Universidade Estadual Paulista Júlio de Mesquita Filho Instituto de Biociências Programa de Pós-graduação em Ciências Biológicas Área de Concentração Farmacologia Curso de Doutorado EFEITO DO (-)-MENTOL SOBRE A ÚLCERA GÁSTRICA: ESTUDO DO MECANISMO GASTROPROTETOR ARIANE LEITE ROZZA Orientadora: Profa. Dra. Cláudia Helena Pellizzon Botucatu/SP - 2013 – 1 Universidade Estadual Paulista Júlio de Mesquita Filho Instituto de Biociências Programa de Pós-graduação em Ciências Biológicas Área de concentração Farmacologia Curso de Doutorado EFEITO DO (-)-MENTOL SOBRE A ÚLCERA GÁSTRICA: ESTUDO DO MECANISMO GASTROPROTETOR ARIANE LEITE ROZZA Orientadora: Profa. Dra. Cláudia Helena Pellizzon Botucatu/SP - 2013 – 2 FICHA CATALOGRÁFICA ELABORADA PELA SEÇÃO TÉCNICA DE AQUISIÇÃO E TRATAMENTO DA INFORMAÇÃO DIVISÃO TÉCNICA DE BIBLIOTECA E DOCUMENTAÇÃO - CAMPUS DE BOTUCATU - UNESP BIBLIOTECÁRIA RESPONSÁVEL: ROSEMEIRE APARECIDA VICENTE Rozza, Ariane Leite. Efeito do (-)-mentol sobre a úlcera gástrica : estudo do mecanismo gastroprotetor / Ariane Leite Rozza. – Botucatu : [s.n.], 2013 Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências de Botucatu Orientador: Cláudia Helena Pellizzon Capes: 21001006 1. Sistema gastrointestinal – Úlceras. 2. Antioxidantes. 3. Intestinos – Doenças. 4. Diarréia. 5. Menta (Planta) – Uso terapêutico. Palavras-chave: Anti-inflamatório; Antioxidante; Antissecretório; Mentol; Úlcera gástrica. 3 Apoio Financeiro Auxílio 2010/08536-9 4 Epígrafe “Tenho a impressão de ser uma criança brincando à beira-mar, divertindo-me em descobrir uma pedrinha mais lisa ou uma concha mais bonita que as outras, enquanto o imenso oceano da verdade continua misterioso diante dos meus olhos...” Isaac Newton 5 Dedicatória Aos meus pais, Remigio e Hilda, e minha irmã Mirela, A minha orientadora Profa. Dra. Cláudia Helena Pellizzon. "Só o que sonhamos é o que verdadeiramente somos, porque o mais, por estar realizado, pertence ao mundo e a toda a gente." 6 Agradecimentos A minha orientadora Profa. Dra. Cláudia Helena Pellizzon, que me ensinou grande parte do que aprendi durante a iniciação científica e a pós-graduação, e também pela amizade, paciência, ajuda em todas as horas, Aos membros da banca do exame de qualificação, Dr. Celso Acácio Rodrigues de Almeida Costa, Prof. Dr. Luis Fernando Barbisan, Profa. Dra. Clélia Akiko Hiruma-Lima, Prof. Dr. Carlos Alan Cândido Dias Júnior e Prof. Dr. André Sampaio Pupo, pela disposição em colaborar, pelas valiosas contribuições e, posso dizer, pela amizade, Aos membros titulares e suplentes da banca de defesa da tese, Profa. Dra. Clélia Akiko Hiruma-Lima, Prof. Dr. Carlos Alan Cândido Dias Júnior, Prof. Dr, Jairo Kenupp Bastos, Profa. Dra. Caden Soucar, Prof. Dr. Luis Fernando Barbisan, Prof. Dr. Sérgio Brito Garcia e Profa. Dra. Elfriede Marianne Bacchi, por aceitarem nosso convite e pelas muitas contribuições que certamente virão, A Profa. Dra. Alba Regina Monteiro Souza-Brito e seus alunos Felipe Meira de-Faria e Eduardo Augusto Rabelo Socca, pelas colaborações e muitas risadas, Aos amigos Flávia Bonamin e Thiago de Mello Moraes, sempre fomos uma equipe e continuamos sendo, Aos amigos do laboratório, Daniela e Lucas, e os que por aqui passaram, Gustavo, Bianca, Jean e Paulinho, Aos professores do departamento de Morfologia, em especial ao Prof. Dr. Robson Francisco de Carvalho, com quem aprendi muito à época em que fui bolsista didática, Aos professores do departamento de Farmacologia, que também me ensinaram muito durante as disciplinas e espero que continuem ensinando, Aos funcionários do departamento de Morfologia, Luciana, Ricardo e José Eduardo, sempre dispostos a ajudar e com um bom humor que contagia, 7 Aos funcionários da seção de pós-graduação, pela ajuda e paciência de sempre, A CAPES, pela bolsa, e FAPESP, pelo auxílio financeiro. "Confiança - o senhor sabe - não se tira das coisas feitas ou perfeitas: ela rodeia é o quente da pessoa." Guimarães Rosa 8 Agradecimentos Pessoais Aos meus pais, minha irmã Mirela, vó Teresinha, pelo amor e pelo apoio de sempre, e também a minha pequena Paquita, remédio para o estresse em forma de bolinha de pelo, Aos meus tios e primos, e os priminhos também, A amiga Larissa Aku, companhia desde 2006, a irmã que eu escolhi, que agora foi montar uma filial da nossa casa (vila do chaves) no Reino Unido, Aos amigos que fazem a vida mais divertida, Mariana Fragoso, Rodrigo Aero, Flavia Kalose, Celso Saks, Hélio Ponpon, Monize, Ana Júlia, Caroline Iaiz, Alessandra Carneiro, Felipe de-Faria, Marília Carneiro, Bruno Põe, Juliana Akinaga, Fernanda Nojimoto, Vanessa, Leandro Chico, Fabrício Dalva, Daniela Maracutaia, Lucas Zaraga, Jean Monje, entre todos os outros, Aos que foram meus alunos e hoje são meus amigos, e são muitos, Aos demais amigos da pós-graduação e do departamento, pelas ajudas nas técnicas, pela companhia e pelas risadas, A todos os amigos que podem não estar com o nome escrito nessa página, mas estão com o nome no meu coração e na minha história, Aos amigos do centro cristão espírita Caminho da verdade, A Deus, mestre, professor doutor. "Em um mundo de peregrinos, quando os caminhos se cruzam, o mundo parece um lar durante algum tempo." Herman Hesse 9 ÍNDICE 1. PRÓLOGO……………………………………………………………………1 2. RESUMO……………………………………………………………………...8 3. INTRODUÇÃO……………………………………………………………….9 4. OBJETIVOS………………………………………………………………….33 5. CAPÍTULO 1 Effect of menthol in experimentally induced ulcers: pathways of gastroprotection……………………………………………………………….35 6. CAPÍTULO 2 The gastroprotective effect of menthol: involvement of anti-apoptotic, antioxidant and anti-inflammatory activities………………………………….64 7. CONCLUSÕES……………………………………………………………….87 10 Prólogo 11 Atividades realizadas durante o curso de Doutorado (2009-2013) em Ciências Biológicas, área de concentração Farmacologia Disciplinas cursadas 1. Estratégias digitais para ensino/aprendizagem 2. Matriz extracelular animal 3. Tópicos de atualização em Ciências 4. Farmacologia do sistema nervoso autônomo simpático 5. Empreendedorismo 6. Estresse térmico e reprodução animal 7. Farmacologia avançada 8. Classificação de receptores farmacológicos 9. Mecanismos de controle e adaptação do trato gastrointestinal 10. Métodos de validação de novos fármacos e tópicos de atualização em plantas medicinais Atividades de Ensino 02/2013 – 07/2013 Professora Bolsista da disciplina Farmacologia 02/2011 - 07/2011 Professora Bolsista da disciplina Histologia nos cursos de Biologia e Medicina 08/2010 - 12/2010 Estágio didático na disciplina Histologia no curso de Biomedicina 02/2010 - 07/2010 Estágio docência na disciplina Biologia Celular e Tecidual no curso de Física Médica Artigos completos publicados em periódicos 1. Rozza AL, Hiruma-Lima CA, Tanimoto A, Pellizzon CH. Morphologic and pharmacological investigations in the epicatechin gastroprotective effect. Evidence-Based Complementary and Alternative Medicine, v. 2012, p. 1 - 8, 2012. 12 2. de-Faria FM, Almeida ACA, Luiz-Ferreira A, Dunder RJ, Takayama C, da Silva MS, Silva MA, Vilegas W, Rozza AL, Pellizzon CH, Toma W, Souza-Brito ARM. Mechanisms of action underlying the gastric antiulcer activity of the Rhizophora mangle L. Journal of Ethnopharmacology, v. 139, p. 234 - 243, 2012. 3. de Faria FM, Luiz-Ferreira A, Socca EAR, de Almeida ACA, Dunder RJ, Manzo LP, Silva MA, Vilegas W, Rozza AL, Pellizzon CH, dos Santos LC, Souza Brito ARM. Effects of Rhizophora mangle on experimental colitis induced by TNBS in rats. Evidence-Based Complementary and Alternative Medicine, v. 2012, p. 1 - 11, 2012. 4. Rozza AL, Pellizzon CH. Essential oils from medicinal and aromatic plants: a review of the gastroprotective and ulcer-healing activities. Fundamental & Clinical Pharmacology, v. 27(1), p. 51 – 63, 2012. 5. Rozza AL, Moraes TM, Kushima H, Tanimoto A, Marques MOM, Bauab TM, Hiruma-Lima CA, Pellizzon CH. Gastroprotective mechanisms of Citrus lemon (Rutaceae) essential oil and its majority compounds limonene and ß-pinene: Involvement of heat-shock protein-70, vasoactive intestinal peptide, glutathione, sulfhydryl compounds, nitric oxide and prostaglandin E2. Chemico-Biological Interactions, v. 189, p. 82 - 89, 2011. 6. Takayama C, de-Faria FM, de Almeida ACA, Valim-Araújo DAO, Rehen CS, Dunder RJ, Socca EAR, Manzo LP, Rozza AL, Salvador MJ, Pellizzon CH, Hiruma-Lima CA, Luiz- Ferreira A, Souza-Brito ARM. Gastroprotective and ulcer healing effects of essential oil from Hyptis spicigera Lam. (Lamiaceae). Journal of Ethnopharmacology, v. 135, p. 147 - 155, 2011. 7. Rozza AL, Moraes TM, Kushima H, Nunes DS, Hiruma-Lima CA, Pellizzon CH. Involvement of glutathione, sulfhydryl compounds, nitric oxide, vasoactive intestinal peptide, and heat-shock protein-70 in the gastroprotective mechanism of Croton cajucara Benth. (Euphorbiaceae) essential oil. Journal of Medicinal Food, v. 14, p. 1011 - 1017, 2011. 8. Bonamin F, Moraes TM, Kushima H, Silva MA, Rozza AL, Pellizzon CH, Bauab TM, Rocha LRM, Vilegas W, Hiruma-Lima CA. Can a Strychnos species be used as antiulcer agent? Ulcer healing action from alkaloid fraction of Strychnos pseudoquina St. Hil. (Loganiaceae). Journal of Ethnopharmacology, v. 138(1), p. 47 - 52, 2011. 9. Lima ZP, Bonamin F, Calvo TR, Vilegas W, Santos LC, Rozza AL, Pellizzon CH, Rocha LRM, Hiruma-Lima CA. Effects of the ethyl acetate fraction of Alchornea triplinervia on healing gastric ulcer in rats. Pharmaceuticals, v. 4, p. 1423 - 1433, 2011. 13 Capítulos de livros publicados 1. Rozza AL, Ortiz MOM, Hiruma-Lima CA, Pellizzon CH. Antiulcerogenic activity of Citrus lemon essential oil on acetic acid-induced gastric ulcer in rats. In: Medicinal Plants - Phytochemistry, Pharmacology and Therapeutics, New Delhi, India: Daya Publishing House, v. 2, p. 53-67, 2012. 2. Rozza AL, Pellizzon CH. Pharmacological effects of menthol in the gastrointestinal diseases in clinical and experimental assays. In: Recent Progress in Medicinal Plants, Houston, Texas: Studium Press LCC, v. 34, p. 1-13, 2012. 3. Pellizzon CH, Rozza AL, Vasconcelos PCP, Andreo MA, Vilegas W, Hiruma-Lima CA. Non-commercial plants of medicinal purposes from the Brazilian biomes for the treatment of gastrointestinal diseases. In: Recent Progress in Medicinal Plants - Drug Plants, Houston, Texas: Studium Press LLC, v. 29, p. 217-236, 2010. Trabalhos publicados em anais de eventos 1. Rozza AL, De-Faria FM, Souza-Brito ARM, Pellizzon CH. Role of PGE2 in the (-)- menthol gastroprotective activity In: 5th International Conference in Drug Discovery and Therapy, 2013, Dubai, Emirados Árabes Unidos. 2. Cesar DAS, Rozza AL, De-Faria FM, Souza-Brito ARM, Saldanha LL, Dokkedal AL, Pellizzon CH. Avaliação das atividades gastroprotetora, antioxidante e antidiarreica do extrato hidroalcoólico de Myrcia bella In: 15o Encontro Nacional de Biomedicina, 2012, Botucatu/SP. 3. Cesar DAS, Rozza AL, Pellizzon CH. Avaliação do efeito gastroprotetor e toxicidade do extrato bruto hidroalcoólico de Bauhinia holophylla In: XXXIV CIC - Congresso de Iniciação Científica da UNESP, 2012, Botucatu/SP. 4. Rozza AL, Cesar DAS, Pellizzon CH. Gastroprotective and anti-diarrheic activities of menthol In: 6th European Congress of Pharmacology EPHAR2012, 2012, Granada, Espanha. 5. Rozza AL, Pellizzon CH. Menthol: elucidating its gastroprotective mechanisms of action In: 6th European Congress of Pharmacology EPHAR2012, 2012, Granada, Espanha. 14 6. Rozza AL, Pellizzon CH. Evaluation of gastric juice parameters and mucus production in the menthol gastroprotective effect In: XX Congresso Italo-Latinoamericano de Etnomedicina 'Prof Dr Francisco de Abreu Matos', 2011, Fortaleza-CE. 7. Rozza AL, Tanimoto A, Pellizzon CH. Evaluation of gastric juice parameters and role of alpha-2 receptors, K+ ATP channels, nitric oxide and sulfhydryl compounds in the gastroprotection of epicatechin In: XX Congresso Italo-Latinoamericano de Etnomedicina 'Prof Dr Francisco de Abreu Matos', 2011, Fortaleza-CE. 8. Tanimoto A, Rozza AL, Gregório BB, Moraes TM, Kushima H, Hiruma-Lima CA, Pellizzon CH. Role of alpha-2 adrenoceptors and sulfhydryl groupments on gastroprotective and antiulcerogenic action of epicatechin In: XXVI Reunião Anual da Federação de Sociedades de Biologia Experimental - FeSBE 2011, 2011, Rio de Janeiro. 9. Rozza AL, Pellizzon CH. The gastroprotective mechanism of menthol is involved with sulfhydryl compounds and K+ ATP channels In: 8th International Congress of Pharmaceutical Sciences CIFARP, 2011, Ribeirão Preto. 10. Tanimoto A, Pellizzon CH, Gregório BB, Rozza AL, Seito LN, Di Stasi LC, Hiruma- Lima CA. Atividade antioxidante da epicatequina na prevenção de peroxidação lipídica em membrana de cérebro de ratos In: XIV Semana da Bio, 2010, Botucatu. 11. Tanimoto A, Rozza AL, Gregório BB, Moraes TM, Kushima H, Hiruma-Lima CA, Pellizzon CH. Epicatechin stimulates gastric mucus production and protects the stomach against ethanol and indomethacin In: 11th Congress of the International Society of Ethnopharmacology - ISE 2010, 2010, Albacete, Espanha. 12. Tanimoto A, Rozza AL, Gregório BB, Moraes TM, Kushima H, Hiruma-Lima CA, Pellizzon CH. Gastroprotective effect of epicatechin in ethanol-induced gastric ulcer by stimulation of mucus secretion and nitric oxide production In: XXV Reunião Anual da FeSBE, 2010, Águas de Lindóia. 13. Rozza AL, Tanimoto A, Floriano Junior PR, Hiruma-Lima CA, Pellizzon CH. Participação dos compostos sulfidrílicos e do óxido nítrico no efeito gastroprotetor do mentol frente a úlceras gástricas induzidas por etanol absoluto In: XXV Reunião Anual da FeSBE, 2010, Águas de Lindóia. 14. Marques JF, Rozza AL, Pellizzon CH. Análise morfológica de colite ulcerativa experimental In: XIII Semana da Bio, 2009, Botucatu. 15 15. Rozza AL, Cardoso FF, Moraes TM, Nunes DS, Hiruma-Lima CA, Pellizzon CH. Avaliação da participação dos compostos sulfidrílicos e do óxido nítrico no efeito gastroprotetor do óleo essencial de Croton cajucara In: XXIV Reunião Anual da Federação de Sociedades de Biologia Experimental - FeSBE 2009, 2009, Águas de Lindóia. 16. Tanimoto A, Gregório BB, Rozza AL, Hiruma-Lima CA, Pellizzon CH. Caracterização microscópica de ulcerações gástricas causadas por etanol absoluto e efeito gastroprotetor da epicatequina contra este agente lesivo In: XIII Semana da Bio, 2009, Botucatu. 17. Tanimoto A, Rozza AL, Gregório BB, Hiruma-Lima CA, Pellizzon CH. Epicatequina: ação gastroprotetora frente a lesão gástrica por etanol absoluto em ratos In: XXIV Reunião Anual da Federação de Sociedades de Biologia Experimental - FeSBE 2009, 2009, Águas de Lindóia. 18. Tanimoto A, Gregório BB, Rozza AL, Hiruma-Lima CA, Pellizzon CH. Role of epicatechin in gastroprotection against absolute ethanol in rats pretreated with L-NAME or NEM In: V Encontro da Pós Graduação da FMB, 2009, Botucatu. 19. De-Faria FM, Luiz-Ferreira A, Almeida ACA, Barbastefano V, Silva MA, Vilegas W, Rozza AL, Pellizzon CH, Souza-Brito ARM. Role of SOD in the protection of Rhizophora mangle on gastric injury induced by ethanol, ischemia-reperfusion and acetic acid in rats In: 57th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research, 2009, Genebra, Suíça. Prêmios e títulos 2011 Honra ao Mérito, XXVI Reunião Anual da FeSBE 2010 Honra ao Mérito, XXV Reunião Anual da FeSBE Participação em Eventos 1. 6th European Congress of Pharmacology EPHAR2012. 16 2. II Simpósio de Farmacologia da UNESP, 2012 3. 8th International Congress of Pharmaceutical Sciences CIFARP, 2011 4. XX Congresso Italo-Latinoamericano de Etnomedicina 'Prof Dr Francisco de Abreu Matos' - SILAE 2011 5. I Simpósio de Farmacologia da UNESP, 2011 6. 14o Encontro Nacional de Biomedicina, 2011 7. XXV Reunião Anual da FeSBE, 2010 Curso de curta duração ministrado 1. Rozza AL, Marques JF. Dificuldades e soluções para a técnica de Ácido Periódico - Schiff (PAS), 2010. 17 Introdução 18 1. ÚLCERA GÁSTRICA O estômago é um reservatório ativo que armazena, tritura e dispensa o alimento parcialmente digerido para o intestino para posterior digestão e absorção. Uma de suas principais funções é a secreção do ácido clorídrico (HCl), que tem a função de facilitar a digestão de proteínas através da conversão de pepsinogênio na enzima proteolítica pepsina. O ácido também facilita a absorção de ferro, cálcio, vitamina B12 e de alguns medicamentos, além de prevenir crescimento bacteriano e infecções entéricas (Choi et al., 2011; Pali-Scholl & Jensen-Jarolim, 2011). O estômago é dividido em quatro regiões anatômicas (cárdia, fundo, corpo e piloro). Sua unidade básica funcional é a glândula gástrica, que se divide em três regiões: istmo, colo e base. Células-tronco e células mucosas em diferenciação estão localizadas no istmo, a partir de onde tais células migram e se diferenciam em célula parietal, mucosa do colo, zimogênica ou enteroendócrina. As células dominantes são as células parietais (secretoras de ácido) e células enteroendócrinas (secretoras de histamina). Entre os outros tipos celulares, encontram- se as células enterocromafins (produtoras de peptídeo natriurético atrial, serotonina e adrenomedulina) e células D (produtoras de somatostatina). A característica distintiva da mucosa pilórica é a célula G (produtora de gastrina) (Chu & Schuber, 2012). A mucosa da região do corpo gástrico e, em menor extensão, do fundo e antro gástricos, contem as células parietais. A principal função das células parietais é produzir o acido clorídrico (HCl), que ativa a pepsina a partir do pepsinogênio, atua na digestão de proteínas e reduz a colonização bacteriana no estômago e intestino. As células parietais contém a bomba de prótons, ou H+/K+ATPase, que transporta H+ para o lúmen gástrico e K+ do lúmen para o interior da célula. Por causa da grande quantidade de energia necessária para a manutenção da bomba de prótons, a célula parietal contém a maior quantidade de mitocôndrias entre todas as células do corpo humano (Mercer & Robinson, 2008). Na célula parietal em descanso, as bombas estão contidas em vesículas intracelulares (Urushidani & Forte, 1997). Há um nível basal constante da produção de ácido clorídrico, mesmo quando a célula está em repouso, que corresponde a 10% da produção ácida da célula estimulada. No estado estimulado, as vesículas se fundem com a membrana apical da célula parietal, relocando as bombas protônicas para a superfície que está em contato com o lúmen gástrico (Urushidani & Forte, 1997; Mercer & Robinson, 2008). A representação esquemática da secreção ácida pela célula parietal está contida na figura 1. 19 Figura 1: Ilustração esquemática da secreção do ácido clorídrico (HCl) pela célula parietal gástrica. A secreção envolve uma bomba de prótons (P), um carregador de simporte para K+ e Cl- e um antiporte para íons Cl- e HCO3- (modificado de Rang et al., 2011). Há três tipos de receptores que, quando ativados, estimulam a secreção acida nas células parietais: o receptor muscarínico (M3), o receptor de colecistoquinina do tipo B (CCKB) e o receptor de histamina (H2) (Urushidani & Forte, 1997). Os três receptores estão localizados na membrana basolateral da célula parietal. O receptor M3 é estimulado pela acetilcolina, que é liberada através do estímulo da inervação parassimpática (Mercer & Robinson, 2008). O receptor CCKB é estimulado pela gastrina, produzida pelas células G, localizadas na região do antro gástrico (Mulholland, 2006; Mercer & Robinson, 2008). O receptor H2 é estimulado pela histamina, que é produzida pelas células enteroendócrinas, e sua liberação é estimulada pela gastrina e acetilcolina. O resultado final da ativação desses três receptores é a ativação da bomba protônica. (Mercer & Robinson, 2008). O efeito inibitório na secreção de ácido gástrico é ativado pela somatostatina, que é produzida pelas células D presentes na mucosa fúndica e antral. A acetilcolina tem efeito inibitório sobre a liberação de somatostatina. A somatostatina inibe a secreção ácida atuando diretamente sobre a célula parietal, mas também indiretamente através de inibir a liberação de gastrina e histamina (Mercer & Robinson, 2008). A célula parietal contém outro receptor 20 inibitório da secreção para a PGE2, que inibe a produção ácida através da inibição da secreção de gastrina e estimula a secreção de somatostatina (Mulholland, 2006). O trato gastrointestinal é um ambiente dinâmico que permite a entrada de nutrientes enquanto restringe a entrada de antígenos, toxinas e microrganismos, e responde a agentes luminais potencialmente prejudiciais, num processo de defesa da mucosa. A mucosa gástrica está sob constante ataque por fatores endógenos ou exógenos que induzem dano ao tecido gástrico, mas tais fatores são contrabalanceados por fatores gastroprotetores endógenos que mantém a integridade da mucosa (Wallace & Devchand, 2005). Úlcera gástrica é uma erosão profunda na parede gástrica que penetra em toda a espessura da mucosa (Tarnawski, 2005). É uma doença comum de ocorrência global, com crescente incidência e prevalência, apesar de recentes avanços no campo médico. Anualmente, 14 milhões de pessoas apresentam úlceras, no mundo todo (Maity & Chattopadhyay, 2008). O desenvolvimento das úlceras gástricas decorre do desequilíbrio entre fatores agressores à mucosa e a habilidade da mucosa em defender-se e curar-se (Repetto & Llesuy, 2002; Lu & Graham, 2006). Entre os fatores potencialmente agressores, incluem-se fatores endógenos (como secreção elevada de histamina e ácido clorídrico, bile, isquemia, leucotrienos, citocinas pró-inflamatórias, ativação de neutrófilos, espécies reativas de oxigênio e proteínas pró-apoptóticas) e fatores exógenos, como estresse (Cho et al., 1992), uso de drogas anti-inflamatórias não esteroidais (DAINEs) (Hawkey, 2000), álcool e colonização pela bactéria gram-negativa Helicobacter pylori (Peckenpaugh, 1997). 2. GASTROPROTEÇÃO O estômago pode se defender de injúrias causadas por uma variedade de agentes irritantes e nocivos devido à ativação de várias linhas de defesa, no processo de defesa da mucosa (Brzozowski et al., 2005). Vários fatores permitem a mucosa permanecer intacta apesar de sua freqüente exposição à substâncias com larga variação de temperatura, pH e osmolaridade, assim como substâncias com ação citotóxica e produtos bacterianos capazes de causar reações inflamatórias (Wallace & Granger, 1996). Esse processo de defesa inclui mecanismos locais e neurohormonais. Entre os mecanismos locais, os mais importantes incluem a barreira de muco e bicarbonato, as células epiteliais de superfície e sua alta taxa de regeneração, adequada microcirculação no estômago, o fluxo alcalino, a geração contínua de prostaglandinas E2 e I2 (PGE2 e PGI2), a liberação de óxido nítrico (NO), a manutenção dos compostos sulfidrílicos não-proteicos (NP-SH), a atuação de enzimas antioxidantes e a 21 supressão do processo inflamatório (Tarnawski et al., 2001; Brzozowski et al., 2005; Laine et al., 2008). A camada formada por muco, bicarbonato e fosfolipídeos surfactantes constitui a primeira linha de defesa da mucosa (Allen & Flemströn, 2005). O muco é secretado pelas células epiteliais secretoras de muco e células mucosas do colo e seus principais constituintes são glicoproteínas, mucinas e água (Phillipson et al., 2008). Sua secreção é estimulada pelos hormônios gastrointestinais, incluindo gastrina e secretina, acetilcolina e também pela PGE2, que aumenta a viscosidade e o conteúdo de glicoproteínas no muco (Allen & Flemströn, 2005). Substâncias ulcerogênicas dissipam o muco e a camada de fosfolipídeos, levando a redifusão de ácido clorídrico, causando injúria na mucosa (Darling et al., 2004). A camada de muco retém os íons bicarbonato (HCO3-) secretados pelas células epiteliais, mantendo um microambiente de pH neutro na superfície das células e prevenindo a penetração da enzima pepsina e consequente proteólise do epitélio (Tarnawski et al., 2001; Valcheva-Kuzmanova et al., 2005). O muco também atua como lubrificante para reduzir o dano físico ao epitélio causado pelos materiais ingeridos e diminui a possibilidade de que bactérias tenham contato com o epitélio. A camada de muco é a única barreira pré-epitelial entre o lúmen e o epitélio. Quando ela está prejudicada, a próxima série de mecanismos protetores entra em ação (Wallace, 2008). A próxima linha de defesa é formada por uma camada contínua de células epiteliais que, além da secreção de muco e bicarbonato, produzem prostaglandinas e proteínas heat- shock (HSPs). Devido à presença dos fosfolipídios na superfície, essas células são hidrofóbicas, repelindo agentes danosos solúveis em ácido ou água. Interconectadas por junções celulares, formam uma barreira que previne a redifusão de ácido e pepsina (Tarnawski, 1998; Allen & Flemströn, 2005). As células parietais, que secretam ácido clorídrico no lúmen da glândula gástrica, simultaneamente secretam íons bicarbonato no interstício e lúmen dos capilares sanguíneos adjacentes através de sua membrana basolateral. Esse processo, chamado fluxo alcalino, neutraliza qualquer íon H+ que atinja a membrana basolateral e possa causar injúria na mucosa (Silen, 1993). As HSPs são produzidas por essas células em resposta ao estresse celular, como aumento de temperatura, estresse oxidativo e agentes citotóxicos, prevenindo a denaturação de proteínas e consequentemente protegendo a célula de injúrias. As principais HSPs que atuam no estômago são a HSP-70 e a HSP-90 (Ishihara et al., 2011). 22 A contínua geração de PGE2 e PGI2 também é crucial para manutenção da integridade da mucosa e proteção contra agentes ulcerogênicos. Quase todos os mecanismos de defesa são estimulados ou facilitados pelas prostaglandinas. Elas inibem a secreção ácida, estimulam produção de muco e bicarbonato, estimulam o fluxo sanguíneo, aumentam a concentração de compostos sulfidrílicos não-proteicos (NP-SH) na mucosa e aceleram a regeneração epitelial e cicatrização da mucosa através do estímulo à proliferação celular (Brzozowski et al., 2005). Robert et al. (1979) concluíram que a prostaglandina aplicada exogenamente previne danos a mucosa gástrica induzidos por diferentes agentes, como etanol, ácido (HCl), base (NaOH), solução hiperosmótica (NaCl hipertônico), bile concentrada e até água fervente. A partir dessa descoberta, Robert et al. criaram a expressão citoproteção, definida como a habilidade do agente farmacológico de prevenir injúria a mucosa gástrica ou duodenal causada por uma variedade de agentes ulcerogênicos (Robert et al., 1979; Robert et al., 1983). A adequada microcirculação na mucosa também é essencial para entrega de oxigênio e nutrientes e remoção de substâncias tóxicas. Quando a mucosa gástrica é exposta a um agente lesivo, há rápido aumento no fluxo sanguíneo, que permite remover ou diluir a concentração do agente lesivo. Essa resposta parece ser essencial para a defesa da mucosa, já que a restrição mecânica do fluxo sanguíneo leva a necrose hemorrágica (Laine et al., 2008). O aumento no fluxo sanguíneo na mucosa é mediado, pelo menos em parte, pelo NO, que é gerado pela enzima NO-sintase. A liberação de acetilcolina e de histamina, além de estimular a secreção ácida, tem efeitos vasodilatadores sobre a mucosa gástrica (Peskar, 2001; Holzer, 2006). Os compostos NP-SH estimulam a formação de muco, ligam-se as espécies reativas de oxigênio (que estão envolvidas no dano tecidual) e ainda participam da síntese de proteínas (Banerjee et al., 2008). Agentes ulcerogênicos, como por exemplo o etanol, levam à queda na concentração de compostos NP-SH, que são neutralizados quando se ligam aos radicais livres produzidos pelo agente lesivo (Reyes-Trejo et al., 2008). 23 Figura 2: Representação esquemática de alguns dos processos de defesa da mucosa gástrica (modificado de Laine et al., 2008). O contato do agente ulcerogênico com a mucosa do estômago induz um processo inflamatório local. A ativação dos neutrófilos que decorre da inflamação é uma das principais fontes de espécies reativas de oxigênio (ROS) (Kwiecien et al., 2002). Além disso, os neutrófilos produzem mieloperoxidase (MPO), enzima que libera radicais livres que danificam a mucosa, contribuindo para o desenvolvimento e manutenção da úlcera gástrica (Potrich et al., 2010). Para proteger os tecidos de injúrias causadas pelos radicais livres, as células contem enzimas antioxidantes, incluindo a glutationa peroxidase (GSH-Px), catalase, superóxido dismutase (SOD), glutationa redutase (GR) e o composto sulfidrílico glutationa (GSH). A primeira enzima antioxidante a ser ativada na mucosa gástrica é a SOD, que catalisa a dismutação do ânion superóxido O2- em H2O2, que é menos nociva. O passo seguinte no metabolismo da H2O2 envolve a atividade da GSH-Px. A redução de H2O2 em H2O pela GSH-Px é acompanhada pela conversão da glutationa em sua forma reduzida (GSH) para sua forma oxidada (GSSH), que é convertida novamente a GSH pela atividade da enzima GR, usando NADPH como agente redutor (Kwicien et al., 2002). Compostos com ação 24 antioxidante podem bloquear a apoptose que levaria à necrose do tecido na região da úlcera gástrica (Amira et al., 2012). Figura 3: Representação da formação de espécies reativas de oxigênio no organismo. SOD: superóxido dismutase, CAT: catalase, GPx: glutationa peroxidase, GSH: glutationa, GSSG: glutationa na forma oxidada (retirado de Kwicien et al., 2002). A defesa da mucosa gástrica é regulada também por fatores hormonais. Vários peptídeos, como gastrina, colecistoquinina e leptina tem função gastroprotetora através de variados mecanismo, como o estímulo da proliferação das células epiteliais (Peterson et al., 2010; Tanigawa et al., 2010). Várias pesquisas tem mostrado o envolvimento da motilidade gastrointestinal no processo de defesa da mucosa. A motilidade normal ajuda a manter o fluxo sanguíneo regular, contribuindo no processo de gastroproteção (Tanaka et al., 2001). 3. PRINCIPAIS FATORES CAUSADORES DE ÚLCERA GÁSTRICA O uso de DAINEs e a colonização por H. pylori no estômago são atualmente os principais fatores responsáveis pelo desenvolvimento de úlceras gástricas. DAINEs são os medicamentos mais utilizados nos Estados Unidos. Onze por cento da população faz uso regular de DAINE e um número muito maior faz uso intermitente dessa classe de medicamento (Paulose-Ram et al., 2005). Estudos comprovam que, após 10 minutos da ingestão de um comprimido contendo 650 mg de aspirina, 25% das células epiteliais apresentam danos quando observadas ao microscópio óptico e eletrônico (Baskin et al., 1976). Se analisado sob endoscopia, o estômago apresenta hemorragias subepiteliais dentro de 15 25 minutos após a ingestão do comprimido em 100% dos pacientes (Laine, 1996). Cinco por cento desses pacientes apresentam complicações severas no trato gastrointestinal, como perfurações e hemorragias (Yuan et al., 2006). DAINEs são ácidos fracos, que se ligam a mucosa gástrica causando injúria local. O principal mecanismo de ação é a inibição sistêmica da ciclooxigenase (COX), uma enzima da via de produção das prostaglandinas a partir do ácido aracdônico. Existem duas isoformas, COX-1 e COX-2; DAINEs não seletivos bloqueiam as duas isoformas. A atuação dessas enzimas resulta na produção de PGE2, que protege a mucosa através da inibição da secreção ácida, estímulo na produção de muco e bicarbonato e aumento do fluxo sanguíneo (Ramsay & Carr, 2011), além de ter efeito trófico na mucosa, estimulando a proliferação celular (Pai et al., 2002). Estudos que utilizaram inibidores seletivos para COX-1 ou COX-2 evidenciaram que o efeito ulcerogênico das DAINEs decorre da inibição de ambas as isoformas (Takeuchi, 2012). A sequência de eventos que induz a formação de úlcera após administração de DAINE é a inibição da síntese de prostaglandina, indução da hipermotilidade gástrica, seguida por distúrbios microvasculares e ativação de neutrófilos (Laine et al., 2008). Helicobacter pylori é uma bactéria gram-negativa flagelada que coloniza o estômago. A colônia de bactérias produz a enzima urease, que converte uréia em amônia (NH3) e dióxido de carbono (CO2), criando um microambiente que permite a sobrevivência das bactérias no baixo pH do estômago. A colonização pela bactéria H. pylori no estomago induz a formação de úlceras na mucosa através de diversos mecanismos. A colônia bacteriana produz enzimas que dissolvem a barreira de muco e também induz uma queda na população de células D, que baixa a produção de somatostatina e consequentemente aumenta a produção de gastrina e de ácido clorídrico (Ramsay & Carr, 2011). Mais de 50% da população mundial está infectada pela H. pylori, e essa infecção pode ser assintomática ou evoluir para gastrite, úlcera gástrica, úlcera duodenal, linfoma e adenocarcinoma. A erradicação da colônia de bactérias reestabelece a população de células D, resultando em queda na produção de ácido (Ramsay & Carr, 2011). O tratamento para erradicação consiste na chamada terapia tripla, que combina um inibidor de bomba protônica com os antibióticos claritromicina e amoxicilina. O sucesso dessa terapia está em torno de 80% (Calvet et al., 2000), mas ainda há a necessidade de uma terapia mais simples, que melhore o desconforto para o paciente, apresente custo reduzido e aumente a taxa de erradicação da bactéria (Yuan et al., 2006). À época de seu lançamento, tal terapia apresentava taxas de erradicação próximas a 90%, mas atualmente tem vivenciado um declínio, estando próxima a 70% (Paoluzi et al., 2010). Há várias razões que 26 justificam tal perda de eficácia, mas a principal delas é a crescente resistência da H. pylori aos antibióticos (Selgrad & Malfertheiner, 2011). Antes da introdução do tratamento para erradicação da bactéria H. pylori no estômago, a úlcera gástrica afetava 10% da população mundial, com episódios cíclicos de cura e reincidência. O tratamento com erradicação da bactéria alterou esse ciclo da doença, entretanto, a crença „sem H. pylori, sem úlcera‟ está desatualizada (Arakawa et al., 2000). A prevalência de úlceras gástricas que não são induzidas por H. pylori nem por DAINEs, que podem ser chamadas idiopáticas, está próximo de 40% dos casos (Jyotheeswaran et al., 1998; Jang et al., 2008) e vem crescendo gradualmente nos últimos anos (Musumba et al., 2012). A taxa de reincidência da úlcera gástrica idiopática é maior que a reincidência das úlceras induzidas por H. pylori ou DAINE, e seu tratamento, por não combater uma causa específica, é mais difícil, mais longo e mais caro (Kang et al., 2012). 4. TERAPÊUTICA ATUAL E PERSPECTIVAS O conhecimento sobre a doença mudou drasticamente com a descoberta da relação entre colonização estomacal por H. pylori e o desenvolvimento de úlcera gástrica, por Warren & Marshall (1983). Essa descoberta alterou a ideia de uma doença não apenas causada pelo ácido gástrico, mas também seria uma doença infecciosa, abrindo campo para intensivas pesquisas sobre a patogênese da doença. Além disso, essa pesquisa recebeu pleno reconhecimento em 2005, quando os autores foram laureados com o Prêmio Nobel. Entretanto, esse reconhecimento não fechou o capítulo sobre as úlceras gástricas. O tratamento da úlcera e principalmente de suas complicações ainda são desafios no campo da gastroenterologia (Garcia Rodriguez & Barreales, 2007). As drogas atualmente usadas no tratamento de úlceras gástricas incluem antibióticos (nos casos de infecção por H. pylori), bloqueadores de receptores H2 (cimetidina, ranitidina), inibidores da bomba protônica (omeprazol, lansoprazol) e agentes citoprotetores (bismuto, sucralfato). A classe de drogas que obteve maior êxito é a que visa inibir a secreção ácida. Os antagonistas de receptores H2 revolucionaram a tratamento das úlceras, cicatrizando-as e mantendo-as em remissão durante o período em que eram administrados (Bianchi-Porro & Lazzaroni, 1992). Essa classe de drogas foi gradualmente substituída por uma classe de drogas mais potente na inibição da secreção ácida, os inibidores de bomba de prótons, que entraram no mercado em 1989. Tais medicamentos atuam bloqueando a bomba H+/K+ATPase nas células parietais (Fellenius et al., 1981). Já que a rapidez da cicatrização da úlcera estaria associada com o grau de supressão da produção ácida, os inibidores da 27 bomba protônica tornaram-se uma marca no tratamento das úlceras. Entretanto, após a fase de cicatrização, as úlceras geralmente reincidiam e, por muitos anos, a pratica padrão era manter o tratamento de supressão ácida para o paciente (Malfertheiner et al., 2009). Essas drogas geraram declínio nas taxa de morbidade, mas produzem muitos efeitos adversos, não impedem a reincidência da úlcera (DeVault & Talley, 2009), induzem tolerância (Komazawa et al., 2003) e geralmente tem um custo que não é acessível a grande parte da população (Maity & Chattopadhyay, 2008). Assim, tem se tornado consenso que um fármaco antiulcerogênico deve atuar não apenas na supressão da secreção ácida, mas sim apresentar mecanismo de ação multifatorial. Um fármaco antiulcerogênico considerado ideal deve apresentar atividade antisecretória, antioxidante, antiapoptótica, anti-inflamatória e ainda estimular a proliferação celular e a angiogênese (Maity et al., 2009). A busca por esse composto ainda tem sido um desafio e tem impulsionado as pesquisas recentes da área (Maity & Chattopadhyay, 2008). Nesse sentido, extensivos trabalhos têm sido desenvolvidos com plantas e produtos naturais derivados de plantas. As plantas são fontes atrativas de novas biomoléculas, e elas têm mantido sua popularidade como tratamento para várias doenças por razões históricas e culturais. O interesse no uso de plantas para o tratamento de várias doenças é disseminado em várias partes do mundo. Entre as principais classes de compostos químicos derivados de plantas que vem mostrando resultados promissores para a atividade antiulcerogênica, estão os carotenóides, terpenóides (Favier et al., 2005; Pertino et al., 2006) e os flavonóides (Alanko et al., 1999; Maity & Chattopadhyay, 2008). O uso das espécies do gênero Mentha para fins medicinais é bastante disseminado. Suas folhas são utilizadas internamente para alívio dos sintomas de doenças dos tratos gastrointestinal e urinário, ou por via inalatória para alívio de sintomas de problemas respiratórios e tosse. De acordo com o conhecimento popular, seus benefícios incluem distúrbios biliares, dispepsia, enterite, flatulência, gastrite, úlcera péptica, cólica intestinal e síndrome do intestino irritável (Blumenthal et al.., 2000). Mentol é o composto majoritário dos óleos essenciais do gênero Mentha. Apresenta fórmula molecular C10H20O e peso molecular de 156 kDa. É um terpeno cíclico que dá as plantas desse gênero seu aroma e sabor característicos. Atualmente, o consumo de mentol excede 700 toneladas por ano, e o produto puro movimenta cerca de 300 milhões de dólares (Croteau et al.., 2005). Sua aplicação é versátil e inclui produtos de higiene oral, confeitos, medicamentos, cosméticos, aromatizantes, além de estar presente na composição de fórmulas 28 antipruríticas, antissépticas, analgésicas e refrescantes (Eccles, 1994; Croteau et al., 2005). Ainda, o mentol apresenta comprovado efeito anti-nociceptivo, anestésico local (Haeseler et al., 2002), bactericida e fungicida (Işcan et al., 2002). 5. REFERÊNCIAS BIBLIOGRÁFICAS Aihara T., Nakamura E., Amagase K., et al., “Pharmacological control of gastric acid secretion for the treatment of acid-related peptic disease: past, present, and future,” Pharmacology & Therapeutics, vol. 98, pp. 109-127, 2003. Alanko J., Riutta A., Holm P., et al., “Modulation of arachidonic acid metabolism by phenols: relation to their structure and antioxidant/prooxidant properties,” Free Radical Biology & Medicine, vol. 26, pp. 193-201, 1999. Allen A., Flemström G., “Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin,” American Journal of Physiology Cell Physiology, vol. 288, pp. C1– C19, 2005. Amira S., Dade M., Schinella G., et al., “Anti-inflammatory, antioxidant, and apoptotic activities of four plant species used in folk medicine in the Mediterranean basin,” Pakistan Journal of Pharmaceutical Sciences, vol. 25, pp. 65-72, 2012. Arakawa T, Higuchi K, Fujiwara Y, et al., “Helicobacter pylori: criminal or innocent bystander?,” Journal of Gastroenterology, vol. 35, no. 12, pp. 42-46, 2000. Banerjee D., Maity B., Nag S.K., Bandyopadhyay S.K., Chattopadhyay S., “Healing potential of Picrorhiza kurroa (Scrofulariaceae) rhizomes against indomethacin-induced gastric ulceration: a mechanistic exploration,” BMC Complementary and Alternative Medicine, vol. 8, no. 3, 2008. Baskin W.N., Ivey K.J., Krause W.J., et al., “Aspirin-induced ultrastructural changes in human gastric mucosa. Correlation with potential difference,” Annals of Internal Medicine, vol. 85, pp. 299–303, 1976. Bianchi-Porro G., Lazzaroni M., “Peptic ulcer - medical treatment” In: Gustavsson S., Kumar D., Graham D.Y., eds. The stomach. Edinburgh, London, Madrid, Melbourne, New York, Tokyo. Churchill Livingstone, pp. 246–265, 1992. Blumenthal M., “Herbal Medicine: Expanded Commission E Monographs,” 1st ed. Newton, Mass: Integrative Medicine Communications, 2000. Brzozowski T., Konturek P.C., Konturek S.J., Brzozowska I., Pawlik T., “Role of prostaglandins in gastroprotection and gastric adaptation,” Journal of Physiology and Pharmacology, vol. 56, no. 5, pp. 33-55, 2005. 29 Calvet X., Garcia N., Lopez T., et al., “A meta-analysis of short versus long therapy with a proton pump inhibitor, clarithromycin and either metronidazole or amoxicillin for treating Helicobacter pylori infection,” Alimentary Pharmacology & Therapeutics, vol. 14, pp. 603–609, 2000. Chan F.K.L., Leung W.K., “Peptic-ulcer disease,” Lancet, vol. 360, pp. 933–941, 2002. Choi E.J., Lee H.J., Kim K.O., et al., “Association between acid suppressive therapy and spontaneous bacterial peritonitis in cirrhotic patients with ascites,” Scandianvian Journal of Gastroenterology, vol. 46, pp. 616–620, 2011. Chu S., Schuber M.L., “Gastric secretion,” Current Opinion in Gastroenterology, vol. 28, no. 6, pp. 587-93, 2012. Croteau R.B., Davis E.M., Ringer K.L., et al., “(-)-Menthol biosynthesis and molecular genetics,” Naturwissenschaften vol. 92, pp. 562-77, 2005 Darling R.L., Romero J.J., Dial E.J., Akunda J.K., Langenbach R., Lichtenberger L.M., “The effects of aspirin on gastric mucosal integrity, surface hydrophobicity, and prostaglandin metabolism in cyclooxygenase knockout mice,” Gastroenterology, vol. 127, pp. 94–104, 2004. DeVault K.R., Talley N.J., “Insights into the future of gastric acid suppression,” Nature Reviews. Gastroenterology & Hepatology, vol. 6. no. 9, pp. 524-32, 2009 Eccles R., “Menthol and related cooling compounds,” Journal of Pharmacy and Pharmacology, vol. 46, pp. 18–630, 1994. Favier L.S., María A.O.M., Wendel, G.H., “Anti-ulcerogenic activity of xanthanolide sesquiterpenes from Xanthium cavanillesii in rats,” Journal of Ethnopharmacology, vol. 100, pp. 260-267, 2005. Fellenius E., Berglindh T., Sachs G., et al., “Substituted benzimidazoles inhibit gastric acid secretion by blocking H+/K+ATPase,” Nature, vol. 290, pp. 159–161, 1981. Garcia Rodriguez L.A., Barreales T.L., “Risk of upper gastrointestinal complications among users of traditional NSAIDs and COXIBs in the general population,” Gastroenterology, vol. 132, pp. 498–506, 2007. Glavin G.B., Szabo S., “Experimental gastric mucosal injury: laboratory models reveal mechanisms of pathogenesis and new therapeutic strategies,” FASEB Journal, vol. 6, pp. 825- 831, 1992. 30 Haeseler G., Maue D., Grosskreutz J., et al., “Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol,” European Journal of Anaesthesiology, vol. 19, no. 8, pp. 571-9, 2002 Hawkey C.J., “Nonsteroidal anti-inflammatory drug gastropathy,” Gastroenterology, vol. 119, pp. 521–535, 2000. Holzer P., “Neural regulation of gastrointestinal blood flow,” In: Johnson L.R., ed. Physiology of the gastrointestinal tract. 4ª ed. New York: Academic Press, pp. 817–839, 2006. Huang D., Boxin O.U., Prior R.L., “The chemistry behind antioxidant capacity assays,” Journal of Agricultural and Food Chemistry, vol. 53, no. 6, pp. 1841–1856, 2005. Işcan G., Kirimer N., Kürkcüoğlu M., et al., “Antimicrobial screening of Mentha piperita essential oils,” Journal of Agricultural and Food Chemistry, vol. 50, no. 14, pp. 3943- 3946, 2002. Ishihara T., Suemasu S., Asano T., Tanaka K., Mizushima T., “Stimulation of gastric ulcer healing by heat shock protein 70,” Biochemical Pharmacology, vol. 82, pp. 728-736, 2011. Jang H.J., Choi M.H., Shin W.G., et al., “Has peptic ulcer disease changed during the past ten years in Korea? A prospective multi-center study,” Digestive Diseases and Sciences, vol. 53, pp. 1527-1531, 2008. Jyotheeswaran S., Shah A.N., Jin H.O., et al., “Prevalence of Helicobacter pylori in peptic ulcer patients in greater Rochester, NY: is empirical triple therapy justified?,” American Journal of Gastroenterology, vol. 93, pp. 574–578, 1998. Kang J.M., Seo P.J., Kim N., et al., “Analysis of direct medical care costs of peptic ulcer disease in a Korean tertiary medical center,” Scandinavian Journal of Gastroenterology, vol. 47, pp. 36-42, 2012. Komazawa Y., Adachi K., Mihara T., et al., “Tolerance to famotidine and ranitidine treatment after 14 days of administration in healthy subjects without Helicobacter pylori infection,” Journal of Gastroenterology and Hepatology, vol. 18, no. 6, pp. 678-82, 2003. Kwiecień S., Brzozowski T., Konturek S.J., “Effects of reactive oxygen species action on gastric mucosa in various models of mucosal injury,” Journal of Physiology and Pharmacology, vol. 53, no. 1, pp. 39–50, 2002. Laine L., “Nonsteroidal anti-inflammatory drug gastropathy,” Gastrointestinal Endoscopy Clinics of North America, vol. 6, pp. 489–504, 1996. 31 Laine L., Takeuchi K., Tarnawski A., “Gastric mucosal defense and cytoprotection: bench to bedside,” Gastroenterology, vol. 135, pp. 41–60, 2008. Lu H., Graham D.Y., “New development in the mechanistic understanding of peptic ulcer diseases,” Drug Discovery Today, vol. 3, no. 4, pp. 431-437, 2006. Maity B., Chattopadhyay S., “Natural antiulcerogenic agents: an overview,” Current Bioactive Compounds, vol. 4, pp. 225-244, 2008. Maity P., Biswas K., Chattopadhyay I., et al., “The use of neem for controlling gastric hyperacidity and ulcer,” Phytotherapy Research, vol. 23, no. 6, pp. 747-55, 2009. Malfertheiner P., Chan F.K.L., McColl K.E.L., “Peptic ulcer disease,” Lancet, vol. 374, pp. 1449–1461, 2009. Mercer D.W., Robinson E.K., “Stomach” In: Townsend C.M., editor. Sabiston textbook of surgery. 18th edition. Philadelphia: Saunders, pp. 1226–1238, 2008. Mulholland M.W., “Gastric anatomy and physiology” In: Mulholland M.W., editor. Greenfield‟s surgery: scientific principles and practice. 4th edition. Philadelphia: Lippincott Williams and Wilkins, pp. 712–720, 2006. Musumba C., Jorgensen A., Sutton L., et al., “The relative contribution of NSAIDs and Helicobacter pylori to the etiology of endoscopically-diagnosed peptic ulcer disease: observations from a tertiary referral hospital in the UK between 2005 and 2010,” Alimentary Pharmacology & Therapeutics, vol. 36, no. 48-56, 2012. Pai R., Soreghan B., Szabo I.L., et al., “Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy,” Nature Medicine, vol. 8, pp. 289-93, 2002. Pali-Scholl I., Jensen-Jarolim E., “Antiacid medication as a risk factor for food allergy,” Allergy, vol. 66, pp. 469–477, 2011. Paoluzi O.A., Visconti E., Andrei F., et al., “Ten and eight-day sequential therapy in comparison to standard triple therapy for eradicating Helicobacter pylori infection: a randomized controlled study on efficacy and tolerability,” Journal of Clinical Gastroenterology, vol. 44, pp. 261–266, 2010. Paulose-Ram R., Hirsch R., Dillon C., et al., “Frequent monthly use of selected non- prescription and prescription non-narcotic analgesics among U.S. adults,” Pharmacoepidemiology & Drug Safety, vol. 14, pp. 257–266, 2005. Peckenpaugh N.J., “Nutrição: Essência e Dietoterapia,” 7ª Ed. São Paulo: Roca, 1997. 32 Pertino M., Rodríguez J.A., Theoduloz C., Razmilic I., Schmeda-Hirschmann G., “Gastroprotective activity and cytotoxic effect of cyperenoic acid derivatives,” Journal of Pharmacy and Pharmacology, vol. 58, pp. 1507-1513, 2006. Peskar B.M., “Neural aspects of prostaglandin involvement in gastric mucosal defense,” Journal of Physiology and Pharmacology, vol. 52, pp. 555–568, 2001. Peterson A.J., Nguyen N., Okamoto H., et al., “Loss of Reg1 in conjunction with gastrin deficiency in mice facilitates efficient gastric ulcer healing but is dispensable for hyperplasia and tumourigenesis,” Regulatory Peptides, vol. 160, pp. 9– 18, 2010. Phillipson M., Johansson M.E.V., Henriksnas J., et al., “The gastric mucus layers: constituents and regulation of accumulation,” American Journal of Physiology Gastrointestinal and Liver Physiology, vol. 295, pp. G806–G812, 2008. Potrich F.B., Allemand A., da Silva L.M., et al., “Antiulcerogenic activity of hydroalcoholic extract of Achillea millefolium L.: involvement of the antioxidant system,” Journal of Ethnopharmacology, vol. 130, pp. 85–92, 2010. Ramsay P.T., Carr A., “Gastric acid and digestive physiology,” The Surgical Clinics of North America, vol. 91, no. 5, pp. 977-982, 2011. Repetto M.G., Llesuy S.F., “Antioxidant properties of natural compounds used in popular medicine for gastric ulcers,” Brazilian Journal of Medical and Biological Research, vol. 35, pp. 523–534, 2002. Reyes-Trejo B., Sánchez-Mendoza M.E., Becerra-García A.A., et al., “Bioassay- guided isolation of an anti-ulcer diterpenoid from Croton reflexifolius: role of nitric oxide, prostaglandins and sulfhydryls,” Journal of Pharmacy and Pharmacology, vol. 60, pp. 931– 936, 2008. Robert A., Nezamis J.E., Lancaster C., et al., “Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCl, NaOH, hypertonic NaCl and thermal injury,” Gastroenterology, vol. 77, pp. 433–443, 1978. Selgrad M., Malfertheiner P., “Treatment of Helicobacter pylori,” Current Opinion in Gastroenterology, vol. 27, pp. 565–570, 2011. Silen W., “Physiology of gastric function,” In: Fischer J.E, editor. Surgical basic science. St Louis (MO): Mosby, pp. 271–291, 1993. Takeuchi K., “Pathogenesis of NSAID-induced gastric damage: importance of cyclooxygenase inhibition and gastric hypermotility,” World Journal of Gastroenterology, vol. 18, no. 18, pp. 2147-2160, 2012. 33 Tanaka A., Araki H., Hase S., et al., “Inhibition of both COX-1 and COX-2 is required for development of gastric damage in response to nonsteroidal antiinflammatory drugs,” Journal of Physiology Paris, vol. 95, pp. 21–27, 2001. Tarnawski A., “Cellular and molecular mechanisms of gastrointestinal ulcer healing,” Digestive Diseases and Sciences, vol. 1, pp. S24-33, 2005. Tarnawski A., Szabo I.L., Husain S.S., Soreghan B., “Regeneration of gastric mucosa during ulcer healing is triggered by growth factors and signal transduction pathways,” Journal of Physiology Paris, vol. 95, no. 1-6, pp. 337-344, 2001. Tarnawski A., Szabo I.L., Husain S.S., Soreghan B., “Regeneration of gastric mucosa during ulcer healing is triggered by growth factors and signal transduction pathways,” Journal of Physiology Paris, vol. 95, pp. 337-344, 2001. Urushidani T., Forte J.G., “Signal transduction and activation of acid secretion in the parietal cell,” The Journal of Membrane Biology, vol. 159, pp. 99–111, 1997. Valcheva-Kuzmanova S., Marazova K., Krasnaliev I., et al., “Effect of Aronia melanocarpa fruit juice on indomethacin-induced gastric mucosal damage and oxidative stress in rats,” Experimental & Toxicologic Pathology, vol. 56, no. 6, pp. 385-392, 2005. Wallace J.L., “Mechanisms of protection and healing: current knowledge future research,” The American Journal of Medicine, vol. 110, pp. S19-S23, 2001. Wallace J.L., “Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn‟t the stomach digest itself?” Physiological Reviews, vol. 88, pp. 1547–1565, 2008. Wallace J.L., Devchand P.R., “Emerging roles for cyclooxygenase-2 in gastrointestinal mucosal defense,” British Journal of Pharmacology, vol. 145, no. 3, pp. 275- 282, 2005. Wallace J.L., Granger D.N., “The cellular and molecular basis of gastric mucosal defense,” FASEB Journal, vol. 10, pp. 731–740, 1996. Warren J.R., Marshall B., “Unidentified curved bacilli on gastric epithelium in active chronic gastritis,” Lancet, vol. 321, pp. 1273–1275, 1983. Yuan Y., Hunt R.H., “Treatment of non-NSAID and non-H. pylori gastroduodenal ulcers and hypersecretory states,” In: Wolfe M.M. (ed), Therapy of digestive disorders, 2nd edition, London, UK: Elsevier, pp. 315–336, 2006. Yuan Y., Padol I.T., Hunt R.H., “Peptic ulcer disease today,” Nature Clinical Practice Gastroenterology & Hepatology, vol. 3, no. 2, pp. 80-89, 2006 34 Objetivos 35 OBJETIVOS - Investigar e caracterizar o mecanismo de ação gastroprotetor do mentol contra diferentes agentes ulcerogênicos (etanol e indometacina), - Investigar a atividade do mentol sobre a diarreia e motilidade intestinal, - Investigar possível indução de efeito tóxico agudo do mentol em ratos. 36 Capítulo 1 37 Artigo a ser submetido para Evidence-Based Complementary and Alternative Medicine (eCAM) EFFECT OF MENTHOL IN EXPERIMENTALLY INDUCED ULCERS: PATHWAYS OF GASTROPROTECTION ABSTRACT Based on ethnopharmacological indications that Mentha species may be used in the treatment of gastrointestinal diseases, this study aimed to characterize the gastroprotective mechanisms of menthol (ME), the major compound of the essential oil from species of the genus Mentha. The gastroprotective action of ME was analyzed in gastric ulcers that were induced by ethanol or indomethacin in Wistar male rats. The mechanisms responsible for the gastroprotective effect were assessed by analyzing the amount of mucus secreted, involvement of non-protein sulfhydryl (NP-SH) compounds, involvement of calcium ion channels and NO/cGMP/K+ ATP pathway, gastric antisecretory activity and the prostaglandin E2 (PGE2) production. The anti- diarrheal activity and acute toxicity of ME were also evaluated. Oral treatment with ME (50 mg/kg) offered 88.62% and 72.62% of gastroprotection against ethanol and indomethacin, respectively. There was an increased amount of mucus and PGE2 production. The gastroprotective activity of ME involved NP-SH compounds and the stimulation of K+ ATP channels, but not the activation of calcium ion channels or the production of NO. The oral administration of ME induced an antisecretory effect as it decreased the H+ concentration in gastric juices. ME displayed anti-diarrheal and antiperistaltic activity. There were no signs of toxicity in the biochemical analyses performed in the rats‟ serum. These results demonstrated that ME provides gastroprotective and anti-diarrheal activities with no toxicity in rats. Keywords: menthol, gastroprotection, gastric ulcer, diarrhea, acute toxicity 38 1. INTRODUCTION The gastric mucosa is continuously exposed to damaging agents that are involved in the pathogenesis of gastric ulcers. These damaging agents can be endogenous (e.g., hydrochloric acid, pepsin, refluxed bile, and reactive oxygen species) or exogenous (e.g., alcohol consumption, excessive coffee ingestion, and administration of non-steroidal anti- inflammatory drugs). The basic physiopathology of gastric ulcers results from an imbalance between damaging factors and cytoprotective factors, which include an intact mucus barrier, prostaglandins, adequate mucosal blood flow, activity of antioxidant compounds, and other mediators (Laine et al., 2008). There is a continuous search for a new bioactive compound derived from medicinal plants and natural products with gastroprotective and ulcer-healing properties. The new compound should be accessible, safe, and gastroprotective, and it should effectively heal the ulcer, thus avoiding its reoccurrence (Lallo et al., 2013). Plants have presented promising results in the treatment of gastric ulcers in several research projects worldwide (Schmeda- Hirschmann & Yesilada, 2005). Among the natural compounds that have been studied in recent studies, several terpenes have presented gastroprotective effects, such as limonene (Rozza et al., 2011), suaveolol (Vera-Arzave et al., 2012) and carvacrol (Silva et al., 2012). Menthol (ME) is a cyclic terpene with molecular weight 156 kDa and the formula C10H20O. ME is the main compound of the essential oil from the species of the genus mentha and is responsible for giving mentha species their distinctive smell and flavor. Among the optical isomers, (-)-menthol occurs most widely in nature and is endowed with the peculiar property of being a fragrance and flavor compound (Eccles, 1994). This study aimed to characterize the mechanism of action of ME against ethanol- and indomethacin-induced gastric ulcers in 39 rats. We also sought to evaluate the anti-diarrheal activity and the acute toxicity induced by ME. 2. MATERIAL AND METHODS 2.1. Menthol (-)-Menthol (catalog #63660) was purchased from Sigma Chemical Co. (St. Louis, MO, USA). The chemical structure of ME is presented in figure 1. Figure 1: Chemical structure of (-)-menthol. 2.2. Animals Male Wistar rats (200–250 g) from the Central Animal House of UNESP were fed a certified diet with free access to tap water under standard light-dark cycles (12 h dark–12 h light), humidity (60 ± 1%) and temperature (21 ± 2°C). All rats were fasted for at least 16 hours prior to each experiment because the treatments were orally administered. Rats were housed in cages with raised, wide-mesh floors to prevent coprophagy. All experimental protocols followed the recommendations of the Canadian Council on Animal Care and were approved by the UNESP Institutional Animal Care and Use Committee. 40 2.3. Experimental assays 2.3.1. Ethanol-induced gastric ulcers: determination of dose Male Wistar rats were distributed into five groups (n=7) and then orally dosed with vehicle (10 mL/kg), carbenoxolone (100 mg/kg) or ME (25, 50 or 100 mg/kg). After 1 hour, the animals received an oral dose of 1 mL of absolute ethanol. One hour after ethanol treatment, the rats were euthanized, and their stomachs were removed (Robert et al., 1979). The stomachs were then opened along the greater curvature and washed. The flattened stomach samples were scanned, and the ulcer area (mm2) was measured using the AVSoft BioView software. The lower effective dose from the 3 doses tested was adopted for all other assays. After scanning, the mucosa of each stomach was gently scraped using two glass slices, homogenized in phosphate-buffered saline (PBS, 0.1 M, pH 7.4), and frozen at −80°C until biochemical analyses. Stomach samples were collected for histological slide preparation and were either stained with hematoxylin and eosin (HE) or periodic acid-Schiff (PAS) or used for immunohistochemical analyses. A microscopic score (Jahovic et al., 2007) was determined for the following parameters: epithelial desquamation, hemorrhage, glandular damage and eosinophilic infiltration. A scale ranging from 0 to 3 (0: none, 1: mild, 2: moderate and 3: severe) was used for each criterion. The highest possible score was 12. 2.3.2. Involvement of the NO/cGMP/K+ATP pathway in gastroprotection Rats were distributed into eight groups (n=7). Two groups of rats were subjected to intraperitoneal treatment with the following drugs: vehicle (8% tween 80, 10 mL/kg), L- NAME (N-nitro-L-arginine methyl ester 70 mg/kg, a NO synthase inhibitor), ODQ (1H[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one 10 mg/kg, a guanylate cyclase inhibitor) or glibenclamide (K+ ATP channel blocker 3 mg/kg). One hour later, the vehicle (10 mL/kg) and 41 ME (50 mg/kg) were orally administered to four groups each (Chávez-Piña et al., 2011). After 60 minutes, all groups were orally treated with 1 mL of absolute ethanol for gastric ulcer induction. Animals were euthanized one hour after ethanol administration, and the stomachs were removed, opened along the greater curvature, scanned and the ulcer area (mm2) was determined using the AVSoft BioView software. 2.3.3. Involvement of non-protein sulfhydryl compounds (NP-SH) or calcium ion channels in gastroprotection Rats were distributed into six groups (n=7). Two groups of rats were subjected to intraperitoneal treatment with the following drugs: vehicle (8% tween 80, 10 mL/kg), NEM (N-ethylmaleimide 5 mg/kg, a NP-SH compounds blocker) or verapamil (a calcium channel blocker, 5 mg/kg). One hour later, the vehicle (10 mL/kg) and ME (50 mg/kg) were orally administered to three groups each. After 60 minutes, all groups were orally treated with 1 mL of absolute ethanol for gastric ulcer induction. Animals were killed one hour after ethanol administration, and the stomachs were removed, opened along the greater curvature, scanned and the ulcer area (mm2) was determined using AVSoft BioView. 2.3.4. Evaluation of gastric juice parameters Rats were randomly divided into six groups (n=7). Thirty minutes after oral treatment or immediately after the intra-duodenal administration of a single dose of vehicle (10 mL/kg), cimetidine (100 mg/kg) or ME (50 mg/kg), the rats were subjected to pyloric ligation (Shay et al., 1945). Four hours later, the animals were euthanized, the abdomen was opened and another ligature was placed around the esophagus, close to the diaphragm. The stomach was removed, and its contents were drained into a graduated centrifuge tube, which was then centrifuged at 2,000 g for 15 minutes. The total acid content of the gastric secretions was 42 determined by titration to pH 7.0 with 0.01 N NaOH using a digital burette. The total concentration of acid was expressed as mEq/mL/4 h. 2.3.5. Determination of mucus adherence to the gastric wall After 24 hours of fasting, anesthetized rats (n=7) were subjected to longitudinal incisions slightly below the xiphoid apophysis for the placement of a pyloric ligature. The oral administration of vehicle, carbenoxolone (200 mg/kg) or ME (50 mg/kg) was performed 1 hour before the ligature. After 4 hours, the rats were euthanized, and the glandular portion of the stomach was weighed and immersed in Alcian Blue solution for the mucus quantification procedure. The absorbance was measured in a spectrophotometer at a wavelength of 598 nm, and the results were expressed as µg Alcian Blue/g tissue (Rafatullah et al., 1990). 2.3.6. Non-steroidal anti-inflammatory drug (NSAID)-induced gastric ulcers Rats were distributed into three groups (n=7). Vehicle (10 mL/kg), cimetidine (100 mg/kg) or ME (50 mg/kg) were orally administered 30 minutes prior to the induction of gastric lesions by the oral administration of the ulcerogenic agent indomethacin (100 mg/kg). The animals were euthanized 5 hours after treatment with indomethacin (Puscas et al., 1997). The stomachs were removed, opened along the greater curvature and then scanned. The ulcer area (mm2) was determined using AVSoft BioView. 2.3.7. Prostaglandin E2 (PGE2) assay Rats were randomly divided into five groups (n=7): sham, vehicle, vehicle + indomethacin, ME (50 mg/kg) and ME (50 mg/kg) + indomethacin. The +indomethacin groups subcutaneosly received indomethacin (PGE2 inhibitor) at 30 mg/kg, and the other 43 groups received vehicle. After 30 minutes, rats orally received vehicle or ME. The sham group received neither drug nor treatment. After 30 minutes, the rats were euthanized, and the stomachs were removed. Following stomach harvesting, the corpus was excised, weighed and suspended in 10 mM PBS at pH 7.4 (1 mL). The tissue was minced finely with scissors and incubated at 37°C for 20 minutes. After centrifugation at 9,000 g, the PGE2 levels in the supernatant were measured by ELISA and read in spectrophotometer (420 nm). The results were expressed as ng/mL (Curtis et al., 1995). 2.3.9. Effect of menthol on castor oil-induced diarrhea Three groups of rats were orally treated with vehicle (10 mL/kg), loperamide hydrochloride (3 mg/kg) or ME (50 mg/kg). After 30 minutes, each rat received 1 mL of castor oil orally. Immediately after ingesting the castor oil, each rat was kept in an individual cage, the floor of which was lined with blotting paper, and the rats were observed for 5 hours. The following parameters were then observed: onset of diarrhea, number of solid, semi-solid and watery feces and total frequency of fecal outputs. Each rat received an evacuation index (EI) expressed according to the formula: EI = 1×(no. solid stool) + 2×(no. semi-solid stool) + 3×(no. watery stool) (Crocci et al., 1994). 2.3.10. Effect of menthol on gastrointestinal motility Rats were orally treated with vehicle (10 ml/kg), loperamide hydrochloride (4 mg/kg) or ME (50 mg/kg). After 20 minutes, each rat orally received 1 mL of charcoal meal (10% charcoal suspension in 5% aqueous gum Arabic). After 30 minutes, rats were euthanized, and the stomach and small intestine were removed. The distance between the charcoal meal and the pylorus was measured and correlated to the distance from the pylorus to the caecum (Calzada et al., 2010). 44 2.3.11. Acute toxicity Male rats (n=10) orally received vehicle or a single acute dose of ME (500 mg/kg, corresponding to ten times the therapeutic dose) after 12 hours of fasting. Possible signs and symptoms associated with toxicity were observed at 0, 30, 60, 120, 180 and 240 minutes after the administration and then twice daily for the next 14 days. Body weights were noted daily. At the end of the period, the rats were euthanized, and the kidneys and liver were withdrawn, weighed and evaluated. Biochemical analyses were performed on the rats‟ serum to quantify AST (aspartate aminotransferase), ALT (alanine aminotransferase), -GT (gamma glutamyltransferase) and alkaline phosphatase to evaluate liver damage and creatinine and urea to evaluate kidney damage using the automated biochemical analyzer SBA-200, CELM, Brazil. 2.4. Statistical analysis Parametric data were analyzed using an unpaired t-test or a one-way analysis of variance (ANOVA) followed by Dunnett‟s test and compared to the vehicle group or Tukey‟s test. The results were presented as the mean ± standard error of the mean (SEM). Nonparametric data (histology scoring) were analyzed using the Kruskal-Wallis (nonparametric ANOVA) test, followed by a Dunn multiple comparison test. The results were presented as the median (range). All analyses were performed using GraphPad InStat software. A value of p<0.05 was considered significant. 45 3. RESULTS 3.1. Ethanol-induced gastric ulcers 3.1.1. Gastric ulcer area The vehicle group presented several hemorrhagic bands that were usually parallel to the long axis of the stomach, with an average ulcer area of 374.82 ± 12.75 mm2. They were located mostly in the gastric corpus, and no visible lesions developed in the non-secretory part of the stomach. The two highest ME doses tested (i.e., 50 and 100 mg/kg) exhibited gastroprotective effects (p<0.01) when compared to the vehicle group. ME presented a gastroprotective effect of 20.06% for the lower dose (25 mg/kg), 88.62% for 50 mg/kg (ulcer area 42.64 ± 15.64 mm2) and 98.42% for the highest dose, 100 mg/kg (ulcer area 5.91 ± 5.33 mm2). However, according to Tukey‟s test, there was no difference between the ulcer areas of the groups treated with 50 mg/kg or 100 mg/kg; therefore, the dose of 50 mg/kg was used for all subsequent experiments. The ulcer areas (mm2) are represented in figure 2. Figure 2: Gastric ulcer area (mm2) of rat stomachs with ethanol-induced gastric ulcers after treatment with vehicle, carbenoxolone (100 mg/kg) or menthol (25, 50 or 75 mg/kg). The results are reported as the mean ± SEM. ANOVA followed by Dunnett´s test, p<0.01. 46 3.1.2. Microscopic analyses Microscopically, ME presented moderate epithelial desquamation, mild hemorrhage and glandular damage as well as an absence of eosinophilic infiltration, presenting a score of 3(1-3). Carbenoxolone showed moderate epithelial desquamation and glandular damage as well as mild hemorrhage and eosiniphilic infiltration, presenting a score of 4(2-5). The score of the vehicle group was 12(11-12). The mucus polysaccharides were evidenced after the PAS staining, which conferred a purple barrier covering the gastric pits in the ME-treated rats. The HE and PAS staining of the ulcers are displayed in figure 3. 3.2. Involvement of the NO/cGMP/K+ ATP pathway in gastroprotection In rats that were pre-treated with L-NAME (a NO-synthase inhibitor) or ODQ (a guanylate cyclase inhibitor), the gastroprotective effect of ME (50 mg/kg) was maintained (62.65% and 97.71% gastroprotection, respectively, compared to the vehicle-treated group, p<0.01), showing that the NO synthesis or cGMP were not involved in the protective mechanism of ME. However, in rats pretreated with glibenclamide (a K+ ATP channel blocker), the gastroprotective effect of ME (50 mg/kg) was reversed, indicating the involvement of K+ ATP channels in gastroprotection (table 1). 3.3. Involvement of NP-SH compounds or calcium channels in gastroprotection In rats pretreated with NEM (an NP-SH compound reagent), the gastroprotective effect of ME (50 mg/kg) was reversed, indicating the involvement of SH compounds in gastroprotection. However, in rats that were pre-treated with verapamil (a calcium ion channel blocker), the gastroprotective effect of ME (50 mg/kg) was maintained (a protective effect of 98.31% compared to the vehicle-treated group, p<0.001), indicating that the calcium ion channels are not involved in the gastroprotective mechanism of ME (table 2). 47 Figure 3: Photomicrography of rat stomachs with ethanol-induced gastric ulcers after treatment with (A, D) vehicle, (B, E) carbenoxolone (100 mg/kg) or (C, F) menthol (50 mg/kg). In the HE staining (A, B, C), * indicates epithelial desquamation and # indicates glandular damage. In the PAS staining (D, E, F), + indicates the mucus secretion in the gastric glands. 48 Table 1: Effect of menthol (50 mg/kg) on ethanol-induced gastric ulcer area (mm2) in rats that were pretreated with L-NAME (NO synthase inhibitor), ODQ (guanylate cyclase inhibitor) or glibenclamide (K+ ATP channels blocker) Pretreatment (i.p) Treatment (p.o) Ulcer area (mm2) Gastroprotection (%) Vehicle Vehicle 501.70 ± 35.00 - Menthol 50.52 ± 10.99 *** 89.93 L-NAME 70 mg/kg Vehicle 476.44 ± 89.17 - Menthol 177.94 ± 25.29 ** 62.65 ODQ 10 mg/kg Vehicle 652.54 ± 144.21 - Menthol 14.94 ± 6.10 ** 97.71 Glibenclamide 3 mg/kg Vehicle 134.13 ± 16.03 - Menthol 154.41 ± 28.50 0 The results are reported as the mean ± SEM. Unpaired t test, **p<0.01, ***p<0.001. Table 2: Effect of menthol (50 mg/kg) on ethanol-induced gastric ulcer area (mm2) in rats that were pretreated with NEM (SH blocker) or verapamil (calcium channel blocker) Pretreatment (i.p) Treatment (p.o) Ulcer area (mm2) Gastroprotection (%) Vehicle Vehicle 1825.62 ± 192.76 - Menthol 17.86 ± 11.46 *** 99.02 NEM 5 mg/kg Vehicle 1799.24 ± 250.73 - Menthol 1574.03 ± 346.59 8.34 Verapamil 5 mg/kg Vehicle 1155.17 ± 336.88 - Menthol 19.53 ± 12.38 ** 98.31 The results are reported as the mean ± SEM. Unpaired t test, **p<0.01, ***p<0.001. 49 3.4. Evaluation of the gastric juice parameters A comparison of the gastric juice parameters of rats treated with oral or intra-duodenal ME (50 mg/kg) demonstrated that the oral treatment was able to diminish the H+ concentration (p<0.01) in the gastric juice without modifying its volume. The intra-duodenal administration was not able to decrease the H+ concentration, but it did diminish the volume of the gastric juice (table 3). Table 3: Effect of menthol (50 mg/kg) on gastric juice parameters in rats with pyloric ligation The results are reported as the mean ± SEM. ANOVA followed by Dunnett‟s test, p<0.01. 3.5. Determination of mucus adherence to the gastric wall There was a 2.2-fold increase in the amount of gastric mucus adhering to the stomach wall in the ME-treated (50 mg/kg) group (3632.00 ± 66.06 µg/g, p<0.01) compared to the vehicle- treated group (1633.43 ± 43.73 µg/g) (figure 4). Route Treatment Gastric Juice Volume (mL) [H+] mequiv/mL/4h Oral Vehicle Cimetidine 100 mg/Kg Menthol 50 mg/Kg 2.93 ± 0.36 1.9 ± 0.13 3.39 ± 0.63 9.60 ± 0.95 2.23 ± 0.18 ** 5.90 ± 0.67 ** Intraduodenal Vehicle Cimetidine 100 mg/Kg Menthol 50 mg/Kg 5.08 ± 0.21 2.42 ± 0.17 ** 2.95 ± 0.15 ** 10.23 ± 0.44 4.62 ± 0.50 ** 9.05 ± 0.32 50 Figure 4: Quantification of adherent mucus (µg/g of tissue) in the gastric mucosa of rats treated with vehicle, carbenoxolone (200 mg/kg) or menthol (50 mg/kg). The results are reported as the mean ± SEM. ANOVA followed by Dunnett´s test, p<0.01. 3.6. Indomethacin-induced gastric ulcers The vehicle-treated group had a large quantity of small petechiae in the stomach and a mean ulcer area of 38.06 ± 8.02 mm2. In this model, ME presented a gastroprotective effect of 72.62% (ulcer area 10.42 ± 2.71 mm2, p<0.01) in comparison to the vehicle group (figure 5). 3.7. PGE2 assay The decreased level (p<0.01) of PGE2 in the vehicle + indomethacin group, compared to that of the sham group, proves that indomethacin induces decrease of PGE2 production. The ME groups maintained PGE2 levels near that of the sham group, even with indomethacin administration (figure 6). 51 Figure 5: Gastric ulcer area (mm2) in rat stomachs with indomethacin-induced gastric ulcers after treatment with vehicle, carbenoxolone (100 mg/kg) or menthol (50 mg/kg). The results are reported as the mean ± SEM. ANOVA followed by Dunnett´s test, compared to vehicle group, p<0.01. Figure 6: PGE2 measurement (ng/mL) in the gastric mucosa of rats treated with vehicle or menthol (50 mg/kg) alone or in association with nonselective COX inhibitor (indomethacin). The results are reported as the mean ± SEM. ANOVA followed by Dunnett‟s test, compared to sham group, p<0.01. 52 3.9. Effect of menthol on castor oil-induced diarrhea and gastrointestinal motility ME inhibited evacuation in 36.15% of the treated group compared to the vehicle group (p<0.01), indicating an antidiarrheal activity comparable to the effect of the standard drug loperamide hydrochloride (38.50%, table 4). The antidiarrheal effect of ME was connected to an antiperistaltic activity, decreasing the intestinal motility in 56.18% of the treated animals compared to the vehicle group (p<0.01, table 5). Table 4: Evacuation index and % of evacuation inhibition after oral treatment with vehicle, loperamide hydrochloride (3 mg/kg) or menthol (50 mg/kg) The results are reported as the mean ± SEM. ANOVA followed by Dunnett‟s test, p<0.01. Table 5: Evaluation of intestinal motility (cm1/2) after oral treatment with vehicle, loperamide hydrochloride (5 mg/kg) or menthol (50 mg/kg) The results are reported as the mean ± SEM. ANOVA followed by Dunnett‟s test, p<0.01. 3.10. Acute toxicity Treatment Evacuation index % of evacuation inhibition Vehicle Loperamide 3 mg/Kg Menthol 50 mg/Kg 13.0 ± 0.84 8.0 ± 1.0 ** 8.3 ± 0.42 ** - 38.50 36.15 Treatment Intestinal motility % of motility inhibition Vehicle Loperamide 5 mg/Kg Menthol 50 mg/Kg 4.15 ± 0.31 1.91 ± 0.23 ** 1.81 ± 0.32 ** - 53.97 56.38 53 No signs or symptoms associated with toxicity were observed on the day of oral administration or over the subsequent 14 days. Body weights progressed normally. After the rats were euthanized, there were no alterations in the macroscopic appearance of the kidney or liver or in their weights. There were no alterations in the biochemical parameters analyzed in the rats‟ serum between the groups, indicating that there was no hepatotoxicity or nephrotoxicity associated with the ME oral treatment (table 6). Table 6: Effect of orally administered menthol (500 mg/kg) on rats‟ body weight, organ weight, and serum biochemical parameters Vehicle Menthol Initial body weight (day 0) 196.70 ± 5.31 190.45 ± 4.54 Final body weight (day 14) 290.60 ± 8.29 272.67 ± 8.11 Kidneys weight 0.15 ± 0.00 0.15 ± 0.00 Liver weight 0.72 ± 0.02 0.70 ± 0.02 AST 105.80 ± 6.24 115.70 ± 7.44 ALT 46.90 ± 0.99 47.90 ± 1.00 Gama-GT 5.36 ± 0.46 5.09 ± 0.58 Alkaline phosphatase 295.00 ± 10.71 277.37 ± 14.30 Creatinine 0.28 ± 0.02 0.30 ± 0.03 Urea 45.30 ± 1.51 42.44 ± 1.20 Body weights are expressed in g. Organ weights are expressed in comparison to the body weight (g1/2). AST, ALT, γ-GT and alkaline phosphatase are expressed in U/L, creatinine and urea are expressed in mg/dL. The results are reported as the mean ± SEM. Unpaired t test. 54 4. DISCUSSION Gastrointestinal diseases are major public health issues throughout the world and are estimated to affect 70% of the general population (Ouyang & Chen, 2004). Although the exact ulcer etiology is complex and multifactorial, it is generally accepted that an imbalance between acid production and mucosal integrity is one of the main causative factors (AlRashdi et al., 2012). The present study investigated the gastroprotective activity of (-)-menthol (ME) in experimental models of gastric ulcer and its possible mechanisms of action. The oral administration of ethanol is widely used to induce experimental gastric ulcer because it is easily reproducible and rapidly penetrates into the gastric mucosa. Ethanol causes necrotic lesions of the gastric mucosa in a multifactorial way. Ethanol is known to induce ulcers in the glandular part of stomach due to the secretion of mast cell secretory products and reactive oxygen species (Rao et al., 2004). Ethanol also acts by reducing the secretion of bicarbonate and the production of mucus, thus resulting in an increased flow of Na+ and K+, increased pepsin secretion, and a loss of H+ ions into the lumen (Szabo, 1987; Mahmood et al., 2005), which leads to cell necrosis and ulcer formation. HCl secretion further deepens necrosis and increases tissue injury. Because of these factors, ethanol-induced ulcers can be inhibited by agents that enhance mucosal defensive factors (Morimoto et al., 1991; Sener et al., 2004). In the ethanol-induced gastric ulcer model, ME exhibited a dose- dependent effect and exerted substantial protective action on the gastric mucosa. Considering the multifactorial ways in which ethanol exerts its ulcerogenic action, the possible mechanisms of gastroprotection conferred by ME were investigated as follows. Several studies have shown the importance of mucus secretion in gastroprotection (Alrashdi et al., 2012; Laloo et al., 2013). The mucus barrier is considered the first line of mucosal defense because it decreases physical damage to the epithelium by ingested foods. It is an important barrier against self-digestion (Wallace, 2008) and acts as an antioxidant, 55 scavenging free radicals in the mucosa (Repetto & Llesuy, 2002). Ulcerogenic substances cause disruptions in this barrier and allow contact between the gastric juice and epithelial cells, leading to mucosal injury (Darling et al., 2004). Thus, the increased stimulation of mucus production by 2.2-fold over the control group is a relevant part of the hypothesized mechanism of gastric mucosal protection by ME. The increase in mucus secretion was easily evidenced in the photomicrographies of the PAS-stained gastric ulcer. Endogenous NP-SH compounds help maintain the integrity of the mucus barrier by uniting its subunits by disulfide bridges, preventing the mucus from becoming soluble and easily withdrawn by ulcerogenic agents, including ethanol (Avila et al., 1996). NP-SH compounds also prevent the production of free radicals by ethanol and act as recycling antioxidants (Banerjee et al., 2008). The rats that were pretreated with an inhibitor of NP-SH compounds presented ulcer areas similar to those of the vehicle-treated rats, indicating the importance of an intact NP-SH barrier to the maintenance of the ME gastroprotective effect. Mucus secretion also can be regulated by nitric oxide (NO) (Brown et al., 1993), an endogenous gaseous mediator synthesized by the enzyme NO-synthase (NOs). NO also plays key roles in enhancing blood flow (Wallace & Miller, 2000), regulating acid secretion and inhibiting neutrophil aggregation (Wallace et al., 1997) and leukocyte adherence to the vascular endothelium (Zanardo et al., 2006). Our results showed that despite the inhibition of NO synthesis by the action of the NO-synthase inhibitor (L-NAME), ME exerted a gastroprotection similar to that observed in the group receiving ME treatment without NO blocking, indicating that maintaining NO synthesis is not crucial to gastroprotection by ME. In the gastric mucosa, NO interacts with neuropeptides and prostaglandins to maintain mucosal integrity. NO activates guanylyl cyclase to increase cyclic guanosine monophosphate (cGMP) levels and subsequently activates the ATP sensitive potassium channels (K+ ATP). The activation of this NO/cGMP/K+ ATP pathway leads to gastroprotection (Medeiros et al., 2008). 56 K+ ATP channels mediate gastroprotection by enhancing gastric microcirculation and inhibiting neutrophil activation and the subsequent superoxide production (Campos et al., 2008). Despite this mediation, there was no loss of gastroprotection after the inhibition of NO synthesis or the cGMP blockade, but the blockade of the K+ ATP channels reversed the gastroprotective action of ME, thus indicating the involvement of these channels in the mechanism of action of ME. K+ ATP channels are not exclusively activated by the NO pathway but can also be activated by PGE2 activity (Lira et al., 2009). The oral treatment with ME was able to maintain PGE2 levels, even after the administration of the COX-inhibitor indomethacin, indicating the importance of PGE2 in the mechanism of action of ME. This result can explain the activation of the K+ ATP channels as well as the cytoprotective activity observed in the indomethacin-induced gastric ulcer. Indomethacin, as a non-steroidal anti-inflammatory drug (NSAID), induces gastric damage mainly by inhibiting prostaglandin production through inhibiting the activity of COX-1 and COX-2 isozymes (Wallace et al., 2000; Takeuchi et al., 2010). The physiological functions of PGE2 in the gastrointestinal tract include stimulating bicarbonate and mucus secretion, maintaining mucosal integrity, and inducing a trophic effect in gastric and intestinal mucosa by triggering mitogenic signaling in mucosal cells (Pai et al., 2002). It is also known that PGE2 presents a strong anti-secretory activity (Peskar & Maricic, 1998), which can, at least in part, explain the anti-secretory effect observed after the oral administration of ME. The H+ concentration was decreased, but the gastric juice volume was not altered. This effect did not occur in the intra-duodenally treated rats, leading to the conclusion that ME acts via a local rather than a systemic mechanism. In addition to the increasing effect on PGE2 production, this antisecretory effect may also be due to increased mucus secretion, as the mucus barrier is able to neutralize secreted H+. 57 The cellular perturbation caused by a damaging agent such as ethanol disrupts the normal Ca2+ homeostasis. Ethanol administration leads to an intracellular Ca2+ accumulation, providing an injurious action in the gastric mucosa (Kokoska et al., 1998; Miller et al., 2001). The oral administration of the calcium ion channel blocker verapamil was not able to reverse the ME gastroprotective effect, indicating that the blockade of the calcium ions efflux did not interfere with the protective mechanism and, therefore, that this gastroprotective pathway is not involved in ME activity. The incidence of gastric ulcers also can be influenced by changes in gastric motility. Natural compounds that affect gastrointestinal motility usually present effects on the ulcer formation (Abdulla et al., 2010). Constipation and diarrhea are common and prevailing disorders that affect the intestinal tract. Constipation is known to affect approximately 27% of the population and is more prevalent in women than in men (Cheng et al., 2009). Diarrhea is the passage of watery stool three or more times in a day or the passage of unformed bowel contents at a daily rate twice that of a person‟s usual rate (Feldman & Pickering, 1981). In developing countries, the death rate due to diarrhea is high (approximately 4 million deaths/year), and it is one of the leading causes of mortality (WHO, 2009). Antidiarrheal therapy is used to achieve increased resistance to flow (e.g., segmental contraction, decreased propulsion and peristalsis), increased mucosal absorption or decreased secretion (Burks, 1991). Medicinal plants are commonly employed to treat constipation and diarrhea (Gilani & Rahman, 2005). This study also evaluated ME activity in castor oil-induced diarrhea and gastrointestinal motility. Experimentally, castor oil induces diarrhea by increasing the secretion of fluids and electrolytes in the intestinal lumen, thus resulting in fluid accumulation and in an aqueous content that flows rapidly in the small and large intestines (Burks, 1991). In this assay, ME displayed significant activity against the diarrhea induced by castor oil, an 58 effect that can be compared to the standard drug loperamide. The antidiarrheal effect of ME was accompanied by an antiperistaltic effect. The acute toxicity test did not show any signs of toxicity or mortality. Behavioral changes such as irritation, restlessness, respiratory distress, abnormal locomotion, and catalepsy were not observed over a period of 14 days. There were no alterations in the dosage of renal and hepatic enzymes or in body weight evolution, revealing that ME has no toxicity when administered orally at a dose of 500 mg/kg, which is ten times higher than the therapeutic dose employed in this study. 5. CONCLUSION The results described here suggest that menthol presents antiulcer activities against ethanol and indomethacin. The gastroprotective activity of menthol is associated mainly with mucus secretion, which is related to the maintenance of NP-SH compounds, PGE2 production and K+ ATP channel activation and to an anti-secretory effect. Menthol also presents an antidiarrheal and antiperistaltic effect. No signs of acute toxicity have been associated with the administration of a high dose of menthol. However, further clinical and toxicological studies must be conducted to support the use of menthol as a potential antiulcerogenic drug. 6. REFERENCES Abdulla M.A., Ahmed K.A.A., Al-Bayaty F.H., Masood Y., “Gastroprotective effect of Phyllanthus niruri leaf extract against ethanol-induced gastric mucosal injury in rats,” African Journal of Pharmacy and Pharmacology, vol. 4, no. 5, pp. 226–230, 2010. AlRashdi A.S., Salama S.M., Alkiyumi S.S., et al., “Mechanisms of gastroprotective effects of ethanolic leaf extract of Jasminum sambac against HCl/ethanol-induced gastric 59 mucosal injury in rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, article ID 786426, 2012. Avila J.R., Alarcón De La Lastra C., Martín M.J., et al., “Role of endogenous sulphydryls and neutrophil infiltration in the pathogenesis of gastric mucosal injury induced by piroxicam in rats,” Inflammation Research, vol. 45, no. 2, pp. 83–88, 1996. Banerjee D., Maity B., Nag S.K., Bandyopadhyay S.K., Chattopadhyay S, “Healing potential of Picrorhiza kurroa (Scrofulariaceae) rhizomes against indomethacin-induced gastric ulceration: a mechanistic exploration,” BMC Complementary and Alternative Medicine, vol. 8, no. 3, 2008. Brown J.F., Keates A.C., Hanson P.J., Whittle B.J., “Nitric oxide generators and cGMP stimulate mucus secretion by rat gastric mucosal cells,” American Journal of Physiology, vol. 265, pp. 418–422, 1993. Burks T.F., “Gastrointestinal drugs,” In: Kist, K. (Ed.), Human Pharmacology: Molecular to Clinical. Wolfe Publishing Ltd., London, 789–800, 1991. Calzada F., Arista R., Pérez H, “Effect of plants used in Mexico to treat gastrointestinal disorders on charcoal–gum acacia-induced hyperperistalsis in rats,” Journal of Ethnopharmacology, vol. 128, pp. 49–51, 2010. Campos D.A., de Lima A.F., Ribeiro S.R., et al., “Gastroprotective effect of a flavone from Lonchocarpus araripensis Benth. (Leguminosae) and the possible mechanism,” Journal of Pharmacy and Pharmacology, vol. 60, no. 3, pp. 391-397, 2008. Chávez-Piña A.E., Tapia-Álvarez G.R., Reyes-Ramínrez A., Navarrete A., “Carbenoxolone gastroprotective mechanism: participation of nitric oxide/(c)GMP/K(ATP) pathway in ethanol-induced gastric injury in the rat,” Fundamental & Clinical Pharmacology, vol. 25, no. 6, pp. 717-22, 2011. 60 Cheng C.W., Bian Z.X., Wu T.X., “Systematic review of Chinese herbal medicine for functional constipation,” World Journal of Gastroenterology, vol 15, pp. 4886–4895, 2009. Crocci T., Emonds-ALT X., Manara L., “SR 48968 selectively prevents faecal excretion following activation of tachykinin NK2 receptors in rats,” Journal of Pharmacy and Pharmacology, vol. 46, pp. 383–385, 1994. Curtis G.H., Macnaughton W.K., Gall D.G., Wallace J.L., “Intraluminal pH modulates gastric prostaglandin synthesis,” Canadian Journal of Physiology and Pharmacology, vol. 73, pp. 130-134, 1995. Darling R.L., Romero J.J., Dial E.J., Akunda J.K., Langenbach R., Lichtenberger L.M., “The effects of aspirin on gastric mucosal integrity, surface hydrophobic, and prostaglandin metabolism in cyclooxygenase knockout mice,” Gastroenterology, vol. 127, pp. 94–104, 2004. Eccles R., “Menthol and related cooling compounds,” Journal of Pharmacy and Pharmacology, vol. 46, pp. 18–630, 1994. Feldman S., Pickering L.K., “The relationship of diarrhoea and drug therapy,” Trends in Pharmacological Sciences, vol. 2, pp. 165–166, 1981. Gilani A.H., Rahman A., “Trends in ethnopharmacology,” Journal of Ethnopharmacology, vol. 100, pp. 43–49, 2005. Jahovic N., Erkanli G., Işeri S., Arbak S., Alican I., “Gastric protection by alpha- melanocyte-stimulating hormone against ethanol in rats: involvement of somatostatin,” Life Sciences, vol. 80, no. 11, pp. 1040-1045, 2007. Kokoska E.R., Smith G.S., Wolff A.B., et al., “Role of calcium in adaptive cytoprotection and cell injury induced by deoxycholate in human gastric cells,” American Journal of Physiology, vol. 275, pp. G322-330, 1998. 61 Laine L., Takeuchi K., Tarnawski A., “Gastric mucosal defense and cytoprotection: bench to bedside,” Gastroenterology, vol. 135, pp. 41–60, 2008. Laloo D., Prasad S.K., Krishnamurthy S., Hemalatha S., “Gastroprotective activity of ethanolic root extract of Potentilla fulgens Wall. ex Hook,” Journal of Ethnopharmacology, vol. 146, no. 2, pp. 505-514, 2013. Lira S.R., Rao V.S., Carvalho A.C., et al., “Gastroprotective effect of lupeol on ethanol-induced gastric damage and the underlying mechanism,” Inflammopharmacology, vol. 17, no. 4, pp. 221-228, 2009. Mahmood A., Sidik K., Salmah I., Suzainor K., Philip K., “Antiulcerogenic activity of Ageratum conyzoides leaf extract against ethanol-induced gastric ulcer in rats as animal model,” International Journal of Molecular Medicine and Advance Sciences, vol. 1, pp. 402– 405, 2005. Medeiros J.V., Gadelha G.G., Lima S.J., et al., “Role of the NO/cGMP/K(ATP) pathway in the protective effects of sildenafil against ethanol-induced gastric damage in rats,” British Journal of Pharmacology, vol. 153, no. 4, pp. 721-727, 2008. Miller T.A., Kokoska E.R., Smith G.S., Banan A., “Role of calcium homeostasis in gastric mucosal injury and protection,” Life Sciences, vol. 69, pp. 3091–3102, 2001. Morimoto Y., Shimohara K., Oshima S., Sukamoto T., “Effects of the new antiulcer agent KB-5492 on experimental gastric mucosal lesions and gastric mucosal defensive factors, as compared to those of teprenone and cimetidine,” Japanese Journal of Pharmacology, vol. 57, pp. 495- 505, 1991. Ouyang H., Chen J.D., “Review article: therapeutic roles of acupuncture in functional gastrointestinal disorders,” Alimentary Pharmacology and Therapeuthicals, vol. 20, pp. 831– 841, 2004. 62 Pai R., Soreghan B., Szabo I.L., Pavelka M., Baatar D., Tarnawski A.S., “Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy,” Nature Medicine, vol. 8, no. 3, pp. 289-293, 2002. Peskar B.M., Maricic N., “Role of prostaglandins in gastroprotection,” Digestion Disease Sciences, vol. 43, pp. 23S–29S, 1998. Puscas I., Puscas C., Coltau M., et al., “Comparative study of the safety and efficacy of ebrotidine versus ranitidine and placebo in the prevention of piroxicam-induced gastroduodenal lesions,” Arzneimittel-Forschung/Drug Research, vol. 47, no. 4, pp. 568–572, 1997. Rafatullah S., Tariq M., Al-Yahya M.A., Mossa J.S., Ageel A.M., “Evaluation of turmeric (Curcuma longa) for gastric and duodenal antiulcer activity in rats,” Journal of Ethnopharmacology, vol. 29, no. 1, pp. 25–34, 1990. Rao C.V., Ojha S.K., Radhakrishnan K., et al., “Antiulcer of Utleria salicifolia rhizome extract,” Journal of Ethnopharmacology, vol. 91, no. 2–3, pp. 243-249, 2004. Repetto M.G., Llesuy S.F., “Antioxidant properties of natural compounds used in popular medicine for gastric ulcers,” Brazilian Journal of Medical and Biological Research, vol. 35, no. 5, pp. 523–534, 2002. Robert A., Nezamis J.E., Lancaster C., Hanchar A.J., “Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCl, NaOH, hypertonic NaCl, and thermal injury,” Gastroenterology, vol. 77, no. 3, pp. 433-43, 1979. Rozza A.L., Moraes T.M., Kushima H., et al., “Gastroprotective mechanisms of Citrus lemon (Rutaceae) essential oil and its majority compounds limonene and β-pinene: involvement of heat-shock protein-70, vasoactive intestinal peptide, glutathione, sulfhydryl 63 compounds, nitric oxide and prostaglandin E₂,” Chemico-Biological Interactions, vol. 189, no. 1-2, pp. 82-89, 2011. Schmeda-Hirschmann G., Yesilada E., “Traditional medicine and gastroprotective crude drugs,” Journal of Ethnopharmacology, vol. 100, pp. 61–66, 2005. Sener G., Paskaloglu K., Anyaanoglu-Dulger G., “Protective effect of increasing doses of famotidine, omeprazole, lansoprazole, and melatonin against ethanol-induced gastric damage in rats,” Indian Journal of Pharmacology, vol. 36, pp. 171–174, 2004. Shay H., Komarov S.A., Fels S.S., et al., “A simple method for the uniform production of gastric ulceration in the rat,” Gastroenterology, vol. 5, no. 43–61, 1945. Silva F.V., Guimarães A.G., Silva E.R., et al., “Anti-inflammatory and anti-ulcer activities of carvacrol, a monoterpene present in the essential oil of oregano,” Journal of Medicinal Food, vol. 15, no. 11, pp. 984-991, 2012. Szabo, S., “Mechanisms of mucosal injury in the stomach and duodenum: time- sequence analysis of morphologic, functional, biochemical and histochemical studies,” Scandinavian Journal of Gastroenterology, vol. 22, pp. 21–28, 1987. Takeuchi K., Tanaka A., Kato S., Amagase K., Satoh H., “Roles of COX inhibition in pathogenesis of NSAID-induced small intestinal damage,” Clinica Chimica Acta, vol. 411, pp. 459–466, 2010.