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Analytic models for density of a ground-state spinor condensate

Sandeep Gautam∗1 and S. K. Adhikari†1
1Instituto de Física Teórica, Universidade Estadual Paulista - UNESP,

01.140-070 São Paulo, São Paulo, Brazil
(Dated: July 29, 2015)

We demonstrate that the ground state of a trapped spin-1 and spin-2 spinor ferromagnetic Bose-
Einstein condensate (BEC) can be well approximated by a single decoupled Gross-Pitaevskii (GP)
equation. Useful analytic models for the ground-state densities of ferromagnetic BECs are obtained
from the Thomas-Fermi approximation (TFA) to this decoupled equation. Similarly, for the ground
states of spin-1 anti-ferromagnetic and spin-2 anti-ferromagnetic and cyclic BECs, some of the spin
component densities are zero which reduces the coupled GP equation to a simple reduced form.
Analytic models for ground state densities are also obtained for anti-ferromagnetic and cyclic BECs
from the TFA to the respective reduced GP equations. The analytic densities are illustrated and
compared with the full numerical solution of the GP equation with realistic experimental parameters.

PACS numbers: 03.75.Mn, 03.75.Hh, 67.85.Bc, 67.85.Fg

I. INTRODUCTION

The advent of the optical traps paved the way for
the first realization of a Bose-Einstein condensate (BEC)
with internal spin degrees of freedom [1], also known as
a spinor BEC. Since then, a lot of theoretical and ex-
perimental studies have been performed on the spinor
BECs [2–4]. In contrast to a scalar BEC, which is char-
acterized by a single interaction parameter, the spin-
1 [5] and spin-2 [6, 7] BECs have, respectively, two
and three interaction parameters. Depending on the
relative strength of the interaction parameters, a spin-
1 BEC in the absence of external magnetic field can
be either in a ferromagnetic or an anti-ferromagnetic
phase [5]. In the presence of magnetic field the ground
state phase diagram of spin-1 condensate has been in-
vestigated both for uniform [8–10] and trapped systems
[10, 11]. Similarly, in the absence of external magnetic
field, a spin-2 BECs can be in one of the possible three
ground state phases: ferromagnetic, anti-ferromagnetic
and cyclic [6, 7]. The spin-1 and spin-2 BECs are de-
scribed by three- and five-component complex order pa-
rameters, respectively, thus leading to coupled mean-
field Gross-Pitaevskii (GP) equations involving three-
and five-component wave functions, which, unlike in a
scalar BEC, could be complex in general. A numerical
solution of these equations could be cumbersome for both
spin-1 [12, 13] and spin-2 [14, 15] BECs. In this paper, we
propose simple and useful analytic models for the den-
sities of ground states of quasi-one-dimensional (quasi-
1D), circularly-symmetric quasi-two-dimensional (quasi-
2D) [16], and spherically-symmetric three-dimensional
(3D) spin-1 and spin-2 spinor BECs. Here, we
consider nearly-overlapping spatially-symmetric ground
states only. Phase-separated spatially-asymmetric pro-

∗sandeepgautam24@gmail.com
†adhikari44@yahoo.com, URL http://www.ift.unesp.br/users/adhikari

files [13] do not appear as ground states and will not be
considered.

The two interaction parameters for a spin-1 BEC are
c0 ∝ (a0 + 2a2)/3 and c1 ∝ (a2 − a0)/3 [5], whereas
the three interaction parameters for a spin-2 BEC are
c0 ∝ (4a2 + 3a4)/7, c1 ∝ (a4 − a2)/7, and c2 ∝ (7a0 −
10a2 +3a4)/7 [6, 7], where a0, a2, and a4 are s-wave scat-
tering lengths in total spin ftot = 0, 2, and 4 channels,
respectively. For a ferromagnetic BEC, e.g. for c1 < 0
for a spin-1 BEC, and for c1 < 0 and c2 > 20c1 for
a spin-2 BEC, we find that to a very good approxima-
tion the densities for different spin components mf of
the ground-state wave function with magnetizationm are
multiples of each other. This allows one to replace the
coupled GP equation for the ground-state wave function
by a single partial differential equation, which we call the
decoupled-mode (DM) equation. On the other hand, for
an anti-ferromagnetic BEC, e.g. for c1 > 0 for a spin-1
BEC, and for c2 < 0 and c2 < 20c1 for a spin-2 BEC, we
find that the densities, for some of the spin components,
of the ground-state wave function with magnetization m
are identically zero, thus reducing the original coupled
GP equation to a system of two coupled equations for
any non-zero magnetization. Similarly, for a cyclic BEC,
e.g. for c1 > 0 and c2 > 0 for a spin-2 BEC, the five-
component GP equation reduces to a system of two or
three coupled equations. These reduced GP equations
and the DM equation for the ground state of a spinor
BEC in different parameter domains, valid in all spa-
tial dimensions, are solved in the Thomas-Fermi approx-
imation (TFA) (or local-density approximation) to yield
simple analytic models for the ground-state densities of
spin-1 and spin-2 spinor BECs.

The TFA is applicable when the interaction energy in
the GP equation is much larger than the kinetic energy
term, so that the latter could be neglected, thus leading
to simple analytic formulae for the condensate densities
[17]. In a repulsive scalar BEC, applicability of TFA
requires that the size of the condensate R is much larger
than the oscillator length l0, i.e. R/l0 >> 1 [18, 19]. The
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spatial extent of the BEC in units of l0 is

lD =
R

l0
∼
(
Na

l0

)1/(D+2)

, (1)

where D = 1, 2, 3 is the dimensionality of the space
[18, 19]. The criterion is satisfied if the dimensionless
parameter Na/l0 >> 1. The ratio Na/l0 is a measure of
the strength of repulsive interaction. For a spinor BEC,
the applicability of TFA for mf component requires that
its spatial extent is much larger than l0.

There have been few studies to include the neglected
kinetic energy contribution in the TFA [18, 20]. Earlier,
the TFA was used to study the ground state properties of
binary condensates [21] and spin dynamics in quasi-1D
spin-1 condensate [22]. Spin-orbit-coupled pseudospin-
1/2 BECs under rotation have also been theoretically
investigated using the TFA [23].

We use the experimentally realizable trapping poten-
tial and interaction parameters to illustrate the present
analytic models for ground-state densities in different pa-
rameter domains. In the case of a spin-1 BEC, the back-
ground scattering lengths of 87Rb and 23Na fall in the fer-
romagnetic [24, 25] and anti-ferromagnetic [26] domains,
respectively, and we use these to study the ground state
properties. In the case of a spin-2 BEC, we employ 23Na
and 83Rb BECs for the illustration. The background
scattering lengths of spin-2 23Na and 83Rb correspond
to the anti-ferromagnetic and ferromagnetic phases, re-
spectively [6]. By tuning one of the scattering lengths
of 23Na, one can move from anti-ferromagnetic to either
ferromagnetic or cyclic phase. Experimentally, such a
change of single scattering length can be achieved by
exploiting magnetic [27] and optical [28] Feshbach res-
onance techniques. The results of the analytic models
are also validated by a numerical solution of the origi-
nal mean-field GP equations for quasi-1D and quasi-2D
traps.

In Sec. II, we present the full mean-field GP equations
for spin-1 and spin-2 BECs and derive the reduced mean-
field GP equations for the ground-state wave function in
the different parameter domains. By assuming that the
component wavefunctions of a ferromagnetic BEC are
proportional to each other, which is indeed the case as
suggested by numerical simulations, we derive the DM
equation. By minimizing the c1- and c2-dependent en-
ergy terms for the ground-state wave function, we obtain
the reduced GP equations in all parameter domains. In
Secs. III and IV we obtain the analytic models for spin-1
and spin-2 ground-state BECs, respectively, by employ-
ing the TFA to the reduced GP and the DM equations.
A comparison of the analytic densities with the numer-
ical densities obtained from the full GP equations leads
to a very satisfactory agreement. In Sec. V, we present a
summary and concluding remarks. Some of the technical
details about the derivation of the DM equation and the
reduced GP equations in different parameter domains are
presented in Appendix A and B.

II. REDUCED MEAN-FIELD EQUATIONS

A. Spin-1 BEC

The coupled GP equations for different spin compo-
nents mf = ±1, 0, for a spin-1 BEC of N atoms of mass
M each can be written in dimensionless form as [2]

µ±1φ±1(x) = Hφ±1(x) + c0ρφ±1(x)± c1Fzφ±1(x)

+ (c1/
√

2)F∓φ0(x), (2)

µ0φ0(x) = Hφ0(x) + c0ρφ0(x) + (c1/
√

2)[F−φ−1(x)

+ F+φ+1(x)], (3)

where

F± ≡Fx ± Fy =
√

2[φ∗±1(x)φ0(x) + φ∗0(x)φ∓1(x)], (4)

Fz =ρ+1(x)− ρ−1(x), H =

[
− 1

2
∇2 + V (x)

]
, (5)

and the component density ρj = |φj(x)|2 with j = ±1, 0,
the total density ρ =

∑
j ρj , and µ±1, µ0 are the respec-

tive chemical potentials and ∗ denotes complex conju-
gate. In 3D, the interaction parameters, Laplacian, and
trapping potential are defined as

c0 =
4πN(a0 + 2a2)

3l0
, c1 =

4πN(a2 − a0)

3l0
, (6)

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, V (x) =

x2 + β2y2 + γ2z2

2
, (7)

with x ≡ {x, y, z}. Here l0 =
√
~/(Mωx), β = ωy/ωx,

γ = ωz/ωx, where ωx, ωy, ωz are the confining trap fre-
quencies in x, y, z directions, respectively. When the
trapping frequency along one axis, say ωz, is much larger
than the geometric mean of other two, i.e., ωz �

√
ωxωy,

then one can approximate the Eqs. (2) -(3) by quasi
two-dimensional (2D) equations which can be obtained
by substituting [16]

c0 =
2N
√

2π(a0 + 2a2)

3lz
, c1 =

2N
√

2π(a2 − a0)

3lz
, (8)

∇2 =
∂2

∂x2
+

∂2

∂y2
, V (x) =

x2 + β2y2

2
, x ≡ {x, y}, (9)

in Eqs. (2) -(3), here lz =
√

~/(Mωz). Similarly, if the
trapping frequencies along two axes, say y and z, are
much larger than the third frequency ωx, Eqs. (2) -(3)
can be approximated by quasi-1D equations which can
be obtained by substituting

c0 =
2N(a0 + 2a2)l0

3l2yz
, c1 =

2N(a2 − a0)l0
3l2yz

, (10)

∇2 =
∂2

∂x2
, V (x) =

x2

2
, x ≡ x, (11)

where lyz =
√

~/(Mωyz) and ωyz =
√
ωyωz. Here length

is measured in units of l0, density in units of l−D0 and
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chemical potential in units of ~ωx, whereD = 1, 2, 3 is the
dimensionality of space. The total density is normalized
to unity

∫
dxρ(x) = 1. The volume element dx = 2dX in

1D, 2πXdX in 2D with circular symmetry, and 4πX2dX
in 3D with spherical symmetry, where X = |x| is the
length of the vector x. In this paper, we consider isotropic
3D and isotropic quasi-2D traps, i.e., β = γ = 1 for 3D
traps and β = 1� γ for quasi-2D traps.

Numerical calculation for the ground-state densities of
a of a ferromagnetic BEC (c1 < 0) has revealed that
the component densities are essentially multiples of each
other. This opens the possibility of writing a single de-
coupled mode (DM) equation for the wave-function φDM

for the ferromagnetic BEC and obtain the component
wave functions as multiples of this wave function accord-
ing to

φj(x) = αjφDM(x), j = ±1, 0, (12)

where αj ’s, in general, are complex numbers. The con-
ditions (12) when substituted in Eqs. (2) and (3) lead
to three different equations for the same wave function
φDM. A consistency requirement on these three equa-
tions leads to the single decoupled-mode (DM) equation
for the wave function φDM:

µφDM(x) =

[
− 1

2
∇2 + V (x) + Cφ2DM(x)

]
φDM(x), (13)

with C ≡ CI = c0 + c1 and normalization
∫
ρDM(x)dx =

1, provided that

|α±1| =
1±m

2
, |α0| =

√
1−m2

√
2

, (14)

m ≡
∫
dx[ρ+1 − ρ−1] = |α+1|2 − |α−1|2, (15)

wherem is the magnetization. An equation similar to Eq.
(13) with C = c0 ∼ (a0 + 2a2)/3, known as the single-
mode approximation (SMA) [29], was obtained before as
an approximation to Eqs. (2)-(3). The component densi-
ties were then obtained using Eq. (14). In the DM model
we have a different C ≡ CI = (c0 + c1) ∼ a2, which is in-
dependent of a0. Equation (13) was previously obtained
by Yi et al. [30] as an improvement over the SMA. The
breakdown of the single-mode approximation for trapped
spin-1 condensates in the presence of magnetic field has
also been theoretically investigated [10].

Provided that ansatz (12) holds, distribution (14) can
be obtained independently from a consideration of c1-
dependent energy minimization for a ferromagnetic BEC
as shown in Appendix A. The DM equation is very use-
ful for finding the ground state of a ferromagnetic BEC
where all density components are non-zero and this pro-
cedure can also be readily generalized to higher-spin cases
as shown in Sec. II B for a spin-2 ferromagnetic BEC.

For the ground-state of an anti-ferromagnetic BEC
(c1 > 0) with non-zero magnetization, energy minimiza-
tion requires that φ0(x) = 0, viz. Appendix A. Then the

normalization and magnetization conditions yield∫
ρ±1dx =

1±m
2

, ρ0 = 0. (16)

Form = 0, besides the aforementioned state, there is an-
other degenerate state where all the atoms are in mf = 0
component, i.e. ρ±1 = 0 and

∫
ρ0dx = 1. Unlike in

a ferromagnetic BEC, ansatz (12) does not hold for an
anti-ferromagnetic BEC for a non-zero magnetization m
where different components occupy different spatial ex-
tensions. On the other hand, for m = 0, SMA becomes
exact in this phase [30], as the c1-dependent term van-
ishes.

We will derive the analytic model for a ferromagnetic
BEC using the TFA to the DM equation (13), whereas
for an anti-ferromagnetic BEC we rely on the TFA to the
GP equation (2) with φ0(x) = 0 for the same.

B. Spin-2 BEC

The dimensionless coupled GP equations for different
spin components mf = ±2,±1, 0, for a spin-2 BEC can
be written as [2]

µ±2φ±2(x) = Hφ±2(x) + c0ρφ±2(x) + (c2/
√

5)Θφ∗∓2(x)

+ c1
[
F∓φ±1(x)± 2Fzφ±2(x)

]
, (17)

µ±1φ±1(x) = Hφ±1(x) + c0ρφ±1(x)− (c2/
√

5)Θφ∗∓1(x)

+ c1
[√

3/2F∓φ0(x) + F±φ±2(x)± Fzφ±1(x)
]
,

(18)

µ0φ0(x) = Hφ0(x) + c0ρφ0(x) + (c2/
√

5)Θφ∗0(x)

+ c1
√

3/2
[
F−φ−1(x) + F+φ+1(x)

]
, (19)

where

F+ =F ∗− = 2(φ∗+2φ+1 + φ∗−1φ−2)

+
√

6(φ∗+1φ0 + φ∗0φ−1), (20)

Fz =2(|φ+2|2 − |φ−2|2) + |φ+1|2 − |φ−1|2, (21)

Θ =
2φ+2φ−2 − 2φ+1φ−1 + φ20√

5
. (22)

Here the interaction parameters c0 = 4πN(4a2 +
3a4)/(7l0), c1 = 4πN(a4 − a2)/(7l0), c2 = 4πN(7a0 −
10a2 + 3a4)/(7l0), µ±2, µ±1, and µ0 are the respective
chemical potentials. All repeated variables have the same
meaning as in the spin-1 case. The total density ρ is again
normalized to unity. As in the spin-1 case, GP equa-
tions in quasi-2D traps can be obtained by using Eqs. (9)
and substituting c0 = 2N

√
2π(4a2 + 3a4)/(7lz), c1 =

2N
√

2π(a4 − a2)/(7lz), c2 = 2N
√

2π(7a0 − 10a2 +
3a4)/(7lz) in Eqs. (17)-(19). Similarly, GP equations in
quasi-1D traps can be obtained by using Eqs. (11) and
substituting c0 = 2N(4a2 + 3a4)l0/(7l

2
yz), c1 = 2N(a4 −

a2)l0/(7l
2
yz), c2 = 2N(7a0 − 10a2 + 3a4)l0/(7l

2
yz) in Eqs.

(17)-(19).
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In the DM, for a ferromagnetic BEC (c1 < 0, c2 >
20c1) with all non-zero component densities, if we sub-
stitute the ansatz

φj = αjφDM, j = ±2,±1, 0, (23)

in Eqs. (17), (18), and (19), we obtain five independent
equations for φDM. A consistency requirement among
these five equations for the c1-dependent terms leads to
the DM equation (13) with C ≡ CII = (c0 + 4c1), pro-
vided that

|α±2| =
(2±m)2

16
, (24)

|α±1| =
√

4−m2(2±m)

8
, (25)

|α0| =
1

8

√
3

2

(
4−m2

)
, (26)

with magnetization and normalization conditions

m ≡
∫
dx[2(ρ+2 − ρ−2) + (ρ+1 − ρ−1)], (27)

= 2(|α+2|2 − |α−2|2) + (|α+1|2 − |α−1|2), (28)
1 = |α+2|2 + |α−2|2 + |α+1|2 + |α−1|2 + |α0|2.(29)

In the DM model for a spin-2 BEC C ≡ CII ∼ a4 is
independent of the scattering lengths a0 and a2, with
a4 playing the role of scattering length in an equivalent
scalar BEC. With the coefficients α±2, α±1, α0 given by
Eqs. (24)-(26) the coefficient Θ of Eq. (22) is identically
equal to 0. The condition Θ = 0 for the ground state
makes the GP equations (17)-(19) simpler and indepen-
dent of c2. Consequently, the DM equation (13) becomes
an exact equation for the ground state wave function pro-
vided Eq. (23) holds, e.g. the component wave functions
are multiples of each other. Our numerical calculations
show that the condition (23) holds for all magnetization
to a very high degree of accuracy.

The coefficients α±2, α±1, α0 can also be obtained from
a minimization of energy along with condition (23), for
a ferromagnetic ground state with c1 < 0 and c2 > 20c1.
An explicit account of the derivation of the coefficients
α±2, α±1, α0, from an energy minimization for a ferro-
magnetic spin-2 BEC is given in Appendix B.

For an anti-ferromagnetic BEC (c2 < 0, c2 < 20c1) for
any non-zero magnetization m numerical studies show
that φ±1(x) = φ0(x) = 0 for the ground state. This can
also be obtained from energetic consideration as shown in
Appendix B. The magnetization and normalization con-
ditions (27) and (29) then yield∫

ρ±2dx =
2±m

4
, (30)

Energy consideration establishes that a cyclic BEC (c1 >
0, c2 > 0) has two degenerate ground states for all
non-zero magnetization m with (i)φ+1(x) = φ0(x) =
φ−2(x) = 0, or with (ii)φ±1(x) = 0, viz. Appendix B.
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FIG. 1: (Color online) Analytic (anal.) and numerical (num.)
densities of a spin-1 quasi-1D ferromagnetic 87Rb BEC. The
number of atoms, scattering lengths and oscillator lengths are,
respectively, N = 10, 000, a0 = 101.8aB , a2 = 100.4aB [24],
l0 = 2.41µm, lyz = 0.54µm, here aB is Bohr radius.

Consequently, the magnetization and normalization con-
ditions (27) and (29) lead for these two states

(i)

∫
dxρ+2 =

1 +m

3
,

∫
dxρ−1 =

2−m
3

, (31)

(ii)

∫
dxρ±2 =

(
2±m

4

)2

,

∫
dxρ0 =

4−m2

8
. (32)

For both anti-ferromagnetic and cyclic BECs we will
derive the analytic models directly from the TFA to the
GP equations (17)-(19) and not from the DM, whereas
for a ferromagnetic BEC we will rely on the TFA to the
DM equation (13) with C = (c0 + 4c1).

III. ANALYTIC MODEL FOR SPIN-1 BEC

A. Ferromagnetic BEC

We derive the analytic model for the ground-state den-
sity of a spin-1 BEC using the TFA to the DM equation
(13) with component densities given by Eq. (14). In the
TFA the kinetic energy term in Eq. (13) is neglected,
which is reasonable for a moderate to large positive non-
linear terms, and the BEC density is calculated by equat-
ing the “Hamiltonian” to the chemical potential by

µ = [X2/2 + CρDM], C ≡ CI = c0 + c1, (33)

thus leading to the TFA density

ρDM(X) = (l2D −X2)/(2CI), X≤lD =
√

2µ. (34)

Imposing the condition of normalization
∫
ρDM(X)dx =

1, we obtain, in 1D, 2D, and 3D, respectively lD =
(3CI/2)1/3, (4CI/π)1/4 and (15CI/4π)1/5, provided CI >
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FIG. 2: (Color online) Analytic (anal.) and numerical (num.)
densities of a spin-1 quasi-2D ferromagnetic 87Rb BEC. The
number of atoms, scattering lengths and oscillator lengths are,
respectively, N = 100, 000, a0 = 101.8aB , a2 = 100.4aB [24],
l0 = 2.41µm, lz = 0.54µm, here aB is Bohr radius.

0. The component densities are calculated using Eqs.
(12) and (14). The analytic densities for a quasi-1D spin-
1 ferromagnetic 87Rb BEC are shown in Fig. 1 along with
the numerical solution of the full coupled GP equations
(2)-(3). The same for a quasi-2D spin-1 ferromagnetic
87Rb BEC is shown in Fig. 2. All numerical calcula-
tions are performed using the split-step Crank-Nicolson
scheme [31] with space and time steps 0.025 and 0.00005,
respectively.

In the DM model CI ∼ a2 plays the same role as the
scattering length a in a scalar BEC in Eq. (1). Hence
in this case the condition of validity of the TFA will be
Na2/l0 >> 1.

B. Anti-ferromagnetic BEC

In this case, the analytic model is derived by applying
TFA directly to the GP equation (2) with φ0(x) = 0.
For a non-zero magnetization (0 < m < 1), the mf = +1
component accommodates more atoms and its spatial ex-
tension lD(+1) is larger than the same of the themf = −1
component with spatial extension lD(−1). Hence for
lD(+1) > x > lD(−1), φ−1(x) = 0 and the coupled GP
equation (2) for φ±1(x) reduces to a single equation for
φ+1(x). In the TFA, the kinetic energy terms in the
GP equation (2) are neglected and the densities are cal-
culated by equating the Hamiltonian to the respective
chemical potentials:

µ±1 =
[
X2/2 + c0ρ

]
+ c1(ρ±1 − ρ∓1), X≤lD(−1),

(35)

µ+1 =
[
X2/2 + CIρ+1

]
, lD(+1)≥X≥lD(−1), (36)
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FIG. 3: (Color online) Analytic (anal.) and numerical
(num.) densities of a spin-1 quasi-1D anti-ferromagnetic 23Na
BEC. The number of atoms, scattering lengths and oscilla-
tor lengths are, respectively, N = 10, 000; a0 = 47.36aB ,
a2 = 52.98aB [3]; l0 = 4.69µm, lyz = 1.05µm.
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FIG. 4: (Color online) Analytic (anal.) and numerical
(num.) densities of a spin-1 quasi-2D anti-ferromagnetic 23Na
BEC. The number of atoms, scattering lengths and oscilla-
tor lengths are, respectively, N = 100, 000; a0 = 47.36aB ,
a2 = 52.98aB [3]; l0 = 4.69µm, lz = 1.05µm.

subject to normalization (16). In the domain
lD(+1)≥X≥lD(−1), Eq. (36) has the solution

ρ+1(X) =
l2D(+1) −X

2

2CI
, lD(+1)≥X≥lD(−1), (37)

µ+1 =l2D(+1)/2. (38)

In the overlap region X≤lD(−1), coupled equations (35)
have the solution

ρ±1(X) =
c0(µ±1 − µ∓1) + c1(µ+1 + µ−1 −X2)

4c0c1
. (39)
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The condition ρ−1(lD(−1)) = 0 leads to

µ−1 =
(c0 − c1)l2D(+1) + 2c1l

2
D(−1)

2CI
. (40)

Substituting Eqs. (38) and (40) in Eq. (39), we obtain

ρ+1(X) =
2c0l

2
D(+1) + (c1 − c0)l2D(−1) − CIX

2

4c0CI
, X≤lD(−1)

(41)

ρ−1(X) =
(l2D(−1) −X

2)

4c0
, X≤lD(−1). (42)

The normalization condition (16) for ρ±1(X) leads to

lD(−1) = lD[c0(1−m)/CI ]1/(2+D), (43)

lD(+1) = lD[(c0 + c1m)/CI ]1/(2+D). (44)

The densities (37), (41) and (42) with extensions given
by Eqs. (43)-(44) constitute the analytic model in this
case.

These analytic densities for a spin-1 quasi-1D anti-
ferromagnetic 23Na BEC are shown in Fig. 3 along
with the numerical solution of the full coupled GP equa-
tions (2)-(3). The same for a spin-1 quasi-2D anti-
ferromagnetic 23Na BEC are shown in Fig. 4. Com-
paring Eq. (1) with Eqs. (43)-(44), the conditions for
the validity of TFA in this case are

N(a0 + 2a2)(1−m)

3l0
>> 1, (45)

N [a0 + 2a2 + (a2 − a0)m]

3l0
>> 1, (46)

for mf = −1 and mf = +1 component, respectively.
The terms on the left side of Eqs. (45) and (46) are the
measure of the repulsive interactions in mf = −1 and
mf = +1 components, respectively.

For magnetization m = 0 there is another degener-
ate ground state where all atoms are in the mf = 0
component [2]. In that case the spin-1 GP equation
reduces to the DM equation (33) with CI = c0 and
ρ0(X) = ρDM (X) of Eq. (34). From Eqs. (45)-(46),
the simple criterion for the validity of TFA in this case
is N(a0 + 2a2)/(3l0) >> 1, which is consistent with the
fact that for m = 0, c1 term does not contribute to the
energy of the system.

The TF analysis shows that the spatial extents of the
components are different for an anti-ferromagnetic BEC
for any non-zero magnetization, viz. Eqs. (43)-(44),
which is also manifested by different chemical poten-
tials, viz. Eqs. (38) and (40), whereas these are the
same for a ferromagnetic BEC. Thus, in the domain
lD(−1)≤X < lD(+1) only component mf = +1 survives
for the anti-ferromagnetic BEC effectively separating this
component from mixed phase in the X < lD(−1) domain.
The different spatial extents of the components for an
anti-ferromagnetic BEC also imply that SMA is not valid

in general except for m = 0, when lD(±1) of Eqs. (43)-
(44) become equal. The ground states shown in Figs. 3
and 4 preserve the symmetry of the trapping potential.
These symmetric profiles minimize c1-dependent interac-
tion energy [30]

EA =
c1
2

∫ [
(ρ+1 − ρ−1)

2
+ 2ρ0(ρ+1 + ρ−1)

− 4
√
ρ+1ρ−1ρ0

]
dx. (47)

The asymmetric states, where the two phase-separated
components lie side by side [13], do not minimize EA

in addition to having more potential-energy contribu-
tion. Hence, they do not emerge as the ground states
in trapped spinor condensates. The asymmetric states
can emerge as the ground state in the presence of Zee-
man energy [2, 11] or spin-orbit coupling [13, 15] which
we do not include in the Hamiltonian.

IV. ANALYTIC MODEL FOR SPIN-2 BEC

A. Ferromagnetic BEC

In this case, the component densities are given by the
DM equation (23) along with distributions (24)-(26) and
the analytic model is derived from the TFA to the DM
equation (13). Following the procedure of Sec. III A for
a spin-1 ferromagnetic BEC, the TFA densities are again
given by Eq. (34), but now with C ≡ CII = c0 + 4c1.
The component densities are then obtained using Eqs.
(24)-(26). These analytic densities for a quasi-1D spin-2
ferromagnetic 23Na and 83Rb BECs are shown in Figs.
5(a) and (b), respectively, together with the numerical
densities from the full coupled GP equations (17)-(19).

In the DM model CII ∼ a4 plays the same role as the
scattering length a in a scalar BEC in Eq. (1). Hence
in this case the condition of validity of the TFA will be
Na4/l0 >> 1.

B. Anti-ferromagnetic BEC

The analytic model here is obtained from the TFA to
the GP equation (17) involving only φ±2(x) subject to
φ0(x) = φ±1(x) = 0 with normalization condition (30).
After neglecting the kinetic energy terms in the GP equa-
tion (17) the corresponding TFA densities are given by

µ±2 = X2/2 + c0ρ± 4c1(ρ+2 − ρ−2) +
2c2ρ∓2

5
, (48)

For a non-zero magnetization 0 < m ≤ 2, the mf = +2
component extends to a larger domain (X < lD(+2))
than the mf = −2 component with a smaller extension
(X < lD(−2), lD(+2) > lD(−2)). Following the procedure
presented in Sec. III B for a spin-1 anti-ferromagnetic
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FIG. 5: (Color online) (a) and (b) show analytic (anal.) and
numerical (num.) densities of quasi-1D spin-2 ferromagnetic
23Na and 83Rb BECs, respectively. For 23Na, the number of
atoms, scattering lengths and oscillator lengths are, respec-
tively, N = 10, 000, a0 = 34.9aB , a2 = 45.8aB , a4 = 6.45aB ,
[6] l0 = 4.69µm, lyz = 1.05µm, here aB is Bohr radius. The
experimental value of a4(= 64.5aB) has been modified to ac-
cess the ferromagnetic phase of 23Na (using a Feshbach reso-
nance) from the natural anti-ferromagnetic phase. For 83Rb,
the corresponding parameters are N = 10, 000, a0 = 83.0aB ,
a2 = 82.0aB , a4 = 81.0aB , [6] l0 = 2.47µm, lyz = 0.55µm.

BEC, one can calculate lD(+2) in 1D, 2D and 3D, respec-
tively, as

l1(+2) =
[3A]1/3

201/3
, l2(+2) =

[2A]1/4

(5π)1/4
, l3(+2) =

[3A]1/5

(8π)1/5
,

(49)

where A = (10c0 + 2c2 + 20c1m− c2m) . Similarly,
lD(−2) in 1D, 2D and 3D, respectively, are

l1(−2) =
[3B]1/3

201/3
, l2(−2) =

[2B]1/4

(5π)1/4
, l3(−2) =

[3B]1/5

(8π)1/5
,

(50)
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FIG. 6: (Color online) Analytic (anal.) and numerical
(num.) densities of a spin-2 quasi-1D anti-ferromagnetic 23Na
BEC. The number of atoms, scattering lengths and oscil-
lator lengths are, respectively, N = 10, 000; a0 = 34.9aB ,
a2 = 45.8aB , a4 = 64.5aB [6] ; l0 = 4.69µm, lyz = 1.05µm.

where B = (5c0 +c2)(2−m). The analytic TFA densities
of the spin components mf = ±2 are given by

ρ+2(X) =
20c1

(
l2D(−2) −X

2
)

+ 2c2

(
l2D(+2) − l

2
D(−2)

)
4CII(5c0 + c2)

+
5c0

(
2l2D(+2) − l

2
D(−2) −X

2
)

4CII(5c0 + c2)
, X≤lD(−2),

(51)

ρ+2(X) =
l2D(+2) −X

2

2CII
, lD(+2)≥X≥lD(−2), (52)

ρ−2(X) =
5
(
l2D(−2) −X

2
)

4(5c0 + c2)
, X≤lD(−2), (53)

with the extensions l±2 given by Eqs. (49) and (50). The
analytic and numerical densities for a quasi-1D spin-2
anti-ferromagnetic 23Na BEC are compared in Fig. 6.
Again, in this case, phase-separated asymmetric profiles
do not emerge as ground states due to more energy con-
tribution from c2-dependent energy term in addition to
more potential energy as compared to symmetric profiles.

Comparing Eq. (1) with Eqs. (49)-(50), the conditions
for the validity of TFA in this case are

N [c0a + 2c1am+ c2a(2−m)/10]

7l0
>> 1, (54)

N [(c0a + c2a/5)(1−m/2)]

7l0
>> 1, (55)

for mf = +2 and mf = −2 components, respectively,
where c0a = 4a2 + 3a4, c1a = a4 − a2, and c2a = 7a0 −
10a2 + 3a4.

For m = 0 there is another degenerate ground state
with the all the atoms in the mf = 0 component [3]. In
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this case the GP equation reduces to the DM equation
(33) with CII = (c0 + c2/5) and ρ0(X) = ρDM (X) of
(34). A superposition of this solution and the solution
corresponding to Eq. (48) with m = 0 will also be a
degenerate solution. The simpler criterion for the validity
of TFA in this case is N [(7a0 +10a2 +18a4)/5]/(7l0) >>
1, which is consistent with Eqs. (54) and (55) with m =
0.

C. Cyclic BEC

In this case, there are two degenerate ground states for
all magnetization m with non-zero component densities
given by Eqs. (31) and (32), respectively. The analytic
models will be obtained in these two cases from the TFA
to the GP equations (17)-(19).

The former distribution (31) involves only two non-zero
components in the GP equation. After neglecting the
kinetic energy terms in the GP equations (17)-(19), the
TFA densities for the non-zero spin componentsmf = +2
and mf = −1 are described by

µ+2 = X2/2 + c0ρ+ 2c1(2ρ+2 − ρ−1), (56)
µ−1 = X2/2 + c0ρ− c1(2ρ+2 − ρ−1). (57)

For a non-zero magnetization (2 > m > 0) the mf = +2
component has a larger spatial extension (lD(+2)) than
the mf = −1 component with a smaller spatial extension
(±lD(−1), lD(+2) > lD(−1)). Following the procedure dis-
cussed for a spin-1 anti-ferromagnetic BEC in Sec. III B,
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FIG. 7: (Color online) Analytic (anal.) and numerical (num.)
densities of a spin-2 quasi-1D cyclic 23Na BEC. The number
of atoms, scattering lengths and oscillator lengths are, respec-
tively, N = 10, 000, a0 = 34.9aB , a2 = 22.9aB , a4 = 64.5aB
[6], l0 = 4.69µm, lyz = 1.05µm. The experimental value of
a2(= 45.8aB) has been modified to access the cyclic phase
of 23Na (using a Feshbach resonance) from its natural anti-
ferromagnetic phase.
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FIG. 8: (Color online) Analytic (anal.) and numerical (num.)
densities of a spin-2 quasi-1D 23Na cyclic BEC. All parameters
are the same as in Fig. 7.

one obtains

lD(+2) = lD[(c0 + 2c1m)/CI ]1/(2+D), (58)

lD(−1) = lD[c0(2−m)/2CI ]1/(2+D). (59)

The normalized densities are given by

ρ−1(X) =
(l2D(−1) −X

2)

3c0
, X≤lD(−1), (60)

ρ+2(X) =
3c0l

2
D(+2) − 2(c0 − 2c1)l2D(−1) − CIIX

2

6c0CII
, X≤lD(−1)

(61)

=
l2D(+2) −X

2

2CII
. lD(−1)≤X≤lD(+2), (62)

Equations (60)-(62) together with extensions given by
Eqs. (58)-(59) are the analytic densities in this case.
The analytic and numerical densities for a quasi-1D spin-
2 cyclic 23Na BEC are shown in Fig. 7. For m = 0, SMA
becomes exact for the cyclic phase of spin-2 condensate,
as the c1 and c2-dependent terms in Eqs. (56)-(57) van-
ish.

Comparing Eq. (1) and Eqs. (58)-(59), the conditions
for the validity of TFA in this case are

N [4a2 + 3a4 + 2(a4 − a2)m]

7l0
>> 1, (63)

N [4a2 + 3a4(1−m/2)]

7l0
>> 1, (64)

for mf = +2 and mf = −1 components, respectively.
For m = 0 the simple criterion for the validity of TFA is
N(4a2 + 3a4)/(7l0) >> 1, which is consistent with fact
that only spin-independent non-linearity (c0 dependent
term) contributes to the energy of the system.

Similarly, for the latter distribution (32), after neglect-
ing the kinetic energy terms in the GP equations (17)-
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(19), the TFA densities are given by

µ±2 =X2/2 + c0ρ± 4c1(ρ+2 − ρ−2), (65)

µ0 =X2/2 + c0ρ. (66)

This set of equations for ρ±2 and ρ0 is overcomplete and
does not determine the densities. However, if we assume,
consistent with Eq. (32), that

ρ0 =
2(2 +m)ρ−2

2−m
, (67)

then we can solve Eqs. (65) for ρ±2 and obtain ρ0 from
Eq. (67). For 2 > m > 0 the spatial extent (lD(+2)) of
density ρ+2 is larger than the spatial extent (lD(−2)) of
density ρ−2. Equations (65) can then be be solved to
obtain

ρ+2(X) =
4c1(m− 2)(X2 − δ) + c0κ(6 +m)

64c0c1
, X≤lD(−2)

(68)

=
2µ+2 −X2

2CII
, lD(+2)≥X≥lD(−2), (69)

ρ−2(X) =
(m− 2)

[
c0κ+ 4c1{X2 − δ}

]
64c0c1

, X≤lD(−2),

(70)

where δ = µ+2 + µ−2, κ = µ+2 − µ−2. with the chemical
potentials µ+2 and µ−2 given by

µ+2 =
l2D(+2)

2
, µ−2 =

(c0 − 4c1)l2D(+2) + 8c1l
2
D(−2)

2CII
,

(71)

where lD(+2) and lD(−2) are the same as lD(+2) and lD(−1)
of Eqs. (58)-(59), respectively. After substituting the ex-
pressions for chemical potentials µ±2 given by Eqs. (71)
in Eqs. (67)-(70), we obtain the final densities ρ±2 and
ρ0 as

ρ+2(X) =
c0

[
8l2D(+2) − l

2
D(−2)(6 +m) + (−2 +m)X2

]
16c0CII

+
4c1(2−m)(l2D(−2) −X

2)

16c0CII
, X≤lD(−2), (72)

ρ+2(X) =
l2D(+2) −X

2

2CII
, lD(+2)≥X≥lD(−2), (73)

ρ0(X) =
2(2 +m)ρ−2

2−m
, X≤lD(−2), (74)

ρ−2(X) =
(2−m)

(
l2D(−2) −X

2
)

16c0
, X≤lD(−2)(75)

ρ0(X) = ρ−2 = 0, lD(+2)≥X≥lD(−2). (76)

The analytic and numerical densities in this case for
a spin-2 quasi-1D 23Na cyclic BEC are shown in Fig. 8.

The criteria for the validity of TFA in this case are again
given by Eqs. (63)-(64) for mf = +2 and mf = −2
components, receptively. Thus, for a spin-2 23Na cyclic
BEC, there are two distinct degenerate ground states as
are shown in Figs. 7 and 8. The Hamiltonian of the
spinor BEC is time-reversal invariant, yet the degenerate
states shown in Figs. 7 and 8 break time reversal sym-
metry. Time-reversal symmetry-breaking states in spinor
BECs were previously studied [15]. In cyclic phase too
the additional potential energy cost rules out the possi-
bility of asymmetric phase-separated profiles as ground
states.

V. CONCLUDING REMARKS

The mean-field GP equation for a spin-1 and spin-
2 spinor BEC involve three- and five-component com-
plex wave function. Some simplification emerges for the
ground-state wave function of a spinor BEC. For an anti-
ferromagnetic or cyclic BEC with a non-zero magnetiza-
tion, some of the spin-component wave functions become
zero, thus reducing the original GP equation with three
or five components to a system of coupled equations with
only two or three components, which we call a reduced
GP equation. For a ferromagnetic BEC with a non-zero
magnetization the densities of different spin components
for the ground-state wave function are found to be mul-
tiples of each other. This allows to solve the density
according to a single GP equation, which we call the
decoupled-mode (DM) equation, and calculate the densi-
ties of different spin components as multiples of a single
DM density. These reduced GP and DM equations are
valid in all spatial dimensions. Here we suggest simple
analytic models for the ground-state densities of a spinor
BEC obtained by applying Thomas-Fermi approximation
to the DM and reduced GP equations. These analytic re-
sults for densities are found to be in good agreement with
those obtained from the numerical solution of the full
GP equation for ferromagnetic, anti-ferromagnetic, and
cyclic spin-1 and spin-2 spinor BECs. Although, we con-
sidered in this paper nearly-overlapping configurations
of the spinor components, the presence of Zeeman en-
ergy and spin-orbit coupling in the Hamiltonian can lead
to asymmetric phase-separated configurations [13, 15] as
ground states. An investigation leading to the analytic
densities of the phase-separated solutions would be an
interesting future work.
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VI. APPENDIX A

A. Ferromagnetic spin-1 BEC

For the ground state of a spin-1 ferromagnetic BEC
(c1 < 0), the coefficients αj , can be obtained from a
minimization of the energy

E =
N

2

∫ [ 1∑
j=−1

|φ′j |2 + x2ρ+ c0ρ
2 + c1|F|2

]
dx, (77)

where prime denotes x derivative. Assuming that com-
ponent wave functions are given by the DM ansatz (12),
to minimize energy E we need to maximize the positive
integral

∫
|F|2dx∫

|F|2dx =
[
2|(α∗+1α0 + α∗0α−1)|2 +m2

]
I, (78)

I =

∫
φ4DM(x)dx. (79)

Now, writing αj = |αj |eiθj , we get∫
|F|2dx =

[
2||α+1||α0|+ |α0||α−1|ei(θ+1+θ−1−2θ0)|2

+m2
]
I. (80)

To maximize integral (80), we take exp(θ+1+θ−1−2θ0) =
1 and obtain∫

|F|2dx =
[
2(|α+1||α0|+ |α0||α−1|)2 +m2

]
I. (81)

For a fixed magnetization m and DM function φDM, the
maximization of

∫
|F|2dx corresponds to finding the sta-

tionary points of the following “Lagrange” function

L1(|αj |, λ1, λ2) = 2(|α+1||α0|+ |α0||α−1|)2

+ λ1(1−
∑
j

|αj |2) + λ2(m− |α+1|2 + |α−1|2). (82)

Here λ1 and λ2 are Lagrangian multipliers to fix the nor-
malization and magnetization to 1 and m, respectively.
The stationary points of L1 are determined by the fol-
lowing Lagrange equations

∂L1

∂|αj |
= 0,

∂L1

∂λ1
= 0,

∂L1

∂λ2
= 0. (83)

with solution (14) together with λ1 = 2, λ2 = −2m.

B. Anti-ferromagnetic spin-1 BEC

In case of an anti-ferromagnetic BEC (c1 > 0),∫
|F|2dx =

∫
(F+F− + F 2

z )dx is minimized by making
φ0(x) = 0 for any m 6= 0 and the densities satisfy Eq.

(16). If we further assume the DM ansatz (12), the coef-
ficients αj can be obtained from a minimization of (80).
For this, we take exp(θ+1 + θ−1 − 2θ0) = −1 and obtain∫

|F|2dx =
[
2(|α+1||α0| − |α0||α−1|)2 +m2

]
I. (84)

Following the procedure discussed for a ferromagnetic
BEC, one can minimize

∫
|F|2dx under the twin con-

straints of fixed norm and magnetization and, in agree-
ment with Eq. (16), obtain

|α±1| =
√

1±m
2

, α0 = 0. (85)

VII. APPENDIX B

A. Ferromagnetic spin-2 BEC

For a spin-2 ferromagnetic BEC (c1 < 0, c2 > 20c1),
the energy is given by

E =
N

2

∫ [ 2∑
j=−2

|φ′j |2 + x2ρ+ c0ρ
2 + c1|F|2 + c2|Θ|2

]
dx.

For a ferromagnetic BEC, the energy minimization cor-
responds to a maximization of the c1-dependent term∫
|F|2dx. We find that this automatically minimizes

the c2-dependent term
∫
|Θ|2dx to zero. Assuming the

DM ansatz (23) we seek the coefficients αj which maxi-
mize

∫
|F|2dx. Following the procedure for ferromagnetic

spin-1 BEC, we can write∫
|F|2dx =

[∣∣∣2{|α+2||α+1|+ |α−2||α−1|

ei(θ−2−θ−1−θ1+θ2)
}

+
√

6ei(θ0−2θ1+θ2){
|α+1||α0|+ |α0||α−1|ei(θ−1−2θ0+θ1)

}∣∣∣2 +m2
]
I. (86)

To maximize (86) we take all exponential factors in this
equation to be +1 and obtain∫
|F|2dx =

[{
2(|α+2||α+1|+ |α−2||α−1|)

+
√

6(|α+1||α0|+ |α0||α−1|)
}2

+m2
]
I. (87)

For a fixed m (2 > m > 0) and I, the maximization of∫
|F|2dx corresponds to finding the stationary points of

the following Lagrange function

L2(|αj |, λ1, λ2) = 2(|α+2||α+1|+ |α−2||α−1|) +
√

6|α0|

(|α+1|+ |α−1|) + λ1(1−
∑
j

|αj |2) + λ2

(m− 2|α+2|2 − |α+1|2 + |α−1|2 + 2|α−2|2).
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Here λ1 and λ2 have the same meaning as in Eq. (82).
The stationary point which maximizes

∫
|F|2dx thus

yields Eqs. (24)-(26) together with

λ1 =
4√

(4−m2)
, λ2 = − m√

(4−m2)
. (88)

Using Eqs. (24)-(26), we find that these αj ’s also min-
imize

∫
|Θ|2dx to 0 which guarantees that the state so

obtained is the ground state.

B. Anti-ferromagnetic spin-2 BEC

Similarly in anti-ferromagnetic subdomain (c2 < 0 and
c2 < 20c1), the energy minimization corresponds to a
maximization of the c2-dependent term

∫
|Θ|2dx. As-

suming DM ansatz (16) and αj = |αj | exp(iθj) we have∫
|Θ|2dx =

∣∣2|α+2||α−2| − 2|α+1||α−1|ei(θ1+θ−1−θ2−θ−2)

+|α0|2ei(2θ0−θ2−θ−2)
∣∣2I. (89)

To maximize integral (89) we take the first exponential to
be −1 and the second exponential to be +1. For a fixed
m (2 > m > 0) and I, the maximization of

∫
|Θ|2dx cor-

responds to finding the stationary points of the following
Lagrange function

Lθ(|αj |, λ1, λ2) = (2|α+2||α−2|+ 2|α+1||α−1|+ |α0|2)

+λ1(1−
∑
j

|αj |2) + λ2(m− 2|α+2|2

−|α+1|2 + |α−1|2 + 2|α−2|2). (90)

The stationary point, which maximizes
∫
|Θ|2dx, yields

|α±2| =

√
2±m

2
, α±1 = α0 = 0, (91)

λ1 =
2√

(4−m2)
, λ2 =

−m
2
√

(4−m2)
. (92)

Using Eqs. (91)-(92), we find that
∫
|F|2dx has the min-

imum value m2I which guarantees that the state so ob-
tained is the ground state.

C. Cyclic spin-2 BEC

For a spin-2 cyclic BEC c1 > 0 and c2 > 0, energy
minimization involves minimization of both

∫
|F|2dx and∫

|Θ|2dx to their respective minimum values m2I and 0,
respectively. From equations (86) and (89), one can see
that for 0 < m < 2, consistent with Eqs. (31)-(32), there
are only two possibilities for the ground states:

(i)|α±2| =
2±m

4
, |α0| =

√
4−m2

√
8

, α±1 = 0,

provided that exp(2θ0 − θ+2 − θ−2) = −1, and

(i)|α+2| =
√

1 +m√
3

, |α−1| =
√

2−m√
3

, α±1 = α0 = 0.
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