Ethyl (E)-2-methoxyimino-2-(4-nitro- benzoyl)acetate Ignez Caracelli,a* Paulo J. S. Moran,b Luciana Hinoue,b Julio Zukerman-Schpectorc and Edward R. T. Tiekinkd aBioMat-Physics Department, UNESP – Univ Estadual Paulista, 17033-360 Bauru, SP, Brazil, bInstituto de Quı́mica, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil, cDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: ignez@fc.unesp.br Received 7 January 2010; accepted 13 January 2010 Key indicators: single-crystal X-ray study; T = 100 K; mean �(C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.088; data-to-parameter ratio = 14.3. The title molecule, C12H12N2O6, features an E conformation about the oxime group. The methoxyimino and ester residues are effectively coplanar with each other (r.m.s. deviation for the nine non-H atoms = 0.127 Å) and almost orthogonal [with dihedral angles of 99.44 (13) and�77.85 (13)�, respectively] to the carbonyl and nitrophenyl groups which lie to either side of this central plane. The crystal structure is consolidated by C— H� � �O contacts. Related literature For background to the synthesis of chiral hydroxyaminoacids and hydroxyaminoalcohols, see: Corrêa & Moran (1999); Kreutz et al. (1997, 2000). For related structures, see: Caracelli et al. (2010); Forsyth et al. (2006); Ramos Silva et al. (2004). For the synthesis of the title compound, see: Buehler (1967). Experimental Crystal data C12H12N2O6 Mr = 280.24 Triclinic, P1 a = 7.5197 (1) Å b = 7.5793 (1) Å c = 12.3338 (2) Å � = 83.264 (1)� � = 73.731 (1)� � = 68.939 (1)� V = 629.62 (2) Å3 Z = 2 Mo K� radiation � = 0.12 mm�1 T = 100 K 0.35 � 0.25 � 0.08 mm Data collection Bruker APEXII CCD diffractometer Absorption correction: multi scan (SADABS; Sheldrick, 1996) Tmin = 0.933, Tmax = 1.000 9325 measured reflections 2614 independent reflections 2310 reflections with I > 2�(I) Rint = 0.018 Refinement R[F 2 > 2�(F 2)] = 0.031 wR(F 2) = 0.088 S = 1.05 2614 reflections 183 parameters H-atom parameters constrained ��max = 0.28 e Å�3 ��min = �0.24 e Å�3 Table 1 Hydrogen-bond geometry (Å, �). D—H� � �A D—H H� � �A D� � �A D—H� � �A C2—H2� � �O4i 0.93 2.56 3.3853 (14) 148 C3—H3� � �O2ii 0.93 2.50 3.3950 (16) 162 C5—H5� � �O5iii 0.93 2.35 3.1856 (14) 150 C6—H6� � �O3iv 0.93 2.46 3.3514 (16) 160 Symmetry codes: (i) �xþ 1;�yþ 1;�zþ 1; (ii) x� 1; y; z; (iii) �xþ 2;�y þ 1;�z; (iv) xþ 1; y; z. Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and publCIF (Westrip, 2010). We thank FAPESP, CNPq and CAPES for financial support. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2157). References Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Buehler, E. (1967). J. Org. Chem. 32, 261–265. Caracelli, I., Trindade, A. C., Moran, P. J. S., Hinoue, L., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o137. Corrêa, I. R. & Moran, P. J. S. (1999). Tetrahedron, 55, 14221–14232. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. Forsyth, C. M., Langford, S. J. & Lee, K. A. (2006). Acta Cryst. E62, o5654– o5655. Kreutz, O. C., Moran, P. J. S. & Rodrigues, J. A. R. (1997). Tetrahedron Asymmetry, 8, 2649–2653. Kreutz, O. C., Segura, R. C. M., Rodrigues, J. A. R. & Moran, P. J. S. (2000). Tetrahedron Asymmetry, 11, 2107–2115. Nardelli, M. (1995). J. Appl. Cryst. 28, 659. Ramos Silva, M., Matos Beja, A., Paixão, J. A., Lopes, S. H., Cabral, A. M. T. D. P. V., d’A. Rocha Gonsalves, A. M. & Sobral, A. J. F. N. (2004). Z. Kristallogr. New Cryst. Struct. 219, 145–146. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Westrip, S. P. (2010). publCIF. In preparation. organic compounds o396 Caracelli et al. doi:10.1107/S1600536810001583 Acta Cryst. (2010). E66, o396 Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB1 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB1 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB1 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB2 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB3 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB3 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB4 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB5 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB5 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB6 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB7 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB8 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB9 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB9 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB10 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB10 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB11 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB11 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB12 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB13 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB13 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB13 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB14 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB15 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=su2157&bbid=BB16 http://crossmark.crossref.org/dialog/?doi=10.1107/S1600536810001583&domain=pdf&date_stamp=2010-01-20 supplementary materials supplementary materials sup-1 Acta Cryst. (2010). E66, o396 [ doi:10.1107/S1600536810001583 ] Ethyl (E)-2-methoxyimino-2-(4-nitrobenzoyl)acetate I. Caracelli, P. J. S. Moran, L. Hinoue, J. Zukerman-Schpector and E. R. T. Tiekink Comment In connection with studies involving the synthesis of chiral hydroxyaminoacids and hydroxyaminoalcohols, whereby α- ketomethoxyimino compounds are reduced by sodium borohydride (Corrêa & Moran, 1999) and enantioselectively bio-re- duced by whole cells of yeast (Kreutz et al., 1997; Kreutz et al., 2000), the title compound was prepared as an intermediary. The molecular structure of the title compound is illustrated in Fig. 1, and the geometrical parameters are given in the Supplementary information and the archived CIF. The conformation about the oxime bond [N2═C8 = 1.2790 (14) Å] is E. The methoxyimino moiety is effectively co-planar with the ester group, as seen in the sequence of O4-N2-C8-C9, N2-C8- C9-O5 and C8-C9-O6-C10 torsion angles of 177.54 (8), 6.76 (16) and 178.40 (9) °, respectively. While atom C7 lies in the mean plane of the ester group [O4-N2-C8-C7 = 2.17 (14) °], the carbonyl and nitrophenyl groups occupy positions almost orthogonal to the remaining atoms, as seen in the values of the N2-C8-C7-O3 and N2-C8-C7-C4 torsion angles of 99.44 (13) and -77.85 (13) °, respectively. The nitro group and the benzene ring to which it is attached are slightly twisted with respect to one another, with a dihedral angle of 8.54 (8)°. Globally, when viewed down the C7–C8 bond, the carbonyl-O3 atom lies to one side of the central plane and the nitrophenyl group to the other. The crystal packing is dominated by C–H(aromatic)···O interactions involving the nitro-O2, carbonyl-O3 and oxime-O4 atoms to form layers in the ab plane (Table 1 and Fig. 2). These layers stack along [001] with interdigitation of the ethyl ester groups (Fig. 3), and C–H···O interactions involving the ester carbonyl-O5 atom. The basic C(═O)C(═NOH)C(═O)OC framework in the title compound is comparatively rare with only three other struc- tures reported, namely the recently described Z-isomer of the title compound (Caracelli et al., 2010), 2-(hydroxyimino)- 3-oxo-3-phenylpropionate, where E-conformations are found for each of the independent molecules (Ramos Silva et al., 2004), and benzyl 2-(hydroxyimino)acetoacetate, for which a Z conformation is found (Forsyth et al., 2006). Experimental The title compound was prepared following a modified literature method (Buehler, 1967). Silver oxide (1.3 mmol) was slowly added with stirring to a solution of a mixture of ethyl (E)- and (Z)-2-hydroximino-3-(4-nitrophenyl)-3-oxopropanoate (2.25 mmol) and methyl iodide (5.6 mmol) in CH2Cl2 (30 ml), and cooled in a ice-water bath. The temperature was then raised to 301 K and the stirring maintained for 1 h. The precipitate formed was filtered off and washed with CH2Cl2. The solvent was evaporated to afford yellow crystals of a mixture of E:Z (90:10) isomers in 86% yield. They were separated by TLC chromatography on silica gel with 5% ethyl acetate/hexane. The principal fraction was shown by crystallographic analysis to be the E isomer; m.p. 367.6–368.0 K. http://dx.doi.org/10.1107/S1600536810001583 http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Caracelli,%20I. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Moran,%20P.J.S. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Hinoue,%20L. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Zukerman-Schpector,%20J. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Tiekink,%20E.R.T. supplementary materials sup-2 Refinement The H atoms were placed geometrically (C–H = 0.93–0.97 Å) and refined in the riding model approximation with Uiso(H) = 1.2Ueq(C-aromatic) and 1.5Ueq(C-methyl). Figures Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and dis- placement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms). Fig. 2. A view of the layer structure in the title compound, sustained by C–H···O contacts [the C–H···O contacts are shown as brown dashed lines; colour code: O, red; N, blue; C, grey; H, green]. Fig. 3. A view along the b axis of the crystal packing of the title compound, highlighting the interdigitation of the ester groups [the C–H···O contacts are shown as brown dashed lines; col- our code: O, red; N, blue; C, grey; H, green]. Ethyl (E)-2-methoxyimino-2-(4-nitrobenzoyl)acetate Crystal data C12H12N2O6 Z = 2 Mr = 280.24 F(000) = 292 Triclinic, P1 Dx = 1.478 Mg m−3 Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å a = 7.5197 (1) Å Cell parameters from 5430 reflections b = 7.5793 (1) Å θ = 26.6–2.9° c = 12.3338 (2) Å µ = 0.12 mm−1 α = 83.264 (1)° T = 100 K β = 73.731 (1)° Block, pale-yellow γ = 68.939 (1)° 0.35 × 0.25 × 0.08 mm V = 629.62 (2) Å3 supplementary materials sup-3 Data collection Bruker APEXII CCD diffractometer 2614 independent reflections Radiation source: fine-focus sealed tube 2310 reflections with I > 2σ(I) graphite Rint = 0.018 φ and ω scans θmax = 26.6°, θmin = 1.7° Absorption correction: multi scan (SADABS; Sheldrick, 1996) h = −9→9 Tmin = 0.933, Tmax = 1.000 k = −9→9 9325 measured reflections l = −15→15 Refinement Refinement on F2 Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites wR(F2) = 0.088 H-atom parameters constrained S = 1.05 w = 1/[σ2(Fo 2) + (0.0456P)2 + 0.1834P] where P = (Fo 2 + 2Fc 2)/3 2614 reflections (Δ/σ)max = 0.001 183 parameters Δρmax = 0.28 e Å−3 0 restraints Δρmin = −0.24 e Å−3 Special details Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) x y z Uiso*/Ueq C1 0.95878 (16) 0.26376 (14) 0.48218 (9) 0.0180 (2) C2 0.77279 (16) 0.24949 (15) 0.51100 (9) 0.0190 (2) H2 0.7241 0.2000 0.5810 0.023* C3 0.66149 (16) 0.31060 (15) 0.43316 (9) 0.0185 (2) H3 0.5370 0.3003 0.4498 0.022* C4 0.73587 (16) 0.38808 (14) 0.32919 (9) 0.0174 (2) supplementary materials sup-4 C5 0.92289 (16) 0.40168 (15) 0.30321 (9) 0.0195 (2) H5 0.9711 0.4539 0.2341 0.023* C6 1.03760 (16) 0.33776 (15) 0.37975 (9) 0.0195 (2) H6 1.1636 0.3444 0.3628 0.023* C7 0.60888 (16) 0.45924 (14) 0.24893 (9) 0.0173 (2) C8 0.67583 (15) 0.57310 (15) 0.14594 (9) 0.0175 (2) C9 0.75507 (16) 0.49578 (15) 0.02915 (9) 0.0192 (2) C10 0.81887 (17) 0.23916 (16) −0.08355 (9) 0.0209 (2) H10B 0.9588 0.2169 −0.1133 0.025* H10A 0.7494 0.3237 −0.1353 0.025* C11 0.78050 (19) 0.05568 (16) −0.07074 (10) 0.0251 (3) H11B 0.8255 −0.0029 −0.1430 0.038* H11C 0.6416 0.0794 −0.0416 0.038* H11A 0.8499 −0.0268 −0.0194 0.038* C12 0.55476 (19) 1.00856 (16) 0.25880 (10) 0.0243 (3) H12C 0.4759 1.0782 0.2084 0.036* H12A 0.6827 1.0209 0.2336 0.036* H12B 0.4920 1.0575 0.3336 0.036* N2 0.65628 (13) 0.74693 (13) 0.15091 (8) 0.0189 (2) N1 1.07936 (14) 0.19686 (13) 0.56457 (8) 0.0204 (2) O6 0.74864 (12) 0.32311 (11) 0.02858 (6) 0.02006 (19) O5 0.81359 (14) 0.58238 (12) −0.05260 (7) 0.0283 (2) O3 0.45219 (12) 0.43609 (11) 0.26469 (7) 0.02198 (19) O4 0.57531 (12) 0.81146 (11) 0.26006 (6) 0.0221 (2) O1 1.00183 (13) 0.15085 (13) 0.65930 (7) 0.0300 (2) O2 1.25168 (13) 0.18865 (13) 0.53367 (7) 0.0285 (2) Atomic displacement parameters (Å2) U11 U22 U33 U12 U13 U23 C1 0.0223 (6) 0.0154 (5) 0.0157 (5) −0.0056 (4) −0.0047 (4) −0.0012 (4) C2 0.0233 (6) 0.0175 (5) 0.0144 (5) −0.0084 (4) −0.0006 (4) 0.0004 (4) C3 0.0184 (5) 0.0185 (5) 0.0182 (5) −0.0086 (4) −0.0006 (4) −0.0011 (4) C4 0.0208 (5) 0.0153 (5) 0.0154 (5) −0.0070 (4) −0.0021 (4) −0.0012 (4) C5 0.0215 (5) 0.0202 (5) 0.0156 (5) −0.0092 (4) −0.0014 (4) 0.0021 (4) C6 0.0180 (5) 0.0209 (5) 0.0194 (5) −0.0087 (4) −0.0020 (4) 0.0001 (4) C7 0.0196 (5) 0.0155 (5) 0.0154 (5) −0.0069 (4) −0.0005 (4) −0.0020 (4) C8 0.0168 (5) 0.0200 (5) 0.0168 (5) −0.0082 (4) −0.0042 (4) 0.0016 (4) C9 0.0192 (5) 0.0209 (5) 0.0182 (5) −0.0079 (4) −0.0048 (4) 0.0009 (4) C10 0.0250 (6) 0.0227 (5) 0.0151 (5) −0.0090 (4) −0.0040 (4) −0.0010 (4) C11 0.0329 (7) 0.0234 (6) 0.0217 (6) −0.0122 (5) −0.0080 (5) −0.0004 (5) C12 0.0306 (6) 0.0174 (5) 0.0252 (6) −0.0089 (5) −0.0062 (5) −0.0017 (4) N2 0.0200 (5) 0.0212 (5) 0.0156 (5) −0.0081 (4) −0.0036 (4) −0.0003 (4) N1 0.0239 (5) 0.0198 (5) 0.0178 (5) −0.0080 (4) −0.0050 (4) −0.0001 (4) O6 0.0259 (4) 0.0197 (4) 0.0152 (4) −0.0102 (3) −0.0029 (3) −0.0004 (3) O5 0.0416 (5) 0.0267 (4) 0.0174 (4) −0.0187 (4) −0.0005 (4) 0.0013 (3) O3 0.0217 (4) 0.0246 (4) 0.0219 (4) −0.0121 (3) −0.0051 (3) 0.0028 (3) O4 0.0302 (4) 0.0188 (4) 0.0166 (4) −0.0104 (3) −0.0016 (3) −0.0017 (3) supplementary materials sup-5 O1 0.0309 (5) 0.0414 (5) 0.0160 (4) −0.0132 (4) −0.0049 (4) 0.0057 (4) O2 0.0245 (4) 0.0382 (5) 0.0269 (5) −0.0153 (4) −0.0094 (4) 0.0058 (4) Geometric parameters (Å, °) C1—C6 1.3839 (15) C9—O5 1.2020 (14) C1—C2 1.3839 (16) C9—O6 1.3278 (13) C1—N1 1.4753 (14) C10—O6 1.4670 (13) C2—C3 1.3798 (16) C10—C11 1.5011 (16) C2—H2 0.9300 C10—H10B 0.9700 C3—C4 1.4000 (15) C10—H10A 0.9700 C3—H3 0.9300 C11—H11B 0.9600 C4—C5 1.3910 (16) C11—H11C 0.9600 C4—C7 1.4889 (15) C11—H11A 0.9600 C5—C6 1.3851 (16) C12—O4 1.4442 (13) C5—H5 0.9300 C12—H12C 0.9600 C6—H6 0.9300 C12—H12A 0.9600 C7—O3 1.2121 (14) C12—H12B 0.9600 C7—C8 1.5194 (14) N2—O4 1.3797 (12) C8—N2 1.2790 (14) N1—O1 1.2229 (12) C8—C9 1.4965 (15) N1—O2 1.2244 (13) C6—C1—C2 123.25 (10) O6—C9—C8 111.19 (9) C6—C1—N1 118.25 (10) O6—C10—C11 107.57 (9) C2—C1—N1 118.51 (9) O6—C10—H10B 110.2 C3—C2—C1 118.23 (10) C11—C10—H10B 110.2 C3—C2—H2 120.9 O6—C10—H10A 110.2 C1—C2—H2 120.9 C11—C10—H10A 110.2 C2—C3—C4 120.00 (10) H10B—C10—H10A 108.5 C2—C3—H3 120.0 C10—C11—H11B 109.5 C4—C3—H3 120.0 C10—C11—H11C 109.5 C5—C4—C3 120.30 (10) H11B—C11—H11C 109.5 C5—C4—C7 121.09 (10) C10—C11—H11A 109.5 C3—C4—C7 118.59 (10) H11B—C11—H11A 109.5 C6—C5—C4 120.29 (10) H11C—C11—H11A 109.5 C6—C5—H5 119.9 O4—C12—H12C 109.5 C4—C5—H5 119.9 O4—C12—H12A 109.5 C1—C6—C5 117.91 (10) H12C—C12—H12A 109.5 C1—C6—H6 121.0 O4—C12—H12B 109.5 C5—C6—H6 121.0 H12C—C12—H12B 109.5 O3—C7—C4 122.79 (10) H12A—C12—H12B 109.5 O3—C7—C8 119.12 (10) C8—N2—O4 111.55 (9) C4—C7—C8 118.03 (9) O1—N1—O2 123.89 (10) N2—C8—C9 114.45 (9) O1—N1—C1 118.03 (9) N2—C8—C7 122.66 (9) O2—N1—C1 118.08 (9) C9—C8—C7 122.72 (9) C9—O6—C10 114.57 (8) O5—C9—O6 125.40 (10) N2—O4—C12 108.40 (8) O5—C9—C8 123.40 (10) C6—C1—C2—C3 0.61 (16) O3—C7—C8—C9 −75.55 (14) N1—C1—C2—C3 −179.38 (9) C4—C7—C8—C9 107.17 (12) supplementary materials sup-6 C1—C2—C3—C4 −1.27 (15) N2—C8—C9—O5 6.76 (16) C2—C3—C4—C5 0.82 (16) C7—C8—C9—O5 −177.87 (11) C2—C3—C4—C7 −177.73 (9) N2—C8—C9—O6 −172.26 (9) C3—C4—C5—C6 0.35 (16) C7—C8—C9—O6 3.10 (14) C7—C4—C5—C6 178.85 (10) C9—C8—N2—O4 177.54 (8) C2—C1—C6—C5 0.52 (16) C7—C8—N2—O4 2.17 (14) N1—C1—C6—C5 −179.49 (9) C6—C1—N1—O1 172.19 (10) C4—C5—C6—C1 −0.99 (16) C2—C1—N1—O1 −7.82 (14) C5—C4—C7—O3 173.89 (10) C6—C1—N1—O2 −8.63 (15) C3—C4—C7—O3 −7.58 (16) C2—C1—N1—O2 171.36 (10) C5—C4—C7—C8 −8.93 (15) O5—C9—O6—C10 −0.60 (16) C3—C4—C7—C8 169.60 (9) C8—C9—O6—C10 178.40 (9) O3—C7—C8—N2 99.44 (13) C11—C10—O6—C9 −173.74 (9) C4—C7—C8—N2 −77.85 (13) C8—N2—O4—C12 −179.06 (9) Hydrogen-bond geometry (Å, °) D—H···A D—H H···A D···A D—H···A C2—H2···O4i 0.93 2.56 3.3853 (14) 148 C3—H3···O2ii 0.93 2.50 3.3950 (16) 162 C5—H5···O5iii 0.93 2.35 3.1856 (14) 150 C6—H6···O3iv 0.93 2.46 3.3514 (16) 160 Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+2, −y+1, −z; (iv) x+1, y, z. supplementary materials sup-7 Fig. 1 supplementary materials sup-8 Fig. 2 supplementary materials sup-9 Fig. 3