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In this work we discuss the effect of quartic fermion self-interacting terms on the dynamically generated
photon masses in#l1 dimensions, for vector, chiral, and non-Abelian couplings. In the vector and chiral cases
we find exactly the dynamically generated mass modified by the quartic term while in the non-Abelian case we
find the dynamically generated mass associated with its Abelian part. We show that in the three cases there is
a kind of duality between the gauge and quartic couplings. We perform functional as well as operator treat-
ments allowing for the obtention of both fermion and vector field solutions. The structures of the Abelian
models in terms of vacua are also address¢80556-282(97)02208-X]

PACS numbgs): 11.10.Kk, 11.15.Tk

I. INTRODUCTION the interaction with an Abelian gauge fidlii2] or with di-
agonal SUN) gluon fields[13]. These embeddings shed
Two-dimensional models in quantum field theory providesome light on the dynamical mass generation mechanism of
rich situations where many interesting physical propertiesthe Gross-Neveu model. In these cases the Gross-Neveu
which are common to higher-dimensional models, can benodel is not completely solvable through the bosonization
studied as screening, confinemefityacua, etc. The main formalism and the () scalar field that couples to the Abe-
advantage of modeling in low dimensions is that, in generallian gauge field is a free one decoupled from the interacting
integrability can be improved as one lowers the dimensionsinfrafermions.
One of the best known of these two-dimensional models is Another important development in two-dimensional field
the (vectop Schwinger mode]l1] which was solved using the theory was gained with the string and superstring theories,
operator approach in the classical paper by Lowenstein ansince the manifold of these objects are two dimensional and
Swieca[2]. A functional solution to it, using the Fujikawa’'s the machinery for this specific dimension, as conformal in-
method[3], was also given latef4]. The introduction of a variance could be plainly us¢d4]. In particular, the interest
consistent model with anomalously broken gauge symmetnyfor these theories was recently renewed by the discovery of
the chiral Schwinger mod€]l5], renewed the interest for duality in the supersymmetric formulatiga5].
gauge theories in two dimensiof8]. The generalization to Our aim here is to study two-dimensional models where
arbitrary left and right coupling ifi7] was particularly stud- fermions couple to gauge fields and to themselves via a quar-
ied using the interaction picture method for obtaining thetic interaction, mainly to see the effect of the fermion self-
bosonized Lagrangian if8]. coupling in the dynamically generated mass and also to dis-
On the other hand, the study of purely fermionic interact-cuss the physical properties of these models, which may
ing models has been also developed since the introduction differ from the original ones, without quartic interaction. In-
the Thirring mode[9] that was completely bosonized in the cidentally, the scalars that will be coupled to the gauge fields
classical paper by Klaibdr0]. Later on, there was a grow- will be affected by the quartic interactions.
ing interest in discussing generalizations to non-Abelian fer- We first take, in Sec. Il, the vector Schwinger model and
mionic models as in the one proposed by Gross and Neveadd aJ“J,, interaction. We solve it exactly by the functional
[11], which is exactly solvable in the largélimit. The study  method, using an identity, with the introduction of an auxil-
of the chiral Gross-Neveu model was performed by addindary gauge field, which turns the self-interaction term into a
modified gauge coupling. We find that the mass acquired by
the vector field is modified by the original self-interaction
*Present address: Center for Theoretical Physics, Laboratory fazoupling. Then, in Sec. lll, we study an analogous extension
Nuclear Science, Massachusetts Institute of Technology, Canfor the chiral Schwinger model by introducing also a self-
bridge, Massachusetts. interaction fermion term. Although there is no quartic fermi-
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onic term preserving chirality for free fermions, the ambigu- — — e 1 1
ity in the definition of the Jacobian of the functional measure £=¢(id+eA) 4+ EZBMB“L 2 FwF T My, M
makes it worthwhile to consider this model, for which we

also find exact solutions. Next, in Sec. IV, we discuss the 1— — —, -, 1 —
case of non-Abelian fermions coupled to non-Abelian vector ~ ~ 5F,,M*' = 5—(3,A%) = 5—(d,B*)"+ —(d,A")
fields. In contrast with the Abelian cases, this one is not s

exactly solvable; however, we can determine again the dy- X(d,B")+ source terms, (2.9
namically generated mass taking into account only the Abe-

lian part of the gauge fields. whereM ,,=d,B,—4d,B,,. In order to decouple the fermi-

We find in these three situations a kind of duality between dth fields. andB q the last
the electromagnetie and the quartic self-interactiam cou- ons and the gauge Telgs, andb,, , we decompose the 1as

plings. two into their longitudinal and transversal parts through
To get more confidence of these results, we also study the — —

vector and chiralAbelian) models in the operator formalism A=, At €40 XA, €B,=d,mpt€,,0" X8

for which explicitly solutions are obtained, in Secs. V and 29

VI, respectively. This treatment allows the obtention of the

fermionic correlation functions and gives the spurious opera

tors related to the vacua. We find that the physical prop-

and perform the transformation

erties of the models with quartic self-interaction are similar Y(X)=exp—inat ysxa) ' (X),
to the ones in the models in which they are not present. -
Specifically, in the vector case there are operators which vio- P(X)= ' (x)expi na+ ¥sxa)- (2.6

late the cluster property and so, for consistency, it is neces-

sary to define @ vacuum. However, the spurious operatorsThe corresponding nontrivial Jacobian is given by
which determine these physical properties depend on the

self-interaction coupling and are not chirally invariant as N

usual. In the chiral case thievacuum is absent as in the case JF:eXV< + %J d?x(xaOxa)
without self-interaction. Finally, in Sec. VII, we present our
conclusions.

, (2.7)

where N is the arbitrary regularization parameter. In this

work we will restrict ourselves ta=1. So, we get
Il. THE VECTOR MODEL

For the vector gauge model in two dimensions with mass- Lo=id'd ,+i Oy )2+ (Cwe)? —iD 0
less fermions, we have that the Lagrangian density, in Eu- " WY+ el (Bxa)™+ (Dxe) ] 20xalxs
clidean space within the topological trivial sector, can be

wtten as + 502l 0+ (3,001 5= (9,000
L=y(ib—eNy- g—z(% )+ }(F )2+3,A,+ 6 1 1
2 A ~ 522l (O 727+ (D7) + — 5 0na0 g
+8, 2.)

1
+=J, [0*(na— +e€,,0"(xa—
whereF,,=3d,A,—d,A,. Using the identity g ul " (na= 78)* €9 (Xa~ x8)]

2 _
ex;{ + %f d2x(z,byﬂz,/x)2)

1 2 e’ 2 sn
:/Tff DB, ex —f d™%| 5 (Bu)"—egyy,B,¥

Y L) 28
Doing the rescale

S

XAHaﬂ! XBHEI a= (29)
(2.2
it turns to be(in the Lorentz gauge and the field transformations
— e? 1 XA co sin ;
L=y[ib—e(A+9B)]+—B, B + —F , Fr (ﬁ‘):( _Sd’ d’) Xf\ , (2.10
2 4 XB —sing cosp/ | xg
1
- Z(%A/‘)ZﬂL source terms. (2.3 7a 1 1\( 74
= AR (2.11)
7B 0 1/\ g

This model is a special case of the one analyze{d &).

_ Now, doing the transformatiom”\,=A,—B,, where the Lagrangian density2.8) decouples when we choose
B,=9B,, the Lagrangian density becomes tang=1/a, so that we find
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— 1 ) ) ) will skip many details. The Lagrangian density in this case
=1 0y + ﬁz[(ﬁﬂxk) +(duxp) "+ (d,mp)7] can be written as
a*+1 1 Ly e 9* — 2
+TeT(DXA) - W(D 7p) Lehira= Ylid—e(1— 75)A]l//_7[¢7#(1+ ¥s) ¥]
1 ’ 2 v,,! 1 v Yy
+ gJ”(aﬂlA* va“+1e,,0"xp) + ZFWF“ +J AR+ O+ 6. (3.2
+ 0ex —i(na+ 7p) + ysa(cospya+singxp) |¢' In order to rewrite the fermion self-interaction with the aid of
— Ly / r e / an auxiliary field, we use the identit
+ ' exdi(nat 7g) + vsa(Cospxp+Singxp) ] 6. y y
(2.12

2 _
ex;{ + %f d*X[ ¢y, (1+ vs) lﬂ]2>

From this Lagrangian density we can infer the fundamental

propagators of the theory, e.g., for the photon propagator we 1 e? _
have :/T/f DB, ex —f d2x<EBMB“—eg¢y#
6°Z
D, (k)= 53,80, e X (1+ ys)Bf‘lp) , (3.2
__ 1 [k,k,D, +(a2+1)e, e, k’kPD, ] which_after substitution inlg,;5 and the transformation
e reme X A,=A,—B,, whereB,=gB,, it becomes
© " [ ® (7l
(2.13 ,
Using the two-dimensional identitye,,€,,=8,,8,,~ Lepira= Ylid—e(1—ys) A+ EZBMB*% 2wk
8,p0qv, We obtain explicitly
1— — -
i a(k2+m?)\ k,k + ZMWMW— EFMM #?+ source terms. (3.3
DK== 17— | Gu— | 1= —2 |
# ke—m=| Z# k k
(2.14 Decomposing the boson fields in its longitudinal and
) o transversal part€2.5) and doing the transformation on Fermi
where the dynamically generated mass is given by fields
2
mz:%_ 2.15 () =ex —ina+ (1= ys)xal¥W' (%),
7+g

Here, we can see the effect of the fermion self-interaction on P) =4 ()exdinat (1+ vs)xal, 3.4

the dynamically generated mass keeping the gauge con-
stante fixed and varying the quartic coupling constgniSo,
for a vanishingg, one recovers the usual Schwinger mass

1,2,4], and for the stron@ coupling one gets 1
[1.24 @ coupling 9 Jehiral™ ex;{ - EJ d?X[ ana0na— BxaOxa

we find a nontrivial Jacobian given by

2 E)z L 2.1
m (Q o (@=), (219 —(a—B)nDXA]), (3.5

showing a duality between the quartic and gauge coupling in . o )
the sense that the model with stropgoupling has its vector Wherea andp are the arbitrary regularization parameters in
field correlation functions equal to the ones of the Schwingekhis case. Bringing back these results ifltg;r., we find the
model with small electromagnetic coupling. This kind of du- effective Lagrangian density
ality also appears in the other models with quartic fermion
self-coupling that we are going to describe, suggesting that .« .—, | 9 s 1
this is a general behavior of these couplings rather than aZchia= ¥ o'+ 5 2[(Dxa) ™+ (Lxe)*]— Z2Uxalxe
particular model property.
1 1
+ 2_2((9MXB)2+2_[C“7AD na— Bxalxa
IIl. THE CHIRAL MODEL g T
Let us now discuss the fermion self-interaction effect on —(a—=pB)naldxal+source terms. (3.6
the chiral massless two-dimensional electrodynamics. This
discussion follows closely that of the previous section so wentroducing the auxiliary fieldd, and doing the translation
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— Op+bya, (3.7 2 —
A A XA eX%g_Nf d2x(¢y#xaw)2)

with the choiceb=(a— B)/2«, in order to cancel the cross-

ing term betweerd, andy, , we find the Lagrangian density 1 , (1 L9 —
) o 1 ) i 1 :K/’f DB#EX —J d<x EtrBMB —\/—Nlﬂ’yMB l/l ,
€ A ! - H ! ! + + —
Lehiral =19 by F[(DXA) (Oxe)] EZDXADXB 42
1 1 (a+pB)?
~ 5 xe0xe— 5 (atB) xaOxA whereB,=B1/\N+B3t? with the same symmetry group
g 8m of the fieldA,,, so that
o
_ = _RpORo
5 0,64+ source terms. (3.8 trB,B#=BIB%+ BZBM' (4.3

Comparing this Lagrangian with the one given for the vectorthe Lagrangian density becoméspart from source terms
model (2.8) and noting that the dependence 6x can be

absorbed in the normalization constant, we see that one can g 1 1
relate the vector model with this one with the substitution (= lpyﬂ( id,—eA,— \/_NB”“ Y+ EtrBMB””LZ”FwFW-
N (atp)? (4.4

27 8ma _
Now, doing the transformation§M=(g/e\/N)BM and
Consequently, after a rotation analogous to €910, in A —=A —B . we have
order to decouple, and yg, we find that the dynamically S
generated mass for the chiral model is given by _ o 1 - - 1 - -
L=yy*(id,—eA,)y+ ZtrFWF’”Jr ZtrMWM [
2

e’(a+pB)?
= 2 z- (3.9
4dra+g(a+B) 1~ ~ ~ ~ 1~ N& ——
_ _ o — —trF, , M#— —trM , F#¥— —trN?+ S —trB ,B#,
This mass is regularization dependent&nd ) as hap- 4 4 4 29
pens in the original Jackiw-Rajaraman modl8]. We can 4.5
reobtain their standard result lettirgg—0 (see alsd18]).
For the strong coupling limitd— o), one gets the same kind \here we defined
of duality as that for the vector modé2.16), of the previous

section. ~ — _ -
Fuo=d,A,—d,A,+e[A, Al (4.6)

IV. THE NON-ABELIAN CASE ~ — _ -
. . . . M/J.V:a,lLBV_aVB/.L_Fe[B,U.IBV]i (47)
Let us now extend the previous discussion on quartic
fermion self-interaction in the vector model to the non- 4.4 the crossing noncommuting terms are given by

Abelian case. So, we start here with the Lagrangian density
_ ¢ — 1 N2=fa (F2,— M2 )t3(A=9B e+ BLdAre)ta
L=y(ib—eNy— m(lﬂ’y#)\alﬂ) + ZtrFWF”““rJHA“ b h . TS Sa e
= (A*PBYC+ B#PAY)3(F) ,— M)t

0yt o, @D _fa (AR 4 BRPAT) R (ATBEF BIASR. (4.9
where \?,(a=0,1,...,N>—1) are the generators of the ) o )
U(N) group,F,,=d,A,—d,A,+€e[A,,A,], & andy trans- Following similar paths as that of the Abelian cases, we
LR %4 Y75 4 v u JVRLAAN A K]

form under UN) group, and we decompose the gauge field"@define the fields as

into its Abelian and non-Abelian partAM=A2A°+AZta, )
where  t3=\%(a=1,2,...N?-~1) generate the p(x) = exli no(X) + ¥50(X) Ix(X)=Uox(x), (4.9
SU(N) group and\®=1//N(trt?tP= 529). o
Contrary to the previous cases, the non-Abelian case is P(x)=x(x)extd — i 70(X) + ysdho(X) 1= x(X) U,
not exactly solvable, as happens for other non-Abelian two- (4.10
dimensional model$19]. However, one can factorize the
Abelian part of the Lagrangian and take its contribution ex- o N
actly, analogously to the approach of Furustal. for the Al = \ﬁ(f L3 bo—3,m0). (4.1
chiral-invariant Gross-Neveu modg20]. As we will see, # e a
this contribution will imply a mass which also depends on
the non-Abelian gauge group constéht In this way, we can decouple the(l) sector of the
Using the identity{ 20] theory:
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- 1 ~ ~ 1 ~ —~ 1 —~ — shows that this non-Abelian model in the strong coupling
=xy'D'x+ 2UF w P M, MAT = 2trE  MEY limit resembles, in some sense, the lafgdimit of QCD,
[19]. Note also that the larghl and the wealg limits are

Z equivalent.

1 -1, N&_——
— ZtrMMF —Ztl'N + EZUB#B
V. OPERATOR SOLUTION OF THE VECTOR MODEL

A_‘3+ noncomm. terms, (4.12 Let us discuss the vectorial caébe left and right cou-
plings are equaland avoid the anomaly keeping the gauge

b AT AT _AA Al 2 invariance in the bosonization of the model. The Lagrangian
whereD'=id—eA’ A, =A] ,a=1,... N°—1, and the last density will be, in this case,

term of the Lagrangian density comes from the Abelian part

of the nontrivial Jacobian associated with transformations 1 _ g°— —

(4.9-(4.1)) [4]. L=— g FYF ot dDy—S gy by, . (5.1
Decomposing the Abelian part of gauge fields as

Nty P
20 # O

—5 , —5 , Analogously to the solution of the Thirring model from the
A, =, at €,,9"xa, €B,=d,mpt€,,0"xp, free fermionic model, we will use the interaction pict(izd]
(413 ysing asfree model the Schwinger modg2].

we can write explicitly The solution of the Schwinger model in the Lorentz gauge

is
L= 'CAbeI"_ »Cnon-AbeIr (4.149
. L =\Ju/2mxexp 1 S(—ai—a,+
where(apart from harmonic excitations and source terms Yi=plem F( \/;7"'( a1~ axt ag)

! 2 21 J " aadyt 5.2
Laver= 552l (Lxa) "+ (Uxe)"]1— zzHxallxs T agdy”, (5.2

o (Ouxe) (3 4.1 !
292( uXB) 277( uXA)®s (4.19 A"Z—ae‘”o?v(aﬁ—az). (5.3

which is completely analogous to the vector model discussep|ere @y
above apart from the dependence on the rank of the nong ac’ano
Abelian group SURN). Note thatL,n-abel retains all other
terms present in Eq4.12. Doing the transformations

is a canonical scalar field with mass=e/ /7, a3

nical massless field, amglthe same, but with nega-
tive metric, whileu is an infrared regulator. The Maxwell
equation in the physical subspace is satisfied with the current

_ _ [N
XA—anXAr XB—XB» AN= ?1 (416) J”“=ie”“”¢9v(a1+ a2_a3)' (54)
NE
223 a rotation analogous to EE.10 with tang=1/ay, we These fields define the operator solution to the above La-
grangian in the interaction picture. To boost them to the
a,%‘+1 N Heisenberg picture while keeping the Lorentz invariance, it
£Abe|:2—erA(D2— m?) xa— z—gzxémx’s , is necessary first to verify the validity of the Schwinger con-

4.17) dition. This requires that the energy-momentum tensor
' satisfies the commutation relation] @ gy(X),0q(Y)]

where the dynamically generated mass in this case is givert'[ @01(X) + @ 01(y)19x6(x—y) [21]. The Schwinger model

by Hamiltonian
T w1n O05= (L/2[(da1)*~ (draz)*+ (Gras)?+ (3x1)?
me=———-. 4.1
N7+g — (Oxa)*+ (9xaz)?+ (€712m)(ay)?] (5.9

From this result, one can see that in the weak couplings easily seen to verify this condition. The only nonvanishing
limit, g— 0, we reobtain the Schwinger mags19. Thisis,  term in the interaction energy-momenta tensor is
in some sense, expected since we have only calculated the
Abelian contribution to the dynamically generated mass. In
the strong coupling limitg— o), we also find a reduction in
the mass analogous to the Abelian vector case,(E49),
and the duality between weak gauge coupling and strongvhere the factob would not appear if we naively computed
quartic self-coupling. In addition, in this non-Abelian case current-current product in the interaction picture. Requiring
we find a dependence on the group rank paramiétefFor  the validity of the Schwinger condition, we fix the value
large N, the contribution of the quartic self-interaction term b=1/(g%/w+1). This same phenomenon of introducing an
disappears and we recover again the Schwinger mass, whiepparently noncovariant definition of the interaction appears

2
®‘(?5=97[(J°)2—b(J1)2], (5.6)
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in the analogous treatment to the Thirring mog@eithout the The current cannot be obtained simply taking the free one
gauge fieldl and the value ob turns out to be the sanjg1]. and substituting the old fields and momenta by the new ones.
Now, we take the free Hamiltonian expressed in terms of thé\s in the Thirring model case, we have to redefine dhe
fields «; and their conjugate momentdl; (note that component with a 4/1+g?%/ = factor. Only after that the
II,=—a,), add the interaction term resulting in a Hamil- current becomes vectorial and results in

tonian that, in spite of quadratic, has crossed terms among alll

fields and all momenta. In the Heisenberg picture the new b v B

definition of the momenta can be obtained inverting the ca- )= /W+926 Il Pt b2~ ). (5.16
nonical equationsa([aJ:aHjH). They are

This current can be also obtained computing the short dis-

2 2

g4\ . S tance gauge-invariant operator product of the fermion fields
I ={1+—Jar+ —(ay—as), (5.7 and normalizing them to have a vectorial field.
We can verify that the Dirac equation becomes satisfied,
92 . 2 1D y=g?dy. The vector field satisfies the equation
H2:_<1__ 2+—(a1—a3), (58)
™ ™ J,Fr'—el=el”. (5.17
2\ . 2 As in the Schwinger model, thie* current is a null metric
Ma=| 1+ P ;(“2+0‘1)- (5.9 field. The Maxwell equation is obeyed in the physical sub-

space where the expectation values of this current are zero:
Now, the original variablegy; are not free fields. Let us
then perform a generic linear transformation to new vari-
P ag : . . LA= €9, (ha— o). (5.18
ables. Requiring canonical commutation relations for these [7+g2 v
new fields, we chose the transformations as:

In order to obtain the spurious operators, one can consider

1 é (5.10 the operators that would result from a gauge transformation:
e y .
! 1+ ! _
92 170] N exp( \/W+—92y1’J(¢l ¢2 ¢3)
ay= 1+ g% mhpt ——= o1, (5.1
w1+g4l © )
—va+ng (ps—¢2)dy*|, (5.19
1 g2 X
az= + +d¢,). (5.12
3 m¢3 ﬂ_\/m((bl ¢2
A= — m(g) e*Vove, . (5.20
Substituting these definitions in the Hamiltonian results
in: From Egs.(5.19, we see that the fermion operators violate
1 the cluster property. As the field, belongs to the operator
H= E[(at¢l)2+(‘9x¢l)2+ M2 2— (3ibp)2— (3yby)? algebra of the moddl17], we can factorize its contribution

out of the fermionic fields. The resulting operators commute
5 2 with the null metric current , and have constant correlation
T (diha) "+ (dxba)"]. (5.13 functions. They define the two spurious operators after the

We see that¢, is a canonical field with mass equal to introduction of interaction:

m(g)=m/\1+g% m,¢, is a negative metric, and; a posi- |

tive metric canonical massless field. This mass coincides aj=N:exp<—2yij(—¢2+ b3)
with the one in Eq(2.15 when\=1. The solution of the vt

model is obtained from the free one, upon the substitution of

the old phase space variables by the new ones. The result is - /—W+ng°°(¢3_ ézﬁz)dy1>. (5.21)
X
-7
,/,j:N:exp(\/W—ngﬁj(%Jr 2~ b3) These operators expose the origin of the violation of the

cluster property. In order to restore it, one should define the

" 0 vacua. As in the Schwinger model, this would lead to a set
— I+ ng 5¢>3d§1> , (5.14  of degenerate vacua. The spurious operatqrando, differ

x from the ones in the Schwinger model as they are not chiral,

however. The effect of the interaction appears in their depen-

_ uv N 51 dence at the same time of the right and left light-cone vari-

m(g)e V(1T ¢2). (5.19 ables. The dependence of the solution on the light-cone vari-
ables can be clarified with one question: The operaigmare

From them any correlation function may be easily computednot chiral, but are functions of them that depend only on left

Ak =
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or right variables? For the answer, note that the general sperator ¢,— ¢; and not of their chiral components. Let us

rious operator will be an arbitrary integer power of these.note that, although the vectorial field expression could be
Taking, for instancea;la;”2 and requiring no dependence obtained directly from the Schwinger model vector field

on x—t, results thatn,/n, shall equalg/(g+2). When through a simple redefinition of the electric coupling con-
g=0, this means thai, is chiral. In the generic case this Stant, as shown in the second section, the fermionic field

equation cannot be satisfied, @snay be an irrational num- €annot be obtained so simply with the same transformation.

ber. Nevertheless, as the rationals are dense in the reals, thérérther, the gauge-invariant interacting two-point fermionic
will ever be a value ofy arbitrarily close to any prescribed functions cannot be obtained from the ones in the Schwinger

value that makes it possible to construct chiral spurious opModel through such a transformation. The effect of the inter-
erators. On the other hand, we could deal only with the Opacnon after quantization is to define a new class of models.
erators present in the algebra of fields of the model and avoid TN€ value of the chiral anomaly can now be computed
the introduction of the gauge transformation leading to thdakingJ§=¢€**J, . We have
pair of spurious oPerators. In this case, the unique spurious @)
operator will bea]o, where the effect of interaction will p_ Mg v € v
show up in its dimension being changed. Iuds 2\ m+g? €uF 2(m+ gz) €uF". (5.26

Let us now construct the generators of gauge transforma-
tions of the model. Following22] we take the generators of The spatial integral 082 gives not properly the chiral trans-
gauge transformation of the Schwinger model and boosformation generato®s. To have] Qs, ]=17ys4, the current
them to the Heisenberg picture. In the interaction picture onghould be multiplied by * g2/, reflecting directly in the
has value of the anomaly.

|
VI. OPERATOR LUTION OF THE CHIRAL MODEL
T<x>=exp(—fj Ay (arg+ az) A1\ (y) © OR SOLUTION OF THE C ©
o

Let us turn now to operator solution of the Abelian chiral
case. The fermionic Lagrangian is

—(53-1—'52)&0)\]), (5.22

1 — Gr—
N N L=—= g F¥F D= oy (1+ vs)
where a(x)=—[7dy'Tls(x) and @y(x)=[}dy'TI5(x).

Performing the change to the Heisenberg picture and ex- x(/,%,’u(1+—ys) W, (6.2)
pressing in terms of the new variables, we obtain the genera-
tors of gauge transformations in the interacting model: whereD )= y*d,+1y*A,(1+ vs) and it is convenient to

define the coupling througls=g?a/. In this case, it is

I more straightforward to bosonize directly the Lagrangian ob-
— 1
T()\)—exp( ’—77+ng dyT(d3+ ¢2)drh(y) taining the equivalent model
- ~ 1_ 1 e ~
~ (b3t $2)doN] |. (5.23 L= ZFHF T 53,00 ¢+ —=(d,+d,) pA*
NE
Commuting with the fields, we can ascertain that these are n ﬁA Al g_zJ Ju 6.2
the correct generators of the gauge transformations: 2@ # 2 w0 '
Ty(x) T 1=e"My(x), (5.29 In the operator approach the bosonized expression of the

current depends largely on the regularization used on its
computation. We choose the current that would appear in the
Maxwell equation in theg=0 model. Namely, we take
Uy (1+ys) == (= 1Nm) [(3,+3,) ¢+ (edm)A,].
Following [12], we define X_yAy°y!)=—7O(y’~y'  This regularization differs from the one used in the compu-
—x7) and Ay y)=—7O(y’+y'—x"). Taking tation of thed ,A* term as the contribution of the very vector
N1=(1+g%2m) N+ (g%2m)\ _ 1o, We see that this gen- field to it is taken with different weight. We could have
erator reduces to the spurious operator;, while  \orked with the same regularization without changing the
No=(1+g%2m)\ 1o+ (9°/2m)\ 2 leads to theo, opera-  main course of arguments, but the expressions involved
tor. As in the Schwinger model, the screening is due to thevould be unnecessarily cumbersome to read. Substituting

disappearance, after the switching to thevacua, of the A —'5 145 \ in the Lagrangian and changing variables to
hysical states carrying quantum numbers associated to th¢® * ”
pnysica rying q

generators of () and chiral U1) gauge transformations.

1
[T,Aﬂ(x)]=—gaﬂ)\(x). (5.29

The difference is that the basic generators are not chiral any O=d3— i(1—G))\1+ e(l—G)aX’ (6.3
more. In any case, looking at the true spurious operators N Vr(a=1+G)

obtained with the fields that define the gauge-invariant alge-

bra of the operators of the modet} o, we see that they Y 1-G 6.4

are, as in the Schwinger model, functions of the scalar op- 1" a—1+G6X
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results in would be naively zero if one used the chiral current ex-
pressed only in terms of the fermion fields, as this product
would be identically zero. What makes this interaction dif-
ferent from zero is exactly the ambiguity in the definition of
) the currents present in the chiral Schwinger model. This phe-
e(1-G)(a-1+G) NN (6.5 nomenon has its correspondence in the functional formalism
27 pT AL ' in the fact that the introduction of an identity,
o 1=exp(J,J*)), in the integrand together with the ambigu-
where the massmy=eJ1-Ga/\Ja—1+Gy7 coincides ities in the Jacobian leads to the redefinition of the param-
with the one computed in E¢3.9) upon properly choosing eters of the model.
the parameters and3. The solution of the higher derivative |t js important to note that in the chiral case we cannot
field x is well known[8], leading tox = (> — ¢1)/mg Where  define an spurious operator in terms of the algebra of opera-
the field ¢, has massmy and positive metric, while the tors that are observables of the theory. There i® racuum

massless field, is quantized with negative metric. The so- in this case, as happens in the usual chiral model, without
lution of the model is obtained expressing the free fermionicquartic interaction.

field in terms of¢ and its momentum and substituting the
latter by d,L, so we find

1 mg?
L=§DXDX - dx* X+ 3, 30" b3

VIl. CONCLUSION

Auzi(gﬂ(d)f ¢1)— ¥ 9,(o— ¢1)) We have analyzed the effect of current-current coupling
Mg (a-1+G) in some models of fermion fields interacting with gauge

+a,N, (6.6 fields. In the three casewector, chiral, and non-Abelian
models, we find that the dynamically generated mass is

o modified by the quartic self-interaction coupling. The three
wz=exr{ — 1 ®3 f dy ¢3” (6.7) models also show a kind of duality between the gauge and
quartic couplings. The gauge field correlation functions in
-G the weak gaugeg(—0) coupling are the same as the ones in
b3+ 2 [ = = (o— b7) the strong ¢—o0) quartic coupling. Whether this relation
Jya—1+G between gauge and quartic couplings also appears in higher
dimensions deserves to be further investigated, but the ques-
6.9 tion of renormalizability in this case will be a drastic one.
Furthermore, in the non-Abelian case, the dynamically
generated mass is also dependent on the gauge group rank
The Dirac equation will read 1d,4,=0 and N and displays additional interesting limits. For the lafge
(10-—2A_—2g%3_);=0. The Maxwell equation will be |imit, the mass reduces to the usual Schwinger one, resem-
d,Fr'=e(1-G)J"+e(1-G)L", where the current is bling the exact solvability of largtl QCD,.
Specifically, in the case of the vector model the introduc-
(4, gt Vs + a (b= 1) tion of theg coupling chang_es the mass acquired through the
w3 m\/ﬁ ! Schwinger mechanism. Using functional methods, we com-
puted the vector field correlation functions. Using operator
e - methods, the fermions and vector fields are obtained con-
+ J——[(a—1+G)0MM—(1—G)0#7\1] (6.9  firming the results in the functional treatment. The Maxwell
™ equations are obeyed in the physical subspace, where the
null metric current that depends explicitly grhas vanishing
correlation functions. The spurious operators were then con-
_ structed, leading t@ vacua. They are shown to be related to
a,+d + %, the gauge generators of the model whereupon the same
(0t ) s va-1+Gyl-G wf2 screening mechanism is observed. The chiral anomaly is
o computed and shows the dependencegoriThese results
S ria_ (1A complement the approach [23] where the order-disorder
" \/;[(a 1+6)0Ay=(1=G)a,Mal ) (8.10 variables of some two-dimensional models are studied. The
decoupling of the Abelian gauge field in non-Abelian models
determines the physical subspace out of the complete Hilbewith current-current interaction is obtained in analogous
space. The physical fields turn out to be¢, and fashion to they=0 case.
h=¢s—[e(1-G)/Jm\+(1-G)/(a—1+G)¢,. It is In the chiral case, in contrast with the vectorial Schwinger
interesting to note that the introduction of the current-currentmodel, the introduction of the coupling can be accommo-
interaction in this case can be completely accommodated indated in a redefinition of the parameters of the chiral
redefinition of the parameters of the originaj=0) La- Schwinger model. Although thg interaction Hamiltonian
grangian. Indeed, making—e(1—G) anda—a/(1—-G) in  would be identically zero if there were no gauge interaction,
the chiral Schwinger model solution leads us directly to theit survives quantization as shown in the functional and op-
interacting @+ 0) model solution. This can be understood aseratorial formalism. In the first case, it occurs through the
a consequence of the fact that the interaction tarpd“  arbitrariness in the definition of the Jacobian in the decou-

¢1=exr{|\/;

_2e(1-0) _ f Vo,

T

v

and the null metric current given by

1
L,=—

Y om
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pling transformation and in the operatorial case, it occursnteraction to disappear only if there is no gauge interaction
through the arbitrariness in the definition of the currentspresent, or by carefully dealing with the Jackiw-Rajaraman
This phenomenon should be taken as an alert to the care omenbiguity term.

should have when dealing with interacting fields. For in-

stance, if msteac_j of consude_rlng th_e chiral model, one deals ACKNOWLEDGMENTS
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