RESSALVA Atendendo solicitação do autor, o texto completo desta dissertação será disponibilizado somente a partir de 22/01/2022. UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS – RIO CLARO unesp PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (MICROBIOLOGIA APLICADA) CONTRIBUTION OF XYLAN TO PHYSICOCHEMICAL AND BIODEGRADATION PROPERTIES IN STARCH-BASED BIOPLASTICS. JOÃO VICTOR CARPINELLI MACEDO Rio Claro Julho - 2021 PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (MICROBIOLOGIA APLICADA) CONTRIBUTION OF XYLAN TO PHYSICOCHEMICAL AND BIODEGRADATION PROPERTIES IN STARCH-BASED BIOPLASTICS. JOÃO VICTOR CARPINELLI MACEDO Rio Claro Julho - 2021 Dissertação apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Mestre em Microbiologia Aplicada. Orientador: Michel Brienzo I dedicate this work to all my family and to everyone who helped me get to where I am. ACKNOWLEDGEMENT To my advisor Michel Brienzo, for giving me the opportunity to be part of his students. And trusting me to develop an unprecedented project in his laboratory, which together, we got to develop, starting a new line of research that will generate many fruits for IPBEN and for scientific literature. I acknowledge too all the patience and support offered me throughout the master’s, teaching me and helping me to solve the problems related to this project. To my family, my mother, grandmother, aunts, uncles and cousins for giving me the possibility to graduate and get here. In addition to motivating and strengthening me during all these years of study. To all the employees of IPBEN for their services that facilitate our lives in the laboratory and colleagues who helped me with so many suggestions, in addition to providing me with good times over these two years. To Marcia Cristina Branciforti from USP São Carlos, her doctoral student Paula Bertolino Sanvezzo, Renato Grillo from Unesp in Ilha Solteira and the all the technicians for their help in carrying out experiments that we had no access to at IPBEN, in addition to dedicating themselves to clarifying us doubts and give suggestions in carrying out this study. To the postgraduate program in Applied Microbiology, to all its professors and technical section for their teaching and support. To CNPq and Fapesp, which despite suffering a reduction in the budget in recent years, is still a competent organization that helps to produce science in the country by investing and providing that works like this are developed. Generating more critical individuals, who know the relevance of science for the well-being and sustainable development of our country. The present work was carried out with the support of the National Council for Scientific Development and Technological (CNPq) ABSTRACT Plastic has served society very well for decades, being able to present itself as a light and moldable material, mechanically and thermally resistant, inert to chemical products, electrical insulator, in addition to having interesting optical characteristics such as its transparency. Such characteristics, associated with the low price of its raw material, a residue from the processing of petroleum until then little used, made it crucial for the industry and the market, which consolidated its presence in society in different countries. However, as it is a resistant material, remaining for centuries without fully decomposing, and for having a large production in order to meet the needs of a consumer society, it began to accumulate in the environment over the years since its creation. Its abundance in the environment causes damage to life in different biomes, especially marine environments, in addition to having residues that can be toxic and reach humans through the food chain. A possible solution is biodegradable materials that use renewable raw materials such as proteins, lipids, and polysaccharides, the so-called bioplastics. In this context, the present study aimed to produce bioplastics based on starch with different proportions of xylan extracted from sugarcane bagasse and glycerol as a plasticizer. For this, their physicochemical properties (solubility, hydrophilicity, moisture, water barrier, opacity, crystallinity, and mechanical resistance) were evaluated. The biodegradation of the bioplastic was determined by buried and CO2 released. As a result, it was observed that the increase in the proportion of xylan made the bioplastics more soluble in water, susceptible to enzymatic attack by microorganisms, and opaque. Through of the contact angle test, the bioplastic with starch and plasticizer showed lower affinity to water compared to the one including xylan, which among them the proportion of 25 % (w/w of the polysaccharides) was the least hydrophilic. Bioplastic with 5 % (w/w of polysaccharides) xylan showed better crystallinity followed by starch. As for its mechanical strength, the bioplastic with 10 % xylan (w/w of polysaccharides) owned the highest tensile stress (2.56 MPa), but the presence of xylan considerably reduced its elongation at break (ranging from 16 to 37 %) in relation to the starch bioplastic (208.8 %). In general, after 30 days of burial, the bioplastics had practically no fragments visible to the naked eye, and the rate of CO2 production together with the increase in cell count after the biodegradation period demonstrate that there was an effective catabolic action of the microorganisms in the bioplastics. Thus, the 5 % xylan bioplastic showed the best physicochemical results when obtaining a biodegradable material. Keywords: Bioplastic, xylan, starch, biomass, biodegradable. RESUMO O plástico serviu muito bem à sociedade durante décadas, podendo se apresentar como um material leve e moldável, mecanicamente e termicamente resistente, inerte a produtos químicos, isolante elétrico, além de possuir características ópticas interessantes como sua transparência. Tais características, associada ao baixo preço da sua matéria prima, um resíduo do processamento de petróleo até então pouco utilizado, fizeram com que ele se tornasse crucial para a indústria e o mercado, o que consolidou sua presença na sociedade em diferentes países. Contudo, por ser um material resistente, permanecendo séculos sem se decompor totalmente, e por ter uma larga produção a fim de atender as necessidades de uma sociedade consumista, ele passou a se acumular no meio ambiente ao longo dos anos desde sua criação. Sua abundancia no meio ambiente acarreta prejuízos à vida em diferentes biomas, especialmente os ambientes marinhos, além de possuir resíduos que podem ser tóxicos e chegar ao ser humano através da cadeia trófica. Uma possível solução são os materiais biodegradáveis e que utilizam matéria-prima renovável como proteínas, lipídeos e polissacarídeos, os chamados bioplásticos. Neste contexto, o presente estudo objetivou produzir bioplásticos baseado em amido com diferentes proporções de xilana extraída do bagaço de cana-de-açúcar e glicerol como plastificante. Para isso, suas propriedades físico- químicas (solubilidade, hidrofilicidade, umidade, barreira à água, opacidade, cristalinidade, e resistência mecânica) foram avaliadas. A biodegradaçãodo bioplástico foi determinada por enterramento e liberação de CO2. Como resultado, foi observado que o aumento na proporção de xilana tornou os bioplásticos mais solúveis em água, susceptíveis ao ataque enzimático de microrganismo, e opacos. Por meio do ensaio de ângulo de contato, o bioplástico apenas com amido e plastificante apresentou menor afinidade à água, comparado aos compostos por xilana, que dentre eles a proporção de 25 % (m/m de polissacarídeos) foi a menos hidrofílica. O bioplástico com 5 % (m/m de polissacarídeos) de xilana apresentou melhor cristalinidade seguido pelo de amido. Quanto à sua resistência mecânica, o bioplastico com 10 % de xilana (m/m de polissacarídeos) foi o que possuiu maior tensão de tração (2,56 MPa), porém a presença de xilana reduziu consideravelmente sua elongação na quebra (variando de 16 a 37 %) em relação ao bioplástico de amido (208,8 %). No geral, após 30 dias enterrados os bioplásticos já não apresentavam praticamente nenhum fragmento visível a olho nú, e a taxa de produção de CO2 juntamente com o aumento da contagem de células após o período de biodegração demonstram que houve uma efetiva ação catabólica dos microrganimos nos bioplasticos. Sendo assim, a concentração de 5 % de xilana foi a que mostrou melhores resultados físico-químicos ao obter um material biodegradável. Palavras-chave: Bioplastico, xilana, amido, biomassa, biodegradável. LIST OF FIGURES Figure 1 - Polymeric chain models representing a linear polymer and a branched one. .......... 16 Figure 2 - Illustration of a semi-rigid three-dimensional network structure. ........................... 27 Figure 3 - Types of copolymers. ............................................................................................... 28 Figure 4 - Groups of hemicellulose. ......................................................................................... 34 Figure 5 - Drug-carrying biomaterial applied in tissue regeneration. ...................................... 36 Figure 6 - Presence of plasticizer in polymers. ........................................................................ 39 Figure 7 - Interaction between chitosan and xylan. .................................................................. 42 Figure 8 - Esterification reaction. ............................................................................................. 45 Figure 9 - Etherification reaction.............................................................................................. 46 Figure 10 - Oxidation reaction.................................................................................................. 46 Figure 11 - Chains crosslinked. ................................................................................................ 47 Figure 12 - Examples of bioplastics produced from starch and xylan in different proportions in relation to 5 % of polysaccharides (w/w of filmogenic solution). ....................................... 80 Figure 13 - X-ray diffractograms of bioplastic of starch and xylan (according to Table 3). ... 81 Figure 14 - Relative percentage of contact angle of bioplastics of starch and xylan in relation to starch bioplastics. ................................................................................................................. 84 Figure 15 - Opacity as a function of the composition of xylan in bioplastics, showing the respective photo of each composition ...................................................................................... 85 Figure 16 - FTIR of starch and xylan bioplastics (according to Table 3). ............................... 86 Figure 17 - Scanning electron microscopy images of starch and xylan bioplastics with starch and xylan with different magnitudes. ....................................................................................... 89 Figure 18 - CO2 production (mg) from the biodegradation of starch and xylan bioplastics. ... 91 Figure 19 - Decomposition of the bioplastic with 10% of xylan (X10) over 26 days. ............. 92 Figure 20 - Plate growth of soil microorganisms of the mixture of soils used in each bioplastic composition .............................................................................................................................. 93 LIST OF TABLES Table 1 - Evaluation of different proportions of glycerol (G) in 5 % starch (w/w of solution) bioplastics ................................................................................................................................. 73 Table 2 - Evaluation of starch gelatinization conditions in bioplastics with 20 % glycerol (w/w of starch) ................................................................................................................................... 73 Table 3 - Bioplastic compositions in relation to 5 % (w/w, filmogenic solution) of polysaccharides with glycerol 20 % (w/w, polysaccharides). .................................................. 74 Table 4 - Xylan extraction yield (%, w/w theoretically present in the bagasse) ...................... 78 Table 5 - Lignin content and sugars in biomass and solubilized xylan (%, w/w) .................... 78 Table 6 - Moisture and solubility results of bioplastics with 5 % starch (w/w of solution) and glycerol. .................................................................................................................................... 80 Table 7 - Solubility and moisture of bioplastics of starch and xylan (according to Table 3)... 82 Table 8 - Water vapor transmission (WPT) and water vapor permeability (WVP) of bioplastics of starch and xylan (according to Table 3). ............................................................ 83 Table 9 - Tensile stress at maximum load and elongation at break in starch and xylan bioplastics (according to Table 3). ........................................................................................... 88 Table 10 - Average number of colony-forming units per gram of soil (CFU.g-1) before and after biodegradation of bioplastics (composed of the mixture of soils used in each composition). ............................................................................................................................ 93 LIST OF APPENDIX Appendix A - Representative figure of the setup of the experiment witch a bioplastic 25 % xylan (w/w polysaccharides) .................................................................................................. 102 Appendix B - Representation of the biodegradation test of bioplastics with variations of xylan and only starch. ....................................................................................................................... 103 Appendix C - Interference of gelatinization in xylan and starch bioplastic (left pair), and only starch (right pair). ................................................................................................................... 104 Appendix D - Bioplastics made in different ways and conditions of gelatinization. ............. 105 SUMMARY CHAPTER I: INTRODUCTION ............................................................................................. 11 CHAPTER II: OBJECTIVES ................................................................................................... 13 1. General objective ................................................................................................................ 13 1.1. Specific objectives ............................................................................................................. 13 CHAPTER III: HEMICELLULOSE APPLICATION FOR THE PRODUCTION OF BIOPLASTICS AND BIOMATERIALS ................................................................................ 14 1. Introduction ........................................................................................................................ 15 2. Plastic ................................................................................................................................... 16 2.1. Origin of plastics and their importance for society ........................................................... 16 2.2. Negative impacts caused by an irregular plastics disposal ................................................ 18 3. Bioplastics ............................................................................................................................ 25 3.1. Origin of bioplastics .......................................................................................................... 25 3.2. Bioplastic composition and structure ................................................................................ 27 3.3. The bioplastics market ....................................................................................................... 35 3.4. Emerging technologies for bioplastics produced with hemicellulose ............................... 35 3.4.1. Importance of plasticizer for hemicellulose films .......................................................... 38 3.4.2. Development of biomolecule blends ............................................................................... 40 3.4.3. Crosslinking agents in polymeric chains ........................................................................ 47 3.4.4. Functional biopackages .................................................................................................. 48 3.4.5. Other applications of hemicellulose as a biomaterial .................................................... 51 4. Concluding remarks ........................................................................................................... 53 REFERENCES ......................................................................................................................... 55 CHAPTER IV: DEVELOPMENT OF BIOPLASTICS BASED ON STARCH AND XYLAN: A MECHANICAL PHYSICOCHEMICAL AND BIODEGRADABILITY STUDY ............ 69 1. Introduction ........................................................................................................................ 70 2. Material and methods ........................................................................................................ 71 2.1. Raw material ...................................................................................................................... 72 2.2. Xylan solubilization ........................................................................................................... 72 2.3. Characterization of biomass and extracted xylan .............................................................. 72 2.4. Gelatinization parameters and plasticizer content ............................................................. 73 2.5. Bioplastic production ......................................................................................................... 73 2.6. Bioplastics characterization ............................................................................................... 74 2.6.1. Moisture and solubility tests ........................................................................................... 74 2.6.2. Opacity................ ........................................................................................................... 74 2.6.3. Hydrophilicity ................................................................................................................. 75 2.6.4. Water vapor transmission (WVT) and water vapor permeability (WVP) ...................... 75 2.6.5. Mechanical test ............................................................................................................... 75 2.6.6. Fourier-transform infrared spectroscopy (FTIR)........................................................... 76 2.6.7. Scanning electron microscopy (SEM) ............................................................................ 76 2.6.8. X-ray diffraction (XRD) .................................................................................................. 76 2.7. Biodegradation .................................................................................................................. 76 2.8. Statistical analysis ............................................................................................................. 77 3. Results and discussion ........................................................................................................ 77 3.1. Biomass composition, xylan solubilization, and characterization ..................................... 77 3.2. Gelatinization parameters and plasticizer content ............................................................. 79 3.3. Bioplastics characterization ............................................................................................... 81 3.3.1. X-ray diffraction (XRD) .................................................................................................. 81 3.3.2. Moisture and solubility tests ........................................................................................... 82 3.3.3. Water vapor transmission (WVT) and water vapor permeability (WVP) ...................... 82 3.3.4. Hydrophilicity ................................................................................................................. 83 3.3.5. Opacity............................................................................................................................ 84 3.3.6. Fourier-transform infrared spectroscopy (FTIR)........................................................... 85 3.3.7. Mechanical test ............................................................................................................... 86 3.3.8. Scanning electron microscopy (SEM) ............................................................................ 88 3.4. Biodegradation .................................................................................................................. 89 4. Conclusions ......................................................................................................................... 93 REFERENCES ......................................................................................................................... 95 CHAPTER V: CONCLUSION .............................................................................................. 101 APPENDIX ............................................................................................................................ 102 11 CHAPTER I: INTRODUCTION The fossil-based plastic, that we conventionally use, assumed an important role in society in a way that it would be impossible to abruptly abolish its use, since it is present in our daily lives from the time we wake up to the time we go to sleep. Although plastic waste management policies can be carried out, the ideal level of recycling to contain the generation of waste, which tends to grow as the world population grows, is a difficult level to be reached. And the reasons for this are the demand for high investment in collection and sorting centers, the problem of the quality of recycled materials in relation to primary plastic and the most important factor, the cooperation of the population, because even if the first two items are resolved, will not be as effective if there is no awareness of the population. This last requirement is a more complex issue, because it is strictly related to the education and civility of each individual. Biodegradable polymers produced from renewable sources have been seen as a promising strategy to replace (partially) the intensive use of plastic derived from petroleum due to the growing environmental awareness in recent decades, as this synthetic polymer remains in the environment for centuries. The use of polysaccharides has been studied and arouses the interest of researchers as they are molecules capable of forming long chains. The polysaccharides, can form a cohesive network due to inter and intra-molecular bonds, and can also be consumed and degraded by microorganisms resulting in small molecules common to the environment. In addition to being biodegradable, bioplastics have the raw material from renewable sources, and potentially toxic substances are not used in their composition. By relying on several hydroxyl groups, polysaccharides also have the ability to mix with other components (plasticizers and additives) improving their functionality. Starch is generally used in bioplastic/film production because it is highly available and easy to extract, it has low cost, is biodegradable and biocompatible. It is still widely studied as edible bio-packaging because it has high energy value, in addition to forming films without odor, taste, color, toxicity, showing semipermiability to gases such as CO2, O2 and water vapor. However, native starch has a hydrophilic character and tends to form films with poor mechanical properties. Basically formed by two types of molecules, amylose (forms linear chains) and amylopectin (branched chains), both having a large amount of carboxyl groups capable of making hydrogen bonds. 12 In this context, xylan, a type of hemicellulose composed mostly by pentoses known as xylose, can present itself as a compatible sugar to starch, as it shares practically the same characteristics. Xylan can contribute to form bioplastic with greater mechanical resistance, in addition to theoretically preventing the retrogression process characteristic of starch, which consists of the loss of water molecules causing dryness. The interest in xylan also comes from the fact that it is a polysaccharide with potential for application in bioplastics that is still little used when compared to cellulose, even though it has considerable participation in the composition of plant biomass. The study of starch in the preparation of biodegradable bioplastic is already well documented. However, from our knowledge, there are not study in the literature dedicated to understanding the contribution and correlation of xylan in bioplastic. In this context, the purpose of this study was to combine starch and xylan (extracted from sugarcane bagasse) to produce bioplastics. The contribution of the xylan concentration was evaluated in properties such as biodegradability, crystallinity, mechanics, opacity, water affinity, and water barrier. 13 CHAPTER II: OBJECTIVES 1. General objective The main objective of this study was to evaluate the addition of xylan extracted from sugarcane bagasse in the composition of bioplastics in combination with starch. Physicochemical properties were determined and related to de biodegradation of the bioplastic. 1.1. Specific objectives  Identify the better starch gelatinization conditions and glycerol concentration;  Study the contribution of the xylan in the bioplastic compositions on the moisture, solubility, opacity, mechanical, crystallinity, and hydrophilicity, defining the most suitable proportion;  Analyze the time needed for biodegradation of the bioplastic composed of xylan and starch by burial and CO2 release. . 95 REFERENCES ABDULKHANI, A.; MAZHAR, A. N.; HEDJAZI, S.; HAMZEH, Y. Preparation of xylan bio‑composite films reinforced with oxidized carboxymethyl cellulose and nanocellulose. Polymer Bulletin, v. 77, p. 6227–6239, 2020. Available at: https://doi.org/10.1007/s00289- 019-03075-5 ABE, M. M.; BRANCIFORTI, M. C.; BRIENZO, M. Biodegradation of Hemicellulose- Cellulose-Starch-Based Bioplastics and Microbial Polyesters. Recycling, v. 6, n. 1, p. 22, 2021. Available at: https://doi.org/10.3390/recycling6010022 ABNT - NBR 16550:2018. Sugarcane bagasse - chemical characterization. Brazilian National Standards Organization, 2018. ACCINELLI, C.; ABBAS, H. K.; LITTLE, N. S.; KOTOWICZ, J. K.; MENCARELLI, M.; SHIER, W. T. A liquid bioplastic formulation for film coating of agronomic seeds. Crop Protection, v. 89, p. 123-128, 2016. Available at: https://doi.org/10.1016/j.cropro.2016.07.010 ALI, S.S.; ELSAMAHY, T.; KOUTRA, E.; KORNAROS, M.; EL-SHEEKH, M.; ABDELKARIM, E. A.; ZHU, D.; SUN, J. Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Science of The Total Environment, v. 771, 2021. Available at: 10.1016/j.scitotenv.2020.144719 ALVES, R. C.; MELATI, R. B.; CASAGRANDE, G. M. S.; CONTIERO, J.; PAGNOCCA, F. C.; BRIENZO, M. Sieving process selects sugarcane bagasse with lower recalcitrance to xylan solubilization. Journal of Chemical Technology & Biotechnology, v. 96, n. 2, p. 327- 334, 2020. Available at: https://doi.org/10.1002/jctb.6541 AZEREDO, H. M. C.; VRETTOU, C. K.; MOATES, G. K.; WELLNER, N.; CROSS, K.; PEREIRA, P. H. F.; WALDRON, K. W. Wheat straw hemicellulose films as affected by citric acid. Food Hydrocolloids, v. 50, p. 1-6, 2015. Available at: http://dx.doi.org/10.1016/j.foodhyd.2015.04.005. BERTUZZI, M. A.; ARMADA, M.; GOTTIFREDI J. C. Physicochemical characterization of starch based films. Journal of Food Engineering, v.82, p. 17–25, 2007. Available at: doi:10.1016/j.jfoodeng.2006.12.016 BRODIN, M.; VALLEJOS, M.; OPEDAL, M. T.; AREA, M. C.; CHINGA-CARRASCO, G. Lignocellulosics as sustainable resources for production of bioplastics – A review. Journal of Cleaner Production, v. 162, p. 646-664, 2017. Available at: https://doi.org/10.1016/j.jclepro.2017.05.209 BRIENZO, M.; SIQUEIRA, A. F.; MILAGRES, A. M. F. Search for optimunconditions of sugarcane bagasse hemicellulose extraction. Biochemical Engineering Journal, v. 46, n. 2, p. 199-204, 2009. Available at: http://dx.doi.org/10.1016/j.bej.2009.05.012 96 BRAGA, R. S.; POLETTO, M. Preparation and Characterization of Hemicellulose Films from Sugarcane Bagasse. Materials, v. 13, n. 4, 2020. Available at: https://doi.org/10.3390/ma13040941 CAMPAGNER, M. R.; da SILVA MORIS, V. A.; PITOMBO, L. M.; do CARMO, J. B.; de PAIVA, J. M. F. Polymeric films based on starch and lignosulfonates: Preparation, properties and evaluation of biodegradation. Polimeros, v. 24, p. 740–751, 2014. Available at: https://doi.org/10.1590/0104-1428.1700 DANISH, M.; MUMTAZ, M. W.; FAKHAR, M.; RASHID, U. Response Surface Methodology based Optimized Purification of the Residual Glycerol from Biodiesel Production Process. Chiang Mai Journal of Science, v. 44, n. 4, p. 1570–1582, 2016. Available at: http://epg.science.cmu.ac.th/ejournal E96/E96M-05 Standard Test Methods for Water Vapor Transmission of Materials; ASTM International: West Conshohocken, PA, USA, 2005. FARHAT, W.; VENDITTI, R. A.; HUBBE, M.; TAHA, M.; BECQUART, F.; AYOUB, A. A Review of Water-Resistant Hemicellulose-Based Materials: Processing and Applications. ChemSusChem, v. 10, p. 305 – 323, 2017. Available at: DOI : 10.1002/cssc.201601047 FARHAT, W.; VENDITTI, R.; AYOUB, A.; PROCHAZKA, F.; FERNÁNDEZ-DE-ALBA, C.; MIGNARD, N.; TAHA, M.; BECQUART, F. Towards thermoplastic hemicellulose: Chemistry and characteristics of poly-(ε-caprolactone) grafting onto hemicellulose backbones. Materials & Design, v. 153, p. 298-307, 2018. Available at: https://doi.org/10.1016/j.matdes.2018.05.013 FELIPUCI, J. P.; SCHMATZ, A. A.; de ANGELIS, D. A.; BRIENZO, M. (2021) Biological pretreatment improved subsequent xylan chemical solubilization. Biomass Conv. Bioref., p. 1-8, 2021. Available at: https://doi.org/10.1007/s13399-021-01506-w GAO, C.; REN, J.; WANG, S.; SUN, S.; ZHAO, L. Preparation of Polyvinyl Alcohol/Xylan Blending Films with 1,2,3,4-Butane Tetracarboxylic Acid as a New Plasticizer. Journal of Nanomaterials, v. 2014, p. 8, 2014. Available at: http://dx.doi.org/10.1155/2014/764031 GOKSU, E. I.; KARAMANLIOGLU, M.; BAKIR, U.; YILMAZ, L.; YILMAZER, U. Production and characterization of films from cotton stalk xylan. Journal of Agricultural and Food Chemistry, v. 55(26), p. 10685-10691, 2007. Available at: http:// dx.doi.org/10.1021/jf071893i. GOUNGA, M. E.; XU, S. Y.; WANG, Z. Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation. Journal of Food Engineering, v. 83, p.521-530, 2007. Available at: https://doi.org/10.1016/j.jfoodeng.2007.04.008 GRÖNDAHL, M., ERIKSSON, L., GATENHOLM, P. Material Properties of Plasticized Hardwood Xylans for Potential Application as Oxygen Barrier Films. Biomacromolecules, v. 5, p. 1528-1535, 2004. Available at: https://doi.org/10.1021/bm049925n 97 IMRE, B.; GARCÍA, L.; PUGLIA, D.; VILAPLANA, F. Reactive compatibilization of plant polysaccharides and biobased polymers: Review on current strategies, expectations and reality. Carbohydrate Polymers, v. 209, p. 20–37. 2019. Available at: https://doi.org/10.1016/j.carbpol.2018.12.082 JARAMILLO, C. M.; YEPES, O. O.; BERNAL, C.; FAMÁ, L. Active and smart biodegradable packaging based on starch and natural extracts. Carbohydrate Polymers, v. 176, p. 187–194, 2017. Available at: http://dx.doi.org/10.1016/j.carbpol.2017.08.079 KECHICHIAN, V.; DITCHFIELD, C.; SANTOS, P. V.; TADINI, C. C. Natural antimicrobial ingredients incorporated in biodegradable films based on cassava starch. LWT - Food Science and Technology, v. 43, n. 7, p. 1088-1094, 2010. Available at: https://doi.org/10.1016/j.lwt.2010.02.014 KOCHUMALAYIL, J. J.; ZHOU, Q.; KASAI, W.; BERGLUND, L. A. Regioselective modification of a xyloglucan hemicellulose for high-performance biopolymer barrier films. Carbohydr Polym, v. 93, n. 2, p. 466-472, 2013. Available at: https://doi.org/10.1016/j.carbpol.2012.12.041 LAFUENTE, M. T.; ALFÉREZ, F. Effect of LED Blue Light on Penicillium digitatum and Penicillium italicum Strains. Photochemistry and Photobiology, v. 91, p. 1412-1421, 2015. Available at: https://doi.org/10.1111/php.12519 LAOHAKUNJIT, N.; NOOMHORM, A. Effect of Plasticizers on Mechanical and Barrier Properties of Rice Starch Film. Starch/Stärke, v. 56, n. 348–356, 2004. Available at: DOI 10.1002/star.200300249 LIANG, T.; WANG, L. Thermal Treatment of Poplar Hemicelluloses at 180 to 220 °C under Nitrogen Atmosphere. BioResources, v. 12, n. 1, p. 1128-1135, 2017. Available at: DOI: 10.15376/biores.12.1.1128-1135 LI, H.; ZHANG, B.; LI, C.; FU, X.; WANG, Z.; HUANG, Q. CO2 inclusion complexes of Granular V-type crystalline starch: Structure and release kinetics. Food Chemistry, v. 289, p. 145-151, 2019. Available at: https://doi.org/10.1016/j.foodchem.2019.03.037 LIU, X.; SONG, T.; CHANG, M.; MENG, L.; WANG, X.; SUN R.; REN, J. Carbon Nanotubes Reinforced Maleic Anhydride-Modified Xylan-g-Poly(N-isopropylacrylamide) Hydrogel with Multifunctional Properties. Materials, v. 11, p. 354, 2018. Available at: doi:10.3390/ma11030354 LUCENA, C. A. A.; DA COSTA, S. C.; ELEAMEN, G. R. D. A.; MENDONÇA, E. A. M.; OLIVEIRA, E. E. Desenvolvimento de biofilmes à base de xilana e xilana/gelatina para produção de embalagens biodegradáveis. Polimeros, v. 27, p. 35–41, 2017. Available at: https://doi.org/10.1590/0104-1428.2223 LUO, Y. PAN; X. LING; Y.; WANG, X.; SUN, R. Facile fabrication of chitosan active film with xylan via direct immersion. Cellulose, v. 21, p. 1873–1883, 2014. Available at: DOI: 10.1007/s10570-013-0156-4 98 MACARTHUR, D.E. Beyond plastic waste. Science, v. 358, p. 843, 2017. Available at: 10.1126/science.aao6749 MALI, S.; GROSSMANN, M. V. E.; GARC A, M. A., MARTINO, M. N.; ZARITZKY, N. E. Barrier, mechanical and optical properties of plasticized yam starch films. Carbohydrate Polymers, v. 56, n. 2, p. 129-135, 2004. Available at: https://doi.org/10.1016/j.carbpol.2004.01.004 MEHYAR, G. F.; HAN, J. H. Physical and mechanical properties of high-amylose rice and pea starch films as affected by relative humidity and plasticizer. Journal of Food Science, v. 69, n. 9, p.449–454, 2004. Available at: https://doi.org/10.1111/j.1365-2621.2004.tb09929.x MELATI, R. B.; SASS, D. C.; PAGNOCCA, F. C.; BRIENZO, M. Anatomic influence of sugarcane biomass on xylan solubilization. Industrial Crops and Products, v. 164, p. 113- 357, 2021. Available at: https://doi.org/10.1016/j.indcrop.2021.113357 MENDES, F. R. S.; BASTOS, M. S. R.; MENDES, L. G.; SILVA, A. R. A.; SOUSA, F. D.; MONTEIRO-MOREIRA, A. N. C. O.; CHENG, H. N.; BISWAS, A.; MOREIRA, R. A. Preparation and evaluation of hemicellulose films and their blends. Food Hydrocolloids, v. 70, p. 181-190, 2017. Available at: http://dx.doi.org/10.1016/j.foodhyd.2017.03.037 MESQUITA-ROCHA, S. Aspergillus fumigatus: general aspects and importance in contemporary medicine. J Health Sci Inst., v. 37, n. 2, p. 169-73, 2019 MIKKONEN, K. S.; TENKANEN, M. Sustainable foodpackaging materials based on future biorefinery products: Xylans and mannans. Food and Science Technollogy, v.28, p. 90-102, 2012. Available at: https://doi.org/10.1016/j.tifs.2012.06.012 MITRANO, D. M.; WICK, P.; NOWACK, B. Placing nanoplastics in the context of global plastic pollution. Nature Nanotechnology, v. 16, n. 5, p. 491-500, 2021. Available at https://doi.org/10.1038/s41565-021-00888-2 NAIDJONOKA, P.; HERNANDEZ, M. A.; PÁLSSON, G. K.; HEINRICH, F.; STÅLBRAND, H.; NYLANDER, T. On the interaction of softwood hemicellulose with cellulose surfaces in relation to molecular structure and physicochemical properties of hemicellulose. Soft Matter, v. 16, p. 7063-7076, 2020. Available at: https://doi.org/10.1039/D0SM00264J NAIDU, D. S.; HLANGOTHI, S. P.; JOHN, M. J. Bio-based products from xylan: A review. Carbohydr Polym, v. 179, p. 28-41, 2018. Available at: https://doi.org/10.1016/j.carbpol.2017.09.064 NIELSEN, T. D.; HASSELBALCH, J.; HOLMBERG, K.; STRIPPLE, J. Politics and the plastic crisis: A review throughout the plastic life cycle. Energy Environ, v. 9, p. 1-18, 2019. Available at: https://doi.org/10.1002/wene.360 NORDIN, N.; OTHMAN, S. H.; RASHID, S. A.; BASHA, R. K. Effects of glycerol and thymol on physical, mechanical, and thermal properties of corn starch films. Food Hydrocolloids, v. 106, p. 105-884, 2020. Available at: https://doi.org/10.1016/j.foodhyd.2020.105884 99 PALANIAPPAN, A.; YUVARAJ, S. S.; SONAIMUTHU, S.; PROFESSOR, U. A. Characterization of xylan from rice bran and finger millet seed coat for functional food applications. Journal of Cereal Science, v. 75, p. 296-305, 2017. Available at: http://dx.doi.org/10.1016/j.jcs.2017.03.032 PENG, X.; REN, J.; ZHONG, L.; SUN, R. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules, v. 12, p. 3321–3329, 2011. Available at: https://doi.org/10.1021/bm2008795 PEREIRA, B. S.; CASTRISANA, R. N.; de FREITAS, C.; CONTIERO, J.; BRIENZO, M. Chemical composition determines the bioenergy potential of food waste from pre-and post- production. J Mater Cycles Waste Manag, p. 1-9, 2021. Available at: https://doi.org/10.1007/s10163-021-01215-6 PERESSINI, D.; BRAVIN, B.; SENSIDONI, A. Tensile properties, water vapor permeability and solubilities of starch–methylcellulose-based edible films. Italian Journal of Food Science, v.1, n. 16, p.5–16, 2004. PRABHU, T. N.; PRASHANTHA, K. A Review on Present Status and Future Challenges of Starch Based Polymer Films and Their Composites in Food Packaging Applications. Polym Compos, v. 39, n. 7, p. 2161-2596, 2016. Available at: https://doi.org/10.1002/pc.24236 RUIZ, H. A.; CERQUEIRA, M. A.; SILVA, H. D.; RODRÍGUEZ-JASSO, R. M.; VICENTE, A. A.; TEIXEIRA, J. A. Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydrate Polymers, v. 92, p. 2154– 2162, 2013. Available at: http://dx.doi.org/10.1016/j.carbpol.2012.11.054 SABIHA-HANIM, S.; AZIATUL-AKMA, A. Polymer characterization of cellulose and hemicellulose. In Polymer Science: Research Advances, Practical Applications and Educational Aspects p. 404-411, 2016; Mendez-Vilas, A.; Solano-Martín, A., (Eds.); Formatex Research Center: Spain, 2016. SANYANG, M. L.; SAPUAN, S. M.; JAWAID, M.; ISHAK, M. R.; SAHARI, J. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging. J Food Sci Technol, v. 53, p. 326– 336, 2016. Available at: DOI 10.1007/s13197-015-2009-7 SHIMAZU, A. A.; MALI, S.; GROSSMANN, M. V. E. Efeitos plastificante e antiplastificante do glicerol e do sorbitol em filmes biodegradáveis de amido de mandioca. Semina: Ciências Agrárias, Londrina, v. 28, n. 1, p. 79-88, 2007. Available at: https://www.redalyc.org/articulo.oa?id=445744083010 SIDRIM, J. J. C.; BRILHANTE, R. S. N.; ROCHA, M. F. G. Aspectos Gerais de fungos filamentosos e dimórficos na apresentação filamentosa. In: SIDRIM, J. J. C., ROCHA, M. F. G. Micologia Médica à luz de autores contemporâneos. Edição na língua do texto. Rio de Janeiro: Guanabara Koogan, 2004. cap. 8 p. 83-86. 100 STEENEKEN, P. A. M.; WOORTMAN; A. J. J. Superheated starch: A novel approach towards spreadable particle gels. Food Hydrocolloids, v. 23, p. 394-405, 2009. Available at: https://doi.org/10.1016/j.foodhyd.2008.01.006 TORTORA, G. J.; FUNKE, B. R.; CASE, C. L. Microbiologia. 12. Ed. Porto Alegre: Artmed, 2017. WANG, S.; REN, J.; LI, W.; SUN, R.; LIU, S. Properties of polyvinyl alcohol/xylan composite films with citric acid. Carbohydrate Polymers, v. 103, p. 94-99, 2014. Available at: https://doi.org/10.1016/j.carbpol.2013.12.030 WINDSOR, F.M.; DURANCE, I.; HORTON, A. A.; THOMPSON R. C.; TYLER C. R.; ORMEROD S. J. A catchment‐scale perspective of plastic pollution. Glob Chang Biol, v. 25, p. 1207-1221, 2019. Available at: https://doi.org/10.1111/gcb.14572 XU, J.; XIA, R.; ZHENG, L.; YUAN, T.; SUN, R. Plasticized hemicelluloses/chitosan-based edible films reinforced by cellulose nanofiber with enhanced mechanical properties. Carbohydrate Polymers, v. 224, p. 115-164, 2019. Available at: https://doi.org/10.1016/j.carbpol.2019.115164 ZHANG, H.; FU, S.; CHEN, Y. Basic understanding of the color distinction of lignin and the proper selection of lignin in color-depended utilizations. International Journal of Biological Macromolecules, v. 147, p. 607-615, 2020. Available at: https://doi.org/10.1016/j.ijbiomac.2020.01.105 ZHAO, Y.; SUN, H.; YANG, B.; WENG, Y. Hemicellulose-Based Film: Potential Green Films for Food Packaging. Polymers, v. 12, n. 8, p. 1775, 2020. Available at: https://doi.org/10.3390/polym12081775 101 CHAPTER V: CONCLUSION Researchers from companies and governmental initiatives around the world are trying to develop a material that is similar to plastic but that can be completely degraded. In this sense, the use of biopolymers/biomolecules from plant biomass is a renewable and environmentally beneficial option in the production of bioplastics, as in the case of the xylan used in this study together with starch. In relation to the bioplastic production, the gelatinization process contributed to its integrity, as well as its flexibility, which was also favored when the glycerol content was 20 % (w/w of polysaccharides), resulting in films that were easier to handle and remove from the drying plate. The association of polysaccharides generated homogeneous and intact bioplastics, indicating a good association between them. Moreover, xylan tended to increase the opacity, solubility, and hydrophilicity of bioplastics reducing their crystallinity and elongation at break. When buried, the bioplastics were almost completely degraded within a month, and in those where xylan was more present, CO2 production peaked in fewer days, indicating an even more accelerated decomposition. Its properties may not make xylan bioplastics ideal candidates for use in food packaging and bags, for example, but in applications that do not require high mechanical strength but rather a fast biodegradation rate, they are an efficient option, such as in agricultural applications where some products or even the cultivation itself needs a covering that preferably can be degraded over time without generating potentially toxic waste and plastic waste.