1-Benzoyl-5-phenyl-2-(propan-2-yl)- 1,2,3,4-tetrahydropyrimidin-4-one Ignez Caracelli,a* Julio Zukerman-Schpector,b Mônica F. Z. J. Amaral,c Hélio A. Stefanic and Edward R. T. Tiekinkb aBioMat-Physics Department, Universidade Estadual Paulista Júlio de Mesquita Filho, UNESP, 17033-360 Bauru, SP, Brazil, bDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and cDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil Correspondence e-mail: ignez@fc.unesp.br Received 7 September 2009; accepted 8 September 2009 Key indicators: single-crystal X-ray study; T = 98 K; mean �(C–C) = 0.002 Å; R factor = 0.049; wR factor = 0.126; data-to-parameter ratio = 14.5. The tetrahydropyrimidinone ring in the title compound, C20H20N2O2, is in a half-boat conformation with the N—C— N C atom 0.580 (2) Å out of the plane defined by the remaining five atoms. In the crystal structure, molecules are connected into centrosymmetric dimers via N—H� � �O inter- actions. The dimeric aggregates are linked into supra- molecular chains along the a axis via C—H� � �� interactions. Related literature For background to the use of potassium organotrifluoroborate salts in organic synthesis, see: Caracelli et al. (2007); Stefani et al. (2007); Vieira et al. (2008). For a related structure, see: Vega-Teijido et al. (2007). For conformational analysis, see: Cremer & Pople (1975); Iulek & Zukerman-Schpector (1997). Experimental Crystal data C20H20N2O2 Mr = 320.38 Monoclinic, P21=n a = 9.346 (4) Å b = 8.001 (3) Å c = 22.528 (9) Å � = 96.843 (9)� V = 1672.6 (12) Å3 Z = 4 Mo K� radiation � = 0.08 mm�1 T = 98 K 0.35 � 0.22 � 0.10 mm Data collection Rigaku AFC12/SATURN724 diffractometer Absorption correction: multi-scan ABSCOR (Higashi, 1995) Tmin = 0.811, Tmax = 1 5658 measured reflections 3094 independent reflections 2636 reflections with I > 2�(I) Rint = 0.035 Refinement R[F 2 > 2�(F 2)] = 0.049 wR(F 2) = 0.126 S = 1.09 3094 reflections 213 parameters H-atom parameters constrained ��max = 0.22 e Å�3 ��min = �0.20 e Å�3 Table 1 Hydrogen-bond geometry (Å, �). D—H� � �A D—H H� � �A D� � �A D—H� � �A N3—H1N3� � �O1i 0.93 1.90 2.827 (2) 174 C9—H9� � �Cgii 0.93 2.82 3.632 (2) 147 Symmetry codes: (i) �xþ 2;�y;�z; (ii) �xþ 1;�y;�z. Cg is the centroid of the C14– C19 ring. Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999). We thank FAPESP (grant Nos. 07/59404-2 to HAS and 08/ 02531-5 to JZS), CNPq (grant Nos. 472237/2008-0 to IC, 300613/2007 to HAS and 307121/2006-0 to JZS) and CAPES for financial support. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2639). References Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Caracelli, I., Stefani, H. A., Vieira, A. S., Machado, M. M. P. & Zukerman- Schpector, J. (2007). Z. Kristallogr. New Cryst. Struct. 222, 345–346. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Iulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433–434. Rigaku (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Stefani, H. A., Cella, R. & Vieira, A. S. (2007). Tetrahedron, 63, 3623–3658. Vega-Teijido, M., Zukerman-Schpector, J., Nunes, F. M., Gatti, P. M., Stefani, H. A. & Caracelli, I. (2007). Z. Kristallogr. 222, 705–712. Vieira, A. S., Fiorante, P. F., Zukerman-Schpector, J., Alves, D., Botteselle, G. V. & Stefani, H. A. (2008). Tetrahedron, 64, 7234–7241. organic compounds o2466 Caracelli et al. doi:10.1107/S1600536809036356 Acta Cryst. (2009). E65, o2466 Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB1 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB1 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB1 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB2 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB3 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB3 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB4 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB5 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB6 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB7 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB8 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB9 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB10 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB11 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB12 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB12 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB13 http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ng2639&bbid=BB13 http://crossmark.crossref.org/dialog/?doi=10.1107/S1600536809036356&domain=pdf&date_stamp=2009-09-16 supplementary materials supplementary materials sup-1 Acta Cryst. (2009). E65, o2466 [ doi:10.1107/S1600536809036356 ] 1-Benzoyl-5-phenyl-2-(propan-2-yl)-1,2,3,4-tetrahydropyrimidin-4-one I. Caracelli, J. Zukerman-Schpector, M. F. Z. J. Amaral, H. A. Stefani and E. R. T. Tiekink Comment As part of our on-going research interest efforts exploring the chemistry of potassium organotrifluoroborate salts, including their potential use as intermediates in organic synthesis (Caracelli et al., 2007; Stefani et al., 2007; Vieira et al. 2008), we have started to use the Suzuki–Miyaura cross-coupling reaction as a new tool to synthesize β-amino acids. Herein, the crystal structure of (I) is described. The molecular structure of (I), Fig. 1, shows the tetrahydropyrimidinone ring to adopt a half-boat conformation with the C2 atom being displaced 0.580 (2) Å out of the plane defined by the remaining five atoms. The ring-puckering parameters are q2 = 0.374 (2) Å, q3 = 0.187 (1) Å, Q = 0.418 (2) Å, and φ2 = 54.0 (2)° (Cremer & Pople, 1975; Iulek & Zukerman-Schpector, 1997). The dihedral angle between the aryl rings is 55.55 (8)°. The deviation of the torsion angle C4—C5—C14—C15 from the ideal value of 60°, which would indicate bisection of the dihydripyrimidinone ring by the plane of the phenyl ring, is of 15.7°. In the crystal packing, centrosymmetric dimers are formed being consolidated by eight-membered {O═C—N—H···}2 synthons, Table 1. The carbonyl-O2 atom is involved in an intramolecular C—H···O contact with the C—H2 atom (2.34 Å) and does not particiate in a significant intermolecular contact. The aggregates thus formed are linked into supramolecular chains, Fig. 2, aligned along the a axis via C—H···π interactions: C9—H9···Cg(C14–C19)i = 2.82 Å, C9···Cg(C14–C19)i = 3.632 (2) Å with an angle of 147° at H9; symmetry operation i: 1 - x, -y, -z. Experimental A 50 ml flask under N2 atmosphere was charged with potassium phenyltrifluoroborate (1.2 mmol), (S)-5-iodopyrimidinone 3 (1.0 mmol, 370 mg), Pd(OAc)2 (9 mol%, 20.02 mg), K2CO3 (2 mmol, 276 mg), and 16 ml of degassed dioxane/H2O (3/1). The reaction mixture was refluxed at 383 K and the reaction followed by TLC and GC. After completion, the reaction mixture was cooled and then extracted with ethyl acetate (3 × 50 ml). The organic layers were combined, dried (MgSO4), and the solvent removed under vacuum to give a viscous oil. The oil was purified via column chromatography using a mixture of ethyl acetate/hexane (1:1) as the eluent. Single crystals of (I) were obtained by slow evaporation from ethyl acetate. Refinement The H atoms were positioned with idealized geometry using a riding model with N—H = 0.93 Å and C—H = 0.93–0.98 Å, and with Uiso set to 1.2 times (1.5 for methyl) Ueq(parent atom). http://dx.doi.org/10.1107/S1600536809036356 http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Caracelli,%20I. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Zukerman-Schpector,%20J. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Amaral,%20M.F.Z.J. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Stefani,%20H.A. http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Tiekink,%20E.R.T. supplementary materials sup-2 Figures Fig. 1. The molecular structure of (I) showing atom labelling scheme and displacement ellips- oids at the 50% probability level (arbitrary spheres for the H atoms). Fig. 2. Supramolecular chain in (I) comprising centrosymmetric dimers mediated by {O═C—N—H···}2 synthons (hydrogen bonds shown as orange dashed lines) linked by C—H···π interactions (shown as purple dashed lines). 1-Benzoyl-5-phenyl-2-(propan-2-yl)-1,2,3,4-tetrahydropyrimidin-4-one Crystal data C20H20N2O2 F000 = 680 Mr = 320.38 Dx = 1.272 Mg m−3 Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 6484 reflections a = 9.346 (4) Å θ = 2.5–40.2º b = 8.001 (3) Å µ = 0.08 mm−1 c = 22.528 (9) Å T = 98 K β = 96.843 (9)º Prism, colourless V = 1672.6 (12) Å3 0.35 × 0.22 × 0.10 mm Z = 4 Data collection Rigaku AFC12/SATURN724 diffractometer 3094 independent reflections Radiation source: fine-focus sealed tube 2636 reflections with I > 2σ(I) Monochromator: graphite Rint = 0.035 T = 98 K θmax = 25.5º ω scans θmin = 2.5º Absorption correction: multi-scan ABSCOR (Higashi, 1995) h = −11→8 Tmin = 0.811, Tmax = 1 k = −6→9 5658 measured reflections l = −26→27 Refinement Refinement on F2 Secondary atom site location: difference Fourier map supplementary materials sup-3 Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained wR(F2) = 0.126 w = 1/[σ2(Fo 2) + (0.0541P)2 + 0.6346P] where P = (Fo 2 + 2Fc 2)/3 S = 1.09 (Δ/σ)max < 0.001 3094 reflections Δρmax = 0.22 e Å−3 213 parameters Δρmin = −0.20 e Å−3 Primary atom site location: structure-invariant direct methods Extinction correction: none Special details Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, convention- al R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) x y z Uiso*/Ueq C2 0.91894 (17) 0.2343 (2) 0.10191 (7) 0.0228 (4) H2 0.9791 0.1868 0.1364 0.027* C4 0.81099 (17) 0.1247 (2) 0.00497 (7) 0.0227 (4) C5 0.68065 (16) 0.2234 (2) 0.01348 (7) 0.0215 (4) C6 0.66388 (17) 0.2745 (2) 0.06922 (7) 0.0225 (4) H6 0.5782 0.3264 0.0759 0.027* C7 0.74672 (18) 0.2425 (2) 0.17669 (7) 0.0250 (4) C8 0.59340 (18) 0.2378 (2) 0.19000 (7) 0.0249 (4) C9 0.49283 (19) 0.1281 (2) 0.16115 (8) 0.0289 (4) H9 0.5177 0.0606 0.1304 0.035* C10 0.3547 (2) 0.1194 (3) 0.17838 (8) 0.0346 (4) H10 0.2877 0.0448 0.1596 0.041* C11 0.3174 (2) 0.2217 (3) 0.22339 (9) 0.0362 (5) H11 0.2248 0.2171 0.2345 0.043* C12 0.4177 (2) 0.3315 (2) 0.25215 (8) 0.0346 (4) H12 0.3917 0.4005 0.2823 0.041* C13 0.5563 (2) 0.3389 (2) 0.23625 (8) 0.0296 (4) H13 0.6239 0.4107 0.2562 0.036* C14 0.56628 (17) 0.2461 (2) −0.03774 (7) 0.0219 (4) C15 0.60156 (17) 0.2860 (2) −0.09467 (7) 0.0235 (4) H15 0.6977 0.2993 −0.1005 0.028* C16 0.49504 (18) 0.3061 (2) −0.14248 (7) 0.0264 (4) supplementary materials sup-4 H16 0.5201 0.3327 −0.1801 0.032* C17 0.35113 (18) 0.2865 (2) −0.13443 (8) 0.0279 (4) H17 0.2796 0.3000 −0.1665 0.033* C18 0.31473 (18) 0.2469 (2) −0.07842 (8) 0.0285 (4) H18 0.2184 0.2339 −0.0729 0.034* C19 0.42147 (17) 0.2262 (2) −0.03020 (7) 0.0245 (4) H19 0.3958 0.1990 0.0073 0.029* C20 0.98292 (17) 0.4034 (2) 0.08670 (7) 0.0260 (4) H20 0.9135 0.4597 0.0573 0.031* C21 1.12258 (19) 0.3783 (2) 0.05890 (8) 0.0323 (4) H21A 1.1605 0.4851 0.0492 0.048* H21B 1.1035 0.3125 0.0232 0.048* H21C 1.1916 0.3215 0.0868 0.048* C22 1.01001 (18) 0.5154 (2) 0.14175 (8) 0.0318 (4) H22A 0.9239 0.5223 0.1610 0.048* H22B 1.0367 0.6252 0.1298 0.048* H22C 1.0865 0.4692 0.1691 0.048* N1 0.77103 (14) 0.25198 (17) 0.11728 (6) 0.0226 (3) N3 0.91274 (14) 0.11564 (18) 0.05278 (6) 0.0232 (3) H1N3 0.9978 0.0622 0.0463 0.028* O1 0.82249 (12) 0.04539 (16) −0.04171 (5) 0.0292 (3) O2 0.84733 (13) 0.23635 (17) 0.21657 (5) 0.0335 (3) Atomic displacement parameters (Å2) U11 U22 U33 U12 U13 U23 C2 0.0202 (8) 0.0296 (9) 0.0179 (8) 0.0028 (7) 0.0000 (6) −0.0023 (7) C4 0.0207 (8) 0.0246 (8) 0.0227 (8) −0.0016 (7) 0.0022 (6) −0.0002 (7) C5 0.0201 (8) 0.0254 (8) 0.0191 (8) −0.0008 (7) 0.0022 (6) 0.0008 (7) C6 0.0198 (7) 0.0273 (8) 0.0203 (8) 0.0023 (7) 0.0018 (6) 0.0029 (7) C7 0.0308 (9) 0.0247 (9) 0.0192 (8) 0.0059 (7) 0.0015 (7) 0.0028 (7) C8 0.0307 (9) 0.0265 (9) 0.0180 (8) 0.0051 (7) 0.0047 (6) 0.0049 (7) C9 0.0337 (9) 0.0316 (9) 0.0220 (8) 0.0023 (8) 0.0061 (7) 0.0021 (7) C10 0.0345 (10) 0.0382 (11) 0.0318 (10) −0.0026 (8) 0.0072 (7) 0.0062 (8) C11 0.0342 (10) 0.0420 (11) 0.0346 (10) 0.0079 (9) 0.0129 (8) 0.0104 (9) C12 0.0454 (11) 0.0349 (10) 0.0257 (9) 0.0146 (9) 0.0137 (8) 0.0055 (8) C13 0.0383 (10) 0.0281 (9) 0.0226 (8) 0.0056 (8) 0.0041 (7) 0.0020 (7) C14 0.0223 (8) 0.0227 (8) 0.0206 (8) 0.0007 (7) 0.0026 (6) −0.0009 (6) C15 0.0220 (8) 0.0266 (8) 0.0220 (8) −0.0008 (7) 0.0030 (6) −0.0003 (7) C16 0.0306 (9) 0.0292 (9) 0.0191 (8) −0.0001 (7) 0.0024 (7) 0.0012 (7) C17 0.0272 (8) 0.0317 (9) 0.0228 (8) 0.0052 (8) −0.0049 (6) −0.0012 (7) C18 0.0199 (8) 0.0370 (10) 0.0283 (9) 0.0023 (7) 0.0012 (7) −0.0021 (8) C19 0.0232 (8) 0.0311 (9) 0.0194 (8) 0.0012 (7) 0.0037 (6) 0.0007 (7) C20 0.0243 (8) 0.0282 (9) 0.0242 (8) 0.0011 (7) −0.0026 (6) −0.0001 (7) C21 0.0334 (9) 0.0343 (10) 0.0297 (9) −0.0054 (8) 0.0060 (7) −0.0005 (8) C22 0.0281 (9) 0.0325 (10) 0.0338 (10) 0.0004 (8) −0.0006 (7) −0.0090 (8) N1 0.0212 (7) 0.0292 (8) 0.0169 (7) 0.0030 (6) 0.0008 (5) 0.0012 (6) N3 0.0196 (6) 0.0270 (7) 0.0223 (7) 0.0034 (6) 0.0003 (5) −0.0030 (6) supplementary materials sup-5 O1 0.0247 (6) 0.0379 (7) 0.0243 (6) 0.0044 (5) 0.0001 (4) −0.0091 (5) O2 0.0325 (7) 0.0468 (8) 0.0197 (6) 0.0053 (6) −0.0031 (5) 0.0007 (6) Geometric parameters (Å, °) C2—N3 1.454 (2) C12—H12 0.9300 C2—N1 1.471 (2) C13—H13 0.9300 C2—C20 1.534 (2) C14—C19 1.393 (2) C2—H2 0.9800 C14—C15 1.399 (2) C4—O1 1.244 (2) C15—C16 1.386 (2) C4—N3 1.351 (2) C15—H15 0.9300 C4—C5 1.483 (2) C16—C17 1.387 (2) C5—C6 1.347 (2) C16—H16 0.9300 C5—C14 1.488 (2) C17—C18 1.382 (3) C6—N1 1.396 (2) C17—H17 0.9300 C6—H6 0.9300 C18—C19 1.394 (2) C7—O2 1.222 (2) C18—H18 0.9300 C7—N1 1.386 (2) C19—H19 0.9300 C7—C8 1.499 (2) C20—C22 1.526 (2) C8—C9 1.389 (3) C20—C21 1.527 (2) C8—C13 1.395 (2) C20—H20 0.9800 C9—C10 1.394 (2) C21—H21A 0.9600 C9—H9 0.9300 C21—H21B 0.9600 C10—C11 1.380 (3) C21—H21C 0.9600 C10—H10 0.9300 C22—H22A 0.9600 C11—C12 1.387 (3) C22—H22B 0.9600 C11—H11 0.9300 C22—H22C 0.9600 C12—C13 1.386 (3) N3—H1N3 0.9300 N3—C2—N1 106.75 (12) C16—C15—C14 120.86 (15) N3—C2—C20 112.78 (14) C16—C15—H15 119.6 N1—C2—C20 111.71 (13) C14—C15—H15 119.6 N3—C2—H2 108.5 C15—C16—C17 120.20 (15) N1—C2—H2 108.5 C15—C16—H16 119.9 C20—C2—H2 108.5 C17—C16—H16 119.9 O1—C4—N3 121.55 (15) C18—C17—C16 119.55 (15) O1—C4—C5 122.39 (14) C18—C17—H17 120.2 N3—C4—C5 115.88 (14) C16—C17—H17 120.2 C6—C5—C4 118.07 (15) C17—C18—C19 120.48 (16) C6—C5—C14 122.20 (15) C17—C18—H18 119.8 C4—C5—C14 119.36 (14) C19—C18—H18 119.8 C5—C6—N1 122.08 (15) C14—C19—C18 120.44 (16) C5—C6—H6 119.0 C14—C19—H19 119.8 N1—C6—H6 119.0 C18—C19—H19 119.8 O2—C7—N1 120.79 (16) C22—C20—C21 110.07 (14) O2—C7—C8 121.49 (15) C22—C20—C2 111.56 (15) N1—C7—C8 117.71 (14) C21—C20—C2 110.53 (14) C9—C8—C13 120.04 (16) C22—C20—H20 108.2 C9—C8—C7 122.16 (15) C21—C20—H20 108.2 C13—C8—C7 117.61 (16) C2—C20—H20 108.2 supplementary materials sup-6 C8—C9—C10 119.94 (17) C20—C21—H21A 109.5 C8—C9—H9 120.0 C20—C21—H21B 109.5 C10—C9—H9 120.0 H21A—C21—H21B 109.5 C11—C10—C9 119.90 (18) C20—C21—H21C 109.5 C11—C10—H10 120.0 H21A—C21—H21C 109.5 C9—C10—H10 120.0 H21B—C21—H21C 109.5 C10—C11—C12 120.21 (17) C20—C22—H22A 109.5 C10—C11—H11 119.9 C20—C22—H22B 109.5 C12—C11—H11 119.9 H22A—C22—H22B 109.5 C13—C12—C11 120.43 (17) C20—C22—H22C 109.5 C13—C12—H12 119.8 H22A—C22—H22C 109.5 C11—C12—H12 119.8 H22B—C22—H22C 109.5 C12—C13—C8 119.46 (18) C7—N1—C6 124.81 (14) C12—C13—H13 120.3 C7—N1—C2 119.25 (13) C8—C13—H13 120.3 C6—N1—C2 115.93 (13) C19—C14—C15 118.46 (15) C4—N3—C2 122.15 (14) C19—C14—C5 120.67 (15) C4—N3—H1N3 115.7 C15—C14—C5 120.87 (14) C2—N3—H1N3 117.6 O1—C4—C5—C6 165.73 (16) C14—C15—C16—C17 −0.1 (3) N3—C4—C5—C6 −9.5 (2) C15—C16—C17—C18 0.0 (3) O1—C4—C5—C14 −7.5 (2) C16—C17—C18—C19 −0.1 (3) N3—C4—C5—C14 177.25 (14) C15—C14—C19—C18 −0.4 (3) C4—C5—C6—N1 6.5 (2) C5—C14—C19—C18 −179.68 (16) C14—C5—C6—N1 179.57 (15) C17—C18—C19—C14 0.3 (3) O2—C7—C8—C9 −129.50 (19) N3—C2—C20—C22 −171.05 (13) N1—C7—C8—C9 49.6 (2) N1—C2—C20—C22 68.70 (17) O2—C7—C8—C13 45.5 (2) N3—C2—C20—C21 −48.23 (18) N1—C7—C8—C13 −135.33 (17) N1—C2—C20—C21 −168.48 (13) C13—C8—C9—C10 0.1 (3) O2—C7—N1—C6 −173.99 (16) C7—C8—C9—C10 175.01 (16) C8—C7—N1—C6 6.9 (2) C8—C9—C10—C11 1.1 (3) O2—C7—N1—C2 7.3 (2) C9—C10—C11—C12 −1.0 (3) C8—C7—N1—C2 −171.89 (14) C10—C11—C12—C13 −0.3 (3) C5—C6—N1—C7 −155.06 (17) C11—C12—C13—C8 1.5 (3) C5—C6—N1—C2 23.7 (2) C9—C8—C13—C12 −1.4 (3) N3—C2—N1—C7 132.30 (15) C7—C8—C13—C12 −176.52 (15) C20—C2—N1—C7 −104.00 (17) C6—C5—C14—C19 −38.0 (2) N3—C2—N1—C6 −46.57 (18) C4—C5—C14—C19 134.97 (17) C20—C2—N1—C6 77.13 (17) C6—C5—C14—C15 142.74 (18) O1—C4—N3—C2 165.52 (15) C4—C5—C14—C15 −44.3 (2) C5—C4—N3—C2 −19.2 (2) C19—C14—C15—C16 0.3 (3) N1—C2—N3—C4 46.0 (2) C5—C14—C15—C16 179.55 (15) C20—C2—N3—C4 −77.04 (19) Hydrogen-bond geometry (Å, °) D—H···A D—H H···A D···A D—H···A N3—H1N3···O1i 0.93 1.90 2.827 (2) 174 C9—H9···Cgii 0.93 2.82 3.632 (2) 147 supplementary materials sup-7 Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y, −z. Fig. 1 supplementary materials sup-8 Fig. 2