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In this work we discuss the effect of quartic fermion self-interacting terms on the dynamically generated
photon masses in 111 dimensions, for vector, chiral, and non-Abelian couplings. In the vector and chiral cases
we find exactly the dynamically generated mass modified by the quartic term while in the non-Abelian case we
find the dynamically generated mass associated with its Abelian part. We show that in the three cases there is
a kind of duality between the gauge and quartic couplings. We perform functional as well as operator treat-
ments allowing for the obtention of both fermion and vector field solutions. The structures of the Abelian
models in terms ofu vacua are also addressed.@S0556-2821~97!02208-X#

PACS number~s!: 11.10.Kk, 11.15.Tk

I. INTRODUCTION

Two-dimensional models in quantum field theory provide
rich situations where many interesting physical properties,
which are common to higher-dimensional models, can be
studied as screening, confinement,u vacua, etc. The main
advantage of modeling in low dimensions is that, in general,
integrability can be improved as one lowers the dimensions.
One of the best known of these two-dimensional models is
the~vector! Schwinger model@1# which was solved using the
operator approach in the classical paper by Lowenstein and
Swieca@2#. A functional solution to it, using the Fujikawa’s
method@3#, was also given later@4#. The introduction of a
consistent model with anomalously broken gauge symmetry,
the chiral Schwinger model@5#, renewed the interest for
gauge theories in two dimensions@6#. The generalization to
arbitrary left and right coupling in@7# was particularly stud-
ied using the interaction picture method for obtaining the
bosonized Lagrangian in@8#.

On the other hand, the study of purely fermionic interact-
ing models has been also developed since the introduction of
the Thirring model@9# that was completely bosonized in the
classical paper by Klaiber@10#. Later on, there was a grow-
ing interest in discussing generalizations to non-Abelian fer-
mionic models as in the one proposed by Gross and Neveu
@11#, which is exactly solvable in the largeN limit. The study
of the chiral Gross-Neveu model was performed by adding

the interaction with an Abelian gauge field@12# or with di-
agonal SU(N) gluon fields @13#. These embeddings shed
some light on the dynamical mass generation mechanism of
the Gross-Neveu model. In these cases the Gross-Neveu
model is not completely solvable through the bosonization
formalism and the U~1! scalar field that couples to the Abe-
lian gauge field is a free one decoupled from the interacting
infrafermions.

Another important development in two-dimensional field
theory was gained with the string and superstring theories,
since the manifold of these objects are two dimensional and
the machinery for this specific dimension, as conformal in-
variance could be plainly used@14#. In particular, the interest
for these theories was recently renewed by the discovery of
duality in the supersymmetric formulation@15#.

Our aim here is to study two-dimensional models where
fermions couple to gauge fields and to themselves via a quar-
tic interaction, mainly to see the effect of the fermion self-
coupling in the dynamically generated mass and also to dis-
cuss the physical properties of these models, which may
differ from the original ones, without quartic interaction. In-
cidentally, the scalars that will be coupled to the gauge fields
will be affected by the quartic interactions.

We first take, in Sec. II, the vector Schwinger model and
add aJmJm interaction. We solve it exactly by the functional
method, using an identity, with the introduction of an auxil-
iary gauge field, which turns the self-interaction term into a
modified gauge coupling. We find that the mass acquired by
the vector field is modified by the original self-interaction
coupling. Then, in Sec. III, we study an analogous extension
for the chiral Schwinger model by introducing also a self-
interaction fermion term. Although there is no quartic fermi-

*Present address: Center for Theoretical Physics, Laboratory for
Nuclear Science, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts.

PHYSICAL REVIEW D 15 APRIL 1997VOLUME 55, NUMBER 8

550556-2821/97/55~8!/4931~9!/$10.00 4931 © 1997 The American Physical Society



onic term preserving chirality for free fermions, the ambigu-
ity in the definition of the Jacobian of the functional measure
makes it worthwhile to consider this model, for which we
also find exact solutions. Next, in Sec. IV, we discuss the
case of non-Abelian fermions coupled to non-Abelian vector
fields. In contrast with the Abelian cases, this one is not
exactly solvable; however, we can determine again the dy-
namically generated mass taking into account only the Abe-
lian part of the gauge fields.

We find in these three situations a kind of duality between
the electromagnetice and the quartic self-interactiong cou-
plings.

To get more confidence of these results, we also study the
vector and chiral~Abelian! models in the operator formalism
for which explicitly solutions are obtained, in Secs. V and
VI, respectively. This treatment allows the obtention of the
fermionic correlation functions and gives the spurious opera-
tors related to theu vacua. We find that the physical prop-
erties of the models with quartic self-interaction are similar
to the ones in the models in which they are not present.
Specifically, in the vector case there are operators which vio-
late the cluster property and so, for consistency, it is neces-
sary to define au vacuum. However, the spurious operators
which determine these physical properties depend on the
self-interaction coupling and are not chirally invariant as
usual. In the chiral case theu vacuum is absent as in the case
without self-interaction. Finally, in Sec. VII, we present our
conclusions.

II. THE VECTOR MODEL

For the vector gauge model in two dimensions with mass-
less fermions, we have that the Lagrangian density, in Eu-
clidean space within the topological trivial sector, can be
written as

L5c̄~ i ]”2eA” !c2
g2

2
~ c̄gmc!21

1

4
~Fmn!21JmAm1 ūc

1c̄u, ~2.1!

whereFmn5]mAn2]nAm . Using the identity

expS 1
g2

2 E d2x~ c̄gmc!2D
5

1

NE DBmexpF2E d2xS e22 ~Bm!22egc̄gmBmc D G ,
~2.2!

it turns to be~in the Lorentz gauge!

L5c̄@ i ]”2e~A”1gB” !#c1
e2

2
BmB

m1
1

4
FmnF

mn

2
1

2a
~]mA

m!21source terms. ~2.3!

This model is a special case of the one analyzed in@16#.
Now, doing the transformationAm5Ām2B̄m , where

B̄m5gBm , the Lagrangian density becomes

L̄5c̄~ i ]”1eA”̄ !c1
e2

2g2
B̄mB̄

m1
1

4
F̄mnF̄

mn1
1

4
M̄mnM̄

mn

2
1

2
F̄mnM̄

mn2
1

2a
~]mĀ

m!22
1

2a
~]mB̄

m!21
1

a
~]mĀ

m!

3~]nB̄
n!1source terms, ~2.4!

whereM̄mn5]mB̄n2]nB̄m . In order to decouple the fermi-

ons and the gauge fieldsĀm andB̄m , we decompose the last
two into their longitudinal and transversal parts through

eĀm5]mhA1emn]nxA , eB̄m5]mhB1emn]nxB
~2.5!

and perform the transformation

c~x!5exp~2 ihA1g5xA!c8~x!,

c̄~x!5c̄8~x!exp~ ihA1g5xA!. ~2.6!

The corresponding nontrivial Jacobian is given by

JF5expS 1
l

2pE d2x~xAhxA! D , ~2.7!

where l is the arbitrary regularization parameter. In this
work we will restrict ourselves tol51. So, we get

Leff5 i c̄8]”c81
1

2e2
@~hxA!21~hxB!2#2

1

e2
hxAhxB

1
1

2g2
@~]mhB!21~]mxB!2#1

1

2p
~]mxA!2

2
1

2ae2
@~hhA!21~hhB!2#1

1

ae2
hhAhhB

1
1

e
Jm@]m~hA2hB!1emn]n~xA2xB!#

1 ūe2 ihA1g5xAc81c̄8eihA1g5xAu. ~2.8!

Doing the rescale

xA→ax̄A , xB→x̄B , a5Ap

g2
, ~2.9!

and the field transformations

S x̄A

x̄B
D 5S cosf sinf

2sinf cosf D S xA8

xB8
D , ~2.10!

S hA

hB
D 5S 1 1

0 1D S hA8

hB8
D , ~2.11!

the Lagrangian density~2.8! decouples when we choose
tanf51/a, so that we find
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Leff8 5 i c̄8]”c81
1

2g2
@~]mxA8 !21~]mxB8 !21~]mhB8 !2#

1
a211

2e2
~hxA8 !22

1

2ae2
~hhA8 !2

1
1

e
Jm~]mhA81Aa211emn]nxA8 !

1 ūexp@2 i ~hA81hB8 !1g5a~cosfxA81sinfxB8 !#c8

1c̄8exp@ i ~hA81hB8 !1g5a~cosfxA81sinfxB8 !#u.

~2.12!

From this Lagrangian density we can infer the fundamental
propagators of the theory, e.g., for the photon propagator we
have

Dmn~k!5
d2Z

dJmdJn
U
J50

52
1

e2
@kmknDh

A8
1~a211!emsenrk

skrDx
A8
#.

~2.13!

Using the two-dimensional identityemsenr5dmndsr2
dmrdsn , we obtain explicitly

Dmn~k!52
i

k22m2 Fgmn2S 12
a~k21m2!

k2 D kmkn

k2 G ,
~2.14!

where the dynamically generated mass is given by

m25
e2

p1g2
. ~2.15!

Here, we can see the effect of the fermion self-interaction on
the dynamically generated massm, keeping the gauge con-
stante fixed and varying the quartic coupling constantg. So,
for a vanishingg, one recovers the usual Schwinger mass
@1,2,4#, and for the strongg coupling one gets

m2;S egD
2

, ~g→`!, ~2.16!

showing a duality between the quartic and gauge coupling in
the sense that the model with strongg coupling has its vector
field correlation functions equal to the ones of the Schwinger
model with small electromagnetic coupling. This kind of du-
ality also appears in the other models with quartic fermion
self-coupling that we are going to describe, suggesting that
this is a general behavior of these couplings rather than a
particular model property.

III. THE CHIRAL MODEL

Let us now discuss the fermion self-interaction effect on
the chiral massless two-dimensional electrodynamics. This
discussion follows closely that of the previous section so we

will skip many details. The Lagrangian density in this case
can be written as

Lchiral5c̄@ i ]”2e~12g5!A” #c2
g2

2
@c̄gm~11g5!c#2

1
1

4
FmnF

mn1JmA
m1 ūc1c̄u. ~3.1!

In order to rewrite the fermion self-interaction with the aid of
an auxiliary field, we use the identity

expS 1
g2

2 E d2x@c̄gm~11g5!c#2D
5
1

NE DBmexpF2E d2xS e22 BmB
m2egc̄gm

3~11g5!B
mc D G , ~3.2!

which after substitution inLchiral and the transformation
Am5Ām2B̄m , whereB̄m5gBm , it becomes

L̄chiral5c̄@ i ]”2e~12g5!A”̄ #c1
e2

2g2
B̄mB̄

m1
1

4
F̄mnF̄

mn

1
1

4
M̄mnM̄

mn2
1

2
F̄mnM̄

mn1source terms. ~3.3!

Decomposing the boson fields in its longitudinal and
transversal parts~2.5! and doing the transformation on Fermi
fields

c~x!5exp@2 ihA1~12g5!xA#c8~x!,

c̄~x!5c̄8~x!exp@ ihA1~11g5!xA#, ~3.4!

we find a nontrivial Jacobian given by

Jchiral5expS 2
1

2pE d2x@ahAhhA2bxAhxA

2~a2b!hhxA# D , ~3.5!

wherea andb are the arbitrary regularization parameters in
this case. Bringing back these results intoLchiral, we find the
effective Lagrangian density

Lchiraleff 5 i c̄8]”c81
1

2e2
@~hxA!21~hxB!2#2

1

e2
hxAhxB

1
1

2g2
~]mxB!21

1

2p
@ahAhhA2bxAhxA

2~a2b!hAhxA#1source terms. ~3.6!

Introducing the auxiliary fielduA and doing the translation
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hA→uA1bxA , ~3.7!

with the choiceb5(a2b)/2a, in order to cancel the cross-
ing term betweenuA andxA , we find the Lagrangian density

Lchiraleff 85 i c̄8]”c81
1

2e2
@~hxA!21~hxB!2#2

1

e2
hxAhxB

2
1

2g2
xBhxB2

1

8p

~a1b!2

a
xAhxA

2
a

2p
uAhuA1source terms. ~3.8!

Comparing this Lagrangian with the one given for the vector
model ~2.8! and noting that the dependence onuA can be
absorbed in the normalization constant, we see that one can
relate the vector model with this one with the substitution

l

2p
→

~a1b!2

8pa
.

Consequently, after a rotation analogous to Eq.~2.10!, in
order to decouplexA andxB , we find that the dynamically
generated mass for the chiral model is given by

m25
e2~a1b!2

4pa1g2~a1b!2
. ~3.9!

This mass is regularization dependent (a andb) as hap-
pens in the original Jackiw-Rajaraman model@5#. We can
reobtain their standard result lettingg→0 ~see also@18#!.
For the strong coupling limit (g→`), one gets the same kind
of duality as that for the vector model~2.16!, of the previous
section.

IV. THE NON-ABELIAN CASE

Let us now extend the previous discussion on quartic
fermion self-interaction in the vector model to the non-
Abelian case. So, we start here with the Lagrangian density

L5c̄~ i ]”2eA” !c2
g2

2N
~ c̄gmlac!21

1

4
trFmnF

mn1JmA
m

1 ūc1c̄u, ~4.1!

where la,(a50,1, . . . ,N221) are the generators of the
U(N) group,Fmn5]mAn2]nAm1e@Am ,An#, c andc̄ trans-
form under U(N) group, and we decompose the gauge field
into its Abelian and non-Abelian partsAm5Am

0l01Am
a ta,

where ta5la,(a51,2, . . . ,N221) generate the
SU(N) group andl05I /AN(trtatb5dab).

Contrary to the previous cases, the non-Abelian case is
not exactly solvable, as happens for other non-Abelian two-
dimensional models@19#. However, one can factorize the
Abelian part of the Lagrangian and take its contribution ex-
actly, analogously to the approach of Furuyaet al. for the
chiral-invariant Gross-Neveu model@20#. As we will see,
this contribution will imply a mass which also depends on
the non-Abelian gauge group constantN.

Using the identity@20#

expS g22NE d2x~ c̄gmlac!2D
5

1

NE DBmexpF2E d2xS 12trBmB
m2

g

AN
c̄gmB

mc D G ,
~4.2!

whereBm5Bm
0 I /AN1Bm

a ta with the same symmetry group
of the fieldAm , so that

trBmB
m5Bm

0B0m1Bm
aBam, ~4.3!

the Lagrangian density becomes~apart from source terms!

L5c̄gmS i ]m2eAm2
g

AN
BmD c1

1

2
trBmB

m1
1

4
trFmnF

mn.

~4.4!

Now, doing the transformationsB̄m5(g/eAN)Bm and
Am5Ām2B̄m , we have

L̄5c̄gm~ i ]m2eĀm!c1
1

4
trF̃mnF̃

mn1
1

4
trM̃mnM̃

mn

2
1

4
trF̃mnM̃

mn2
1

4
trM̃mnF̃

mn2
1

4
trÑ21

Ne2

2g2
trB̄mB̄

m,

~4.5!

where we defined

F̃mn5]mĀn2]nĀm1e@Ām ,Ān#, ~4.6!

M̃mn5]mB̄n2]nB̄m1e@B̄m ,B̄n#, ~4.7!

and the crossing noncommuting terms are given by

Ñ25 f de
a ~ F̃mn

a 2M̃mn
a !ta~ĀmdB̄ne1B̄mdĀne!ta

5 f bc
a ~ĀmbB̄nc1B̄mbĀnc!ta~ F̃mn

a 2M̃mn
a !ta

5 f bc
a ~ĀmbB̄nc1B̄mbĀnc!taf de

a ~Ām
d B̄n

e1B̄m
d Ān

e!ta. ~4.8!

Following similar paths as that of the Abelian cases, we
redefine the fields as

c~x!5exp@ ih0~x!1g5f0~x!#x~x![U0x~x!, ~4.9!

c̄~x!5x̄~x!exp@2 ih0~x!1g5f0~x!#[x̄~x!U0* ,
~4.10!

Ām
05AN

e
~emn]nf02]mh0!. ~4.11!

In this way, we can decouple the U~1! sector of the
theory:
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L̄5x̄gmD” 8x1
1

4
trF̃mnF̃

mn1
1

4
trM̃mnM̃

mn2
1

4
trF̃mnM̃

mn

2
1

4
trM̃mnF̃

mn2
1

4
trÑ21

Ne2

2g2
trB̄mB̄

m

1
e2

2p
Ām
0 S dmn2

]m]n

h
D Ān

01noncomm. terms, ~4.12!

whereD” 85 i ]”2eA”̄ 8,Ām8 5Ām
a ,a51, . . . ,N221, and the last

term of the Lagrangian density comes from the Abelian part
of the nontrivial Jacobian associated with transformations
~4.9!–~4.11! @4#.

Decomposing the Abelian part of gauge fields as

eĀm
05]mhA1emn]nxA, eB̄m

05]mhB1emn]nxB ,
~4.13!

we can write explicitly

L5LAbel1Lnon-Abel, ~4.14!

where~apart from harmonic excitations and source terms!

LAbel5
1

2e2
@~hxA!21~hxB!2#2

1

e2
hxAhxB

1
N

2g2
~]mxB!21

1

2p
~]mxA!2, ~4.15!

which is completely analogous to the vector model discussed
above apart from the dependence on the rank of the non-
Abelian group SU(N). Note thatLnon-Abel retains all other
terms present in Eq.~4.12!. Doing the transformations

xA→aNx̄A , xB→x̄B , aN5ANp

g2
, ~4.16!

and a rotation analogous to Eq.~2.10! with tanf51/aN , we
find

LAbel5
aN
211

2e2
xA8 ~h22m2h !xA82

N

2g2
xB8hxB8 ,

~4.17!

where the dynamically generated mass in this case is given
by

m25
Ne2

Np1g2
. ~4.18!

From this result, one can see that in the weak coupling
limit, g→0, we reobtain the Schwinger mass~2.15!. This is,
in some sense, expected since we have only calculated the
Abelian contribution to the dynamically generated mass. In
the strong coupling limit (g→`), we also find a reduction in
the mass analogous to the Abelian vector case, Eq.~2.16!,
and the duality between weak gauge coupling and strong
quartic self-coupling. In addition, in this non-Abelian case
we find a dependence on the group rank parameterN. For
largeN, the contribution of the quartic self-interaction term
disappears and we recover again the Schwinger mass, which

shows that this non-Abelian model in the strong coupling
limit resembles, in some sense, the largeN limit of QCD2
@19#. Note also that the largeN and the weakg limits are
equivalent.

V. OPERATOR SOLUTION OF THE VECTOR MODEL

Let us discuss the vectorial case~the left and right cou-
plings are equal! and avoid the anomaly keeping the gauge
invariance in the bosonization of the model. The Lagrangian
density will be, in this case,

L52
1

4
FmnFmn1ıc̄D” c2

g2

2
c̄gmcc̄gmc. ~5.1!

Analogously to the solution of the Thirring model from the
free fermionic model, we will use the interaction picture@21#
using asfreemodel the Schwinger model@2#.

The solution of the Schwinger model in the Lorentz gauge
is

c i5Am/2p3:expS ıApg i ,i
5 ~2a12a21a3!

2ıApE
x

`

ȧ3dy
1D , ~5.2!

Am52
1

m
emn]n~a11a2!. ~5.3!

Here,a1 is a canonical scalar field with massm5e/Ap,a3
is a canonical massless field, anda2 the same, but with nega-
tive metric, whilem is an infrared regulator. The Maxwell
equation in the physical subspace is satisfied with the current

Jm5
1

Ap
emn]n~a11a22a3!. ~5.4!

These fields define the operator solution to the above La-
grangian in the interaction picture. To boost them to the
Heisenberg picture while keeping the Lorentz invariance, it
is necessary first to verify the validity of the Schwinger con-
dition. This requires that the energy-momentum tensor
satisfies the commutation relation@Q00(x),Q00(y)#
5ı@Q01(x)1Q01(y)#]xd(x2y) @21#. The Schwinger model
Hamiltonian

Q0,0
free5~1/2!@~] ta1!

22~] ta2!
21~] ta3!

21~]xa1!
2

2~]xa2!
21~]xa3!

21~e2/2p!~a1!
2# ~5.5!

is easily seen to verify this condition. The only nonvanishing
term in the interaction energy-momenta tensor is

Q00
int5

g2

2
@~J0!22b~J1!2#, ~5.6!

where the factorb would not appear if we naively computed
current-current product in the interaction picture. Requiring
the validity of the Schwinger condition, we fix the value
b51/(g2/p11). This same phenomenon of introducing an
apparently noncovariant definition of the interaction appears
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in the analogous treatment to the Thirring model~without the
gauge field! and the value ofb turns out to be the same@21#.
Now, we take the free Hamiltonian expressed in terms of the
fields a i and their conjugate momentaP i ~note that
P252ȧ2), add the interaction term resulting in a Hamil-
tonian that, in spite of quadratic, has crossed terms among all
fields and all momenta. In the Heisenberg picture the new
definition of the momenta can be obtained inverting the ca-
nonical equations (] ta j5]P j

H). They are

P15S 11
g2

p D ȧ11
g2

p
~ȧ22ȧ3!, ~5.7!

P252S 12
g2

p D ȧ21
g2

p
~ȧ12ȧ3!, ~5.8!

P35S 11
g2

p D ȧ32
g2

p
~ȧ21ȧ1!. ~5.9!

Now, the original variablesa i are not free fields. Let us
then perform a generic linear transformation to new vari-
ables. Requiring canonical commutation relations for these
new fields, we chose the transformations as:

a15
1

A11g2/p
f1 , ~5.10!

a25A11g2/pf21
g2

pA11g2/p
f1 , ~5.11!

a35
1

A11g2/p
f31

g2

pA11g2/p
~f11f2!. ~5.12!

Substituting these definitions in the Hamiltonian results
in:

H5
1

2
@~] tf1!

21~]xf1!
21ma

2f1
22~] tf2!

22~]xf2!
2

1~] tf3!
21~]xf3!

2#. ~5.13!

We see thatf1 is a canonical field with mass equal to

m(g)5m/A11g2/p,f2 is a negative metric, andf3 a posi-
tive metric canonical massless field. This mass coincides
with the one in Eq.~2.15! whenl51. The solution of the
model is obtained from the free one, upon the substitution of
the old phase space variables by the new ones. The result is

c j5N:expS 2ıp

Ap1g2
g j , j
5 ~f11f22f3!

2ıAp1g2E
x

`

ḟ3dj1D , ~5.14!

Am52
1

m~g!
emn]n~f11f2!. ~5.15!

From them any correlation function may be easily computed.

The current cannot be obtained simply taking the free one
and substituting the old fields and momenta by the new ones.
As in the Thirring model case, we have to redefine theJ1
component with a 1/A11g2/p factor. Only after that the
current becomes vectorial and results in

Jm5
1

Ap1g2
emn]n~f11f22f3!. ~5.16!

This current can be also obtained computing the short dis-
tance gauge-invariant operator product of the fermion fields
and normalizing them to have a vectorial field.

We can verify that the Dirac equation becomes satisfied,
ıD” c5g2J”c. The vector field satisfies the equation

]mF
mn2eJn5eLn. ~5.17!

As in the Schwinger model, theLm current is a null metric
field. The Maxwell equation is obeyed in the physical sub-
space where the expectation values of this current are zero:

Lm5
1

Ap1g2
emn]n~f32f2!. ~5.18!

In order to obtain the spurious operators, one can consider
the operators that would result from a gauge transformation:

c j5N:expS 2ı

Ap1g2
g j , j
5 ~f11f22f3!

2ıAp1g2E
x

`

~ḟ32ḟ2!dy
1D , ~5.19!

Am52
1

m~g!
emn]nf1 . ~5.20!

From Eqs.~5.19!, we see that the fermion operators violate
the cluster property. As the fieldf1 belongs to the operator
algebra of the model@17#, we can factorize its contribution
out of the fermionic fields. The resulting operators commute
with the null metric currentLm and have constant correlation
functions. They define the two spurious operators after the
introduction of interaction:

s j5N:expS ı

Ap1g2
g j , j
5 ~2f21f3!

2ıAp1g2E
x

`

~ḟ32ḟ2!dy
1D . ~5.21!

These operators expose the origin of the violation of the
cluster property. In order to restore it, one should define the
u vacua. As in the Schwinger model, this would lead to a set
of degenerate vacua. The spurious operatorss1 ands2 differ
from the ones in the Schwinger model as they are not chiral,
however. The effect of the interaction appears in their depen-
dence at the same time of the right and left light-cone vari-
ables. The dependence of the solution on the light-cone vari-
ables can be clarified with one question: The operatorss j are
not chiral, but are functions of them that depend only on left
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or right variables? For the answer, note that the general spu-
rious operator will be an arbitrary integer power of these.
Taking, for instance,s1

n1s2
2n2 and requiring no dependence

on x2t, results thatn1 /n2 shall equalg/(g12). When
g50, this means thats2 is chiral. In the generic case this
equation cannot be satisfied, asg may be an irrational num-
ber. Nevertheless, as the rationals are dense in the reals, there
will ever be a value ofg arbitrarily close to any prescribed
value that makes it possible to construct chiral spurious op-
erators. On the other hand, we could deal only with the op-
erators present in the algebra of fields of the model and avoid
the introduction of the gauge transformation leading to the
pair of spurious operators. In this case, the unique spurious
operator will bes1

†s2 where the effect of interaction will
show up in its dimension being changed.

Let us now construct the generators of gauge transforma-
tions of the model. Following@22# we take the generators of
gauge transformation of the Schwinger model and boost
them to the Heisenberg picture. In the interaction picture one
has

T~l!5expS ı

Ap
E dy1@~a31a2!]1l~y!

2~ ã31ã2!]0l# D , ~5.22!

where ã3(x)52*x
`dy1P3(x) and ã2(x)5*x

`dy1P2(x).
Performing the change to the Heisenberg picture and ex-
pressing in terms of the new variables, we obtain the genera-
tors of gauge transformations in the interacting model:

T~l!5expS ı

Ap1g2
E dy1@~f31f2!]1l~y!

2~f̃31f̃2!]0l# D . ~5.23!

Commuting with the fields, we can ascertain that these are
the correct generators of the gauge transformations:

Tc~x!T215eıl~x!c~x!, ~5.24!

@T,Am~x!#52
1

e
]ml~x!. ~5.25!

Following @12#, we define l21/2(y
0,y1)52pQ(y02y1

2x2) and l1/2(y
0,y1)52pQ(y01y12x1). Taking

l15(11g2/2p)l1/21(g2/2p)l21/2, we see that this gen-
erator reduces to the spurious operators1, while
l25(11g2/2p)l21/21(g2/2p)l1/2 leads to thes2 opera-
tor. As in the Schwinger model, the screening is due to the
disappearance, after the switching to theu vacua, of the
physical states carrying quantum numbers associated to the
generators of U~1! and chiral U~1! gauge transformations.
The difference is that the basic generators are not chiral any
more. In any case, looking at the true spurious operators
obtained with the fields that define the gauge-invariant alge-
bra of the operators of the model,s1*s2, we see that they
are, as in the Schwinger model, functions of the scalar op-

eratorf22f1 and not of their chiral components. Let us
note that, although the vectorial field expression could be
obtained directly from the Schwinger model vector field
through a simple redefinition of the electric coupling con-
stant, as shown in the second section, the fermionic field
cannot be obtained so simply with the same transformation.
Further, the gauge-invariant interacting two-point fermionic
functions cannot be obtained from the ones in the Schwinger
model through such a transformation. The effect of the inter-
action after quantization is to define a new class of models.

The value of the chiral anomaly can now be computed
taking J5

m5emnJn . We have

]mJ5
m5

2m~g!

2Ap1g2
emnF

mn5
2e

2~p1g2!
emnF

mn. ~5.26!

The spatial integral ofJ5
0 gives not properly the chiral trans-

formation generatorQ5. To have@Q5 ,c#5ıg5c, the current
should be multiplied by 11g2/p, reflecting directly in the
value of the anomaly.

VI. OPERATOR SOLUTION OF THE CHIRAL MODEL

Let us turn now to operator solution of the Abelian chiral
case. The fermionic Lagrangian is

L52
1

4
FmnFmn1ıc̄D” ~1 !c2

Gp

2a
c̄gm~11g5!

3cc̄gm~11g5!c, ~6.1!

whereD” (1)5gm]m1ıgmAm(11g5) and it is convenient to
define the coupling throughG5g2a/p. In this case, it is
more straightforward to bosonize directly the Lagrangian ob-
taining the equivalent model

L52
1

4
FmnFmn1

1

2
]mf]mf1

e

Ap
~]m1 ]̃m!fAm

1
ae2

2p
AmA

m2
g2

2
JmJ

m. ~6.2!

In the operator approach the bosonized expression of the
current depends largely on the regularization used on its
computation. We choose the current that would appear in the
Maxwell equation in theg50 model. Namely, we take
c̄gm(11g5)c'Jm5(21/Ap) @( ]̃m1]m)f1(ea/Ap)Am#.
This regularization differs from the one used in the compu-
tation of theJmA

m term as the contribution of the very vector
field to it is taken with different weight. We could have
worked with the same regularization without changing the
main course of arguments, but the expressions involved
would be unnecessarily cumbersome to read. Substituting
Am5 ]̃mx1]ml in the Lagrangian and changing variables to

f5f32
e

Ap
~12G!l11

e~12G!a

Ap~a211G!
x, ~6.3!

l5l12
12G

a211G
x ~6.4!
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results in

L5
1

2
hxhx2

mg
2

2
]mx]mx1

1

2
]mf3]

mf3

1
e2~12G!~a211G!

2p
]ml1]

ml1 , ~6.5!

where the massmg5eA12Ga/Aa211GAp coincides
with the one computed in Eq.~3.9! upon properly choosing
the parametersa andb. The solution of the higher derivative
field x is well known@8#, leading tox5(f22f1)/mg where
the field f1 has massmg and positive metric, while the
massless fieldf2 is quantized with negative metric. The so-
lution of the model is obtained expressing the free fermionic
field in terms off and its momentum and substituting the
latter by]ḟL, so we find

Am5
1

mg
S ]̃m~f22f1!2

~12G!

~a211G!
]m~f22f1! D

1]ml1 , ~6.6!

c25expF2ıApS f31E
x

`

dy1f3D G , ~6.7!

c15expF ıApS f312A 12G

Aa211G
~f22f1!

2
2e~12G!

p
l12E

x

`

dy1f3D G . ~6.8!

The Dirac equation will read ı]1c250 and
(ı]222A222g2J2)c150. The Maxwell equation will be
]mF

mn5e(12G)Jn1e(12G)Ln, where the current is

Jm5
21

Ap
S ~]m1 ]̃m!f31

a

Aa211GA12G
]̃m~f22f1!

1
e

Ap
@~a211G!]ml12~12G!]̃ml1# D ~6.9!

and the null metric current given by

Lm5
1

Ap
S ~]m1 ]̃m!f31

a

Aa211GA12G
]̃mf2

1
e

Ap
@~a211G!]ml12~12G!]̃ml1# D ~6.10!

determines the physical subspace out of the complete Hilbert
space. The physical fields turn out to bef1 and
h5f32@e(12G)/Ap#l11A(12G)/(a211G)f2. It is
interesting to note that the introduction of the current-current
interaction in this case can be completely accommodated in a
redefinition of the parameters of the original (g50) La-
grangian. Indeed, makinge→e(12G) anda→a/(12G) in
the chiral Schwinger model solution leads us directly to the
interacting (gÞ0) model solution. This can be understood as
a consequence of the fact that the interaction termJmJ

m

would be naively zero if one used the chiral current ex-
pressed only in terms of the fermion fields, as this product
would be identically zero. What makes this interaction dif-
ferent from zero is exactly the ambiguity in the definition of
the currents present in the chiral Schwinger model. This phe-
nomenon has its correspondence in the functional formalism
in the fact that the introduction of an identity,
15exp(̂ JmJ

m&), in the integrand together with the ambigu-
ities in the Jacobian leads to the redefinition of the param-
eters of the model.

It is important to note that in the chiral case we cannot
define an spurious operator in terms of the algebra of opera-
tors that are observables of the theory. There is nou vacuum
in this case, as happens in the usual chiral model, without
quartic interaction.

VII. CONCLUSION

We have analyzed the effect of current-current coupling
in some models of fermion fields interacting with gauge
fields. In the three cases~vector, chiral, and non-Abelian
models!, we find that the dynamically generated mass is
modified by the quartic self-interaction coupling. The three
models also show a kind of duality between the gauge and
quartic couplings. The gauge field correlation functions in
the weak gauge (e→0) coupling are the same as the ones in
the strong (g→`) quartic coupling. Whether this relation
between gauge and quartic couplings also appears in higher
dimensions deserves to be further investigated, but the ques-
tion of renormalizability in this case will be a drastic one.

Furthermore, in the non-Abelian case, the dynamically
generated mass is also dependent on the gauge group rank
N and displays additional interesting limits. For the largeN
limit, the mass reduces to the usual Schwinger one, resem-
bling the exact solvability of largeN QCD2.

Specifically, in the case of the vector model the introduc-
tion of theg coupling changes the mass acquired through the
Schwinger mechanism. Using functional methods, we com-
puted the vector field correlation functions. Using operator
methods, the fermions and vector fields are obtained con-
firming the results in the functional treatment. The Maxwell
equations are obeyed in the physical subspace, where the
null metric current that depends explicitly ong has vanishing
correlation functions. The spurious operators were then con-
structed, leading tou vacua. They are shown to be related to
the gauge generators of the model whereupon the same
screening mechanism is observed. The chiral anomaly is
computed and shows the dependence ong. These results
complement the approach in@23# where the order-disorder
variables of some two-dimensional models are studied. The
decoupling of the Abelian gauge field in non-Abelian models
with current-current interaction is obtained in analogous
fashion to theg50 case.

In the chiral case, in contrast with the vectorial Schwinger
model, the introduction of the coupling can be accommo-
dated in a redefinition of the parameters of the chiral
Schwinger model. Although theg interaction Hamiltonian
would be identically zero if there were no gauge interaction,
it survives quantization as shown in the functional and op-
eratorial formalism. In the first case, it occurs through the
arbitrariness in the definition of the Jacobian in the decou-
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pling transformation and in the operatorial case, it occurs
through the arbitrariness in the definition of the currents.
This phenomenon should be taken as an alert to the care one
should have when dealing with interacting fields. For in-
stance, if instead of considering the chiral model, one deals
with the generalized one, with arbitrary left and right cou-
plings, the current-current term would not be identically
zero. By continuously changing the couplings to approach
the model to the chiral model, one should expect the quartic

interaction to disappear only if there is no gauge interaction
present, or by carefully dealing with the Jackiw-Rajaraman
ambiguity term.

ACKNOWLEDGMENTS

One of the authors~C.P.N.! would like to acknowledge
the financial support of UNESP. The authors were partially
supported by CNPq, Brazilian agency.

@1# J. Schwinger, Phys. Rev.128, 2425~1962!.
@2# J. H. Lowenstein and J. Swieca, Ann. Phys.~N.Y.! 68, 112

~1971!.
@3# K. Fujikawa, Phys. Rev. Lett.42, 1195~1979!; Phys. Rev. D

21, 2848~1980!.
@4# R. E. Gamboa-Saravi, F. A. Schaposnik, and J. E. Solomin,

Nucl. Phys.B185, 239 ~1981!.
@5# R. Jackiw and R. Rajaraman, Phys. Rev. Lett.54, 1219~1985!.
@6# R. Rajaraman, Phys. Lett.154B, 305 ~1985!; A. Niemi and G.

Semenoff, Phys. Lett. B175, 439 ~1986!; C. A. Aragão de
Carvalho, K. D. Rothe, C. A. Linhares, and H. J. Rothe,ibid.
194, 539 ~1987!; K. Shizuya, ibid. 213, 298 ~1988!; H. O.
Girotti and K. D. Rothe, Int. J. Mod. Phys. A6, 3041~1989!;
L. V. Belvedere and K. D. Rothe, Mod. Phys. Lett. A10, 207
~1995!.

@7# M. Chanowitz, Phys. Lett. B171, 280 ~1986!; see also A. de
Souza Dutra, Int. J. Mod. Phys. A9, 2229~1994!.

@8# D. Boyanovsky, I. Schmidt, and M. F. L. Goltterman, Ann.
Phys.~N.Y.! 185, 111 ~1988!.

@9# W. Thirring, Ann. Phys.~N.Y.! 3, 91 ~1958!.
@10# B. Klaiber, inLectures in Theoretical Physics, Boulder, 1967,

edited by A. O. Barut~Gordon and Breach, New York, 1968!.
@11# D. Gross and A. Neveu, Phys. Rev. D10, 3235~1974!.

@12# K. D. Rothe, E. Abdalla, and M. Abdalla,Theoretical Methods
in Two Dimensional Quantum Field Theory~World Scientific,
Singapore, 1992!.

@13# L. V. Belvedere, Nucl. Phys.B276, 197 ~1986!.
@14# See, for instance, M. B. Green, J. H. Schwarz, and E. Witten,

Superstring Theory~Cambridge University Press, Cambridge,
England, 1987!.

@15# N. Seiberg, Nucl. Phys.B426, 19 ~1994!; N. Seiberg and E.
Witten, ibid. B431, 484 ~1994!.

@16# A. Dettki, I. Sachs, and A. Wipf, Report No. ETH-TH/93-14,
hep-th/9308067, 1993~unpublished!.

@17# L. V. Belvedere, C. P. Natividade, C. G. Carvalhaes, and H.
Boschi Filho, ‘‘Algebraic Isomorphism in Two-Dimensional
Gauge Theories,’’ report~in preparation!.

@18# C. P. Natividade, A. de Souza Dutra, and H. Boschi-Filho, Z.
Phys. C67, 687 ~1995!.

@19# E. Witten, Nucl. Phys.B145, 110 ~1978!.
@20# K. Furuya, R. E. Gamboa-Saravi, and F. A. Schaposnik, Nucl.

Phys.B208, 159 ~1982!.
@21# M. B. Halpern, Phys. Rev. D12, 1684~1975!; 13, 337~1976!.
@22# K. D. Rothe and J. A. Swieca, Phys. Rev. D15, 541 ~1977!.
@23# E. C. Marino, Ph.D. thesis, Pontifı´cia Universidade Cato´lica

des Rio de Janeiro, 1980.

55 4939QUARTIC FERMION SELF-INTERACTIONS IN TWO- . . .


