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran Universidad Autónoma de Madrid, Madrid, Spain H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, J.M. Vizan Garcia Universidad de Oviedo, Oviedo, Spain I.J. Cabrillo, A. Calderon, J.R. Castiñeiras De Saa, P. De Castro Manzano, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, G.M. Berruti, P. Bloch, A. Bocci, A. Bonato, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi 37, M. D’Alfonso, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, F. De Guio, A. De Roeck, S. De Visscher, E. Di Marco, M. Dobson, M. Dordevic, T. du Pree, N. Dupont, A. Elliott-Peisert, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, H. Kirschenmann, M.J. Kortelainen, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, M.T. Lucchini, N. Magini, L. Malgeri, M. Mannelli, A. Martelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, M.V. Nemallapudi, H. Neugebauer, S. Orfanelli 38, L. Orsini, L. Pape, E. Perez, A. Petrilli, G. Petrucciani, A. Pfeiffer, D. Piparo, A. Racz, G. Rolandi 39, M. Rovere, M. Ruan, H. Sakulin, C. Schäfer, C. Schwick, A. Sharma, P. Silva, M. Simon, P. Sphicas 40, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi, D. Treille, A. Triossi, A. Tsirou, G.I. Veres 18, N. Wardle, H.K. Wöhri, A. Zagozdzinska 41, W.D. Zeuner CERN, European Organization for Nuclear Research, Geneva, Switzerland W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe Paul Scherrer Institut, Villigen, Switzerland F. Bachmair, L. Bäni, L. Bianchini, M.A. Buchmann, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, W. Lustermann, B. Mangano, A.C. Marini, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, D. Meister, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, L. Perrozzi, M. Peruzzi, M. Quittnat, M. Rossini, A. Starodumov 42, M. Takahashi, V.R. Tavolaro, K. Theofilatos, R. Wallny Institute for Particle Physics, ETH Zurich, Zurich, Switzerland CMS Collaboration / Physics Letters B 755 (2016) 196–216 211 T.K. Aarrestad, C. Amsler 43, L. Caminada, M.F. Canelli, V. Chiochia, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, P. Robmann, F.J. Ronga, D. Salerno, Y. Yang Universität Zürich, Zurich, Switzerland M. Cardaci, K.H. Chen, T.H. Doan, C. Ferro, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu National Central University, Chung-Li, Taiwan R. Bartek, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori, U. Grundler, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Petrakou, J.F. Tsai, Y.M. Tzeng National Taiwan University (NTU), Taipei, Taiwan B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand A. Adiguzel, M.N. Bakirci 44, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal 45, G. Onengut 46, K. Ozdemir 47, S. Ozturk 44, A. Polatoz, D. Sunar Cerci 48, M. Vergili, C. Zorbilmez Cukurova University, Adana, Turkey I.V. Akin, B. Bilin, S. Bilmis, B. Isildak 49, G. Karapinar 50, U.E. Surat, M. Yalvac, M. Zeyrek Middle East Technical University, Physics Department, Ankara, Turkey E.A. Albayrak 51, E. Gülmez, M. Kaya 52, O. Kaya 53, T. Yetkin 54 Bogazici University, Istanbul, Turkey K. Cankocak, S. Sen 55, F.I. Vardarlı Istanbul Technical University, Istanbul, Turkey B. Grynyov Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine L. Levchuk, P. Sorokin National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine R. Aggleton, F. Ball, L. Beck, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold 56, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, S. Senkin, D. Smith, V.J. Smith University of Bristol, Bristol, United Kingdom K.W. Bell, A. Belyaev 57, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, L. Thomas, I.R. Tomalin, T. Williams, W.J. Womersley, S.D. Worm Rutherford Appleton Laboratory, Didcot, United Kingdom M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, N. Cripps, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, P. Dunne, A. Elwood, W. Ferguson, J. Fulcher, D. Futyan, G. Hall, G. Iles, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas 56, L. Lyons, A.-M. Magnan, S. Malik, J. Nash, A. Nikitenko 42, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, A. Richards, A. Rose, C. Seez, A. Tapper, K. Uchida, M. Vazquez Acosta 58, T. Virdee, S.C. Zenz Imperial College, London, United Kingdom 212 CMS Collaboration / Physics Letters B 755 (2016) 196–216 J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Brunel University, Uxbridge, United Kingdom A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, N. Pastika Baylor University, Waco, USA O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio The University of Alabama, Tuscaloosa, USA A. Avetisyan, T. Bose, C. Fantasia, D. Gastler, P. Lawson, D. Rankin, C. Richardson, J. Rohlf, J. St. John, L. Sulak, D. Zou Boston University, Boston, USA J. Alimena, E. Berry, S. Bhattacharya, D. Cutts, N. Dhingra, A. Ferapontov, A. Garabedian, U. Heintz, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Sagir, T. Sinthuprasith Brown University, Providence, USA R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay University of California, Davis, Davis, USA R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, D. Saltzberg, E. Takasugi, V. Valuev, M. Weber University of California, Los Angeles, USA K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova PANEVA, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, A. Luthra, M. Malberti, M. Olmedo Negrete, A. Shrinivas, H. Wei, S. Wimpenny University of California, Riverside, Riverside, USA J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech 59, C. Welke, F. Würthwein, A. Yagil, G. Zevi Della Porta University of California, San Diego, La Jolla, USA D. Barge, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Gran, J. Incandela, C. Justus, N. Mccoll, S.D. Mullin, J. Richman, D. Stuart, I. Suarez, W. To, C. West, J. Yoo University of California, Santa Barbara, Santa Barbara, USA D. Anderson, A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman, C. Pena, M. Pierini, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu California Institute of Technology, Pasadena, USA V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev Carnegie Mellon University, Pittsburgh, USA J.P. Cumalat, W.T. Ford, A. Gaz, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, U. Nauenberg, J.G. Smith, K. Stenson, S.R. Wagner University of Colorado Boulder, Boulder, USA CMS Collaboration / Physics Letters B 755 (2016) 196–216 213 J. Alexander, A. Chatterjee, J. Chaves, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, W. Sun, S.M. Tan, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, P. Wittich Cornell University, Ithaca, USA S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, Z. Hu, S. Jindariani, M. Johnson, U. Joshi, A.W. Jung, B. Klima, B. Kreis, S. Kwan †, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, P. Merkel, K. Mishra, S. Mrenna, S. Nahn, C. Newman-Holmes, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, H.A. Weber, A. Whitbeck, F. Yang, H. Yin Fermi National Accelerator Laboratory, Batavia, USA D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Carnes, M. Carver, D. Curry, S. Das, G.P. Di Giovanni, R.D. Field, M. Fisher, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev, H. Mei, P. Milenovic 60, G. Mitselmakher, L. Muniz, D. Rank, R. Rossin, L. Shchutska, M. Snowball, D. Sperka, J. Wang, S. Wang, J. Yelton University of Florida, Gainesville, USA S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida International University, Miami, USA A. Ackert, J.R. Adams, T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, V. Veeraraghavan, M. Weinberg Florida State University, Tallahassee, USA V. Bhopatkar, M. Hohlmann, H. Kalakhety, D. Mareskas-palcek, T. Roy, F. Yumiceva Florida Institute of Technology, Melbourne, USA M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O’Brien, I.D. Sandoval Gonzalez, C. Silkworth, P. Turner, N. Varelas, Z. Wu, M. Zakaria University of Illinois at Chicago (UIC), Chicago, USA B. Bilki 61, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya 62, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok 51, A. Penzo, C. Snyder, P. Tan, E. Tiras, J. Wetzel, K. Yi The University of Iowa, Iowa City, USA I. Anderson, B.A. Barnett, B. Blumenfeld, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Martin, K. Nash, M. Osherson, M. Swartz, M. Xiao, Y. Xin Johns Hopkins University, Baltimore, USA P. Baringer, A. Bean, G. Benelli, C. Bruner, J. Gray, R.P. Kenny III, D. Majumder, M. Malek, M. Murray, D. Noonan, S. Sanders, R. Stringer, Q. Wang, J.S. Wood The University of Kansas, Lawrence, USA I. Chakaberia, A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, I. Svintradze, S. Toda Kansas State University, Manhattan, USA 214 CMS Collaboration / Physics Letters B 755 (2016) 196–216 D. Lange, F. Rebassoo, D. Wright Lawrence Livermore National Laboratory, Livermore, USA C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar University of Maryland, College Park, USA A. Apyan, R. Barbieri, A. Baty, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, C. Mcginn, C. Mironov, X. Niu, C. Paus, D. Ralph, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova Massachusetts Institute of Technology, Cambridge, USA B. Dahmes, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, K. Klapoetke, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Minnesota, Minneapolis, USA J.G. Acosta, S. Oliveros University of Mississippi, Oxford, USA E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, F. Meier, J. Monroy, F. Ratnikov, J.E. Siado, G.R. Snow University of Nebraska-Lincoln, Lincoln, USA M. Alyari, J. Dolen, J. George, A. Godshalk, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, S. Rappoccio State University of New York at Buffalo, Buffalo, USA G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood, J. Zhang Northeastern University, Boston, USA K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Trovato, M. Velasco, S. Won Northwestern University, Evanston, USA A. Brinkerhoff, N. Dev, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, S. Lynch, N. Marinelli, F. Meng, C. Mueller, Y. Musienko 32, T. Pearson, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, N. Valls, M. Wayne, M. Wolf, A. Woodard University of Notre Dame, Notre Dame, USA L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, B. Liu, W. Luo, D. Puigh, M. Rodenburg, B.L. Winer, H.W. Wulsin The Ohio State University, Columbus, USA O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, C. Palmer, P. Piroué, X. Quan, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski Princeton University, Princeton, USA S. Malik University of Puerto Rico, Mayaguez, USA CMS Collaboration / Physics Letters B 755 (2016) 196–216 215 V.E. Barnes, D. Benedetti, D. Bortoletto, L. Gutay, M.K. Jha, M. Jones, K. Jung, M. Kress, D.H. Miller, N. Neumeister, F. Primavera, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, J. Zablocki Purdue University, West Lafayette, USA N. Parashar, J. Stupak Purdue University Calumet, Hammond, USA A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel Rice University, Houston, USA B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, G. Petrillo, M. Verzetti University of Rochester, Rochester, USA L. Demortier The Rockefeller University, New York, USA S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, A. Lath, S. Panwalkar, M. Park, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker Rutgers, The State University of New Jersey, Piscataway, USA M. Foerster, G. Riley, K. Rose, S. Spanier, A. York University of Tennessee, Knoxville, USA O. Bouhali 63, A. Castaneda Hernandez, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon 64, V. Krutelyov, R. Montalvo, R. Mueller, I. Osipenkov, Y. Pakhotin, R. Patel, A. Perloff, J. Roe, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer 2 Texas A&M University, College Station, USA N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, S. Undleeb, I. Volobouev Texas Tech University, Lubbock, USA E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, Y. Mao, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska, Q. Xu Vanderbilt University, Nashville, USA M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, E. Wolfe, J. Wood, F. Xia University of Virginia, Charlottesville, USA C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy Wayne State University, Detroit, USA D.A. Belknap, D. Carlsmith, M. Cepeda, A. Christian, S. Dasu, L. Dodd, S. Duric, E. Friis, B. Gomber, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Ruggles, T. Sarangi, A. Savin, A. Sharma, N. Smith, W.H. Smith, D. Taylor, N. Woods University of Wisconsin, Madison, USA 216 CMS Collaboration / Physics Letters B 755 (2016) 196–216 † Deceased. 1 Also at Vienna University of Technology, Vienna, Austria. 2 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland. 3 Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China. 4 Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France. 5 Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. 6 Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia. 7 Also at Universidade Estadual de Campinas, Campinas, Brazil. 8 Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France. 9 Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. 10 Also at Joint Institute for Nuclear Research, Dubna, Russia. 11 Also at Suez University, Suez, Egypt. 12 Also at British University in Egypt, Cairo, Egypt. 13 Also at Fayoum University, El-Fayoum, Egypt. 14 Also at Université de Haute Alsace, Mulhouse, France. 15 Also at Tbilisi State University, Tbilisi, Georgia. 16 Also at Brandenburg University of Technology, Cottbus, Germany. 17 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. 18 Also at Eötvös Loránd University, Budapest, Hungary. 19 Also at University of Debrecen, Debrecen, Hungary. 20 Also at Wigner Research Centre for Physics, Budapest, Hungary. 21 Also at University of Visva-Bharati, Santiniketan, India. 22 Now at King Abdulaziz University, Jeddah, Saudi Arabia. 23 Also at University of Ruhuna, Matara, Sri Lanka. 24 Also at Isfahan University of Technology, Isfahan, Iran. 25 Also at University of Tehran, Department of Engineering Science, Tehran, Iran. 26 Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. 27 Also at Università degli Studi di Siena, Siena, Italy. 28 Also at Purdue University, West Lafayette, USA. 29 Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia. 30 Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia. 31 Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico. 32 Also at Institute for Nuclear Research, Moscow, Russia. 33 Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia. 34 Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia. 35 Also at California Institute of Technology, Pasadena, USA. 36 Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia. 37 Also at Facoltà Ingegneria, Università di Roma, Roma, Italy. 38 Also at National Technical University of Athens, Athens, Greece. 39 Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy. 40 Also at University of Athens, Athens, Greece. 41 Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland. 42 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia. 43 Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland. 44 Also at Gaziosmanpasa University, Tokat, Turkey. 45 Also at Mersin University, Mersin, Turkey. 46 Also at Cag University, Mersin, Turkey. 47 Also at Piri Reis University, Istanbul, Turkey. 48 Also at Adiyaman University, Adiyaman, Turkey. 49 Also at Ozyegin University, Istanbul, Turkey. 50 Also at Izmir Institute of Technology, Izmir, Turkey. 51 Also at Mimar Sinan University, Istanbul, Istanbul, Turkey. 52 Also at Marmara University, Istanbul, Turkey. 53 Also at Kafkas University, Kars, Turkey. 54 Also at Yildiz Technical University, Istanbul, Turkey. 55 Also at Hacettepe University, Ankara, Turkey. 56 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom. 57 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. 58 Also at Instituto de Astrofísica de Canarias, La Laguna, Spain. 59 Also at Utah Valley University, Orem, USA. 60 Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. 61 Also at Argonne National Laboratory, Argonne, USA. 62 Also at Erzincan University, Erzincan, Turkey. 63 Also at Texas A&M University at Qatar, Doha, Qatar. 64 Also at Kyungpook National University, Daegu, Korea. Search for W' decaying to tau lepton and neutrino in proton-proton collisions at √s = 8 TeV 1 Introduction 2 Physics models 3 Generation of background and signal samples 4 The CMS detector 5 Reconstruction and identification of physics objects 6 Analysis strategy 7 Background estimation 8 Systematic uncertainties 9 Results 10 Summary Acknowledgements References CMS Collaboration