RESSALVA Atendendo solicitação do(a) autor(a), o texto completo desta tese será disponibilizado somente a partir de 15/01/2026. 2024 UNIVERSIDADE ESTADUAL PAULISTA – UNESP CAMPUS JABOTICABAL PREVISÃO DE PRODUTIVIDADE E QUALIDADE DE CENOURA UTILIZANDO APRENDIZADO DE MÁQUINA Yara Karine de Lima Silva Engenheira agrônoma 2024 UNIVERSIDADE ESTADUAL PAULISTA – UNESP CAMPUS JABOTICABAL PREVISÃO DE PRODUTIVIDADE E QUALIDADE DE CENOURA UTILIZANDO APRENDIZADO DE MÁQUINA Yara Karine de Lima Silva Dr. Carlos Eduardo Angeli Furlani Dr. Alberto Carvalho Filho Dr. Renato Adriane Alves Ruas Tese de doutorado apresentada à Faculdade de Ciências Agrárias e Veterinárias – Unesp, Câmpus de Jaboticabal, como parte das exigências para obtenção do título de Doutora em Agronomia (Ciencia do Solo) S586p Silva, Yara Karine de Lima Previsão de produtividade e qualidade de cenoura utilizando aprendizado de máquina / Yara Karine de Lima Silva. -- Jaboticabal, 2024 109 p. Tese (doutorado) - Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal Orientador: Carlos Eduardo Angeli Furlani Coorientador: Alberto Carvalho Filho 1. Solo. 2. Mapeamento. 3. Qualidade. 4. Índice de vegetação. I. Título. Sistema de geração automática de fichas catalográficas da Unesp. Biblioteca da Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal. Dados fornecidos pelo autor(a). Essa ficha não pode ser modificada. DADOS CURRICULARES DO AUTOR YARA KARINE DE LIMA SILVA – nascida em Cedro do Abaeté, Minas Gerais, no dia 06 de dezembro de filho de Divino Eustáquio de Lima e Mary Aparecida Pessoa. Cursou os ensinos fundamental e médio na Escola Frederico Campos em sua cidade de origem, finalizando-os no ano de 2013. Ingressou no ensino superior no ano de 2014 no curso de Engenharia Agronômica pela Universidade Federal de Viçosa (UFV), Câmpus de Rio Paranaíba - MG, obtendo o título de Engenheira Agrônoma em fevereiro de 2019. Durante a graduação foi bolsista de Iniciação Cientifica pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico durante os anos de 2016 e 2017 no Grupo de Estudos em Solos e Suas Interfaces com a Agroecologia (GESSIA) sob orientação do Dr. André Mundstock Xavier de Carvalho, gerando trabalhos científicos e participação em eventos acadêmicos-científicos. Durante a graduação ministrou monitorias remunerada e voluntária das disciplinas de Gêneses do solo, Pedologia, Geologia básica, Fertilidade do solo e tutoria especial de Bioquímica Fundamental. Em março de 2019 iniciou o Mestrado em Produção Vegetal na mesma Universidade de sua graduação, participando ativamente no laboratório de Solos e Mecanização do Grupo de Mecanização Agrícola e Solos (GESOL) sob orientação do Dr. Alberto Carvalho Filho. No final de 2020, ainda no mestrado, atuou profissionalmente como Assistente Técnica em culturas anuais (soja e milho) e na cultura perene do café no Triângulo Mineiro e Alto Paranaíba. Em janeiro de 2021 obteve o título de Mestre em Produção Vegetal. Após o término do Mestrado, atuou como Analista de Mercado e Produto na região de Patrocínio - MG antes de ingressar no Doutorado em junho de 2021. O Doutorado em Ciência do Solo foi cursado na Universidade Estadual Paulista “Júlio de Mesquita Filho” em Jaboticabal, São Paulo, sob orientação do Dr. Carlos Eduardo Angeli Furlani. Ao final do Doutorado tem atuado como Analista Técnica Comercial Sênior pela multinacional Yara Fertilizantes nas regiões do Noroeste Mineiro e Leste Goiano. Em janeiro de 2024 submeteu-se à banca examinadora para obtenção do título de Doutora em Agronomia (Ciência do Solo). “Pensei mais um milhão de vezes em parar, em desistir de mim por não acreditar. E hoje eu sou o meu melhor motivo pra comemorar. O ontem passou e o amanhã ainda não é eu. Tudo o que mudou me transformou no que hoje sou eu.” (Kell Smith) Dedico aos meus pais e à toda a minha família. Aos meus amigos e profissionais que sempre me deram o suporte necessário para que eu não desistisse! E principalmente aos que estiveram comigo desde o mestrado me mantendo forte, me apoiando e me motivando para que eu me tornasse cada dia melhor. Meu muito obrigada. Sem vocês nada disso se concretizaria. AGRADECIMENTOS O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001. SUMÁRIO RESUMO ....................................................................................................................... 11 ABSTRACT ................................................................................................................... 12 1 INTRODUÇÃO ............................................................................................................ 13 2 REVISÃO DE LITERATURA ...................................................................................... 14 2.1 A cultura da cenoura.............................................................................................. 14 2.2 Aspectos de cultivo ................................................................................................ 21 I. Semeadura e solo ................................................................................................. 21 II. Condições de temperatura e germinação ............................................................. 24 III. Manejo da irrigação ............................................................................................... 28 IV. Adubação .............................................................................................................. 29 V. Plantas daninhas................................................................................................... 33 VI. Doenças e pragas ................................................................................................. 35 2.3 Cenoura e seus componentes para a nutrição humana ........................................ 38 2.4 Cenoura além da alimentação humana ................................................................ 42 I. Protetor solar ............................................................................................................ 42 II. Ração bovina ........................................................................................................... 43 III. Biodiesel ................................................................................................................. 43 IV. Corante .................................................................................................................. 43 V. Revestimento .......................................................................................................... 43 VI. Cosméticos ............................................................................................................. 44 2.5 Qualidade da cenoura ........................................................................................... 44 2.6 Segurança alimentar e meio ambiente .................................................................. 47 2.7 Aspectos da Colheita ............................................................................................ 51 2.7.1 Padronização das raízes ................................................................................ 51 2.7.2 Colheita manual ............................................................................................. 52 2.7.3 Colheita mecanizada ...................................................................................... 54 i. Regulagens da colhedora de cenoura ............................................................ 58 ii. Danos nas raízes provocados pela colheita mecanizada mal regulada ......... 59 iii. Perda de solo na colheita ............................................................................... 60 iv. Colheita e inteligência artificial ....................................................................... 60 v. Operação de colheita e a qualidade final do produto cenoura........................ 62 2.8 Monitoranento das características de produtividade e qualidade da cenoura via sensoriamento e inteligencia artificial ................................................................... 63 2.9 Considerações finais da revisão ........................................................................... 65 3 MATERIAL E MÉTODOS...................................................................................... 66 3.1 Área de estudo e sistema de produção ................................................................. 66 3.2 Amostragem das raízes e avaliação biométrica da produtividade......................... 68 3.3 Análise qualitativa das raízes ................................................................................ 70 3.4 Aquisição e processamento das imagens de satélite ............................................ 70 3.5 Análise de componentes principais (PCA) ............................................................ 72 3.6 Modelagem da cenoura ........................................................................................ 72 4 RESULTADOS ...................................................................................................... 74 4.1 Normalidade dos dados de produtividade da cultura ............................................ 74 4.2 Qualidade das raízes ............................................................................................ 74 4.3 Correlação entre as variáveis................................................................................ 76 4.4 ANN – Multilayer perceptron regressor .......................................................... 77 4.6 RLM – Regressão linear múltipla .......................................................................... 78 4.7 Comparação do desempenho dos modelos .......................................................... 79 5 DISCUSSÕES....................................................................................................... 80 5.1 Correlação das variáveis ....................................................................................... 80 5.2 Modelagem da produtividade ................................................................................ 81 5.3 Modelagem da produtividade ................................................................................ 82 6 CONSIDERAÇÕES FINAIS .................................................................................. 83 7 REFERÊNCIAS ..................................................................................................... 84 Apêndice .................................................................................................................... 109 PREVISÃO DE PRODUTIVIDADE E QUALIDADE DE CENOURA UTILIZANDO APRENDIZADO DE MÁQUINA RESUMO A cenoura (Daucus carota L.) destaca-se entre os principais vegetais cultivados globalmente. A implementação de sistemas agrícolas baseados em inteligência artificial podem os tornar mais eficientes e sustentáveis nas diferentes esferas da produção. No contexto dessa abordagem, o híbrido EX 4098 de cenoura foi testado em dois experimentos durante a safra de verão em Rio Paranaíba /MG, visando otimizar a produção e impulsionar a agricultura sustentável.Com o objetivo de prever a produtividade e a qualidade da cultura, foram realizadas amostragens das raízes em 200 pontos de 0,25 m² com grade amostral de 30 m x 30 m, em duas épocas de coleta (82 e 116 dias após semeadura) em ambos os experimentos. Para a produtividade quantificou-se a biomassa fresca total, parte aérea e raiz e biometria das raízes (comprimento e diâmetro). A qualidade das raízes foi avaliada na subamostragem de três cenouras pela concentração de sólidos solúveis totais (°Brix) e firmeza. Os índices de vegetação NDVI, RDVI, EVI e SAVI foram extraídos da PlanetScope CubeSat. Os parâmetros mais importantes verificados na análise dos componentes principais foram submetidos aos algoritmos artificial neural network (ANN), random forest (RF) e regressão linear múltipla (RLM) para a modelagem da cultura. Para a estimativa de produtividade, o modelo ANN foi superior à RF e ao RLM, respectivamente. Os índices SAVI e NDVI destacaram-se como indicadores significativos para predizer a produtividade da cultura. No entanto, é importante esses algoritmos não foram capazes de modelar a qualidade da cenoura. Sugere-se que estudos futuros explorem o potencial preditivo dos parâmetros °Brix e Firmeza para avaliar e aprimorar a qualidade da cenoura. Palavras-chaves: Solo, Mapeamento, Qualidade, Índice de vegetação. PREDICTING CARROT YIELD AND QUALITY USING MACHINE LEARNING ABSTRACT Carrot (Daucus carota L.) stands out among the main globally cultivated vegetables. The implementation of artificial intelligence-based agricultural systems can make them more efficient and sustainable across different spheres of production. In the context of this approach, the carrot hybrid EX 4098 was tested in two experiments during the summer crop in Rio Paranaíba/MG, aiming to optimize production and boost sustainable agriculture.In order to predict crop productivity and quality, root samples were taken at 200 points of 0.25 m² with a sampling grid of 30 m x 30 m, at two collection times (82 and 116 days after sowing) in both experiments. For productivity, total fresh biomass, aboveground and root biomass, and root biometrics (length and diameter) were quantified. Root quality was assessed by sub-sampling three carrots for total soluble solids concentration (°Brix) and firmness. NDVI, RDVI, EVI, and SAVI vegetation indices were extracted from the PlanetScope CubeSat. The most important parameters verified in the principal component analysis were subjected to artificial neural network (ANN), random forest (RF), and multiple linear regression (MLR) algorithms for crop modeling.For productivity estimation, the ANN model outperformed RF and MLR, respectively. SAVI and NDVI indices stood out as significant indicators for predicting crop productivity. However, it is important to note that these algorithms were unable to model carrot quality. It is suggested that future studies explore the predictive potential of °Brix and firmness parameters to assess and improve carrot quality. Keywords: Soil, Mapping, Quality, Vegetation index. 13 1 INTRODUÇÃO A produção de cenouras apresenta desafios complexos, que vão desde a otimização da qualidade das raízes até a previsão da produtividade. A cenoura é uma hortaliça geocárpica, crescendo subterraneamente, o que dificulta a avaliação direta de sua parte desejada, as raízes. Fatores como variação genética, condições ambientais e práticas de cultivo influenciam a qualidade das cenouras, tornando essencial a busca por abordagens inovadoras na tomada de decisões. A qualidade da cenoura de mesa é fortemente influenciada por características visuais, como uniformidade de tamanho e formato, além de sabor, aspectos fundamentais para sua valorização no mercado e preferência dos consumidores. Nesse contexto, variáveis como °Brix (sólidos solúveis totais) e firmeza tornam-se críticas, mas a modelagem preditiva desses parâmetros ainda é uma lacuna a ser preenchida. A integração de tecnologias como sensoriamento remoto (SR) como a coleta de dados via imagens de satelite e inteligência artificial (IA) emerge como uma solução promissora para superar os desafios específicos da cenoura, possibilitando uma avaliação mais completa. A utilização de ferramentas de monitoramento para acompanhar as características de produtividade e qualidade da cenoura é essencial para embasar decisões no campo. Ao investigar a variação dessas características, é possível delimitar unidades de gestão diferenciadas (UGDs) e identificar locais com maior potencial produtivo da cultura, adaptando-se aos diferentes usos. Esses locais de maior potencial produtivo podem otimizar o uso de recursos, como adubação, defensivos agrícolas, densidade de plantio e época de semeadura. Áreas identificadas com produção de cenouras com teores mais elevados de açúcares podem ser destinadas à produção de energia ou receber maior valorização no mercado consumidor. Além disso, a capacidade de prever a produtividade e qualidade da cenoura antes da colheita abre oportunidades para negociações futuras. Neste contexto, o presente estudo visa estabelecer relações funcionais entre diversas variáveis, como a massa fresca total, a massa da parte aérea e da raiz, o comprimento, diâmetro, °Brix e firmeza das raízes, integrando-os com índices de vegetação e inteligência artificial. A ausência de pesquisas que explorem de maneira simultânea a produtividade e a qualidade das raízes de cenoura destaca a importância desta abordagem, proporcionando insights valiosos aos produtores e contribuindo para avanços significativos na produção sustentável da cultura. A tese inclui uma revisão de 14 literatura aprofundada sobre o tema, fornecendo uma base sólida para a análise dos resultados obtidos no experimento. 83 6 CONSIDERAÇÕES FINAIS Os índices SAVI e NDVI mostraram-se promissores em comparação aos índices RDVI e EVI na previsão da produtividade de cenoura. Os modelos ANN, RF e RLM demonstraram ser eficazes na modelagem da produtividade da cultura. A análise de componentes principais revelou a influência temporal nas variáveis espectrais, o que pode ser útil para otimizar o monitoramento da cultura ao longo do tempo. Apesar da qualidade não ter sido modelada, os resultados aqui obtidos trazem contextualização metodológica que podem incentivar pesquisas futuras. Aqui, propomos encontrar respostas no campo que refletissem em ganhos múltiplos no âmbito econômico, social e ambiental, contemplando sobretudo os objetivos de desenvolvimento sustentável da ONU: ODS #02, ODS #10, ODS #12 e ODS #17. O desenvolvimento de novas tecnologias que proporcionam melhorias na qualidade dos alimentos vai ao encontro do fomento da segurança alimentar e saúde humana. Isso permite alcançar a melhoria da gestão e governança de forma responsável, reduzindo os impactos ambientais e otimizando a produção de alimentos. Pelos objetivos de desenvolvimento sustentável, zerar pobreza (ODS 2) e introduzir tecnologias de construção de resiliência em agroecossistemas são indiscutíveis à segurança alimentar e qualidade de vida. 84 7 REFERÊNCIAS Abbas F, Afzaal H, Farooque A, Tang S (2020) Crop Yield Prediction through Proximal Sensing and Machine Learning Algorithms. Agronomy, 1046, 10(7). Adolf Lutz (1985). Normas Analíticas do Instituto Adolfo Lutz. Métodos químicos e físicos para análise de alimentos. São Paulo: IMESP, v. 1, 3. ed., p.181-182. Adolfo Lutz (2005). Métodos físico-químicos para análise de alimentos: normas analíticas do Instituto Adolfo Lutz. 4ª ed. Brasília (DF): ANVISA. Aiken L, West SG, Pitts SC (2003) Multiple linear regression. In: I.B. Weiner, editor, Handbook of Psychology. Vol. 4. John Wiley e Sons, Hoboken, NJ. p. 481–507. Alasalvar C, Grigor JM, Zhang D, Quantick PC, Shahidi F (2001) Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J Agric Food Chem.,49(3):1410–1416. pmid:11312873. Altooq N, Humood A, Alajaimi A, Alenezi AF, Janahi M, Alhaj O, Jahrami H (2022) The role of micronutrients in the management of COIVD-19 and optimizing vaccine efficacy. Human Nutrition e Metabolim, v. 27. Algarra M, Fernandes A, Mateus N, de Freitas V, Esteves da Silva JC., Casado J (2014) Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas, Spain. Journal of Food Composition e Analysis, 33(1), 71– 76. Anuário Brasileiro de Hortaliças (2017) CENOURA: para não ficar ralado. Brazilian Vegetable Yearbook. Santa Cruz do Sul, p. 41-42. Arienzo A, Murgia L, Fraudentali I, Gallo V, Angelini R, Antonini G (2020) Microbiological Quality of Ready-to-Eat Leafy Green Salads during Shelf-Life and Home-Refrigeration. Foods, 9, 1421. Ares G, Varela P (2014) Comparison of novel methodologies for sensory characterization. In: Varela, P. and Ares, G. (eds) Novel Techniques in Sensory Characterization and Consumer Profiling. CRC Press, Boca Raton, Florida, pp. 365– 389. Arscott SA, Tanumihardjo SA (2010) Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Comprehensive Reviews in Food Science and Food Safety 9, 223–239. Ashapure A, Jung J, Chang A, Oh S, Yeom J, Maeda M, Maeda A, Dube N, Landivar J, Hague S, Smith W (2020) Developing a machine learning based cotton yield estimation framework using multi-temporal UAS data. ISPRS J. Photogramm. Remote Sens., 169, pp. 180-194. 85 Aquino RFBA, Assunção NS, Aquino LA, Aquino PM, Oliveira GA, Carvalho AMX (2015) Nutrient demand by the carrot crop is influenced by the cultivar. Rev Bras Cienc Solo; 39:541-52. Astill G, Perez A, Thornsbury S (2020) Developing Automation and Mechanization for Specialty Crops: A Review of U.S. Department of Agriculture Programs A Report to Congress. Aubert S (1981) La carotte (Daucus carota L.). Revue de quelques facteurs d'intérêt diététique. Cahiers de Nutrition et de Diététique 16, 173–188. Azmin SNH, Sulaiman NS, Yosri NAB, Nor MSM, Addullah PS (2021) Stability Analysis of Carrot-based Natural Moisturising Lip Balm. Chemical Engineering Transactions, v. 83. Bacco M, Berton A, Ferro E, Gennaro C, Gotta A, Matteoli S et al. (2018) Smart farming: Opportunities challenges and technology enablers in 2018. IoT Vertical and Topical Summit on Agriculture-Tuscany (IOT Tuscany), IEEE, pp. 1-6. Bach V, Kidmose U, Kristensen HL, Edelenbos M (2015) Eating Quality of Carrots (Daucus carota L.) Grown in One Conventional and Three Organic Cropping Systems over Three Years. J Agric Food Chem.,63(44):9803–9811. Banga O (1957) Origin of the European cultivated carrot. Euphytica 6, 54–63. Banga O (1963) Main Types of the Western Carotene Carrot and Their Origin. Baranski R, Maksylewicz-Kaul A, Nothnagel T, Cavagnaro PF, Simon PW, Grzebelus D (2012) Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci. Genetic Resources and Crop Evolution 59, 163-170. Bhanti M, Taneja A (2007) Contamination of vegetables of different seasons with organophosphorus pesticides and related health risk assessment in northern India. Chemosphere 69: 63– 68. Baranski R, Allender CH, Klimek-Chodacka M (2011) Towards better tasting and more nutritious carrots: Carotenoid and sugar content variation in carrot genetic resources. Food Research International, 47(2), 182– 187. Basumatary R, Vatankhah H, Dwivedi M, John D, Ramaswamy HS (2020) Ultrasound‐ steam combination process for microbial decontamination and heat transfer enhancement. Journal of Food Process Engineering. Brainard S, Ellison S, Simon P, Dawson J, Goldman I (2022) Genetic characterization of carrot root shape and size using genome-wide association analysis and genomic- estimated breeding values. Theoretical and Applied Genetics, 605-622, 135(2). 86 Buttery RG, Seifert RM, Guadagni DG, Black DR, Ling L. (1968) Characterization of some volatile constituents of carrots. Journal of Agricultural and Food Chemistry 16, 1009–1015. Breiman L (2001) Random forests. Machine learning, Vol. 45, pp. 5-32. Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Müller MJ, Oberritter H, Schulze M (2012) Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr., 51, 637-663. Bolthouse Farms (2002) Carrot Fiber GRAS Notification GRAS Notice No. GRN000116. Bolthouse Farms (2007) National List Petition Submission for Carrot Fiber. USDA. Burton GW, Mogg TJ, Riley WW, Nickerson JG (2021) β-Carotene oxidation products - Function and safety. Food and Chemical Toxicology, 152, 112207. Bystrická J, Kavalcová P, Musilová J, Vollmannová A, Tóth T, Lenková M (2015) Carrot (Daucus carota L. ssp. sativus (Hoffm.) Arcang.) as source of anti-oxidants. Acta Agriculturae Slovenica, 105(2), 303-311. Biacs PA, Daood HG, Kadar I (1995) Effect of Mo, Se, Zn, and Cr Treatments on the Yield, Element Concentration, and Carotenoid Content of Carrot. Journal of Agricultural and Food Chemistry, 43(3), 589–591. Dezordi LR, Aquino LA de, Aquino RFB de A, Clemente JM, Assunção NS (2016) Diagnostic Methods to Assess the Nutritional Status of the Carrot Crop. Revista Brasileira de Ciência Do Solo, 40(0). Dias, J. S. (2012b). Nutritional quality and health benefits of vegetables: a review. Food Nutr Sci., 3:1354–74. Dumontet S, Dinel H, Schnitzer M, Paré T, Scopa A (2001) Composting organic residues: trace metals and microbial pathogens. Can. J. Soil Sci. 81: 357–367. Calbo AG, Carmelo LGP (2017) Fisiologia pós-colheita - métodos macroscópicos e instrumentos. Instrumentação Pós-Colheita em Frutas e Hortaliças. Brasília, DF: Embrapa, 284 p. Chevalier W, Moussa S-A, Ottoni MM (2022) Evalution of pedoclimatic factors and cultural practices effects on carotenoid and sugar content in carrot root. European Journal od Agronomy, v.140, 126577. Capello F, Toja M, Trapani N (2016) A real-time monitoring service based on industrial internet of things to manage agrifood logistics. 6th International Conference on Information Systems, Logistics and Supply Chain, pp. 1-8. 87 Carlos J, DiasS. (2014) Nutritional and health benefits of carrots and their seed extracts. Food and Nutrition Sciences, 5, 2147-2156. Carvalho ADF, Silva GO, Pereira RB, Pinheiro JB (2015) Produtividade e tolerância à queima-das-folhas de diferentes genótipos de cenoura de verão. Horticultura Brasileira 33: 299-304, 2015. Carvalho ADF et al. (2021) Cenoura: Daucus carota L. Brasília, DF: Embrapa Hortaliças, 74 p. (Sistema de produção / Embrapa Hortaliças, ISSN 2763-6801; 2). Cembali T, Folwell RJ, Clary CD, Mari M (2008) Economic comparison of selective and nonselective mechanical harvesting of asparagus. International Journal of Vegetable Science, vol. 14, no. 1, pp. 4-22. Chen S, Zhou Y, Tang Z, Lu S (2020) Modal vibration response of rice combine harvester frame under multi-source excitation. Biosystems Engineering, vol. 194, pp. 177-195. Chung H, Kim D, Lee S, Cho S (2019) Smart Farming Education Service based on u-learning environment. 21st International Conference on Advanced Communication Technology (ICACT), Pyeong Chang Kwangwoon, Korea (South), pp. 471-474. Cicero FGA, Colletti A (2017) Nutraceuticals and dietary supplements to improve quality of life and outcomes in heart failure patients. Curr Pharm Design., 23:1265- 72. Clotault J, Geoffriau E, Lionneton E, Briard M, Peltier D (2010) Carotenoid biosynthesis genes provide evidence of geographical subdivision and extensive linkage disequilibrium in the carrot. Theoretical and Applied Genetics 121, 659-672. Coe KM, Ellison S, Senalik D (2021) THE influence of the Or and Carotene Hydroxylase genes on carotenoid accumulation in orange carrots [Daucus carota (L.)]. Theor Appl Genet 134, 3351-3362. Chomel BB (2008) Control and prevention of emerging parasitic zoonoses. International Journal of Parasitology 38, 1211–1217. CDC- Centers for Disease Control and Prevention. List of selected multistate foodborne outbreak investigations (2020) Available: https://www.cdc.gov/foodsafety/outbreaks/multistate-outbreaks/outbreaks-list.html. Acessado em: 17/02/2022. CFSEMG - Comissão de Fertilidade do Solo do Estado de Minas Gerais (1999). Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5ª Aproximação. Viçosa, MG: UFV. 88 Di Cagno R, Coda R, De Angelis M, Gobbetti M (2013) Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013, 33, 1-10. Dias JS (2012a) Major Classes of phytonutriceuticals in vegetables and health benefits: a review. J Nutr Ther., 1:31–62. Dias JS (2012b) Nutritional quality and health benefits of vegetables: a review. Food Nutr Sci., 3:1354–74. Dias JS (2012a) Major Classes of phytonutriceuticals in vegetables and health benefits: a review. J Nutr Ther., 1:31–62. Du D, Wang J, Xie L, Deng F (2019) Design and field test of a new compact self- propelled cabbage harvester. Transactions of the ASABE, vol. 62, no. 5, pp. 1243- 1250. Evers AM, Tuuri H, Hägg M, Plaami S, Häkkinen U, Talvitie H (1997) Soil forming and plant density effects on carrot yield and internal quality. Plant Foods for Human Nutrition 51, 283–294. Eraslan F, Inal A, Gunes A, Alpaslan M (2007) Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae 113(2), 120–128. Ellison SL, Luby CH, Corak K, Coe K, Senalik D, Iorizzo M, Goldman IL, Simon PW, Dawson JC (2018) Carotenoid presence is associated with the Or gene in domesticated carrot. Genetics 210(4), 1497–1508. European Commission - Joint Research Centre - Institute for Environment and Sustainability (EC-JRC). Supporting environmentally sound decisions for bio- waste management. A Practical Guide to Life Cycle Thinking (LCT) and Life Cycle Assessment (LCA) (2011), 10.2788/53942. Esau K (1940) Developmental anatomy of the fleshy storage organ of Daucus carota. Hilgardia 13, 175–226. Fang S, Da Xu L, Zhu Y, Ahati J, Pei H, Yan J, Liu Z (2014) An integrated system for regional environmental monitoring and management based on internet of things. IEEE Trans. Ind. Inform., 10, pp. 1596-1605. FAO. World Food and Agriculture (2020) Statistical Yearbook 2020, FAO-Food e Agriculture Organization of the United Nation: Rome, Italy. Fathallah FA, Miller BJ, Miles JA (2008) Low back disorders in agriculture and the role of stooped work: Scope, potential interventions, and research needs. Journal of Agricultural Safety and Health, 14(2), pp. 221-245. 89 FAO (2019) WIEWS – World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Rome. Disponível em: Acessado em:17/04/2022. FAO (2009) Feeding the World in 2050. Acessado em: 03/04/2022. FAO (2018) FAO Statistical Database. Food and Agriculture Organization of the United Nations, Rome. Disponível em: http://faostat.fao.org. Acessado em 01 de abril de 2023. Feng X, Yan F, Liu X (2019) Study of wireless communication technologies on internet of things for precision agriculture. Wireless Pers Commun, 108 (3), pp. 1785-1802. Fleury A, Roger-Estrade J, Tremblay M (1994) La teneur en carotène de la carotte en arrière-saison: étude de quelques facteurs de variation – comparaison de la relation rendement/densité de peuplement entre deux variétés riches. Acta Horticulturae 354, 215-220. Freitas FCL, Almeida MEL. Negreiros MZ, Honorato ARF, Mesquita HC (2009) Periods of weed interference in carrot in function of spacing between rows. Planta Daninha 27, 473–480. Furtak J, Świć K (1986) Badania jakości pracy kombajnu “Asa-Lift” do zbioru marchwi. Rocznik Nauk Rolniczych 1986, t. 76-C-2. Freeman JA, Harris GH (1951) The effect of nitrogen, phosphorus, potassium and chlorine on the carotene content of the carrot. Scientific Agriculture 31, 207–211. Freund RJ, Wilson WJ, Sa P (2006) Regression analysis – Statistical Modeling of a response variable. Elsevier, Inc., San Diego, 459p. Galadima A, Garba ZN (2012) Heavy metals pollution in Nigeria: Causes and consequences. Elixir Pollut., 45, 7917–7922. Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: A review. Environ. Monit. Assess., 187, 201. Garg M, Ahuja V (2015) Development and evaluation of a nutraceutical herbal summer drink. Int J Pharm Pharm Sci. 9:581–4. Geofriau E (2020) Carrot root quality. In: Geoffriau, E., Simon, P.W. Carrots and 90 Related Apiaceae Crop. Boston, MA: CABI, p.171-184. Gibberd MR, Turner NC, Storey R (2002) Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (Daucus carota L.). Annals of Botany 90, 715–724. Geoffriau, Emmanuel, editor. | Simon, P. W. (Philipp W.), editor. Title: Carrots and related vegetable apiaceae / edited by Emmanuel Geoffriau, Philipp W. Simon. Wallingford, Oxfordshire, UK; Boston, MA: CABI, 2020. Geoffriau E (2020) Genetic Diversity and Main Carrot Types. In: Geoffriau, E., Simon, P.W. Carrots and Related Apiaceae Crop. Boston, MA: CABI, p.47-60. Grzebelus D, Iorizzo M, Senalik D, Ellison S, Cavagnaro P, Macko-Podgorni A, Heller- Uszynska K, Kilian A, Nothnagel T, Allender C, et al. (2014) Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers. Molecular Breeding 33, 625–637. Gizir A, Turker MN, Artuvan E (2008) Pressurized acidified water extraction of black carrots (Daucus carrotsa ssp.) anthocyanins. European Food Research e Technology, 226, 363-370. Gocic M, Trajkovic S (2014) Spatiotemporal characteristics of drought in Serbia. Journal of Hydrology, vol. 510, pp. 110-123. Gomes HO, Menezes JMC, Costa JGM, Coutinho HDM, et al. (2020) A socio- environmental perspective on pesticide use and food production. Ecotoxicol. Environ. Saf. 197: 110627. Groves RL, Clements JR, Bradford BZ (2020) Carrot diseases resulting from Phytoplasmas and Viruses. In: Geoffriau, E., Simon, P.W. Carrots and Related Apiaceae Crop. Boston, MA: CABI, p. 148-155. Guerra F, Trevizam AR, Muraoka T, Marcante NC, Canniatti-Brazaca GS (2012) Heavy metals in vegetables and potential risk for human health. Sci. Agric. 69: 54– 60. Han X, Chen H, Dun G (2015) Analysis on situation of carrot mechanized harvesting technology. Journal of Agricultural Mechanization Research, vol. 37, no. 7, pp. 259–263. Hashim N, Mazlan S, Aziz MA, Salleh A, Jaafar A, Mohamad N (2015) Agriculture monitoring system: a study. J. Teknologi, 77, pp. 53-59. Haque AZ, Haque MS, Naher N (2014) Effect of nitrogen fertilizer to increase the yield of carrot (Daucus carota L.). National University Journal of Science 1(2), 105–110. 91 Hossain D Imtiaz MH, Sazonov E (2020) Comparison of wearable sensors for estimating chewing force. IEEE Sensors Journal, 20(10), 5379–5388. Houbraken M, Spranghers T, De Clercq P, Cooreman-Algoed M, Couchement T, De Clercq G, Spanoghe P (2016) Pesticide contamination of Tenebrio molitor (Coleoptera: Tenebrionidae) for human consumption. Food Chemistry, 201, 264–269. Huete AR (1988) A Soil Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25, 295-309. Hu P. et al. (2019) Pixel size of aerial imagery constrains the applications of unmanned aerial vehicle in crop breeding. ISPRS Journal of Photogrammetry and Remote Sensing, 154:1-9. Hufnagl K, Jensen-Jarolim E.(2018) Does a carrot a day keep the allergy away? Immunology Letters. Huete AR, Didan K, Miura T, Rodrigues E, Goa X, Ferreira L (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 195-213, 83(1-20). Horrocks A, Curtin DM, Tregurtha C, Meenken E (2016) Municipal compost as a nutrient source for organic crop production in New Zealand. Agronomy, 6: 35. Hochmuth GJ, Brecht JK, Bassett MJ (1999) Nitrogen fertilization to maximize carrot yield and quality on a sandy soil. HortScience 34(4), 641–645. Hoppu U, Puputti S and Sandell M (2020) Fatores relacionados às propriedades sensoriais e aceitação de vegetais pelo consumidor. Crit. Ver. Food. Sci. Nutr. 61: 1751-1761. Hu W, Huang B, Tian K, Holm PE, Zhang Y (2017) Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: Levels, transfer and health risk. Chemosphere, 167, 82-90. Hu Z, Peng B, Yin W (2008) Design and experiment on multifunctional root-tuber crops combine. Transactions of the Chinese Society for Agricultural Machinery, vol. 39, no. 10, pp. 58-61. Hu C, Qi Y (2013) Long-term effective microorganisms application promote growth and increase yields and nutrition of wheat in China. Eur. J. Agron., 46, pp. 63-67. Islam N, Ray B, Pasandideh F (2020) IoT Based Smart Farming: Are the LPWAN Technologies Suitable for Remote Communication? IEEE International Conference on Smart Internet of Things (Smart-IoT), Beijing, China, 2020, pp. 270-276. 92 Iorizzo M, Senalik DA, Ellison SL, Grzebelus D, Cavagnaro PF, Allender C, Brunet J, Spooner DM, Van Deynze A, Simon PW (2013) Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). American Journal of Botany 100, 930–938. Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P et al. (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nature Genetics 48, 657–666. Iwaishi S (2000) Effect of organic fertilizer and effective microorganisms on growth, yield and quality of paddy-rice varieties. J. Crop Prod., 3, pp. 269-273. Jaywant S, Singh H, Arif K (2022) Sensors and instruments for brix measuremente: a review. Sensors, 2290, 22 (6). Javaid A, Bajwa R (2011) Field evaluation of effective microorganisms (EM) application for growth, nodulation, and nutrition of mung bean. Turk. J. Agric. For, 35, pp. 443- 452. Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. Jahanbakhshi A, Abbaspour-Gilandeh Y, Gundoshmian TM (2018) Determination of physical and mechanical properties of carrot in order to reduce waste during harvesting and post-harvesting. Food Science e Nutrition. Jin X, Du X, Wang S (2016) Design and experiment of stems cutting device for carrot harvester. Transactions of the Chinese Society for Agricultural Machinery, vol. 47, no. 3, pp. 82-89. Jozef K, Norbert L (2011) The influence of working parameters of a carrot harvester on carrot root damage. Maintenance and Reliability, vol. 39, no. 1, pp. 35-41. Javaid A (2006) Foliar application of effective microorganisms on pea as an alternative fertilizer. Agron. Sustain. Dev., 26, pp. 257-262. Kamel DG, Hammam ARA, Nagm El-diin MAH, Awasti N, Abdel-Rahman AM (2023) Nutritional, antioxidant, and antimicrobial assessment of carrot powder and its application as a functional ingredient in probiotic soft cheese. J. Dairy Sci., 106:1672– 1686. Kadkhoda G, Zarkesh M, Saidpour A, Oghaz MH, Hedayati M, Khalaj A (2020) Association of dietary intake of fruit and green vegetables with PTEN and P53 mRNA 93 gene expression in visceral and subcutaneous adipose tissues of obese and non- obese adults. Gene, 733,144353. Khanna A, Kaur S (2019) Evolution of internet of things (iot) and its significant impact in the field of precision agriculture. Comput Electron Agric, 157, pp. 218-231. Khawla BJ, Sameh M, Imen G, Donyes F, Dhouha G, Raoudha EG, Oumèma N-E (2014) Potato peel as feedstock for bioethanol production: a comparison of acidic and enzymatic hydrolysis. Ind. Crop. Prod., 52, pp. 144-149. Khoshkho SM, Mahdavian M, Karimi F, Karimi-Maleh H, Razaghi P (2022) Production of bioethanol from carrot pulp in the presence of Saccharomyces cerevisiae and beet molasses inoculum, a biomass based investigation. Chemosphere, 286, 131688. Kjellenberg LJE, Gustavsson K, Granstedt A, Olsson M (2016) Influência de adubos orgânicos em culturas de cenoura (Daucus carota L.) cultivadas em um experimento de campo de longo prazo na Suécia. Agricultura Renovável e Sistemas Alimentares 31: 258-268. Kodali RK, Rawat N, Boppana L (2014) WSN sensors for precision agriculture. Region 10 Symposium, IEEE, pp. 651-656. Kovacs G, Sorvari S, Scott P, Toldi O (2007) Pyrophosphate:fructose 6-phosphate 1- phosphotransferase is involved in the mobilization of sugar reserves in the taproots of cold- and drought-stressed carrot plants. Acta Agronomica Hungarica 55, 71–82. Komarnicki P, Kuta L (2021) Evaluation of Picker Discomfort and Its Impact on Maintaining Strawberry Picking Quality. Appl. Sci., 11(24), 11836. Kowalczuk J, Leszczyński N (2009) An Influence of the working parameters of Alina Supernova Combine on harvest quality of Carrot roots. Teka komisji motoryzacji i energetyki rolnictwa, 9: 128-133. Kowalczuk J, Leszczyński N (2005) Straty i uszkodzenia korzeni marchwi powstające podczas zbioru jednorzędowym kombajnem Simon. Carrot root losses and demages ocurring during harvest by means of one-row Simon harvester. Acta Agrophysica, 6(3): 671-676, 2005. Keutgen AJ, Tomaszewska-Sowa M, Bomberski A, Keutgen N (2022) The Influence of Phytohormones on the Efficiency of Callus Formation, Its Morphologically Properties and Content of Bioactive Compounds in In Vitro Cultures of Daucus carota L. Horticulturae, 8, 100. Lana MM (2012) Os efeitos do espaçamento entre linhas e época de colheita no rendimento de processamento e tamanho de raiz de cenoura para produção de Cenourete®. Horticultura Brasileira 30: 304-311. Le Dily F, Villeneuve F, Boucaud J (1994) Quality and maturity of carrot root. 94 Biochemical composition influenced by field storage and cold moisture conditions. Acta Horticulturae 354, 191-202. Lee CY (1986) Changes in carotenoid content of carrots during growth and post- harvest storage. Food Chemistry 20, 285-293. Leja M, Kamińska I, Kramer M, Maksylewicz-Kaul A, Kramer D, Carle R, Baranski R (2013) The content of phenolic compounds and radical scavenging activity varies with carrot origin and root color. Plant Foods Human Nutrition, 68, 163- 170. Leszczynski N (2011) The influence of working parameters of a carrot harvester on carrot root danage. Maint. Reliab., 49, 35-41. Li G, Wan S, Zhou J, Yang Z, Qin P (2010) Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde, and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind. Crops Prod., 31, 13-19. Li K, Yang B (2015) Planting status and research progress on seeding machine of carrot at home and abroad. Agric. Eng., 5, 1-5. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol., 69 (6), pp. 627-642, 2006. Lenio M, Binsted K (2016) Space gardening lessons from HI-SEAS: Lights, crops and growing media. Proceedings of the International Astronautical Congress. 67th International Astronautical Congress, IAC. Liu B, Tu C, Hu S, Gumpertz ML, Ristaino JB (2007) Longterm effects of organic and synthetic soils fertility amendments on soil microbial communities and the development of southern blight. Soil Biol. Biochem., 39, pp. 2302-2316. Larsen AE, Gaines SD, Deschênes O (2017) Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California. Nat. Commun., 8, 302. Lopes WAR, Negreiros MZ, Teófilo TMS, Alves SSV, et al. (2008) Produtividade de cultivares de cenoura em diferentes densidades de plantio. Rev. Ceres. 55 (5): 482- 487. Linke B, Alessandro MS, Galmarini C, Nothnagel T (2019) Carrot floral development and reproductive biology. In: Simon, P.W., Iorizzo, M., Grzebelus, D. and Baranski, R. (eds) The Carrot Genome. Springer Nature, Cham, Switzerland, pp. 27–57. Lyon RG (2004) Understanding Digital Signal Processing, 2nd Ed., Prentice Hall, Upper SaddleRiver, New Jersey, pp. 556-561. 95 Malavolta E, Vitti GC, Oliveira SA (1997) Avaliação do estado nutricional das plantas: princípios e aplicações. 2ª.ed. Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato. Manosa NA (2011) Influence of temperature on yield and quality of carrots (Daucus carota var. sativa). PhD thesis, University of the Free State, Bloemfontein, South Africa. Mackevic VI (1929) The carrot of Afghanistan. Bulletin of Applied Botany, Genetics and Plant Breeding 20, 517–562. Madugundu R, Al-Gaadi KA, Tola E, Hassaballa AA, Kayad AG (2018) Utilization of Landsat-8 data for the estimation of carrot and maize crop water footprint under the arid climate of Saudi Arabia. PLoS ONE, 13, 2. Mas J, Flores J (2008) The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 617-663, 29(3). Maas EV, Hoffman GJ (1977) Crop salt tolerance – current assessment. Journal of the Irrigation and Drainage Division 103, 115–134. Metiva M, Bunting E, Steinke K, Hayden Z (2023) Topdress strategies and remote sensing for nitrogen management in processing carrots. Agronomy Journal, 408-425, 115 (1). Meyer-Rochow VB (1975) Can insects help to ease the problem of world food shortage? Search, 6, 261–262. Mkhabela MS, Bullock P, Raj S, Wang S, Yang Y (2011) Crop yield forecasting on the Canadian prairies using MODIS NDVI data. Agric. Forest Meteorol. 151, 385-393. Montgomery DC, Peck EA, Vining GG (2006). Introduction to linear regression analysis. John, Wiley and Sons, Inc., New York, 612p. Mpemba OS, Du Toit A, De Wit M, Venter SL, Hugo A (2022) Edible characteristics of two nopalito cultivars compared to selected popular vegetables. Acta Hortic., 1343, 409–416. Macedo RBM (2014) Ergonomia aplicada na redução da dor lombar em ciclistas com o suporte da eletromiografia [dissertação]. Curitiba (PR): Universidade Tecnológica Federal do Paraná, v16:1-84. Disponível em: . Acessado em: 31/03/2022. Maiani G, Cast MJP, Catasta C, Toti E, Cambrod IG, Bysted A (2009) Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutri Food Res. 53:S194-218. 96 Maksimov LM, Maksimov PL (2000) The separating device of a carrot harvesting combine. Trakt. I Selskokhozya Istvennye Mashiny, 13, 12-13. MAPA - Ministério da Agricultura e Abastecimento (1999). LUENGO, R. F. A. Cenoura- Portaria N° 412. In: LUENGO, R. F. A. et al. Classificação de hortaliças. Embrapa Hortaliças- Brasília, p. 35-38. Maxia A, Marongiu B, Piras A, Porcedda S, Tuveri E, Gonçalves MJ, Cavaleiro C, Salgueiro L (2009) Chemical characterization and biological activity of essential oils from Daucus carota L. subsp. carota growing wild on the Mediterranean coast and on the Atlantic coast. Fitoterapia 80(1), 57-61. Myers RH (1990) Classical and modern regression with applications. Vol. 2. Duxbury Press, Belmont, CA. Moon SH, Na MH, Kim TY, Park MS (2021) Crop yield prediction based on growth and environmental factors: a case study of oriental melons (Cucumis melo l. var. makuwa makino) in Seongju region. Applied Ecology and Environmental Research, 20 (1), 479-497. Muangprathub J, Boonnam N, Kajornkasirat S, Lekbangpong N, Wanichsombat A, Nillaor P (2019) IoT and agriculture data analysis for smart farm. Computers and Electronics in Agriculture, 156, 467-474. Müller O (2005) Malnutrition and health in developing countries. Canadian Medical Association Journal, 173(3), 279-286. Nascimento WM, Vieira JV, Silva GO, Reitsma KR, Cantliffe DJ (2008) Carrot seed germination at high temperature: effect of genotype and association with ethylene production. HortScience 43, 1538–1543. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, Van Der Giessen J, Kruse F (2010) Food-borne diseases – The challenges of 20 years ago still persist while new ones continue to emerge. International Journal of Food Microbiology 139, S3–S15. Ndiaye C, Martinez MM, Hamaker BR, Campanella OH, Ferruzzi MG (2020) Effect of edible plant materials on provitamin A stability and bioaccessibility from extruded whole pearl millet (P. typhoides) composite blends. LWT, 109109. Ndzi DL, Harun A, Ramli FM, Kamarudin ML, Zakaria A, Shakaff AYM, Farook RS (2014) Wireless sensor network coverage measurement and planning in mixed crop farming. Comput. Electron. Agric., 105, pp. 83-94. Northolt M, Van Derburgt GJ, Buisman T, Vanden Bogaerde A(2004). Parameters for Carrot Quality: and The Development of the Inner Quality Concept. Louis Bolk Instituut, Driebergen, The Netherlands. 97 Nogueira FAM, Szwarcwald CL, Damacena GN (2020) Exposição a agrotóxicos e agravos à saúde em trabalhadores agrícolas: o que revela a literatura? Rev. Bras. Saúde. Ocup. 45: e36. Ndona RN, Friedel JK, Spornberger A, Rinnofner T, Jezik K (2011) Effective micro- organisms (EM): an effective plant strengthening agent for tomatoes in protected cultivation. Biol. Agr. Hort., 27, pp. 189-204. Nunez JJ (2020) Carrot Production Practices. In: Geoffriau, E., Simon, P.W. Carrots and Related Apiaceae Crop. Boston, MA: CABI, p.92-102. Örnek MN, Kahramanlı Örnek H (2021) Developing a deep neural network model for predicting carrots volume. Journal of Food Measurement and Characterization, 15(4), 3471–3479. Onishi Y, Yoshida T, Kurita H, Fukao T, Arihara H, Iwai A (2019) An automated fruit harvesting robot by using deep learning. ROBOMECH Journal, 6(1). Otles S, Ozyurt VH (2019) Probiotic and Prebiotic Beverages. Functional and Medicinal Beverages, 447-458. Ortiz J, Velasquez P, Santis A (2021) Use of Vegetables as a New Ingredient in the Formulation of Cupcakes for New Trends and Eating Habits. Chemical Engineering Transactions, 87, 427-432. Ouafiq EM, Saadane R, Chehri A, Jeon S (2022) AI-based modeling and data-driven evaluation for smart farming-oriented big data architecture using IoT with energy harvesting capabilities. Sustainable Energy Technologies and Assessments, v. 52, Part A, 102093. Olutona GO, Aderemi MA (2019) Organochlorine pesticide residue and heavy metals in leguminous food crops from selected markets in Ibadan, Nigeria. Legume Sci., 1, e3. Okpala COR, Sardo G, Vitale S, Bono G, Arukwe A (2018) Hazardous properties and toxicological update of mercury: From fish food to human health safety perspective. Crit. Rev. Food Sci. Nutr., 58, 1986–2001. Patkowska E, Mielniczuk E, Jamiołkowska A, Skwaryło-Bednarz B, et al. (2020) The Influence of Trichoderma harzianum Rifai T-22 and other biostimulants on rhizosphere beneficial microorganisms of carrot. Agron. 10 (11): 1637. Phan CT, Hsu H (1973) Physical and chemical changes occurring in the carrot root during growth. Canadian Journal of Soil Science 53, 629–634. doi:10.4141/cjps73-123 Suojala, T. (1999) Cessation of storage root growth of carrot in autumn. The Journal of Horticultural Science and Biotechnology 74, 475–483. Parlak M, Palta Ç, Yokuş S, Blanco-Canqui H, Çarkaci DA (2016) Soil losses due to 98 carrot harvesting in south central Turkey. CATENA, 140, 24-30. Pavlyuk I, Stadnytska N, Jasicka-Misiak I, Górka B, Wieczorek PP, Novikov V (2015) A study of the chemical composition and biological activity of extracts from wild carrot (Daucus carota L.) seeds waste. Research Journal of Pharmaceutical, Biological and Chemical SciencesVolume 6, Issue 2, p. 603-611. Plunkett GM, Pimenov M, Reduron J.-P, Kljuykov E.V, Van Wyk B.-E, Ostroumova T.A, Henwood M.J, Tilney P.M, Spalik K, Watson M.F, et al. (2018) Flowering Plants. Eudicots; Kadereit, J.W., Bittrich, V., Eds.; Springer International Publishing: Cham, Switzerland; Volume 15, ISBN 9783319936055. Pereira RB, Carvalho ADF, Pinheiro JB Silva, GO, Vieira JV (2015) Avaliação de híbridos experimentais de cenoura no Distrito Federal. Horticultura Brasileira 33: 34- 39. Peruzz A, Ginanni M, Fontanelli M, Raffaelli M, Barberi P (2007) Innovative strategies for on-farm weed management in organic carrot. Renewable Agriculture and Food Systems 22, 246–259. Perrin F, Brahem M, Dubois-Laurent C, Huet S, Jourdan M, Geoffriau E, Peltier D, Gagné S (2016) Differential pigment accumulation in carrot leaves and roots during two growing periods. Journal of Agricultural and Food Chemistry 64(4), 906-912. Petropoulos SA, Sampaio SL, Di Gioia F, Tzortzakis N, Rouphael Y, Kyriacou MC, Ferreira I (2019) Grown to be blue—Antioxidant properties and health effects of colored vegetables. Part I: Root Vegetables. Antioxidants, 8, 617. Pina M, Gaspar PD, Lima TM (2021) Decision Support System in Dynamic Pricing of Horticultural Products Based on the Quality Decline Due to Bacterial Growth. Appl. Syst. Innov., 4(4), 80. Polat S, Guclu G, Kelebek H, Keskin M, Selli S (2022) Comparative elucidation of colour, volatile and phenolic profiles of black carrot (Daucus carota L.) pomace and powders prepared by five different drying methods. Food Chemistry, 369, 130941. Porter SD, Reay DS, Higgins P, Bomberg E (2016) A half-century of production-phase greenhouse gas emissions from food loss e waste in the global food supply chain. Science of The Total Environment., 571:721-29. Pounraj S, Bhilwadikar T, Manivannan S, Rastogi NK, Negi PS (2020) Effect of ozone, lactic acid and combination treatments on the control of microbial and pesticide contaminants of fresh vegetables. Journal of the Science of Food and Agriculture. Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V (2018). Coriander (Coriandrum sativum): a promising functional food toward the well-being. 99 Food Research International 105, 305–323. Pham H, Awange J, Kuhn M, Nguyen B, Bui L (2022) Enhancing Crop Yield Prediction Utilizing Machine Learning on Satellite-Based Vegetation Health Indices. Sensors, 719, 22(3). Planet Team (2019) Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. . Acesso em: 26 de março de 2023. Papoutsis K, Edelenbos M (2021). Postharvest environmentally and human-friendly pre-treatments to minimize carrot waste in the supply chain caused by physiological disorders and fungi. Trends in Food Science e Technology, 112, 88–98. Pietola L, Salo T (2000) Response of P, K, Mg and NO3-N contents of carrots to irrigation, soil compaction, and nitrogen fertilisation. Agricultural and Food Science 9(4), 319–331. Perrin F, Dubois-Laurent C, Gibon Y, Citerne S, Huet S, Suel A, Le Clerc L, Briard M, Hamama L, Peltier D, Gagné S, Geoffriau E (2017) Combined Alternaria dauci infection and water stresses impact carotenoid content of carrot leaves and roots. Environmental and Experimental Botany 143, 125–134. Qaisrani ZN, Nuthammachot N, Techato K, Asadullah Jatoi GH, Mahmood B, Ahmed R (2024) Drought variability assessment using standardized precipitation index, reconnaissance drought index and precipitation deciles across Balochistan, Pakistan. Brazilian Journal of Biology, 84. Queiroz PP, Schettino S, Minette LJ (2015) Avaliação biomecânica da atividade de colheita semimecanizada de café em terrenos acidentados. In: Anais do V Congresso Brasileiro de Engenharia de Produção,1-9. Ponta Grossa. Disponível em: . Acessado em: 31/03/2022. Que F, Ho XL, Wang GL, Xu ZS, Tan GF, Li T, Wang YH, Khadr A, Xiong AS (2019) Advances in research on the carrot, an important root vegetable in the Apiaceae family. Hortic. Res., v.6, p.1–15, 2019. Qin R, Li P, Du M, Ma L, Huang Y, Yin Z, Wu X (2021) Spatiotemporal Visualization of Insecticides and Fungicides within Fruits and Vegetables Using Gold Nanoparticle- Immersed Paper Imprinting Mass Spectrometry Imaging. Nanomaterials, 11(5), 1327. Que F, Hou XL, Wang GL, Xu ZS, Tan GF, LI T, Wang YH, Khadr A, Xiong AS (2019) Advances in research on the carrot, an important root vegetable in the Apiaceae family. 100 Hortic. Res., v.6, p.1–15, 2019. Raju TNK, Higgins RD, Stark AR, Leveno KJ(2006). Optimizing Care and Outcome for Late-Preterm (Near-Term) Infants: A Summary of the Workshop Sponsored by the National Institute of Child Health and Human Development. PEDIATRICS, 118(3), 1207-1214. Rashmi HB, Negi PS (2020) Health benefits of bioactive compounds from vegetables, in Plant Derived Bioactives: Production, Properties and Therapeutic Applications, ed. by MK Swamy. Springer, Singapore, pp. 115-166. Ramakrishnan B, Maddela NR, Venkateswarlu K, Megharaj M (2021) Organic farming: Does it contribute to contaminant-free produce and ensure food safety? Science of The Total Environment, 769, 145079. Rahman MM, Azad MOK, Uddain J, Adnan M, Ali MC, Al-Mujahidy SMJ,Naznin MT (2021) Microbial Quality Assessment and Efficacy of Low-Cost Disinfectants on Fresh Fruits and Vegetables Collected from Urban Areas of Dhaka, Bangladesh. Foods, 10(6), 1325. Rasmussen J et al. (2016) Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? European Journal of Agronomy, v. 74. Ren S, Giusti MM (2021) The effect of whey protein concentration and preheating temperature on the color and stability of purple corn, grape and black carrot anthocyanins in the presence of ascorbic acid. Food Research International, 144, 110350. Resende GM, Yuri JE, Costa ND and Mota JH (2016) Yield of carrot cultivars in organic farming system at high temperature. Hortic. Bras. 34 (1): 121-125. Roberti R, Bergonzoni F, Finestrelli A, Leonardi P (2015) Biocontrol of Rhizoctonia solani disease and biostimulant effect by microbial products on bean plants. Micol. Ital., 44. Rowse HR, Finch-Savage WE (2003) Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub- and supra-optimal temperatures. New Phytologist 158, 101–108. 101 Rovai D, Ortgies M, Amin S, Kuwahara S, Schwartz G, Lesniauskas R, Garza J, Lammert A (2021) Utilization of Carrot Pomace to Grow Mealworm Larvae (Tenebrio molitor). Sustainability, 13(16), 9341. Rosenfeld HJ, Aaby K, Lea P (2002) Influence of temperature and plant density on sensory quality and volatile terpenoids of carrot (Daucus carota L.) root. Journal of the Science of Food and Agriculture 82(12), 1384–1390. Reid J, Gillespie R (2017) Yield and quality responses of carrots (Daucus carota L.) to water deficits. New Zealand Journal of Crop and Horticultural Science, 299-312, 45(4). Reid JB (2019) Modelling growth and dry matter partitioning in root crops: a case study with carrot (Daucus carota L.). New Zealand Journal of Crop and Horticultural Science 47, 99–124. Roujean J, Breon F (1995) Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 375-384, 51(3). Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring Vegetation Systems in the Great Plains with ERTS. 3rd Earth Resource Technology Satellite (ERTS), 1, 48-62. Rubatzky VE, Quiros CF, Simon PW (1999) Carrots and Related Vegetable Umbelliferae. CAB International, Wallingford, UK. Ruysschaert G, Poesen J, Verstraeten G, Govers G (2004) Soil loss due to crop harvesting: significance and determining factors. Prog. Phys. Geogr., 28, pp. 467- 501. Ryan U, Hijjawi N, Xiao L (2018) Foodborne cryptosporidiosis. International Journal for Parasitology 48, 1–12. Saw SH, Mak JL, Tan MH, Teo ST, Tan TY, Cheow MYK, Ong CA, Chen S., Yeo SK, Kuan CS, Son R, New CY, Phuah ET, Thung TY, Kuan CH (2020) Detection and quantification of Salmonella in fresh vegetables in Perak, Malaysia. Food Research 4 (2): 441-448. Saha S, Kalia P, Sureja AK and Sarkar S (2016) Breeding tropical carrots (Daucus carota) for enhanced nutrition and high temperature stress. Indian. J. Agric. Sci. 86 (7): 940. Sandhu KS, Joshi AK, Bajaj KL (1988) Effects of nitrogen fertilizer and weed control 102 on nutritive quality of carrots (Daucus carota L.). Plant Foods for Human Nutrition 38, 67–73. Singh DP, Beloy J, McInerney JK, Day L (2012) Impact of boron, calcium and genetic factors on vitamin C, carotenoids, phenolic acids, anthocyanins and antioxidante capacity of carrots (Daucus carota). Food Chemistry 132, 1161–1170. Simon PW, Pollak LM, Clevidence BA, Holden JM, Haytowitz DB (2009) Plant breeding for human nutritional quality. Plant Breed Rev., 31:325–92. Simon PW, Freeman RE, Vieira JV, Boiteux LS, Briard M, Nothnagel T, Michalik B, Kwon YS (2008) Carrot. In: Prohens, J., Carena, M.J. and Nuez, F. (eds) Handbook of Crop Breeding, Vol. 1: Vegetable Breeding. Springer, Heidelberg, Germany, pp. 327–357. Simon PW, Geoffriau E, Ellison S, Iorizzo M (2019) Carrot carotenoid genetics and genomics. In: Simon, P.W., Iorizzo, M., Grzebelus, D. and Baranski, R. (eds) The Carrot Genome. Springer Nature, Cham, Switzerland, pp. 247–260. Simon PW, Peterson CE, Lindsay RC (1982) Genotype, soil, and climate effects on sensory and objective components of carrot flavor. Journal of the American Society for Horticultural Science 107, 644–648. Shin K, Van Diepen G, Blok W, Van Bruggen AHC (2017) Variability of Effective Micro- organisms (EM) in bokashi and soil and effects on soil-borne plant pathogens. Crop Protection, 99, 168–176. Shih YF, Su WS (2021) Biocomposites Based on Agar and Cellulose Nanofibers Prepared from Carrot Slag. In Key Engineering Materials (Vol. 889, pp. 32–37). Small E (1978) A numerical taxonomic analysis of the Daucus carota complex. Canadian Journal of Botany 56, 248–276. Sørensen JN, Jørgensen U, Kühn BF (1997) Drought effects on the marketable and nutritional quality of carrots. Journal of the Science of Food and Agriculture 74(3), 379–391. Stolarczyk J, Janick J (2011) Carrot: history and iconography. Chronica Horticulturae 51, 13–18. Spurr CJ, Lucas AM (2020) Apiaceae Seed Production. In: Geoffriau, E., Simon, P.W. Carrots and Related Apiaceae Crop. Boston, MA: CABI, p.18-34. 103 Schanoski R, Righi EZ, Werner V (2011) Perdas na colheita mecanizada de soja (Glycine max) no município de Maripá -PR1. Revista Brasileira de Engenharia Agrícola e Ambiental. 15(11):1206-1211. Shi X, An X, Zhao Q, Liu H, Xia L, Sun X. et al. (2019) State-of-the-art internet of things in protected agriculture. Sensors, 19 (8), p. 1833. Shih YF, Su WS (2021) Biocomposites Based on Agar and Cellulose Nanofibers Prepared from Carrot Slag. In Key Engineering Materials (Vol. 889, pp. 32–37). Trans Tech Publications, Ltd. Shin BH, Jeon HK (2020) ICT-based smart farm design. Journal of Convergence for Information Technology 10(2): 15-20. Shirwal S, Mani I, Sirohi N (2015) Development and evaluation of carrot harvester. AMA-Agricultural Mechanization in Asia Africa Latin America, vol. 46, no. 1, pp. 28–34. Simões AN, Moreira SI, Costa FB, Almeida AR, Santos RHS, Puschmann R (2010) Populational density and harvest age of carrots for baby carrot manufacture. Horticultura Brasileira 28: 147-154. Simon PW, Freeman RE, Vieira JV, Boiteux LS, Briard M, Nothnagel T, Michalik B, Kwon YS (2008) Carrot. In: Prohens, J., Carena, M.J. and Nuez, F. (eds) Handbook of Crop Breeding, Vol. 1: Vegetable Breeding. Springer, Heidelberg, Germany, pp. 327– 357. Slavin JL, Lloyd B (2012). Health benefits of fruits and vegetables. Adv. Nutr., 3, 506– 516. Subbesh A, Mehta CR (2021) Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture, v.5, p. 278- 291. Stamford JD, Vialet-Chabrand S, Cameron I et al. (2023) Development of an accurate and low-cost NDVI imaging system to assess plant health. Plant Methods 19, 9. Stopa R, Komarnicki P, Szyjewicz D (2017) Modeling of carrot root radial press process for different shapes of loading elements using the finite element method. International Journal of Food Properties, vol. 20, pp. 340–352. Sucheta MNN, Yadav SK(2020). Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics. Food Hydrocolloids, 102, 105592. Simon PW, Grzebelus D (2020) Carrot Genetics and Breeding. In: Geoffriau, E., Simon, P.W. Carrots and Related Apiaceae Crop. Boston, MA: CABI, p.61-75. 104 Stamford JD, Vialet-Chabrand S, Cameron I et al. (2023) Development of an accurate and low-cost NDVI imaging system to assess plant health. Plant Methods 19, 9. Suarez LA, Robson A, McPhee J et al. (2020) Accuracy of carrot yield forecasting using proximal hyperspectral and satellite multispectral data. Precision Agric 21, 1304- 1326. Suarez L, Robertson-Dean M, Brinkhoff J, Robson A (2023) Forecasting carrot yield with optimal timing of Sentinel 2 image acquisition. Precision Agriculture. Suojala T (2000) Variation in sugar content and composition of carrot storage roots at harvest and during storage. Scientia Horticulturae 85, 1–19. Seljåsen R, Bengtsson GB, Hoftun H, Vogt G (2001a) Sensory and chemical changes in five varieties of carrot (Daucus carota L) in response to mechanical stress at harvest and post-harvest. Journal of the Science of Food and Agriculture 81, 436–447. Seljåsen R, Hoftun H, Bengtsson GB (2001b) Sensory quality of ethylene-exposed carrots (Daucus carota L., cv ‘Yukon’) related to the contents of 6-methoxymellein, terpenes and sugars. Journal of the Science of Food and Agriculture 81, 54–61. Sakamoto M, Suzuki T (2015) Elevated root-zone temperature modulates growth and quality of hydroponically grown carrots. Agricultural Sciences 6, 749–757. Subeesh A, Mehta CR (2021) Automation and digitization of agriculture using artificial intelligence and internet of things. Artif. Intell. Agric., 5, pp. 278-291. Swanton CJ, O’Sullivan J, Robinson DE (2010) The critical weed-free period in carrot. Weed Science 58, 229–233. Tang H, Jiang Y, Wang J, Guan R, Zhou W (2021) Bionic Design and Parameter Optimization of Rotating and Fixed Stem- and Leaf-Cutting Devices for Carrot Combine Harvesters. Mathematical Problems in Engineering, 8873965. Tapiero H, Townsend DM, Tew KD (2004) The role of carotenoids in the prevention of human pathologies. Biomedicine e Pharmacotherapy 58(2), 100–110. Talcott ST, Howard LR (1999) Chemical and sensory quality of processed carrot puree as influenced by stress-induced phenolic compounds. Journal of Agricultural and Food Chemistry 47(4), 1362–1366. Talaat NB, Ghoniem AE, Abdelhamid MT, Shawky BT (2015).Effective microorganisms improve growth performance, alter nutrient acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regul., 75, pp. 281-295. 105 Tauxe RV (2002) Emerging foodborne pathogens. International Journal of Food Microbiology 78, 31–41. Tapiero H, Townsend DM, Tew KD (2004) The role of carotenoids in the prevention of human pathologies. Biomedicine e Pharmacotherapy 58(2), 100–110. Tedesco D, Almeida Moreira BR de, Barbosa Júnior MR, Papa JP Silva, RP da. (2021a) Predicting on multi-target regression for the yield of sweet potato by the market class of its roots upon vegetation indices. Computers and Electronics in Agriculture, 191:106544. Tedesco D, Oliveira MF, Santos AF, Silva EHC, Rolim GS, Silva RP (2021b) Use of remote sensing to characterize the phenological development and to predict sweet potato yield in two growing seasons. Eur. J. Agron., 129, p. 126337. Thiagarajan A, Lada RR, Muthuswamy S, Adams A (2013) Agroclimatology-Based Yield Model for Carrot Using Multiple Linear Regression and Artificial Neural Networks. Agronomy Journal, 105(3), 863. Trivellato PT, Morais DC, Lopes LO, Miguel ES, et al. (2019) Insegurança alimentar e nutricional em famílias do meio rural brasileiro: revisão sistemática. Ciênc. Saúde. Colet. 24 (3): 865-874. Toni D, Milan GS, Larentis F, Eberle L, et al. (2020) A configuração da imagem de alimentos orgânicos e suas motivações para o consumo. Ambient. Soc. 23: e02334. Turner S, Ellison S, Senalik DA, Simon PW, Spalding EP, Miller ND (2018) An automated, high-throughput image analysis pipeline enables genetic studies of shoot and root morphology in carrot (Daucus carota L.). Frontiers in Plant Science 9, 1703. Vaiphasa C (2006) Consideração de técnicas de suavização para sensoriamento remoto hiperespectral. Journal ISPRS de Fotogrametria e Sensoriamento Remoto, 60(2), 91-99. Van Klompenburg T, Kassahun A, Catal C (2020) Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric., 177, 105709. Van Bruggen AHC, Finckh M (2016) Plant diseases and management approaches in organic farming systems. Annu. Rev. Phytopathol., 54, pp. 25-54. Van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy. 106 Varelas V (2019) Food wastes as a potential new source for edible insect mass production for food and feed: A review. Fermentation, 5, 81. Van Broekhoven S, Oonincx DGAB, Van Huis A, Van Loon JJA (2015) Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol., 73, 1–10. Vavilov NI (1926) Studies on the Origin of Cultivated Plants. Institut Botanique Appliqué et d’Amélioration des Plantes Leningrad, State Press, Russia. Van Heems HDJ (1985) The influence of weed competition on crop yield. Agricultural Systems 18, 81–93. Vieira JV, Pessoa HBSV, Makishima N (2008) Cenoura (Daucus carota) Embrapa Hortaliças. Disponível em: Acessado em: 30/03/2022. Vieira JV, Pessoa HBSV and Makishima N (1999) A cultura da cenoura. (Coleção Plantar, 43). Embrapa Hortaliças. Brasília: Embrapa Comunicação para transferência de tecnologia, 77p. Vieira JV, Silva GO, Boiteux LS (2012) Parâmetros genéticos e estimativas de correlação de características de processamento em progênies de meios-irmãos de germoplasma de cenoura adaptado ao clima tropical. Horticultura Brasileira 30: 7- 11. Villeneuve F (2020) Carrot Growth and Development. In: Geoffriau, E., Simon, P.W. Carrots and Related Apiaceae Crop. Boston, MA: CABI, p.76-91. Villeneuve F, Bosc JP, Le Dily F (2002) La maturité de la carotte mythe ou réalité? Infos-Ctifl 186, 45–49. Villeneuve F (2014) La carotte: maladies, ravageurs et protection. Collection Hortipratic. CTIFL, Paris. Villeneuve F, Geofriau E (2020) Carrot physiological disorders and crop adaptation to stress. In: Geoffriau, E., Simon, P.W. Carrots and Related Apiaceae Crop. Boston, MA: CABI, p.156-170. Villeneuve F, Leteinturier J (1992) La carotte Vol. 2. Etat des connaissances. CTIFL, 107 Paris. Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current Technologies. Journal of Environmental Chemical Engineering, 2 (1), pp. 573-584. Xia X, Zu Z, Yu C, Zhou Q, Chen J (2021) Finite Element Analysis and Experiment of the Bruise Behavior of Carrot under Impact Loading. Agriculture, 11(6). Xu H (2001) Effects of a microbial inoculant and organic fertilizers on the growth, photosynthesis and yield of sweet corn. J. Crop Prod., 3, pp. 183-214. Xu Z-S, Feng K, Que F, Wang F, Xiong AS (2017) A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots. Scientific Reports 7, 45324. Waliszewski SM, Carvajal O, Gómez-Arroyo S et al. (2008) DDT and HCH Isomer Levels in Soils, Carrot Root and Carrot Leaf Samples. Bull Environ Contam Toxicol 81, 343–347. Wang J, Du D (2014) Vegetable mechanized harvesting technology and its development. Trans. Chin. Soc. Agric. Mach., 45, 81–87. Wang J, Guan R, Gao P (2020b). Design and experiment of single disc to top cutting device for carrot combine harvester. Transactions of the Chinese Society for Agricultural Machinery, vol. 51, no. 8, pp. 105–113. Wang J, Li X, Gao P (2020a) Design and experiment of high efficiency drag reducing shovel for carrot combine harvester. Transactions of the Chinese Society for Agricultural Machinery, vol. 51, no. 6, pp. 93–103. Wang J, Shang S (2012) Development and experiment of double-row self-propelled carrots combine. Transactions of the Chinese Society of Agricultural Engineering, vol. 28, no. 12, pp. 38–43. Wei MCF, Maldaner LF, Ottoni PMN, Molin JP (2020) Carrot Yield Mapping: A Precision Agriculture Approach Based on Machine Learning. AI, 1(2), 229–241. Wszelaczyńska E, Szczepanek M, Pobereżny J and Kazula MJ (2019) Effect of biostimulant application and long-term storage on the nutritional value of carrot. Hortic. Bras. 37 (4): 451-457. 108 WHO (2021) Obesidad y sobrepeso, 2020, Nota descriptiva, Ginebra: World Health Organization. Winterhalter P, Rouseff RL (2001) Carotenoid-derived Aroma Compounds, ACS Symposium Series, vol. 802, American Chemical Society, Washington, DC. Williams MM, Boydston RA (2006) Volunteer potato interference in carrot. Weed Science 54, 94–99. William RD, Warren GF (1975) Competition between purple nutsedge and vegetables. Weed Science 23, 317–323. World Health Organization (2009) Global Prevalence of Vitamin A Deficiency in Populations at Risk 1995-2005: WHO Global Database on Vitamin A Deficiency. Disponível em: http://apps.who.int/iris/bitstream/handle/10665/44110/9789241598019_eng.pdf?sequ ence=1F. Acessado em: 01 de abril de 2023. World Health Organization (2021) World Health Statistics 2021: Monitoring Health for the SDGs, Sustainable Development Goals. Wu X, Zhang Y, Qi, R, Li P, Wen Y, Yin Z, Zhang Z, Xu H (2021) Discrimination of isomeric monosaccharide derivatives using collision-induced fingerprinting coupled to ion mobility mass spectrometry. Talanta, 224, 121901. Zaelor J, Kitthawee S (2018) Growth response to population density in larval stage of darkling beetles (Coleoptera; Tenebrionidae) Tenebrio molitor and Zophobas atratus. Agric. Nat. Resour., 52, 603–606. Zeng G, Chen J (2018) Design and Experiment on Pull Type of Tassel Fruit Separation for Carrot. Trans. Chin. Soc. Agric. Mach., 49, 73–79. Zohair A, Salim A-B, Soyibo AA, Beck AJ (2006) Residues of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in organically-farmed vegetables. Chemosphere, 63(4), 541–553. Zhu J, Pierskalla W P (2016) Applying a weighted random forests method to extract karst sinkholes from LiDAR data. Journal of Hydrology, 533, 343–352. 879c3f2288bf12ec070f092b212b3f55c9049d451f048d77f228a169c23e6f29.pdf 879c3f2288bf12ec070f092b212b3f55c9049d451f048d77f228a169c23e6f29.pdf 879c3f2288bf12ec070f092b212b3f55c9049d451f048d77f228a169c23e6f29.pdf