RESSALVA Atendendo solicitação do(a) autor(a), o texto completo desta dissertação será disponibilizado somente a partir de 28/04/2024. UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” FACULDADE DE MEDICINA VETERINÁRIA E ZOOTECNIA BOTUCATU AVALIAÇÃO DE BIOMARCADORES NO LÍQUIDO SINOVIAL EM EQUINOS COM SINOVITE INDUZIDA TRATADOS COM CÉLULAS- TRONCO MESENQUIMAIS VITTORIA GUERRA ALTHEMAN Botucatu, São Paulo Abril de 2022. UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” FACULDADE DE MEDICINA VETERINÁRIA E ZOOTECNIA AVALIAÇÃO DE BIOMARCADORES NO LÍQUIDO SINOVIAL EM EQUINOS COM SINOVITE INDUZIDA TRATADOS COM CÉLULAS- TRONCO MESENQUIMAIS VITTORIA GUERRA ALTHEMAN Dissertação apresentada junto ao Programa de Biotecnologia da Animal para obtenção do Título de Mestre. Universidade Estadual Paulista “Júlio de Mesquita Filho” Faculdade de Medicina Veterinária e Zootecnia Orientadora: Profª Dra. Ana Liz Garcia Alves Botucatu, São Paulo Abril de 2022 Autor: Vittoria Guerra Altheman Data: 28 de Abril de 2022. FICHA CATALOGRÁFICA ELABORADA PELA SEÇÃO TÉC. AQUIS. TRATAMENTO DA INFORM. DIVISÃO TÉCNICA DE BIBLIOTECA E DOCUMENTAÇÃO - CÂMPUS DE BOTUCATU - UNESP BIBLIOTECÁRIA RESPONSÁVEL: ROSEMEIRE APARECIDA VICENTE-CRB 8/5651 iii Comissão Examinadora Profª Dra. Ana Liz Garcia Alves Orientadora Departamento de Cirurgia Veterinária e Reprodução Animal FMVZ, UNESP, Botucatu Profª Dra. Fernanda de Castro Stievani Membro Departamento de Ciências Agrárias. Universidade de Taubaté Medicina Veterinária, UNITAU, Taubaté Prof. Dr. Marcos Jun Watanabe Membro Departamento de Cirurgia Veterinária e Reprodução Animal FMVZ, UNESP, Botucatu iii Agradecimentos Agradeço à Profª Dra. Ana Liz Garcia Alves por me orientar desde o início e por compartilhar seus conhecimentos, sabedoria e conselhos. A todos que me acompanharam em cada processo da minha formação como pessoa, desde a infância até agora: minha família de sangue, minha família de Botucatu, meus amigos e colegas. À CAPES, à CNPq e à FAPESP pela concessão da bolsa de mestrado. O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001, pelo Programa de Demanda Social. iv LISTA DE FIGURAS Figura 1. Mecanismos da progressão da osteoartrite. 6 Figura 2. Análise da concentração do marcador CPII do líquido sinovial no momento inicial, 8, 24, 72 horas, 7 e 14 dias após a indução da sinovite. Os tratamentos foram realizados após a coleta do momento 8h 28 Figura 3. Análise da concentração sinovial do marcador C2C no momento inicial, 8, 24, 72 horas, 7 e 14 dias após a indução da sinovite 29 Figura 4. Análise da concentração sinovial do marcador CS846 no momento inicial, 8, 24, 72 horas, 7 e 14 dias após a indução da sinovite 31 v LISTA DE TABELAS Tabela 1 . Quantificação da concentração sinovial de CPII. As letras minúsculas indicam comparação do mesmo grupo nos diferentes momentos e as maiúsculas comparam os diferentes grupos no mesmo momento 29 Tabela 2. Quantificação da concentração sinovial de C2C. As letras minúsculas indicam comparação do mesmo grupo nos diferentes momentos e as maiúsculas comparam os diferentes grupos no mesmo momento 30 Tabela 3. Quantificação da concentração sinovial de CS846. As letras minúsculas indicam comparação do mesmo grupo nos diferentes momentos e as maiúsculas comparam os diferentes grupos no mesmo momento 31 vi SUMÁRIO RESUMO vii ABSTRACT viii Capítulo 1 1 1. Introdução e Justificativa 1 2. Revisão bibliográfica 3 3. Referências 11 Capítulo 2 19 1. INTRODUÇÃO 21 2. MATERIAL E MÉTODOS 22 2.1. Delineamento experimental 22 2.2. Obtenção e Cultivo das CTMs 25 2.3. Indução experimental da sinovite e tratamento 26 2.4. Quantificação de C2C, CPII e CS846 por ELISA 26 2.5. Análise estatística 27 3. RESULTADOS 28 3.1. Concentração sinovial de CPII 28 3.2. Concentração sinovial de C2C 29 3.3. Concentração sinovial de CS846 30 4. DISCUSSÃO 32 5. CONCLUSÃO 37 6. REFERÊNCIAS 39 vii ALTHEMAN, V. G. Avaliação de biomarcadores no líquido sinovial em equinos com sinovite induzida tratados com células-tronco mesenquimais. Botucatu, 2022. Dissertação de Mestrado. 42 páginas. Faculdade de Medicina Veterinária e Zootecnia, câmpus Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho”. RESUMO Os constantes impactos no sistema locomotor de equinos atletas gerados pelo intenso exercício físico levam ao surgimento de lesões articulares, como a inflamação da membrana sinovial que, se não tratada, pode evoluir para um quadro de osteoartrite (OA) e posterior afastamento do esporte. A utilização de células tronco mesenquimais (CTMs) vem ganhando destaque nestes casos como uma possibilidade de tratamento que busca modificar a progressão desta enfermidade. O objetivo do presente trabalho foi investigar o efeito das CTMs alogênicas derivadas da membrana sinovial (CTMms) sobre a síntese e degradação da cartilagem articular em casos de sinovite aguda em equinos. A sinovite foi induzida utilizando 0,5ng de LPS via intra-articular (IA) e os animais foram tratados 8 horas após a indução. O grupo controle recebeu como tratamento 2 mL de PBS IA, enquanto o grupo tratado recebeu 107 CTMms IA. Foi realizada a determinação da concentração sinovial dos biomarcadores de síntese e degradação de colágeno, CPII e C2C respectivamente, e de síntese de agrecam, CS846, através de teste imunoenzimático (ELISA). A análise revelou aumento significativo nos níveis de CPII (P= 0,019) e de CS846 (P=0,032) no grupo controle no momento 14 dias e também aumento nos níveis de C2C (P= 0,015) no momento 24h, quando comparados com o grupo tratado. Os dados avaliados sugerem que as CTMs interagiram na manutenção da homeostase da cartilagem articular, exercendo uma atividade no ambiente que resultou em menor dano nas primeiras 24 horas e, consequentemente, menor necessidade de reparo posterior. Palavras-chave: terapia regenerativa; membrana sinovial; inflamação sinovial. viii ALTHEMAN, V. G. Evaluation of biomarkers in synovial fluid in horses with induced synovitis treated with mesenchymal stem cells. Botucatu, 2022. Master 's Thesis. 42 pages. School of Veterinary Medicine and Animal Science, campus Botucatu , São Paulo State University “Júlio de Mesquita Filho”. ABSTRACT The constant impacts on the locomotor system of equine athletes generated by intense physical exercise lead to the emergence of joint injuries, such as inflammation of the synovial membrane that, if left untreated, can progress to osteoarthritis (OA) and subsequent withdrawal from sport. The use of mesenchymal stem cells (MSCs) has been gaining prominence in these cases as a possible treatment that seeks to modify the progression of this disease. The aim of the present work was to investigate the effect of allogeneic MSCs derived from the synovial membrane (mMSCs) on the synthesis and degradation of articular cartilage in cases of acute synovitis in horses. Synovitis was induced using 0.5ng of LPS via intra-articular (IA) and the animals were treated 8 hours after induction. The control group received 2 mL of PBS IA as treatment, while the treated group received 107 mMSCs IA. The synovial concentration of collagen synthesis and degradation biomarkers, CPII and C2C, respectively, and aggrecan synthesis biomarkers, CS846, were determined by enzyme immunoassay (ELISA). The analysis revealed a significant increase in the levels of CPII (P=0.019) and CS846 (P=0.032) in the control group at 14 days and also an increase in C2C levels (P=0.015) at 24h, when compared with the group treated. The evaluated data suggest that MSCs interacted in the maintenance of articular cartilage homeostasis, exerting an activity in the environment that resulted in less damage in the first 24 hours and, consequently, less need for later repair. Keywords: regenerative therapy; synovial membrane; synovial inflammation. 12 3. Referências BENITO, M. J., VEALE, D. J., FITZGERALD, O., VAN DEN BERG, W. B.; BRESNIHAN, B. Synovial tissue inflammation in early and late osteoarthritis. Annals of the Rheumatic Diseases, v. 64(9), p. 1263–1267. 2005. https://doi.org/10.1136/ard.2004.025270 BIANCHI, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. Journal of Leukocyte Biology, v. 81, n.1, p. 1–5. 2007. https://doi.org/10.1189/jlb.0306164 CHU, C. R., SZCZODRY, M.; BRUNO, S. Animal Models for Cartilage Regeneration and Repair. Tissue Engineering: Part B, v. 1(1), p. 105-115. 2010. https://doi.org/10.1089/ten.TEB.2009.0452 CIFÙ, A.; DOMENIS, R.; POZZI-MUCELLI, M.; DI BENEDETTO, P.; CAUSERO, A., MORETTI, M.; STEVANATO, M.; PISTIS, C.; PARODI, P. C.; FABRIS, M.; CURCIO, F . The Exposure to Osteoarthritic Synovial Fluid Enhances the Immunomodulatory Profile of Adipose Mesenchymal Stem Cell Secretome.Stem Cells International, v. 2020, p. 1-13. 2020. https://doi.org/10.1155/2020/4058760 COLBATH, A. C., FRISBIE, D. D., DOW, S. W., KISIDAY, J. D., MCILWRAITH, C. W.; GOODRICH, L. R. Equine Models for the Investigation of Mesenchymal Stem Cell Therapies in Orthopaedic Disease. Operative Techniques in Sports Medicine, v. 25(1), p. 41–49. 2017. https://doi.org/10.1053/j.otsm.2016.12.007 DE BARI, C., DELL’ACCIO, F., TYLZANOWSKI, P.; LUYTEN, F. P . Multipotent Mesenchymal Stem Cells From Adult Human Synovial Membrane. ARTHRITIS & RHEUMATISM, v. 44 (8), p. 1928–1942, 2001. https://doi.org/10.1002/1529-0131 https://doi.org/10.1136/ard.2004.025270 https://doi.org/10.1189/jlb.0306164 13 DE GRAUW, J. C., VAN DE LEST, C. H. A., BRAMA, P. A. J., RAMBAGS, B. P. B.; VAN WEEREN, P. R. In vivo effects of meloxicam on inflammatory mediators, MMP activity and cartilage biomarkers in equine joints with acute synovitis. Equine Veterinary Journal, v. 41(7), p. 693–699. 2009. https://doi.org/10.2746/042516409X436286 DE GRAUW, J. C.; VAN LOON, J. P. A. M.; VAN DE LEST, C. H. A.; BRUNOTT, A.; VAN WEEREN, P. R . In vivo effects of phenylbutazone on inflammation and cartilage-derived biomarkers in equine joints with acute synovitis. Veterinary Journal, v. 201(1), p. 51–56. 2014. https://doi.org/10.1016/j.tvjl.2014.03.030 DE SOUSA, E. B.; LADEIRA CASADO, P.; NETO, V. M.; DUARTE, M. E. L.; AGUIAR, D. P . Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives. Stem Cell Research & Therapy, v. 5(5). 2014. https://doi.org/10.1186/scrt501 DYCE, K. M; SACK, W. G.; WENSING, C. J. G. Tratado de Anatomia Veterinária. Rio de Janeiro: 4 ed. Elsevier Editora Ltda, 2010. 1714p. FAHY, N., DE VRIES-VAN MELLE, M. L., LEHMANN, J., WEI, W., GROTENHUIS, N., FARRELL, E., VAN DER KRAAN, P. M., MURPHY, J. M., BASTIAANSEN- JENNISKENS, Y. M.; VAN OSCH, G. J. V. M. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthritis and Cartilage, v. 22(8), p. 1167–1175. 2014. https://doi.org/10.1016/j.joca.2014.05.021 FINNSON, K.W.; CHI Y, BOU-GHARIOS G, LEASK A, PHILIP A . TGF-b signaling in cartilage homeostasis and osteoarthritis. Front Biosci (Schol Ed). v.4, p.251-68, 2012 https://doi.org/10.1016/j.joca.2014.05.021 14 FRISBIE, D.D. et al. Evaluation of polysulfated glycosaminoglycan or sodium hyaluronan administered intra-articularly for treatment of horses with experimentally induced osteoarthritis. American Journal of Veterinary Research. v.70, p. 203-209, 2009. https://doi.org/10.2460/ajvr.70.2.203 HAN, D., FANG, Y., TAN, X., JIANG, H., GONG, X., WANG, X., HONG, W., TU, J.; WEI, W. The emerging role of fibroblast-like synoviocytes-mediated synovitis in osteoarthritis: An update. Journal of Cellular and Molecular Medicine, v. 24(17), p. 9518–9532. 2020. https://doi.org/10.1111/jcmm.15669 ISHIBASHI, K.; SASAKI, E.; OTA, S.; CHIBA, D.; YAMAMOTO, Y.; TSUDA, E.; YOSHIKUNI, S.; IHARA, K.; ISHIBASHI, Y. Detection of synovitis in early knee osteoarthritis by MRI and serum biomarkers in Japanese general population. Scientific Reports, v. 10(1). 2020. https://doi.org/10.1038/s41598-020-69328-w JIANG, K., NIE, H., LI, D.; YAN, X. New insights into the Manila clam and PAMPs interaction based on RNA-seq analysis of clam through in vitro challenges with LPS, PGN, and poly(I:C). BMC Genomics, v. 21, n. 1. 2020. https://doi.org/10.1186/s12864-020-06914-2 JUNQUEIRA, L. C.; CARNEIRO, J.; ABRAHAMSOHN, P. Cap 7. Tecido Cartilaginoso. In: Histologia básica: texto e atlas. 13. ed. Rio de Janeiro: Guanabara Koogan, 2017. KOIZUMI, K., EBINA, K., HART, D. A., HIRAO, M., NOGUCHI, T., SUGITA, N., YASUI, Y., CHIJIMATSU, R., YOSHIKAWA, H., & NAKAMURA, N. . Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering approach. Osteoarthritis and Cartilage, v. 24(8), p. 1413–1422. 2016. https://doi.org/10.1016/j.joca.2016.03.006 https://doi.org/10.1038/s41598-020-69328-w 15 KONIG, H. E.; LIEBICH, H. Anatomia dos animais domésticos - texto e atlas colorido. 6 ed. Artmed Editora Ltda. 2016. 824p. LAVERTY, S.; IONESCU, M.; MARCOUX, M.; BOURE, L.; DOIZE, B.; POOLE, A.R. Alterations in cartilage type-II procollagen and aggrecan contents in synovial fluid in equine osteochondrosis. J. orthop. Res., v. 18, p. 399-405. 2000. LI, N., GAO, J., MI, L., ZHANG, G., ZHANG, L., ZHANG, N., HUO, R., HU, J.; XU, K. Synovial membrane mesenchymal stem cells: Past life, current situation, and application in bone and joint diseases. Stem Cell Research and Therapy, v. 11(1). 2020. https://doi.org/10.1186/s13287-020-01885-3 LOTZ, M.; MARTEL-PELLETIER, J.; CHRISTIANSEN, C.; BRANDI, M. L.; BRUYÈRE, O., CHAPURLAT, R.; COLLETTE, J.; COOPER, C.; GIACOVELLI, G.; KANIS, J. A.; KARSDAL, M. A., KRAUS, V.; LEMS, W. F.; MEULENBELT, I.; PELLETIER, J. P.; RAYNAULD, J. P., REITER-NIESERT, S., RIZZOLI, R.; SANDELL, L. J.; REGINSTER, J. Y. Value of biomarkers in osteoarthritis: Current status and perspectives. Postgraduate Medical Journal, v. 90(1061), p. 171–178. 2014. https://doi.org/10.1136/postgradmedj-2013-203726rep LV, Z.; XU, X.; SUN, Z.; YANG, Y. X.; GUO, H.; LI, J.; SUN, K.; WU, R.; XU, J.; JIANG, Q.; IKEGAWA, S.; SHI, D. TRPV1 alleviates osteoarthritis by inhibiting M1 macrophage polarization via Ca2+/CaMKII/Nrf2 signaling pathway. Cell Death and Disease, v. 12(6). 2021 https://doi.org/10.1038/s41419-021-03792-8 16 MAHON, O. R.; KELLY, D. J.; MCCARTHY; G. M.; DUNNE, A. Osteoarthritis- associated basic calcium phosphate crystals alter immune cell metabolism and promote M1 macrophage polarization. Osteoarthritis and Cartilage, v. 28(5), p. 603– 612. 2020. https://doi.org/10.1016/j.joca.2019.10.010 MARTINON, F.; MAYOR, A.; TSCHOPP, J. The inflammasomes: Guardians of the body. Annual Review of Immunology, v. 27, p. 229–265. 2009. https://doi.org/10.1146/annurev.immunol.021908.13271 MCILWRAITH, C. W. Joint injuries and disease and osteoarthritis. In: BAXTER, G. M. Adams and Stashak's lameness in horses. 7 ed. John Wiley & Sons. 2020. Cap. 7, p. 801-819. MCILWRAITH, C. W., FRISBIE, D. D., KAWCAK, C. E.; WEEREN, R. V. Joint disease in the horse. 2 ed. Elsevier Inc. 2016. 407 p. MCILWRAITH, C. W., FRISBIE, D. D., KAWCAK, C. E. The horse as a model of naturally occurring osteoarthritis. Bone and Joint Research, v. 1(11), p. 297-309. 2012. https://doi.org/10.1302/2046-3758.111 MENARIM, B. C.; GILLIS, K. H.; OLIVER, A.; NGO, Y.; WERRE, S. R.; BARRETT, S. H., RODGERSON, D. H.; DAHLGREN, L. A. Macrophage Activation in the Synovium of Healthy and Osteoarthritic Equine Joints. Frontiers in Veterinary Science, v. 7. 2020. https://doi.org/10.3389/fvets.2020.568756 https://doi.org/10.1302/2046-3758.111 https://doi.org/10.3389/fvets.2020.568756 17 NEUENSCHWANDER, H. M., MOREIRA, J. J., VENDRUSCOLO, C. P., FÜLBER, J., SEIDEL, S. R. T., MICHELACCI, Y. M.; BACCARIN , R. Y. A. Hyaluronic acid has chondroprotective and joint-preserving effects on LPS-induced synovitis in horses. Journal of Veterinary Science, v. 20(6). 2019. https://doi.org/10.4142/jvs.2019 20.e67 ROBINSON, W. H., LEPUS, C. M., WANG, Q., RAGHU, H., MAO, R., LINDSTROM, T. M.; SOKOLOVE, J . Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nature Reviews Rheumatology, v. 12 (10), p. 580– 592. 2016. https://doi.org/10.1038/nrrheum.2016.136 ROSA, G., KRIECK, A. M. T., PADULA, E., PFEIFER, J. P. H., DE SOUZA, J. B., ROSSI, M., STIEVANI, F., DEFFUNE, E., TAKAHIRA, R.; ALVES, A. L. G. Allogeneic synovial membrane-derived mesenchymal stem cells do not significantly affect initial inflammatory parameters in a LPS-induced acute synovitis model. Research in Veterinary Science, v. 132, p. 485–491. 2020. https://doi.org/10.1016/j.rvsc.2020.08.001 SANTOS, V. H.; PFEIFER, J. P. H.; DE SOUZA, J. B.; MILANI, B. H. G.; DE OLIVEIRA, R. A.; ASSIS, M. G.; DEFFUNE, E.; MOROZ, A.; ALVES, A. L. G. Culture of mesenchymal stem cells derived from equine synovial membrane in alginate hydrogel microcapsules. BMC Veterinary Research, v. 14(1). 2018. https://doi.org/10.1186/s12917-018-1425-0 SOKOLOVE, J.; LEPUS, C. M. Role of inflammation in the pathogenesis of osteoarthritis: Latest findings and interpretations. Therapeutic Advances in Musculoskeletal Disease, v. 5 (2), p. 77–94. 2013. https://doi.org/10.1016/j.rvsc.2020.08.001 18 https://doi.org/10.1177/1759720X12467868 https://doi.org/10.1177/1759720X12467868 19 SUTTON, S.; CLUTTERBUCK, A.; HARRIS, P.; GENT, T.; FREEMAN, S.; FOSTER, N.; BARRET-JOLLEY, R.; MOBASHERI, A.The contribution of the synovium, synovial derived inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. The Veterinary Journal, v. 179, n.1, p. 10-24, 2009. TO, K.; ZHANG, B.; ROMAIN, K.; MAK, C.; KHAN, W. Synovium-Derived Mesenchymal Stem Cell Transplantation in Cartilage Regeneration: A PRISMA Review of in vivo Studies. Frontiers in Bioengineering and Biotechnology, v. 7. 2019. Frontiers Media S.A. https://doi.org/10.3389/fbioe.2019.00314 VAN DER KRAAN, P. M.; BLANEY DAVIDSON, E. N.; VAN DEN BER, W. B. Bone morphogenic proteins and articular cartilage: to serve and protect or a wolf in sheep clothing’s? Osteoarthritis and Cartilage, v. 15, n. 3, p. 237-244. 2007. WANG, G., Li, X., JIANG, R., Li, Y., FAN, X., ZHENG, Y.; GAO, L. Changes in synovial fluid inflammatory mediators and cartilage biomarkers after experimental acute equine synovitis. Bulletin of the Veterinary Institute in Pulawy, v. 59(1), p. 129– 134. 2015 https://doi.org/10.1515/bvip-2015-0019 WILLIAMS, L. B., KOENIG, J. B., BLACK, B., GIBSON, T. W. G., SHARIF, S.; KOCH, T. G. Equine allogeneic umbilical cord blood derived mesenchymal stromal cells reduce synovial fluid nucleated cell count and induce mild self-limiting inflammation when evaluated in an lipopolysaccharide induced synovitis model. Equine Veterinary Journal, v. 48(5), p. 619–625. 2016. https://doi.org/10.1111/evj.12477 ZAYED, M.; NEWBY, S.; MISK, N.; DONNELL, R.; DHAR, M. (2018). Xenogenic implantation of equine synovial fluid-derived mesenchymal stem cells leads to articular cartilage regeneration. Stem Cells International, 2018. https://doi.org/10.1155/2018/1073705 https://doi.org/10.3389/fbioe.2019.00314 https://doi.org/10.1111/evj.12477 https://doi.org/10.1155/2018/1073705 20 ZHANG, H., CAI, D.; BAI, X. Macrophages regulate the progression of osteoarthritis. Osteoarthritis and Cartilage, v. 28(5), p.555–561. 2020. https://doi.org/10.1016/j.joca.2020.01.007 43 Agradecimentos À CAPES, à CNPq e à FAPESP pela concessão da bolsa de mestrado. O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001, pelo Programa de Demanda Social. 44 6. REFERÊNCIAS ARSHI, A.; PETRIGLIANO, F. A.; WILLIAMS, R. J.; JONES, K. J. Stem Cell Treatment for Knee Articular Cartilage Defects and Osteoarthritis. Current Reviews in Musculoskeletal Medicine, v. 13, n. 1, p. 20–27, 2020. https://doi.org/10.1007/s12178-020-09598-z ATUKORALA, I., KWOH, C. K., GUERMAZI, A., ROEMER, F. W., BOUDREAU, R. M., HANNON, M. J., & HUNTER, D. J. Synovitis in knee osteoarthritis: A precursor of disease? Annals of the Rheumatic Diseases, v. 75(2), p. 390–395. 2016. https://doi.org/10.1136/annrheumdis-2014-205894 BARRY, F.; MURPHY, M. Mesenchymal stem cells in joint disease and repair. Nature Reviews Rheumatology, v. 9, n. 10, p. 584–594. 2013. https://doi.org/10.1038/nrrheum.2013.109 BERENBAUM, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis), Osteoarthritis and Cartilage, v. 21, n. 1, p. 16-21, 2013. CARVALHO, A. M. et al. Characterization of mesenchymal stem cells derived from equine adipose tissue. Arq. Bras. Med. Vet. Zootec., Belo Horizonte , v. 65, n. 4, p. 939- 945, 2013 https://doi.org/10.1007/s12178-020-09598-z https://doi.org/10.1136/annrheumdis-2014-205894 https://doi.org/10.1038/nrrheum.2013.109 45 CARVALHO, A. É. S., SOUSA, M. R. R., ALENCAR-SILVA, T., CARVALHO, J. L.; SALDANHA-ARAUJO, F. Mesenchymal stem cells immunomodulation: The road to IFN-γ licensing and the path ahead. Cytokine and Growth Factor Reviews, v. 47, p. 32–42, 2019. https://doi.org/10.1016/j.cytogfr.2019.05.006 CHEN, W., SUN, Y., GU, X., HAO, Y., LIU, X., LIN, J., CHEN, J., & CHEN, S. Conditioned medium of mesenchymal stem cells delays osteoarthritis progression in a rat model by protecting subchondral bone, maintaining matrix homeostasis, and enhancing autophagy. Journal of Tissue Engineering and Regenerative Medicine, v. 13, n. 9, p. 1618–1628, 2019. https://doi.org/10.1002/term.2916 COKELAERE, S. M.; PLOMP, S. G. M.; DE BOEF, E.; DE LEEUW, M.; BOOL, S.; VAN DE LEST, C. H. A.; VAN WEEREN, P. R.; KORTHAGEN, N. M. Sustained intra-articular release of celecoxib in an equine repeated LPS synovitis model. European Journal of Pharmaceutics and Biopharmaceutics, v. 128, p. 327–336, 2018. https://doi.org/10.1016/j.ejpb.2018.05.00 COPPELMAN, E. B., DAVID, F. H., TÓTH, F., ERNST, N. S., & TRUMBLE, T. N. The association between collagen and bone biomarkers and radiographic osteoarthritis in the distal tarsal joints of horses. Equine Veterinary Journal, v. 52, n. 3, p. 391–398. 2020. https://doi.org/10.1111/evj.13187 https://doi.org/10.1016/j.cytogfr.2019.05.006 https://doi.org/10.1002/term.2916 https://doi.org/10.1016/j.ejpb.2018.05.001 https://doi.org/10.1111/evj.13187 46 DE GRAUW, J. C., VAN DE LEST, C. H. A., BRAMA, P. A. J., RAMBAGS, B. P. B.; VAN WEEREN, P. R. In vivo effects of meloxicam on inflammatory mediators, MMP activity and cartilage biomarkers in equine joints with acute synovitis. Equine Veterinary Journal, v. 41(7), p. 693–699. 2009. https://doi.org/10.2746/042516409X436286 DE GRAUW, J. C. Molecular monitoring of equine joint homeostasis. Veterinary Quarterly, v. 31, Issue 2, p. 77–86, 2011. https://doi.org/10.1080/01652176.2011.565546 DE GRAUW, J. C.; VAN LOON, J. P. A. M.; VAN DE LEST, C. H. A.; BRUNOTT, A.; VAN WEEREN, P. R . In vivo effects of phenylbutazone on inflammation and cartilage-derived biomarkers in equine joints with acute synovitis. Veterinary Journal, v. 201(1), p. 51–56. 2014. https://doi.org/10.1016/j.tvjl.2014.03.030 FINNSON, K.W.; FINNSON, K.W.; CHI Y, BOU-GHARIOS G, LEASK A, PHILIP A . TGF- b signaling in cartilage homeostasis and osteoarthritis. Front Biosci (Schol Ed). v.4, p.251-68, 2012. FRISBIE, D. D., AL-SOBAYIL, F., BILLINGHURST, R. C., KAWCAK, C. E., & MCILWRAITH, C. W. Changes in synovial fluid and serum biomarkers with exercise and early osteoarthritis in horses. Osteoarthritis and Cartilage, v. 16, n. 10, p. 1196–1204. 2008. https://doi.org/10.1016/j.joca.2008.03.008 HAN, D., FANG, Y., TAN, X., JIANG, H., GONG, X., WANG, X., HONG, W., TU, J.; WEI, W. The emerging role of fibroblast-like synoviocytes-mediated synovitis in https://doi.org/10.1080/01652176.2011.565546 https://doi.org/10.1016/j.tvjl.2014.03.030 47 osteoarthritis: An update. Journal of Cellular and Molecular Medicine, v. 24(17), p. 9518–9532. 2020. https://doi.org/10.1111/jcmm.15669 HUNTER, D. J.; BIERMA-ZEINSTRA, S. . Osteoarthritis. The Lancet, v. 393, n. 10182, p. 1745–1759. 2019. https://doi.org/10.1016/S0140-6736(19)30417-9 ISHIBASHI, K.; SASAKI, E.; OTA, S.; CHIBA, D.; YAMAMOTO, Y.; TSUDA, E.; YOSHIKUNI, S.; IHARA, K.; ISHIBASHI, Y. Detection of synovitis in early knee osteoarthritis by MRI and serum biomarkers in Japanese general population. Scientific Reports, v. 10(1). 2020. https://doi.org/10.1038/s41598-020-69328-w JUNQUEIRA, L. C.; CARNEIRO, J.; ABRAHAMSOHN, P. Cap 7. Tecido Cartilaginoso. In: Histologia básica: texto e atlas. 13. ed. Rio de Janeiro: Guanabara Koogan, 2017. KHATAB, S., VAN OSCH, G. J. V. M., KOPS, N., BASTIAANSEN-JENNISKENS, Y. M., BOS, P. K., VERHAAR, J. A. N., BERNSEN, M. R.; BUUL, G. M. Mesenchymal stem cell secretome reduces pain and prevents cartilage damage in a murine osteoarthritis model. European Cells and Materials, v. 36, p. 218–230. https://doi.org/10.22203/eCM.v036a16 LOTZ, M.; MARTEL-PELLETIER, J.; CHRISTIANSEN, C.; BRANDI, M. L.; BRUYÈRE, O., CHAPURLAT, R.; COLLETTE, J.; COOPER, C.; GIACOVELLI, G.; KANIS, J. A.; KARSDAL, M. A., KRAUS, V.; LEMS, W. F.; MEULENBELT, I.. PELLETIER, J. P.; RAYNAULD, J. P., REITER-NIESERT, S., RIZZOLI, R.; SANDELL, L. J.; REGINSTER, J. Y. Value of biomarkers in osteoarthritis: Current status and perspectives. Postgraduate Medical Journal, v. 90(1061), p. 171–178. 2014. https://doi.org/10.1136/postgradmedj-2013-203726rep https://doi.org/10.1111/jcmm.15669 https://doi.org/10.1016/S0140-6736(19)30417-9 https://doi.org/10.22203/eCM.v036a16 https://doi.org/10.1136/postgradmedj-2013-203726rep 48 LUCIA, J. L.; COVERDALE, J. A.; ARNOLD, C. E.; WINSCO, K. N. Influence of an intra-articular lipopolysaccharide challenge on markers of inflammation and cartilage metabolism in young horses 1. J. Anim. Sci, v. 91, p. 2693–2699, 2013. https://doi.org/10.2527/jas2012-5981 MA, T., ZHANG, Z., SONG, X., BAI, H., LI, Y., LI, X., ZHAO, J., MA, Y.; GAO, L. Combined detection of COMP and CS846 biomarkers in experimental rat osteoarthritis: A potential approach for assessment and diagnosis of osteoarthritis. Journal of Orthopaedic Surgery and Res., v. 13, n. 1. 2018 https://doi.org/10.1186/s13018-018-0938-3 MENARIM, B. C.; GILLIS, K. H.; OLIVER, A.; NGO, Y.; WERRE, S. R.; BARRETT, S. H., RODGERSON, D. H.; DAHLGREN, L. A. Macrophage Activation in the Synovium of Healthy and Osteoarthritic Equine Joints. Frontiers in Veterinary Science, v. 7. 2020. https://doi.org/10.3389/fvets.2020.568756 MUELLER, M. B., & TUAN, R. S. Anabolic/Catabolic balance in pathogenesis of osteoarthritis: identifying molecular targets. PM & R : the journal of injury, function, and rehabilitation, v. 3, n. 6, 2011. https://doi.org/10.1016/j.pmrj.2011.05.009 ROBINSON, W. H., LEPUS, C. M., WANG, Q., RAGHU, H., MAO, R., LINDSTROM, T. M.; SOKOLOVE, J . Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nature Reviews Rheumatology, v. 12 (10), p. 580– 592. 2016. https://doi.org/10.1038/nrrheum.2016.136 ROSA, G., KRIECK, A. M. T., PADULA, E., PFEIFER, J. P. H., DE SOUZA, J. B., ROSSI, M., STIEVANI, F., DEFFUNE, E., TAKAHIRA, R.; ALVES, A. L. G. https://doi.org/10.2527/jas2012-5981 https://doi.org/10.3389/fvets.2020.568756 https://doi.org/10.1016/j.pmrj.2011.05.009 49 Allogeneic synovial membrane-derived mesenchymal stem cells do not significantly affect initial inflammatory parameters in a LPS-induced acute synovitis model. Research in Veterinary Science, v. 132, p. 485–491. 2020. https://doi.org/10.1016/j.rvsc.2020.08.001 SOKOLOVE, J.; LEPUS, C. M. Role of inflammation in the pathogenesis of osteoarthritis: Latest findings and interpretations. Therapeutic Advances in Musculoskeletal Disease, v. 5 (2), p. 77–94. 2013. https://doi.org/10.1177/1759720X12467868 VAN WEEREN, P.R. Cap. 1. History of locomotor research. In: BACK, W.; CLAYTON, H. Equine locomotion. 1. ed. Saudenders, 2001. WANG, G., Li, X., JIANG, R., Li, Y., FAN, X., ZHENG, Y.; GAO, L. Changes in synovial fluid inflammatory mediators and cartilage biomarkers after experimental acute equine synovitis. Bulletin of the Veterinary Institute in Pulawy, v. 59(1), p. 129–134. 2015 https://doi.org/10.1515/bvip-2015-0019 WILLIAMS, L.B.; KOENIG, J. B., BLACK, B., GIBSON, T. W., SHARIF, S., & KOCH, T. G. Equine allogeneic umbilical cord blood derived mesenchymal stromal cells reduce synovial fluid nucleated cell count and induce mild self-limiting inflammation when evaluated in an lipopolysaccharide induced synovitis model. EVJ., v. 48, p. 619–25, 2016. ISSN 0425-1644. DOI: 10.1111/evj.12477 ZHANG, H., CAI, D.; BAI, X. Macrophages regulate the progression of osteoarthritis. Osteoarthritis and Cartilage, v. 28(5), p. 555–561. 2020. https://doi.org/10.1016/j.joca.2020.01.007 https://doi.org/10.1016/j.rvsc.2020.08.001 https://doi.org/10.1177/1759720X12467868