UNIVERSIDADE ESTADUAL PAULISTA - UNESP CÂMPUS DE JABOTICABAL DIVERSIDADE GENÉTICA DE Mycoplasma hyopneumoniae ASSOCIADO AS LESÕES DE PLEURISIAS DETECTADAS AO ABATE Ana Karolina Panneitz Médica Veterinária 2025 UNIVERSIDADE ESTADUAL PAULISTA - UNESP CÂMPUS DE JABOTICABAL DIVERSIDADE GENÉTICA DE Mycoplasma hyopneumoniae ASSOCIADO AS LESÕES DE PLEURISIAS DETECTADAS AO ABATE Discente: Ana Karolina Panneitz Orientador: Prof. Dr. Luís Guilherme de Oliveira Dissertação apresentada à Faculdade de Ciências Agrárias e Veterinárias – Unesp, Câmpus de Jaboticabal, como parte das exigências para a obtenção do título de Mestre em Ciências Veterinárias 2025 REGISTRO DE IMPACTO O curso de mestrado promove avanço científico, formando profissionais qualificados para enfrentar desafios complexos. Esta dissertação destaca a importância da integração entre ciência e setor produtivo. O estudo investiga a diversidade genética de Mycoplasma hyopneumoniae, revelando diversidade genética do agente, reforçando a necessidade de aprimorar estratégias de controle do CDRS. DADOS CURRICULARES DO AUTOR Ana Karolina Panneitz – nascida em 26 de maio de 2000, na cidade de Rio Negrinho – Santa Catarina, Brasil. Médica Veterinária graduada pela Universidade Federal de Santa Catarina (UFSC) em 2023. Durante a graduação foi integrante do GESA – Grupo de Estudos em Suínos e Aves e do GEHisPa – Grupo de Estudos em Histologia e Patologia, participando da organização de eventos e projetos de extensão. Realizou estágios extracurriculares nas áreas de patologia animal, microbiologia veterinária e suinocultura. O Trabalho de Conclusão de Curso foi realizado na área de diagnóstico veterinário, com o tema “Avaliação de formação de biofilme de diferentes sorovares de Salmonella sp. isolados de frangos de corte”, sob orientação do Prof. Dr. Álvaro Menin, o estágio curricular obrigatório também foi realizado na área diagnóstico veterinário, no Instituto de Pesquisa e Diagnóstico Veterinário (VERTÀ Laboratórios), sob supervisão da Dra. Carolina Reck. Ingressou, em março de 2023, no Programa de Pós-graduação em Ciências Veterinárias, na FCAV – UNESP Jaboticabal, onde foi bolsista FAPESP, sob a orientação do Prof. Dr. Luís Guilherme de Oliveira. Durante o mestrado participou do grupo de estudos em Suínos (Suinesp) e também realizou estágio de pesquisa no exterior, por 6 meses, na Ghent University (Bélgica) sob a supervisão do Prof. Dr. Dominiek Maes. Possui experiência nas áreas de diagnóstico veterinário, sanidade de suínos e experimentação animal. EPÍGRAFE A vida não é fácil para nenhum de nós. Mas e daí? Nós devemos ter persistência e, acima de tudo, confiança em nós mesmos. Devemos acreditar que somos talentosos em alguma coisa, e que essa coisa, a qualquer custo, deve ser alcançada. (Marie Curie) https://www.pensador.com/autor/marie_curie/ DEDICATÓRIA Dedico este trabalho aos meus pais. Tenho muito orgulho de vocês e sou muito grata por sempre me apoiarem. AGRADECIMENTOS Agradeço: Aos meus pais, Rodolfo e Elenice, que sempre me incentivaram a estudar, possibilitaram que isso fosse uma realidade para mim e acima de tudo sempre apoiaram as minhas decisões. E que nos momentos de minha ausência, dedicados ao mestrado, sempre compreenderam e me ensinaram que precisamos construir o futuro a partir da dedicação no presente. Ao meu orientador Prof. Dr. Luís Guilherme, por não medir esforços para que eu pudesse aproveitar ao máximo as oportunidades do mestrado. A FCAV/Unesp pelo excelente programa de pós-graduação e estrutura que permitiu o desenvolvimento do projeto. A FAPESP, pela concessão da bolsa de mestrado regular e também pela bolsa de estágio no exterior (Processos nº 2023/01747-4 e 2023/17921-3). Ao Prof. Dr. Dominiek, pela supervisão na BEPE, por todas as oportunidades de desenvolvimento profissional e por toda a bondade, compreensão e confiança. Aos colegas do Laboratório de Medicina de Suínos, por todo suporte nas coletas e execução de experimentos. Especialmente a Cláudia e seus maravilhosos conselhos. Ao Prof. Dr. David e ao Jean por prontamente aceitarem a parceria e contribuírem com o trabalho. A Eduarda, o que eu vô fala ducê? Um dos maiores presentes do mestrado. Só tenho a agradecer por sua amizade, por todo o apoio, todos os conselhos, todas as horas e horas no laboratório, toda a confiança que você me transmitiu todos os roles aleatórios, todas as cervejas no Skina Bar. Você tornou esse período muito mais leve. A Gabrielle, nossa estagiária 10/10, amiga obrigada por todo o suporte nas coletas (com uma trilha sonora de respeito), companhia nos treinos e por me convencer que eu estava pronta para ser a mãe da Lady. Ao Fernando, e suas habilidades com fotoshop (KKKKcrying), parcerias de eurotrip (visitas a pietá) e conselhos (foram muitos “mano.....” durante esses anos). A Leila, que mesmo estando em outro estado (e por um tempo em outro continente) sempre sabia a hora que eu mais precisava conversar. Além disso muito obrigada por tomar conta de minha filha Lady. A Paola por estar sempre lá, pra tudo que é papo. A Stephanie, por ficar horas e horas em ligação de vídeo jogando conversa fora pra que eu não ficasse sozinha. Letícia, que sempre surge com updates (pra não falar fofocas). Andressa, que sempre me apoia e me lembra de acreditar em mim mesma. Amigos que a Unesp proporcionou, em especial ao Daniel, Lorena, Jaira, Ismael, Lari, Bárbara (e Maria) e Isa, vocês tornaram o período no JBK muito mais alegre. Aos amigos que a UGhent proporcionou. Especialmente a Karina (cuida só), tantas risadas, histórias boas e mesmo com muito trabalho sempre deixando tudo tão leve. Li, Let’s seeeee hahah . Também a Olivia, Rafa, Bruno, Pati, Mari, Mateuz, Renjie, Belle, Lotte, Fabiola, Marleen e Charlotte vocês foram muito importantes para eu me sentir em casa no BE. A Caroline, que faz uns 5 anos que me deu aula mas tem o cargo vitalício de prof Carol. Que mesmo de longe e quem diria de perto (e na europa kkk), sempre esteve disposta a ensinar e apoiar, obrigadaaa por ouvir meus áudios que são quase podcasts e sempre me aconselhar (“você já sabe o que eu vou dizer neh Ana, mas...”). Ao Prof. Álvaro e Drª Carolina, obrigada por sempre estarem lá pra apoiar, acreditar, aconselhar e ensinar. Vocês são exemplos, e não largo mesmo hahahah Aos meus demais amigos que estiveram de longe, ou que não vejo tanto quanto eu gostaria. E que, felizmente, a lista é extensa. Saibam que penso com muito carinho em todos vocês. Obrigada por contribuírem com a construção da pessoa que me tornei. i SUMÁRIO Página CAPÍTULO 1 – Considerações gerais ......................................................................... 1 1. Introdução ...................................................................................................... 1 2. Revisão de Literatura ..................................................................................... 2 3. Referências .................................................................................................... 6 1CAPÍTULO 2 – Exploring the genetic diversity of Mycoplasma hyopneumoniae in pigs with pneumonia and pleurisy at slaughter ................................................................. 12 1. Introduction .................................................................................................. 14 2. Materials and Methods ................................................................................. 16 2.1 Macroscopic evaluation of lungs and sample collection ............................ 16 2.2. DNA extraction and conventional PCR (cPCR) for endogenous mammalian glycer-aldehyde 3-phosphate dehydrogenase (gapdh) gene .......... 17 2.3. Real-time PCR (qPCR) for p102 gene of M. hyopneumoniae ............... 18 2.5. Detection of bacterial co-infections by multiplex qPCR .......................... 19 2.6. Histopathological and immunohistochemical evaluation ........................ 19 2.7. Statistical analysis ..................................................................................... 20 3. Results ......................................................................................................... 20 3.1. Gross evaluation and qPCR for the detection of M. hyopneumoniae .... 21 3.2. Characterization of the allelic profiles of M. hyopneumoniae ................. 21 3.3. qPCR for the detection of bacterial co-infection ..................................... 24 3.4. Severity of gross and histopathological lesions ..................................... 25 4. Discussion .................................................................................................... 27 5. Conclusions .................................................................................................. 29 6. References ................................................................................................... 31 CERTIFICADO DA COMISSÃO DE ÉTICA NO USO DE ANIMAIS DIVERSIDADE GENÉTICA DE Mycoplasma hyopneumoniae ASSOCIADO AS LESÕES DE PLEURISIAS DETECTADAS AO ABATE RESUMO - Na suinocultura as doenças respiratórias possuem alta prevalência e geram grande impacto econômico. O Mycoplasma (M.) hyopneumoniae é o principal patógeno envolvido no complexo das doenças respiratórias dos suínos (CDRS) e contribui para o desenvolvimento de pleurisias em suínos. Devido ao seu limitado metabolismo possui cultivo laborioso, tornando as ferramentas moleculares úteis para o diagnóstico da infecção e estudo de variabilidade de cepas. Com isso, este estudo investigou a diversidade genética de M. hyopneumoniae em suínos no momento do abate de acordo com a severidade das lesões de pneumonia e pleurisia observadas. Também foram avaliadas as co-infecções por Pasteurella (P.) multocida tipo A, Actinobacillus (A.) pleuropneumoniae e vírus da influenza suína A (sIVA). Pulmões (N=70) com diferentes graus de pleurisia e com lesões compatíveis com infecção por M. hyopneumoniae foram coletados por conveniência em abatedouro frigorífico. Foram realizadas avaliações macroscópicas e microscópicas. M. hyopneumoniae foi detectado por qPCR, e a técnica de MLST foi empregada para caracterização genética deste agente. As co-infecções com P. multocida tipo A e A. pleuropneumoniae também foram avaliadas por qPCR, enquanto imunohistoquímica foi usada para avaliar a infecção por sIVA. Todos os pulmões amostrados foram positivos para M. hyopneumoniae. A histopatologia confirmou as lesões associadas ao M. hyopneumoniae. A caracterização por sequência de múltiplos locus (MLST) foi possível em 25 pulmões e revelou 10 perfis alélicos distintos, nenhum correspondendo a tipos de sequência conhecidos no banco de dados público. Co-infecções foram detectadas em 40% das amostras com A. pleuropneumoniae e 32% com P. multocida, em 12% foram detectados ambos os patógenos, 52% das amostras apresentaram lesões microscópicas compatíveis com infecção por sIVA. Os diversos perfis genéticos encontrados ressaltam a necessidade do isolamento e caracterização das cepas de campo para compreensão de possíveis variações patogênicas. Palavras-chave: doenças respiratórias, hiperplasia de BALT, MLST, pneumonia, pneumonia enzoótica dos suínos GENETIC DIVERSITY OF Mycoplasma hyopneumoniae ASSOCIATED WITH PLEURISY LESIONS DETECTED AT SLAUGHTER ABSTRACT - In pig production, respiratory diseases have a high prevalence and generate great economic impact. Mycoplasma (M.) hyopneumoniae is the main pathogen involved in the porcine respiratory disease complex (PRDC) and contributes to the development of pleurisy in pigs. Due to limited metabolism, it has laborious cultivation, making molecular tools useful for diagnosing infection and studying strain variability. With this in mind, this study investigated the genetic diversity of M. hyopneumoniae in pigs at slaughter according to the severity of the pneumonia and pleurisy lesions observed. Co-infections with Pasteurella (P.) multocida type A, Actinobacillus (A.) pleuropneumoniae and Swine Influenza Virus A (sIVA) were also evaluated. Lungs (N=70) with different scores of pleurisy and lesions compatible with M. hyopneumoniae infection were collected for convenience at a slaughterhouse. Macroscopic and microscopic evaluations were carried out. M. hyopneumoniae was detected by qPCR, and the MLST technique was used for genetic characterization of this agent. Co-infections with P. multocida type A and A. pleuropneumoniae were also assessed by qPCR, while immunohistochemistry was used to assess sIVA infection. All the lungs sampled were positive for M. hyopneumoniae. Histopathology confirmed the lesions associated with M. hyopneumoniae. Multilocus sequence characterization (MLST) was possible in 25 lungs and revealed 10 distinct allelic profiles, none of which corresponded to known sequence types in the public database. Co-infections were detected in 40% of the samples with A. pleuropneumoniae and 32% with P. multocida, in 12% both pathogens were detected, 52% of the samples showed microscopic lesions compatible with sIVA infection. The different genetic profiles found highlight the need to isolate and characterize field strains in order to understand possible pathogenic variations. Keywords: BALT hyperplasia, MLST, pneumonia, swine enzootic pneumonia, respiratory diseases 1 CAPÍTULO 1 – Considerações gerais 1. Introdução O complexo das doenças respiratórias dos suínos (CDRS) é um grande causador de perdas econômicas para a suinocultura mundial (MAES et al., 2023). Esse quadro envolve a infecção do sistema respiratório dos suínos por uma gama de agentes infecciosos, e, também é exacerbado por fatores estressantes e ambientais (BOETERS et al., 2023). O CDRS está associado a diminuição de índices zootécnicos, alta morbidade e mortalidade, aumento dos custos produtivos, devido compra de medicamentos e programas de controle e prevenção além da condenação de carcaças no frigorifico (MAES, D. et al., 2008). Um dos pontos chaves para o desenvolvimento do CDRS é a infecção por Mycoplasma (M.) hyopneumoniae (MAES et al., 2018). Essa bactéria é o agente etiológico da pneumonia enzoótica suína (PES), doença que afeta suínos no mundo todo, e é tida como endêmica na maioria dos rebanhos da suinocultura industrial no Brasil (ARRUDA et al., 2024; GABARDO et al., 2013). Animais de todas as idades podem ser afetados pela doença, entretanto os sinais clínicos são mais evidentes nas fases de crescimento e terminação (MAES, D. et al., 2018). A PES se caracteriza como broncopneumonia crônica, tendo como sinal clínico característico a manifestação de tosse seca e não produtiva. O diagnóstico definitivo da doença é realizado por meio da necropsia, histopatologia e ensaios moleculares (SIBILA et al., 2007). O M. hyopneumoniae é também um dos principais agentes envolvidos nos casos de pleurisias detectadas no frigorífico. Apesar de não ser o agente etiológico dessa lesão, que é atribuída as co-infecções por Pasteurella multocida (PM) e Actinobabillus pleuropneumoniae (APP) (PETRI et al., 2023; TURNI et al., 2021). Atualmente, as vacinas comerciais são ótimas aliadas visando a redução das lesões e sinais clínicos ocasionadas pela infecção por M. hyopneumoniae, e consequentes prejuízos zootécnicos causados pelos quadros de pneumonia e pleurisias. Entretanto as vacinas não previnem a colonização do trato respiratório dos suínos pelo M. hyopneumoniae, fazendo com que o sucesso no combate ao agente 2 envolva também os diversos elos das medidas de controle e biosseguridade (GALDEANO et al., 2019; SIBILA et al., 2007). O conhecimento dos fatores de patogenicidade e virulência do M. hyopneumoniae, bem como a variabilidade da bactéria a nível de campo ainda é escasso devido ao laborioso cultivo do agente. Entretanto são relatadas diferenças no curso clínico da doença bem como severidade das lesões, sendo essas relacionadas a tais características (BETLACH et al., 2019). Visando a melhor compreensão do envolvimento do M. hyopneumoniae nas lesões de pneumonia e pleurisias detectadas ao abate, levando em conta as características genéticas do agente. O objetivo do presente trabalho foi verificar a diversidade genética de M. hyopneumoniae associado a severidade das lesões pulmonares no momento do abate e a detecção de co-infecções em rebanhos de suínos do Brasil. 2. Revisão de Literatura O Complexo da Doença Respiratória dos Suínos (CDRS) é um quadro clínico multifatorial complexo que afeta os suínos. Esse quadro é um dos problemas mais preocupantes na produção de suínos, é estimada uma perca de R$ 216 milhões por ano para a suinocultura brasileira decorrente de pleurisias, pneumonias e aderências (NASCIMENTO et al., 2018). Além disso o CDRS está associado a diminuição de índices zootécnicos, alta morbidade e mortalidade, aumento dos custos produtivos, devido aos altos custos de programas de controle e prevenção (MAES et al., 2023). O CDRS ocorre pela combinação de fatores infecciosos e ambientais. Dentre os agentes infecciosos associados a esse quadro destacam-se as bactérias Mycoplasma (M.) hyopneumoniae, Pasteurella (P.) multocida Actinobacillus (A) pleuropneumoniae, Glaesserella (G.) parasuis e Streptococcus (S.) suis, e agentes virais como circo vírus suíno tipo 2 (PCV-2), vírus da influenza suína (SIV) e o vírus da síndrome reprodutiva e respiratória dos suínos (PRRSV) (o qual o Brasil é livre) (DE CONTI et al., 2021; OPRIESSNIG; GIMÉNEZ-LIROLA; HALBUR, 2011) A interação entre esses patógenos pode ocasionar o quadro de pleurisia, ou pleurite, inflamação na pleura. Muitas vezes é assintomático, sendo detectado apenas no momento do abate. Por causar aderências na carcaça a lesão muitas vezes cursa 3 com condenação, agravando os prejuízos para a suinocultura devido lesões pulmonares (MAES et al., 2023). No Brasil, aproximadamente 50% dos animais desviados para o Departamento de Inspeção Final (DIF) no frigorífico, apresentam alguma lesão pulmonar (ALBERTON; MORES, 2008). Mesmo os quadros de pneumonia e pleurisia em suínos sendo ocasionados por interações complexas e na maioria das vezes envolvendo origem multifatorial, diversos estudos apontam o M. hyopneumoniae como agente primário, desencadeando co-infecções e agravamento dos quadros clínicos (HANSEN et al., 2010). M. hyopneumoniae, é uma bactéria espécie especifica para suínos domésticos (Sus scrofa domesticus) e javalis (Sus scrofa scrofa) (LEAL ZIMMER et al., 2020). É agente primário da pneumonia enzoótica dos suínos (PES) e envolvido no CDRS (MAES et al., 2023). O M. hyopneumoniae pertence ao filo Firmicutes, classe Mollicutes e a Família Mycoplasmataceae (TOLEDO et al., 2023). Em 2018, foi proposta uma reclassificação taxonômica, alterando o nome de Mycoplasma hyopneumoniae para Mesomycoplasma hyopneumoniae (GUPTA et al., 2018). Na literatura científica o termo Mycoplasma hyopneumoniae ainda é usado com frequência. Além disso, o artigo dessa dissertação foi publicado com o nome antigo, para fins de consistência, usaremos a terminologia Mycoplasma hyopneumoniae no decorrer de toda dissertação. As bactérias pertencentes a esse gênero distinguem-se fenotipicamente de outras bactérias pela ausência da parede celular e são reconhecidos por serem os menores microrganismos autorreplicantes já descritos (RAZIN, 1973). Devida à ausência da parede celular, possuem morfologia pleomórfica apresentando entre 0,2 a 0,8 µm de diâmetro, genoma pequeno, 893 a 926 kbp que codificam 500 a 1000 genes, com baixo conteúdo de guanina + citosina (23-40%) (GAUTIER- BOUCHARDON, 2018; SIMIONATTO et al., 2013). Com isso, possuem um metabolismo limitado e poucas vias biossintéticas. A limitada capacidade de biossíntese faz com que a bactéria precise obter aminoácidos, purinas, pirimidinas e componentes da membrana celular do ambiente de crescimento, o que torna o seu requerimento nutricional complexo e dependente do hospedeiro (RAZIN, 1973; SIMIONATTO et al., 2013). Essa característica explica a grande dificuldade do cultivo 4 in vitro, com a necessidade de produção de um meio de cultivo rico e complexo, tornando o isolamento do agente laborioso (GOODWIN; HURRELL, 1970). Baseado no sequênciamento do rRNA gene 16S M. hyopneumoniae é classificado no grupo Hominis dos micoplasmas, sendo filogeneticamente próximo de M. flocculare e M. hyorhinis, micoplasmas comensais do trato respiratório de suínos. Entretanto não é próximo de M. pneumoniae e M. pulmonis, que causam doença similar em humanos e ratos, respectivamente (PETERS et al., 2008). O M. hyopneumoniae é um patógeno globalmente distribuído (LEAL ZIMMER et al., 2020). A infecção é altamente prevalente, sendo cerca de 70% das fazendas endemicamente infectadas em todo mundo (MAES, D. et al., 2018). No Brasil recentes trabalhos reportaram prevalência de 97,7% e 92,45% em amostras de pulmão coletadas no momento do abate e submetidas a qPCR (ARRUDA et al., 2024; PETRI et al., 2023). O patógeno pode ser introduzido no rebanho através da compra de marrãs com infecção subclínica, transmissão pelo ar ou por fômites (FANO; PIJOAN; DEE, 2005). Sendo que foi demostrado que a bactéria pode ser detectada no ar em distâncias de 4,7 e 9,2 km (DEE et al., 2009; OTAKE et al., 2010). Uma vez introduzida no rebanho M. hyopneumoniae pode se disseminar através da transmissão horizontal, por meio de contato nariz com nariz entre matriz e leitão, e também por aerossóis. O agente não se dissemina pela via intrauterina, nem pelo colostro ou leite (VILLARREAL et al., 2010). A transmissão indireta via fômites é possível, mas acredita-se que de menor importância no campo (BATISTA et al., 2004; PITKIN et al., 2011). A doença se espalha lentamente. Em um ambiente experimental, MEYNS et al., (2004) mostraram que um suíno infectado antes do desmame infectará outro animal na mesma baia durante o período de creche. A patogênese da infecção por M. hyopneumoniae é complexa, se caracteriza primariamente pela colonização do epitélio do trato respiratório dos suínos, resultando em ciliostase, perda de cílios e até mesmo a morte de células do epitélio respiratório tornando o aparato mucociliar menos eficiente (MAES, D. et al., 2018). A partir disso, a bactéria induz uma reação inflamatória exacerbada e suprime o sistema imune do hospedeiro, o que facilita a invasão de patógenos secundários, culminando no CDRS (SIMIONATTO et al., 2013). 5 Diferentes estudos demonstraram variabilidade entre cepas de M. hyopneumoniae nos níveos antigênico, proteômico, de transcriptoma, patogenicidade e também a nível genômico (BETLACH et al., 2019). Diversas técnicas moleculares foram padronizadas para caracterizar cepas de M. hyopneumoniae. Como o Polimorfismo de Comprimento de Fragmento Amplificado (AFLP); Análise de DNA Polimórfico Amplificado por Restrição (RAPD); Eletroforese em gel de campo pulsado, (PFGE); Análise de DNA polimórfico amplificado ao acaso (RFLP); Análise de microssatélite de DNA; Tipagem por sequenciamento de múltiplos locus (MLST), Análise do polimorfismo numérico de sequências repetitivas em múltiplos loci (MLVA), sequenciamento parcial de genes e sequenciamento completo do genoma (BETLACH et al., 2019). É importante salientar que cada método molecular apresenta suas vantagens e também desvantagens, principalmente levando em conta reprodutibilidade e comparação de resultados interlaboratoriais. Entretanto, dada a dificuldade de se realizar o isolamento de cepas de campo, ferramentas moleculares são extremamente uteis para a caracterização e estudo do patógeno. Nos recentes anos foram realizados diferentes estudos buscando a caracterização de cepas e compressão da dinâmica de infecção das diferentes cepas. No Brasil, já foram analisados genótipos de M. hyopneumoniae através de MLVA, que demonstraram alta diversidade dentro e entre as granjas de suínos (DOS SANTOS et al., 2015). Andrade et al., (2023), observou em trabalho realizado com amostras de pulmão oriundas de Minas Gerais que diferentes genótipos de M. hyopneumoniae estão distribuídos aleatoriamente em várias regiões do estado, sem um padrão de estrutura populacional e geográfica específico, sendo identificados 43 genótipos no estado, e a maioria das granjas (60%) apresentou mais de um genótipo. Takeuti et al., (2017) também observou diversidade genética dentro do mesmo rebanho, o que pode indicar a relação do genótipo com a severidade do quadro clínico. Entretanto ainda não há banco de dados para compartilhar as classificações encontradas nos estudos que utilizam essa técnica o que o que dificulta comparação de resultados e acompanhamento epidemiológico do M. hyopneumoniae (BETLACH et al., 2019; CALUS et al., 2007; MAYOR et al., 2008; SOSA et al., 2019). 6 Com isso, a técnica molecular MLST vem sendo utilizada para estudos epidemiológicos de tipagem molecular de patógenos, incluindo M. hyopneumoniae (MAYOR et al., 2008). Este método se baseia no sequenciamento de genes housekeeping, que são responsáveis por codificar funções vitais para célula (LUIZ, 2012). Por ser baseado na sequência dos nucleotídeos, fornece resultados padronizados e específicos, podendo discriminar linhagens com uma única alteração nucleotídica em um dos genes analisados. Além disso, os resultados são padronizados e podem ser comparados facilmente entre laboratórios através do banco de dados público: pubmlst.org (JOLLEY; BRAY; MAIDEN, 2024). O MLST para M. hyopneumoniae foi estabelecido para avaliação convencional de 3 genes (adk, rpoB, e tpiA), nos últimos anos há trabalhos em diversas regiões do mundo utilizando a técnica para compreender as características das cepas circulantes. Entretanto os dados para comparação ainda são escassos (FELDE et al., 2018; MAYOR et al., 2008). Atualmente apenas Balestrin et al., (2019) desenvolveram estudos com amostras clínicas brasileiras utilizando essa técnica. Em estudo realizado por Zhang et al., (2021) na China reportou 60 novos genótipos de M. hyopneumoniae naquele país. Por fim, este projeto de pesquisa objetivou verificar a diversidade genética de M. hyopneumoniae associado a severidade das lesões pulmonares no momento do abate em rebanhos suínos do Brasil, buscando melhor compreensão da dinâmica de infecção e associação desse agente com demais patógenos envolvidos no CDRS, permitindo que possamos melhorar as medidas de controle de infecção do M. hyopneumoniae, consequentemente amenizando as percas causadas por pneumonias e pleurisias. 3. Referências ALBERTON, G. C.; MORES, M. A. Z. Interpretação de lesões no abate como ferramenta de diagnóstico das doenças respiratórias dos suínos. Acta Scientiae Veterinariae, [s. l.], v. 36, n. Supl 1, p. 95–99, 2008. ANDRADE, M. R. et al. Genetic diversity of Mycoplasma hyopneumoniae in finishing pigs in Minas Gerais. Pesq. Vet. Bras., v. 5150, p. 1–11, 2023. 7 ARRUDA, L. P. et al. Pathological analysis and etiological assessment of pulmonary lesions and its association with pleurisy in slaughtered pigs. Veterinary Microbiology, v. 292.2024. BALESTRIN, E. et al. Clonality of Mycoplasma hyopneumoniae in swine farms from Brazil. Veterinary Microbiology, [s. l.], v. 238, 2019. BATISTA, L. et al. Assessment of transmission of Mycoplasma hyopneumoniae by personnel. Journal of Swine Health and Production, 2004. BETLACH, A. M. et al. Mycoplasma hyopneumoniae variability: Current trends and proposed terminology for genomic classification. [S. l.]: Blackwell Publishing Ltd, 2019. BOETERS, M. et al. The economic impact of endemic respiratorydisease in pigs and related interventions -a systematic review. Porcine Health Management, [s. l.], p. 1– 18, 2023. Available at: https://doi.org/10.1186/s40813-023-00342-w. Acesso em: 9 maio 2024. CALUS, D. et al. Protein variability among Mycoplasma hyopneumoniae isolates. Veterinary Microbiology, v. 120, p. 284–291, 2007. DE CONTI, E. R. et al. Agents of pneumonia in slaughtered pigs in southern Brazil. Pesquisa Veterinaria Brasileira, [s. l.], v. 41, 2021. DEE, S. et al. Evidence of long distance airborne transport of porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. Veterinary Research, v. 40, n. 4, jul. 2009. DOS SANTOS, L. F. et al. Genotype distribution of Mycoplasma hyopneumoniae in swine herds from different geographical regions. Veterinary Microbiology, [s. l.], v. 175, n. 2–4, p. 374–381, 2015. FANO, E.; PIJOAN, C.; DEE, S. Dynamics and persistence of Mycoplasma hyopneumoniae infection in pigs. The Canadian Journal of Veterinary Research, v. 69, p. 223–228, 2005. 8 FELDE, O. et al. Genotyping Mycoplasma hyopneumoniae isolates based on multi- locus sequence typing , multiple-locus variable-number tandem repeat analysis and analysing gene p146. Veterinary Microbiology, [s. l.], v. 222, n. July, p. 85–90, 2018. GABARDO, M.; ZANDONAI, A.; CAMARGO, M.; GAVA, A.; CRISTANI, J.; TRAVERSO, S. Caracterização Sanitária de Suínos Criados Em Sistema “Wean-to- Finish.” Medicina Veterinária 2013, 7, 23–31. GALDEANO, J. V. B. et al. Cross-sectional study of seropositivity, lung lesions and associated risk factors of the main pathogens of Porcine Respiratory Diseases Complex (PRDC) in Goiás, Brazil. Porcine Health Management, [s. l.], v. 5, n. 1, p. 1–10, 2019. GAUTIER-BOUCHARDON, A. V. Antimicrobial Resistance in Mycoplasma spp . Microbiology Spectrum, v. 6, n. 4, 27 jul. 2018. GOODWIN, R. F. W.; HURRELL, J. M. W. Further observations on the problem of isolating Mycoplasma suipneutnoniae from field cases of enzootic pneumonia in pigs. Journal of Hygiene, v. 68, n. 2, p. 313–325, 1970. GUPTA, R. S. et al. Phylogenetic framework for the phylum Tenericutes based on genome sequence data: proposal for the creation of a new order Mycoplasmoidales ord. nov., containing two new families Mycoplasmoidaceae fam. nov. and Metamycoplasmataceae fam. nov. harbouring Eperythrozoon, Ureaplasma and five novel genera. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, v. 111, n. 9, p. 1583–1630, 1 set. 2018. HANSEN, M. S. et al. An investigation of the pathology and pathogens associated with porcine respiratory disease complex in Denmark. Journal of Comparative Pathology, [s. l.], v. 143, n. 2–3, p. 120–131, 2010. JOLLEY, K. A.; BRAY, J. E.; MAIDEN, M. C. J. Open-access bacterial population genomics : BIGSdb software , the PubMLST . org website and their applications. Wellcome Open Res, p. 1–20, 2024. LEAL ZIMMER, F. M. A. et al. Pathogenicity & virulence of Mycoplasma hyopneumoniae. VirulenceBellwether Publishing, Ltd., , 2020. 9 LUIZ, L. M. P. Identificação e agrupamento genético por MLST e PFGE de isolados bacterianos obtidos de fazendas da região do Campo das Vertentes, Minas Gerais. 107 f. 2012. - UFMG, [s. l.], 2012. MAES, D. et al. Control of Mycoplasma hyopneumoniae infections in pigs. Veterinary Microbiology, 2008. MAES, D. et al. Update on Mycoplasma hyopneumoniae infections in pigs: Knowledge gaps for improved disease control. Transboundary and Emerging Diseases, [s. l.], v. 65, p. 110–124, 2018. MAES, Dominiek et al. Review on the methodology to assess respiratory tract lesions in pigs and their production impact. Veterinary Research, 2023. MAYOR, D. et al. Multilocus sequence typing (MLST) of Mycoplasma hyopneumoniae: A diverse pathogen with limited clonality. Veterinary Microbiology, [s. l.], v. 127, n. 1– 2, p. 63–72, 2008. MEYNS, T. et al. Quantification of the spread of Mycoplasma hyopneumoniae in nursery pigs using transmission experiments. Preventive Veterinary Medicine, v. 66, n. 1–4, p. 265–275, 15 dez. 2004. NASCIMENTO, E. R. M. et al. Identification and distribution of causative agents of pleurisy in the Brazilian pig farming. Acta Scientiae Veterinariae, v. 46, n. 1, 2018. OPRIESSNIG, T.; GIMÉNEZ-LIROLA, L. G.; HALBUR, P. G. Polymicrobial respiratory disease in pigs. Anim Health Res Rev, 2011. OTAKE, S. et al. Long-distance airborne transport of infectious PRRSV and Mycoplasma hyopneumoniae from a swine population infected with multiple viral variants. Veterinary Microbiology, v. 145, n. 3–4, p. 198–208, 26 out. 2010. PETERS, I. R. et al. RNase P RNA gene (rnpB) phylogeny of hemoplasmas and other Mycoplasma species. Journal of Clinical Microbiology, v. 46, n. 5, p. 1873– 1877, maio 2008. 10 PETRI, F. A. M. et al. Associations between Pleurisy and the Main Bacterial Pathogens of the Porcine Respiratory Diseases Complex (PRDC). Animals, v. 13, n. 9, 1 maio 2023. PITKIN, A. et al. A one-night downtime period prevents the spread of porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae by personnel and fomites (boots and coveralls). Journal of Swine Health and Production, 2011. RAZIN, S. Physiology of Mycoplasmas. Advances in Microbial Physiology, v. 10, p. 1–80, 1973. SIBILA, M. et al. Chronological study of Mycoplasma hyopneumoniae infection, seroconversion and associated lung lesions in vaccinated and non-vaccinated pigs. Veterinary Microbiology, [s. l.], v. 122, n. 1–2, p. 97–107, 2007. SIMIONATTO, S. et al. Mycoplasma hyopneumoniae: From disease to vaccine development. Veterinary Microbiology, 2013. SOSA, C. et al. Genetic diversity of Mycoplasma hyopneumoniae in Mendoza province. Revista Argentina de Microbiología. v. 51, n. 3, p. 229–233, 2019. TAKEUTI, K. L. et al. Infection dynamics and genetic variability of Mycoplasma hyopneumoniae in self-replacement gilts. Veterinary Microbiology, [s. l.], v. 208, p. 18–24, 2017. TOLEDO, L. T. et al. A genetic and virulence characterization of Brazilian strains of Mycoplasma hyopneumoniae. Frontiers in Microbiology, v. 14, 2023. TURNI, C. et al. Pathogens associated with pleuritic pig lungs at an abattoir in Queensland Australia. Australian Veterinary Journal, v. 99, n. 5, p. 163–171, 1 maio 2021. VILLARREAL, I. et al. Early Mycoplasma hyopneumoniae infections in European suckling pigs in herds with respiratory problems: detection rate and risk factors. Veterinární medicína, 2010. 11 ZHANG, H. et al. Genotype diversity of Mycoplasma Hyopneumoniae in Chinese swine herds based on multilocus sequence typing. BMC Veterinary Research, [s. l.], v. 17, n. 1, 2021. Available at: https://doi.org/10.1186/s12917-021-03059-6 12 1Este capítulo corresponde ao artigo científico publicado na revista Microorganisms 2024, 12, 1988. (https://doi.org/10.3390/microorganisms12101988) 1CAPÍTULO 2 – Exploring the genetic diversity of Mycoplasma hyopneumoniae in pigs with pneumonia and pleurisy at slaughter Ana Karolina Panneitz1, Eduarda Ribeiro Braga1, Fernando Antônio Moreira Petri1, Jean Carlo Olivo Menegatt2, David Driemeier2, Dominiek Maes3, Luís Guilherme de Oliveira1* 1 Swine Medicine Laboratory, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, São Paulo, Brazil; 2 Veterinary Pathology Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91540-000, Brazil; 3 Unit of Porcine Health Management, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium.; Abstract: Mycoplasma (M.) hyopneumoniae is the key pathogen of the porcine respiratory disease complex (PRDC) and contribute to pleurisy in pigs. Due to its limited metabolism and laborious cultivation, molecular tools are useful for diagnostic. This study investigated the genetic diversity of M. hyopneumoniae in slaughter pigs with pneumonia and pleurisy, and assessed co-infections by Pasteurella multocida type A (PM), Actinobacillus pleuropneumoniae (APP) and swine Influenza virus A (sIVA). Lungs (N=70) with different pleurisy scores and lesions compatible with M. hyopneumoniae infection were collected for convenience. Macroscopic and microscopic evaluations were performed. M. hyopneumoniae was detected using qPCR, and MLST was used for genetic charac-terization. Co-infections with PM and APP were also evaluated by qPCR, while immunohisto-chemistry assessed sIVA infection. All lungs were positive for M. hyopneumoniae. Histopathology confirmed M. hyopneumoniae associated lesions. MLST characterization was possible in 25 lungs, and revealed 10 distinct allelic profiles, none matching known sequence types in the public data-base. Co-infections were detected in 40% of the samples with APP and 2% with PM, with 12% showing both pathogens, 52% of the samples presented microscopic lesions compatible with sIVA infection. The diverse genetic profiles found underscores the necessity for research on isolation and potential pathogenic variations. 13 1Este capítulo corresponde ao artigo científico publicado na revista Microorganisms 2024, 12, 1988. (https://doi.org/10.3390/microorganisms12101988) Keywords: alleles; BALT hyperplasia; MLST; pneumonia; porcine enzootic pneumonia; respiratory disease 14 1. Introduction Bacteria belonging to the genus Mycoplasma spp. are the smallest self- replicating microorganisms and are phenotypically distinguished from other bacteria by the ab-sence of a cell wall [1]. These characteristics contribute to the difficulty of in vitro cultivating the bacteria belonging to this genus. Mycoplasma (M.) hyopneumoniae is the etiologic agent of porcine enzootic pneumonia (PEP) and one of the primary agents of the porcine respiratory disease complex (PRDC) [2]. The clinical manifestation of infection typically is characterized as chronic bronchopneumonia, with a non-productive cough being the most characteristic sign and is most evident in the growth and finishing phases [3]. The losses linked to M. hyopneumoniae infection are associated with a reduction in zootechnical indices, increased susceptibility to secondary infections that can lead to higher antibiotic use and carcasses being condemned in the slaughterhouse [2,4]. Ferraz et al. [5] estimated an economic impact of US$6.55 per affected pig slaughtered due to the M. hyopneumoniae infection. The definitive diagnosis of the disease is achieved by necropsy, histopathology, and molecular assays [6]. M. hyopneumoniae is also often detected in cases of pleurisy in slaughter pigs, although the pathogen itself does not induce this lesion, the microenvironment resulting from the lung lesions likely provides favorable conditions for co-infections like Pasteurella multocida type A (PM) and Actinobacillus pleuropneumoniae (APP) [7] Pleurisy is an important parameter for evaluation in slaughterhouses because it can lead to the condemnation of carcasses, generating a higher economic impact for the industry and challenging diagnoses [8,9]. Furthermore, previous studies indicate that the prevalence of this lesion in Brazilian herds is higher than 10% [4,8]. Knowledge about the pathogenicity and virulence factors of M. hyopneumoniae is scarce because of the in vitro growth characteristics [1]. However, there are differences in the clinical course of the disease and the severity of the lesions, which might be related to these characteristics [10]. Because it is a difficult bacterium to cultivate, different molecular biology tools are used for the epidemiological characterization of M. hyopneumoniae. Multi-locus Sequence Typing (MLST) and Multilocus Variable Number Tandem Repeats (MLVA) are the most widely used techniques due to their high power to discriminate variants. There are also other 15 methods for genotyping, such as pulsed-field gel electrophoresis (PFGE), random amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP) and high-throughput sequencing [10,11]. Technological advances in next-generation sequencing platforms have the capacity to improve the accuracy of genetic diversity studies of microorganisms, but more studies are still needed to create robust databases [12]. The MLST technique is well-established and standardized for characterizing different species of bacteria. For M. hyopneumoniae several loci have been evaluated for this technique, both putative genes and house-keeping genes. Currently, for this pathogen, it analyses three target genes (adk, rpoB and tipA) [13]. One advantage of MLST is its public, online database for sharing and comparing results. So far, the MLST technique can discriminate 392 isolates in 469 Sequence Types (STs) (https://pubmlst.org/organisms/mycoplasma-hyopneumoniae accessed on 2 August 2024). Some studies on the genetic diversity of M. hyopneumoniae in Brazil have shown high genetic diversity [14–16]. However, these studies used another tool for genetic characterization, which is a barrier to comparing results. Takeuti et al. (2017) [14] and dos Santos et al. (2015) [15] used the MLVA technique to characterize M. hyopneumoniae, while, Assao et al. (2019) [16] accessed the similarity according to the presence of some of the genes studied. Balestrin et al. [17] used the MLST approach to investigate the genetic diversity of M. hyopneumoniae strains in Brazil, but this study found a low genetic diversity between strains and also no relation with the geographical location. In that study, five STs were identified as circulating in Brazil, and most of the samples were identified as belonging to the ST-69 group (23-33-26). The contrast in results emphasizes the necessity of increasing the number of studies on this topic, to provide data for comparisons. Based on the high prevalence, the economic impact, and the differences in virulence and severity of the disease associated with the pathogen, our study investigated the genetic diversity of M. hyopneumoniae using the MLST technique in slaughter pigs with pneumonia and pleurisy and the occurrence of co-infections involving APP, PM and sIVA. 16 2. Materials and Methods 2.1 Macroscopic evaluation of lungs and sample collection Between 2022 and 2023, lungs of pigs were collected for convenience in a slaughterhouse located in Guariba, São Paulo, Brazil. The lungs presenting different pleurisy scores and lesions suggestive of M. hyopneumoniae infection (cranioventral region of the lung showing areas of consolidation with purple to grey discoloration). Batches were sampled from four important pig-producing states in Brazil (Figure 1), including seven distinct cities: Uberlândia (Minas Gerais), São Gabriel do Oeste and Campo Grande (Mato Grosso do Sul), Cerqueira César (São Paulo), Guarujá do Sul, São José dos Cedros and Videira (Santa Catarina). Figure 1. Geographical distribution of batches sampled on the Brazilian map. Red dots represent the farms’ city. The allelic profile of M. hyopneunoniae from three states was evaluated. SC: Santa Catarina, MS: Mato Grosso do Sul, SP: São Paulo. The area marked in black in each state indicates the city from which the herds originated. * Figure created using QGIS software version 3.4.5. After evisceration, lungs were classified according to the severity of pleurisy using the Slaughterhouse Pleurisy Evaluation System (SPES), proposed by Dottori et al. (2007) [18]. Briefly, the classification is based on the severity of the pleurisy lesions: 17 score 0 in absence of pleurisy, score 1 pleurisy affecting the cranioventral portion of the lung, score 2 discrete unilateral pleurisy in caudal lobe, score 3 discrete bilateral pleurisy in the caudal lobes or extensive unilateral pleurisy in the caudal lobe and score 4 resembles an extensive bilateral lesion bilateral pleurisy in the caudal lobes. From each batch, 10 pigs were sampled, namely 2 pigs per pleurisy score. (N=70). The severity of the pneumonia lesions was assessed following the methodology proposed by Madec and Kobisch (1982) [19]. Briefly, each lung lobe receives a score (0-4): (0) no lesion; (1) lesion affecting <25% of the lobe surface; (2) lesion affecting 25-49% of the surface; (3) lesion affecting 50-74% of the surface; (4) lesion affecting ≥ 75% of the surface. Points per lobe are summed to provide an overall area lung score (0-28). After the gross evaluation, fragments of lung tissue were collected from the apical-cardiac-diaphragmatic lobes at the edge between affected and non-affected tissue (including bronchi) for microscopic and molecular analysis. The samples for PCR analyses were stored in duplicate for molecular assays in RNAse and DNAse- free cryogenic tubes and stored in a freezer at -80 ºC until laboratory analysis. The lung samples for histopathological and immunohistochemical analysis were stored in 10% buffered formalin at a 1:10 tissue/formalin ratio. All the procedures described in this study were approved by the Animal Use Ethics Committee (CEUA) of FCAV/ Unesp-Campus Jaboticabal, under protocol number #001113/23. 2.2. DNA extraction and conventional PCR (cPCR) for endogenous mammalian glycer-aldehyde 3-phosphate dehydrogenase (gapdh) gene DNA was extracted from the lung samples using an in-house Tris-HCl protocol adapted from Kuramae-Izioka (1977) [20] The concentration and quality of the ex- tracted DNA were measured using spectrophotometry (NanoDrop® One Spectropho- tometer, Thermo Fisher Scientific, USA). To check for possible inhibitors in the extracted DNA samples and the occurrence of false negatives, all the samples were tested by conventional PCR (cPCR) as described by Birkenheuer et al.(2003) [21]. This cPCR detects the presence of a fragment of the endogenous mammalian glyceraldehyde 3-phosphate 18 dehydrogenase gene (gapdh). The samples were only submitted to qPCR if this gene was amplified, avoiding false negative results due to PCR inhibitors. 2.3. Real-time PCR (qPCR) for p102 gene of M. hyopneumoniae The DNA extracted, positive for the presence of gapdh gene, was submitted to qPCR to detect the fragment of the p102 gene (adhesion protein) of M. hyopneumoniae, as described by Fourour et al. (2018) [22] and adapted by Almeida et al. (2020) [23]. Ta-ble S1 describes the target genes, the primers and probes and the amplicon size. 2.4. Molecular characterization of M. hyopneumoniae The multilocus sequence typing (MLST) technique was performed as described by Mayor et al. (2008) [13] and preconized by the MLST public database (https://pubmlst.org/organisms/mycoplasma-hyopneumoniae). Amplifying via cPCR three housekeeping genes adk (encoding adenylate kinase), rpoB (coding for the b- subunit of the RNA-Polymerase) and tpiA (encodes the triosephosphate Isomerase). Table S2 describes the target genes, the primers and the amplicon size. The cPCR amplified products were submitted to horizontal electrophoresis in a 1.5% agarose gel stained with SYBR SAFE (10000X) (Thermo Fisher Scientific®, USA), using TBE pH 8.0 running buffer at 110V/500mA for 60 minutes. A molecular weight marker of 100 base pairs (Cellco Biotec, Brazil) was used in each electrophoresis, and the amplified fragments were visualized in an ultraviolet light transilluminator. The amplicons were purified enzymatically using ExoSAP-IT (Thermo Fisher Scientific®, USA) according to the manufacturer's instructions. The purified genetic material was quantified using spectrophotometry (NanoDrop® One Spectrophotometer, Thermo Fisher Scientific®, USA). Samples positive for the 3 target genes were submitted to Sanger sequencing (N=25). Approximately 10-20 ng of the purified PCR product was submitted to sequencing, using the same cPCR primers. The amplified products were purified with a commercial kit and sequenced using the BigDye™ Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific™, USA) and ABI PRISM 310DNA Analyzer (Applied Bi-osystems™, USA). 19 Sequences were assembled, edited, and trimmed using BioNumerics version 7.6.3 (Applied Maths, Belgium). Sequence types (ST) were assigned by BioNumerics using allelic profiles in the order adk-rpoB-tpiA genes. The same order was used to concatenate sequences for phylogenetic analysis, cluster analysis was performed using the Neighbor-Joining method. The evolutionary distances were computed using the p-distance method and are in the units of the number of base differences per site with Molecular Evolutionary Genetics Analysis (MEGA) software (version 11; https:// www. megasoftware.net/). 2.5. Detection of bacterial co-infections by multiplex qPCR A subset of positive samples for 3 target genes for MLST (N=25) was selected for the co-infection detection. The protocols for the detection of APP and PM were previously described by Sunaga et al. (2020) [7] and Goecke et al. (2021) [24] and adapted by Petri et al. (2023) [4]. The multiplex qPCR targets were the omlA gene (virulence protein) and the kmt1 gene (membrane lipoprotein) from APP and PM, respectively. Table S1 describes the target genes, the primers and probes and the amplicon size. 2.6. Histopathological and immunohistochemical evaluation Lung samples positive for MLST target genes (N=25) were routinely processed and stained with hematoxylin and eosin (HE) for histopathological examination. M. hyopneumoniae lesions were systematically analyzed using a methodology adapted from Hansen et al. (2010) [25]. Bronchus-associated lymphoid tissue (BALT) was carefully examined and graded for the presence of hyperplasia as follows: (0) absent, in which no inflammatory infiltrate was observed in the peribronchial and peribronchiolar tis-sues and no evidence of lymphoid nodules; (+) mild diffuse inflammatory infiltrate of lymphocytes in the peribronchial and peribronchiolar tissues including the alveolar septa associated with the presence of a few lymphoid nodules; (++) moderate diffuse inflammatory infiltrate of lymphocytes in the peribronchial and peribronchiolar tissues including the alveolar septa associated with a marked number of lymphoid nodules; (+++) extensive number of lymphoid nodules with apparent occlusion of the air-way lumen. 20 Secondary bacterial lung lesions were classified according to airway exudates, as suppurative bronchopneumonia (a marked increase of neutrophils in the alveoli, bronchi, and bronchioles); necrosuppurative bronchopneumonia (a marked increase of neutrophils in the airway associated with areas of lung necrosis); and pleuropneumonia (acute/subacute pleuropneumonia: visceral pleura thickened by intense fibrin deposition, necrotic cellular debris, and many degenerate neutrophils, as well as areas of necrosuppurative bronchopneumonia; or chronic pleuropneumonia: characterized by extensive fibrous connective tissue proliferation on the pleura, fibrin deposition, and necrotic lung areas). Chronic pleural lesions (chronic pleuritis) were evaluated separately, characterized by thickening of the pleura due to the proliferation of fibrous connective tissue and blood vessels, and mild inflammatory infiltration of lymphocytes and macro- phages. Additionally, non-specific lesions such as type II pneumocyte hyperplasia and alveolar edema were evaluated for their presence or absence. Immunohistochemistry (IHC) was applied to paraffin-embedded tissues in cases with histological lesions compatible with swine Influenza virus (sIVA) infection, as described by Watanabe et al. (2012) [26]. sIVA lesions were identified based on characteristic histological findings of lymphocytic bronchointerstitial pneumonia, accompanied by necrotic, proliferative, or obliterative bronchiolitis. 2.7. Statistical analysis The variables were assessed for normality and homoscedasticity using the Shapiro- Wilk test. Descriptive statistics are presented as mean and standard deviation for normally distributed data, and as a median with a range between first and third quartiles (IQR) when the data is not normally distributed. Parametric data were analysed using analysis of variance (ANOVA) followed Tukey’s test for multiple comparisons of means (p<0.05). Non-parametric data were analysed using the Mann-Whitney test for pairwise comparisons of medians (p<0.05). All data analyses were performed using the GraphPad Prism 10.2.2 software (La Jolla, USA). 3. Results 21 3.1. Gross evaluation and qPCR for the detection of M. hyopneumoniae The lung consolidation score ranged from 0 to 28 points. Table S3 shows the consolidation points per lung lobe, as well as the total score per lung and the score of pleurisy. The median lung consolidation score across all lungs was 6 points, with an inter-quartile range (IQR) of 6 (3 – 9). There was a statistical difference (p-value 0.0001) when comparing the median scores of lungs with pleurisy (7; IQR: 6 (4-10)) and without pleurisy lesions (3; IQR: 3.25 (1 - 4.25)). There was also a statistical difference in lung consolidation scores according to the severity of pleurisy (p-value 0.0023), with a difference between the means of pleurisy score 0 (2.79 ±1.88) and scores 2, 3 and 4 (7.29 ±4.12; 8.17 ±4.76; 7.64±5.37) respectively. The results demonstrated the presence of DNA de M. hyopneumoniae in all collected lung samples (N=70). The mean Ct obtained was 26.69, without statistical difference when comparing the different severities of pleurisy (p-value 0.25). 3.2. Characterization of the allelic profiles of M. hyopneumoniae The three housekeeping genes (adk, rpoB and tpiA) were detected in 25 of the 70 samples positive for M. hyopneunoniae in the qPCR (35.71%). The mean Ct (23.16±3.43) for the detection of the p102 gene of M. hyopneumoniae was statistically lower (p-value <0.0001) in the samples where it was possible to amplify the three genes required to apply the MLST technique, compared to samples where only one or two of the maintenance genes were amplified (28.65±3.93) and the MLST technique could not be applied. Figure 2 shows the mean and standard deviation of the Cts of the lung samples targeting the p102 gene fragment eligible for the MLST technique. 22 Figure 2. Mean and standard deviation of M. hyopneumoniae detection Cts in qPCR targeting the p102 gene fragment. Comparing values of samples eligible or not for application of the MLST technique (p< 0.05). All the sequences corresponded to the allelic types previously deposited in the public database. Three allelic types were identified for the adk gene: 6; 13 and 23. For the rpoB gene, alleles 11; 18 and 33 were identified. For the tpiA gene, the alleles observed were 19; 26; 41; 60; 62; 79 and 88. When these alleles were combined (respecting the order of description of the target genes: adk, rpoB and tpiA), 10 different allelic profiles were observed as described in table 1. The allelic profiles found did not correspond to any sequence type already re-ported in the public database. Figure 3 shows the phylogenetic tree based on the sequence of the concatenated genes. The tree can be divided into 16 clades. Shorter branches are observed in the relationship between CG 9 and SG 7, as well as CG 1 and SG 4, these samples originated from the same producing state (Mato Grosso). However, the sequences SG 5 and SJ 10 form a very close pair, suggesting a high degree of similarity, even though their geographical origins are far apart. Regarding the geographical distribution, the most prevalent allelic profile (23- 18-26, found in 56% of the samples, 14/25) was exclusively observed in lung lesion samples from the central-west region. Additionally, allelic profiles 23-18-41; 13-18-26; 23-18-60 and 23-11-26 were also found in this region. None of these allelic profiles were found in the southern region of Brazil, where the following profiles were observed: 13-18-79; 13-18-88; 23-33-62 and 6-11-41. Moreover, a distinct profile from the other 23 regions was identified in the southeast region (23-11-19). Figure 1. Show the allelic profiles per state. Table 1. Allelic profiles found in this study (following the order adk, rpoB, tpiA) and their frequency (percentage and absolute number). Allelic profiles Samples 23-18-26 56% (14/25) 23-18-41 8% (2/25) 13-18-79 8% (2/25) 13-18-26 4% (1/25) 23-18-60 4% (1/25) 13-18-88 4% (1/25) 23-11-19 4% (1/25) 23-33-62 4% (1/25) 6-11-41 4% (1/25) 23-11-26 4% (1/25) Figure 3. Dendrogram created using the Neighbor-Joining method, based on the sequence of the concatenated genes following the order adk, rpoB and tpiA. The 24 distances were computed using the p-distance method and are in the units of the number of base differences per site. 3.3. qPCR for the detection of bacterial co-infection In the detection of co-infection agents associated with pleurisy lesions, of the 25 samples submitted to qPCR, 8 were positive for Pasteurella multocida type A (PM) (32%),10 for Actinobacillus pleuropneumoniae (APP) (40%), and three for both agents (12%). The qPCR Cts are summarized in Table 2. Table 2. Pig batch origin (City/state), allelic profile, pleurisy score, detection Cts of Mhyo: Mycoplasma hyopneumoniae, APP: Actinobacillus pleuropneumoniae, PM: Pasteurella multocida type A, and presence of microscopic lesions like sIVA infection* of each sampled lung. Sample Herd origin MLST allele profile Pleurisy Score Mhyo Ct APP Ct PM Ct Lesions like sIVA infection adk rpoB tpiA CG 1 Campo Grande (MS) 23 18 26 0 23.79 30.73 ND No CG 3 Campo Grande (MS) 23 18 26 1 18.59 38.00 ND Yes CG 4 Campo Grande (MS) 23 18 26 1 26.33 29.22 ND Yes SG 3 São Gabriel do Oeste (MS) 23 18 26 1 23.39 ND ND No SG 4 São Gabriel do Oeste (MS) 23 18 26 1 30.27 ND ND No CG 5 Campo Grande (MS) 23 18 26 2 28.54 31.71 ND No CG 6 Campo Grande (MS) 23 18 26 2 18.82 ND ND Yes SG 6 São Gabriel do Oeste (MS) 23 18 26 2 22.76 ND ND Yes CG 7 Campo Grande (MS) 23 18 26 3 21.78 27.96 ND No SG 7 São Gabriel do Oeste (MS) 23 18 26 3 20.43 ND ND No SG 8 São Gabriel do Oeste (MS) 23 18 26 3 23.45 35.20 ND Yes CG 9 Campo Grande (MS) 23 18 26 4 17.24 29.34 23.69 Yes SG 9 São Gabriel do Oeste (MS) 23 18 26 4 21.35 ND ND Yes SG 10 São Gabriel do Oeste (MS) 23 18 26 4 22.27 ND ND Yes SG 2 São Gabriel do Oeste (MS) 23 18 41 0 18.24 ND ND Yes SG 5 São Gabriel do Oeste (MS) 23 18 41 2 25.65 ND 28.60 Yes GS 9 Guarujá do Sul (SC) 13 18 79 4 21.52 ND 23.48 Yes 25 GS 10 Guarujá do Sul (SC) 13 18 79 4 24.68 ND 27.12 No CG 2 Campo Grande (MS) 13 18 26 0 24.94 29.00 ND No SG 1 São Gabriel do Oeste (MS) 23 18 60 0 27.04 ND ND Yes GS 6 Guarujá do Sul (SC) 13 18 88 2 25.00 ND 27.82 Yes CC 5 Cerqueira César (SP) 23 11 19 2 29.06 30.84 29.24 No VD 9 Videira (SC) 23 33 62 4 22.29 ND 36.92 No SJ 10 São José do Cedro (SC) 6 11 41 4 20.74 ND ND No CG 10 Campo Grande (MS) 23 11 26 4 20.83 20.72 17.46 No *Bronchiolitis (necrotic/proliferative or obliterative). 3.4. Severity of gross and histopathological lesions Regarding the pleurisy scores assessed at slaughter, based on the genetically characterized samples (N=25), 4 lungs (16%) were classified with pleurisy scores 0 and 1, 6 lungs (24%) with score 2, 3 lungs (12%) with score 3 and 8 lungs (32%) with score 4. Among these, score 0 showed 4 different allelic profiles, scores 1 and 3 had only 1 profile each, score 2 showed 4 different profiles, and score 4 presented 5 different allelic profiles. Table S4 summarizes the macroscopic findings according to allelic profile found in this study, including the mean number of pulmonary consolidation points seen in the macroscopic evaluation and the pleurisy scores. In the microscopic analysis, all lungs showed histological lesions characteristic of M. hyopneumoniae infection (different scores of BALT hyperplasia). Secondary bacterial lesions were frequent, with histological findings of bronchopneumonia or pleuropneumonia observed in 14 out of 25 lungs evaluated (56%). Additionally, histological findings suggestive of sVIA co-infection were observed in 52% (13/25) of the samples, mainly proliferative or obliterative bronchiolitis, which were negative on IHC (N=13). Table 3 describes the severity of the microscopic lesions according to each allelic pro-file observed in this study. 26 Table 3. Histopathological findings in the 25 lung samples and for each allelic profile, the results are presented in percentages and absolute numbers. Histological lesion Total 23-18-26 23-18-41 13-18-79 13-18-26 23-18-60 13-18-88 23-11-19 23-33-62 6-11-41 23-11-26 BALT* 0 - - - - - - - - - - - + 28 (7/25) 28.57 (4/14) - 100 (2/2) - - - 100 (1/1) - - - ++ 56 (14/25) 57.14 (8/14) 50 (2/2) - 100 (1/1) 100 (1/1) 100 (1/1) - - 100 (1/1) - +++ 16 (4/25) 14.28 (2/14) - - - - - - 100 (1/1) - 100 (1/1) Suppurative bronchopneumonia 24 (6/25) 7.14 (1/14) 50 (1/2) 50 (1/2) - - 100 (1/1) - 100 (1/1) - 100 (1/1) Necrotizing bronchopneumonia 24 (6/25) 28.57 (4/14) 50 (1/2) - 100 (1/1) - - - - - - Pleuropneumonia 8 (2/25) 7.14 (1/14) - - - - - - - - 100 (1/1) Chronic pleuritis 80 (20/25) 78.57 (11/14) 50 (1/2) 100 (2/2) - 100 (1/1) 100 (1/1) 100 (1/1) 100 (1/1) 100 (1/1) 100 (1/1) Pneumocyte hyperplasia 84 (21/25) 85.71 (12/14) 100 (2/2) 50 (1/2) 100 (1/1) 100 (1/1) 100 (1/1) - 100 (1/1) 100 (1/1) 100 (1/1) Alveolar edema 28 (7/25) 21.43 (3/14) 50 (2/2) 50 (1/2) - - 100 (1/1) - - - - Lesions like sIVA infection** 52 (13/25) 57.14 (8/14) 100 (2/2) 50 (1/2) - 100 (1/1) 100 (1/1) - - - - *BALT: bronchial-associated lymphoid tissue hyperplasia; BALT hyperplasia was classified as absent (0), mild (+), moderate (++) or extensive (+ + +). **Bronchiolitis (necrotic/proliferative or obliterative). 27 4. Discussion The allelic profile analysis identified notable genetic diversity among the samples, with different allelic profiles geographically distributed, suggesting possible regional variations in the epidemiology of the infection. The housekeeping genes (adk, rpoB and tpiA) were detected in 35.71% of the samples (25/70). The success rate for using the technique is a challenge. Lung samples, especially from animals with chronic lesions often contain a low bacterial load. MLST is a technique that requires amplification of multiple loci and subsequent sequencing. This can be difficult to perform with clinical samples where the quantity and quality of the pathogen's DNA is limited. In a study carried out by Zhang et al. (2021) [27], in 47 out of 199 samples positive for M. hyopneumoniae in the nested-PCR, it was possible to use the MLST technique. The MLST technique usually requires the amplification of 7 target genes, but for M. hyopneumoniae the use of 3 target genes is sufficient to understand the relationship between the strains. Mayor et al. (2008) [13] demonstrated in her study that 3 genes have the same resolution when 7 genes are used in MLST analysis for M. hyopneumoniae. As the samples come from clinical specimens and not isolates, the presence of inhibitors and a greater amount of genetic material can hinder the performance of the technique [27]. However, considering the complexity and time involved in cultivating and isolating this agent, MLST is a useful tool with high discriminatory power and rapid execution for characterizing M. hyopneumoniae and understand infection dynamics [10,13]. Different strains of M. hyopneumoniae can lead to variable clinical signs and severity of lesions. In addition, a single batch of pigs can be infected by multiple strains with different genetic profile [28,29]. This highlights the importance of studies that aim to correlate the genetic characterization of strains with the severity of lesions, both for understanding the epidemiological scenario and potential response to vaccine antigens. In the present study, regardless of the observed allelic profile, the sampled animals exhibited histopathological lesions consistent with M. hyopneumoniae infection, with varying scores of pleurisy severity. However, we did not perform any correlations since the number of samples per allelic profile found was too limited. 28 Our study identified 10 new combinations of alleles not yet described in the Pub- MLST database, but it was not possible to categorize the STs. This could have been because isolates with these genetic characteristics have not yet been described. Considering that only one other study has been carried out in Brazil using this technique, we can suggest that the allelic profiles observed in this study are characteristic of Brazil. Research in other countries, such as China, has also shown great genetic variation in M. hyopneumoniae, where sixteen new sequence types were found in 47 sequenced samples [27]. For a new ST to be incorporated into the database, data from an isolate or a complete genome is required (https://pubmlst.org/submit-data). The possible presence of multiple strains in the clinical sample can generate artefacts and difficult data analysis. Therefore, a careful evaluation of the electropherograms is essential to guarantee the quality of the results found. This underscores the need to increase efforts to characterize new strains currently circulating. Based on this, we can hypothesize that the samples belong to sequence types of characteristics of Brazil, especially given that only 2 Brazilian isolates are currently documented in the database. Additionally, the present study investigated the relationship between lung consolidation, the presence of M. hyopneumoniae DNA, and allelic profiles in lung samples from pigs with macroscopic lesions consistent with M. hyopneumoniae infection in Brazilian herds. Our findings revealed a significant correlation between the severity of pleurisy lesions and lung consolidation scores, indicating that M. hyopneumoniae infection may play a critical role in the pathogenesis of the observed lung lesions. M. hyopneumoniae presents high prevalence with 92.45% and 97.7% as reported in previous studies conducted in Brazil [4,8]. Marois et al. (2008) [30] has demonstrated that cross-contamination can occur in the scalding tank at the slaughterhouse, but in our study the macro and microscopic lesions support M. hyopneumoniae infection. This finding reinforces the relevance of M. hyopneumoniae as a primary pathogen in the complex of respiratory system diseases in pigs [31]. Co-infections between M. hyopneumoniae and PM (32%) and M. hyopneumoniae and APP (40%) emphasize the complexity of swine respiratory infections, where several pathogens may be involved. Arruda et al. (2024) found 10.1% of the cases exhibited co-identification involving M. hyopneumoniae, PM and APP [8]. 29 This percentage is similar to the 12% found in this study. The presence of coinfections can aggravate the se-verity of the disease, influence the response to treatment, and complicate control efforts [32]. In our study, no correlations were observed between the severity of the lesions and the presence of co-infections detected by qPCR. The clinical course in the pigs in the farms is unknown since the samples were obtained at the slaughterhouse. Furthermore, around half of the samples (13/25; 52%) exhibited chronic microscopic lesions suggestive of sIVA infection, even though they tested negative on IHC. However, chronic histological lesions caused by the sIVA are typical, and negative IHC results during this stage of infection are common, as reported by Menegatt et al. (2023) [33]. Additionally, it was noted that these samples had statistically lower Ct of detection for M. hyopneumoniae (p-value < 0.005). This can suggest a possible exacerbation of M. hyopneumoniae infection after lesions caused by sIVA, since previous sIVA infections can facilitate colonization of the respiratory tract by M. hyopneumoniae [34]. The sample size was low and can therefore be considered a limitation in this study. The MLST technique requires sufficient lung samples, and more animals per batch or parameter are needed to correlate the prevalence of a determined M. hyopneumoniae allelic profile. However, we can suggest that there is a great genetic diversity of M. hyopneumoniae strains circulating in Brazilian herds. 5. Conclusions We found a high prevalence of M. hyopneumoniae using qPCR in lung samples with pneumonia lesions and different pleurisy scores. In addition, the most severe pleurisy lesions also had a higher lung consolidation score. BALT hyperplasia lesions associated with M. hyopneumoniae infection were the most prevalent microscopic findings. This study suggests a maximum Ct (28.65±3.93) for the detection of M. hyopneumoniae in qPCR using p102 gene how target to triage samples for the MLST technique. The allelic profile analysis identified notable genetic diversity among the samples, with different allelic profiles distributed in different regions of Brazil, suggesting possible regional variations in the epidemiology of the infection. These results contribute to a better understanding of the dynamics of M. hyopneumoniae infection in pigs and highlight the importance of considering both pathogen genetics 30 and the macroscopic and microscopic characteristics of lesions when assessing disease severity. For a better epidemiological understanding and future comparisons of the genetic profile of the strains more isolates of the agent should be characterized. Supplementary Materials: The following supporting information can be downloaded at https: //www.mdpi.com/article/10.3390/microorganisms12101988/s1. Table S1: Sequences of the primers and hydrolysis probes used for each target region of the multiplex qPCR: omIA gene (APP), p102 gene (M. hyopneumoniae) and kmt1 gene (PM), and the respective amplifier sizes (bp); Table S2: Sequences of the primers for M. hyopneumoniae MLST (amplification and sequencing); Table S3: Data for each lung evaluated; Table S4: Mean number of pulmonary consolidation points, total for each lung evaluated and per lung lobe, assessed in the macroscopic evaluation and the number of lungs per pleurisy score according to allelic profile. Author Contributions: Conceptualization, L.G.d.O; methodology, L.G.d.O.; formal analysis, A.K.P; investigation, A.K.P, E.R.B, J.C.O.M. and D.D; data curation, A.K.P and E.R.B; writ-ing—original draft preparation, A.K.P and L.G.d.O.; writing—review and editing, A.K.P, E.R.B, F.A.M.P, J.C.O.M, D.D, D.M, L.G.d.O.; visualization, L.G.d.O, D.M; supervision, L.G.d.O.; project administration, A.K.P and L.G.d.O.; funding acquisition, L.G.d.O. All authors have read and agreed to the published version of the manuscript. Funding: We are thankful to FAPESP (São Paulo Research Foundation) for the Master’s scholar-ship (FAPESP Process #2023/01747-4) and fellowship abroad (FAPESP Process #2023/17921-3) grant to A.K.P. We also thank the National Council for Scientific and Technological Development (CNPq) for the productivity grant to L.G.d.O. (CNPq Process #316447/2021-8). Data Availability Statement: The original contributions presented in the study are included in the article/Supplementary Materials, further inquiries can be directed to the corresponding author. 31 Acknowledgments: To the members of the Laboratory of Swine Medicine— Unesp/FCAV for their support with the collections and assistance with laboratory analysis. And the Frigmel-Guariba/SP for facilitating the sample collection. Conflicts of Interest: The authors declare no conflicts of interest. 6. References 1. Razin, S. Physiology of Mycoplasmas. Adv Microb Physiol 1973, 10, 1–80. 2. Maes, D.; Sibila, M.; Pieters, M.; Haesebrouck, F.; Segalés, J.; de Oliveira, L.G. Review on the Methodology to Assess Respiratory Tract Lesions in Pigs and Their Production Impact. Vet Res 2023, 54, 8. 3. Gabardo, M.; Zandonai, A.; Camargo, M.; Gava, A.; Cristani, J.; Traverso, S. Caracterização Sanitária de Suí-nos Criados Em Sistema “Wean-to-Finish.” Medicina Veterinária 2013, 7, 23–31. 4. Petri, F.A.M.; Ferreira, G.C.; Arruda, L.P.; Malcher, C.S.; Storino, G.Y.; Almeida, H.M. de S.; Sonalio, K.; Silva, D.G. da; Oliveira, L.G. de Associations between Pleurisy and the Main Bacterial Pathogens of the Porcine Respiratory Diseases Complex (PRDC). Animals 2023, 13, doi:10.3390/ani13091493. 5. Ferraz, M.E.S.; Almeida, H.M.S.; Storino, G.Y.; Sonálio, K.; Souza, M.R.; Moura, C.A.A.; Costa, W.M.T.; Lunar-di, L.; Linhares, D.C.L.; de Oliveira, L.G. Lung Consolidation Caused by Mycoplasma Hyopneumoniae Has a Negative Effect on Productive Performance and Economic Revenue in Finishing Pigs. Prev Vet Med 2020, 182, doi:10.1016/j.prevetmed.2020.105091. 6. Sibila, M.; Nofrarías, M.; López-Soria, S.; Segalés, J.; Valero, O.; Espinal, A.; Calsamiglia, M. Chronological Study of Mycoplasma Hyopneumoniae Infection, Seroconversion and Associated Lung Lesions in Vaccinat-ed and Non-Vaccinated Pigs. Vet Microbiol 2007, 122, 97–107, doi:10.1016/j.vetmic.2007.01.010. 7. Sunaga, F.; Tsuchiaka, S.; Kishimoto, M.; Aoki, H.; Kakinoki, M.; Kure, K.; Okumura, H.; Okumura, M.; Oku-mura, A.; Nagai, M.; et al. Development of a One- Run Real-Time Pcr Detection System for Pathogens Associ-ated with Porcine Respiratory Diseases. Journal of Veterinary Medical Science 2020, 82, 217–223, doi:10.1292/jvms.19-0063. 32 8. Arruda, L.P.; Malcher, C.; Petri, F.A.M.; da Silva, D.G.; Storino, G.Y.; Almeida, H.M. de S.; Sonalio, K.; Toledo, L.T.; de Oliveira, L.G. Pathological Analysis and Etiological Assessment of Pulmonary Lesions and Its Asso-ciation with Pleurisy in Slaughtered Pigs. Vet Microbiol 2024, 292, doi:10.1016/j.vetmic.2024.110039. 9. Turni, C.; Meers, J.; Parke, K.; Singh, R.; Yee, S.; Templeton, J.; Mone, N.K.; Blackall, P.J.; Barnes, T.S. Pathogens Associated with Pleuritic Pig Lungs at an Abattoir in Queensland Australia. Aust Vet J 2021, 99, 163–171, doi:10.1111/avj.13058. 10. Betlach, A.M.; Maes, D.; Garza-Moreno, L.; Tamiozzo, P.; Sibila, M.; Haesebrouck, F.; Segalés, J.; Pieters, M. Mycoplasma Hyopneumoniae Variability: Current Trends and Proposed Terminology for Genomic Classifi-cation. Transbound Emerg Dis 2019, 66, 1840–1854. 11. Yin, Y.; Jiang, J.; Hu, Y.; Chen, Y.; Wei, Z.; Chen, H. Discovery of the Rich Diversity of Mesomycoplasma Hy-opneumoniae through High-Throughput Sequencing. Vet Microbiol 2024, 297, doi:10.1016/j.vetmic.2024.110213. 12. Pérez-Losada, M.; Cabezas, P.; Castro-Nallar, E.; Crandall, K.A. Pathogen Typing in the Genomics Era: MLST and the Future of Molecular Epidemiology. Infection, Genetics and Evolution 2013, 16, 38–53. 13. Mayor, D.; Jores, J.; Korczak, B.M.; Kuhnert, P. Multilocus Sequence Typing (MLST) of Mycoplasma Hy-opneumoniae: A Diverse Pathogen with Limited Clonality. Vet Microbiol 2008, 127, 63–72, doi:10.1016/j.vetmic.2007.08.010. 14. Takeuti, K.L.; de Barcellos, D.E.S.N.; de Andrade, C.P.; de Almeida, L.L.; Pieters, M. Infection Dynamics and Genetic Variability of Mycoplasma Hyopneumoniae in Self-Replacement Gilts. Vet Microbiol 2017, 208, 18–24, doi:10.1016/j.vetmic.2017.07.007. 15. dos Santos, L.F.; Sreevatsan, S.; Torremorell, M.; Moreira, M.A.S.; Sibila, M.; Pieters, M. Genotype Distribution of Mycoplasma Hyopneumoniae in Swine Herds from Different Geographical Regions. Vet Microbiol 2015, 175, 374–381, doi:10.1016/j.vetmic.2014.11.018. 16. Assao, V.S.; Scatamburlo, T.M.; Araujo, E.N.; Santos, M.R.; Pereira, C.E.R.; Guedes, R.M.C.; Bressan, G.C.; Fietto, J.L.R.; Chang, Y.F.; Moreira, M.A.S.; et al. Genetic Variation of Mycoplasma Hyopneumoniae from Brazilian Field Samples. BMC Microbiol 2019, 19, doi:10.1186/s12866-019-1603-7. 33 17. Balestrin, E.; Kuhnert, P.; Wolf, J.M.; Wolf, L.M.; Fonseca, A.S.K.; Ikuta, N.; Lunge, V.R.; Siqueira, F.M. Clonal-ity of Mycoplasma Hyopneumoniae in Swine Farms from Brazil. Vet Microbiol 2019, 238, doi:10.1016/j.vetmic.2019.108434. 18. Dottori, M.; Nigrelli, D.A.; Bonilauri, P.; Merialdi, G.; Gozio, S.; Cominotti, F. Proposta Di Un Nuovo Sistema Di Punteggiatura Delle Pleuriti Suine in Sede Di Macellazione. La Griglia S.P.E.S. (Slaughterhouse Pleuritis Evaluation System). Large Animal Review 2007, 161–165. 19. Madec, F.; Kobisch, M. Bilan Lesionnel Des Poumons de Porcs Charcutiers a l’abattoir. Journees de la Recher-che Porcine 1982, 14, 405–412. 20. Kuramae-Izioka, E.E. A Rapid, Easy and High Yield Protocol for Total Genomic DNA Isolation of Colleto-trichum Gloeosporioides and Fusarium Oxysporum. Revista UNIMAR 1997, 19, 683–689. 21. Birkenheuer, A.J.; Levy, M.G.; Breitschwerdt, E.B. Development and Evaluation of a Seminested PCR for De-tection and Differentiation of Babesia Gibsoni (Asian Genotype) and B. Canis DNA in Canine Blood Samples. J Clin Microbiol 2003, 41, 4172–4177, doi:10.1128/JCM.41.9.4172-4177.2003. 22. Fourour, S.; Fablet, C.; Tocqueville, V.; Dorenlor, V.; Eono, F.; Eveno, E.; Kempf, I.; Marois-Créhan, C. A New Multiplex Real-Time TaqMan® PCR for Quantification of Mycoplasma Hyopneumoniae, M. Hyorhinis and M. Flocculare: Exploratory Epidemiological Investigations to Research Mycoplasmal Association in Enzootic Pneumonia-like Lesions in Slaughtered Pigs. J Appl Microbiol 2018, 125, 345–355, doi:10.1111/jam.13770. 23. Almeida, H.M.S.; Mechler-Dreibi, M.L.; Sonálio, K.; Ferraz, M.E.S.; Storino, G.Y.; Barbosa, F.O.; Maes, D.; Montassier, H.J.; de Oliveira, L.G. Cytokine Expression and Mycoplasma Hyopneumoniae Burden in the De-velopment of Lung Lesions in Experimentally Inoculated Pigs. Vet Microbiol 2020, 244, doi:10.1016/j.vetmic.2020.108647. 24. Goecke, N.B.; Nielsen, B.H.; Petersen, M.B.; Larsen, L.E. Design of a High- Throughput Real-Time PCR System for Detection of Bovine Respiratory and Enteric Pathogens. Front Vet Sci 2021, 8, doi:10.3389/fvets.2021.677993. 25. Hansen, M.S.; Pors, S.E.; Jensen, H.E.; Bille-Hansen, V.; Bisgaard, M.; Flachs, E.M.; Nielsen, O.L. An Investiga-tion of the Pathology and Pathogens Associated with 34 Porcine Respiratory Disease Complex in Denmark. J Comp Pathol 2010, 143, 120– 131, doi:10.1016/j.jcpa.2010.01.012. 26. Watanabe, T.; Almeida, L.; Wouters, F.; Wouters, A.; Zlotowski, P.; Driemeier, D. Histopathological and Im-munohistochemical Indings of Swine with Spontaneous Innluenza A Infection in Brazil. 2012, 1148–1154. 27. Zhang, H.; Wang, Y.; Gao, L.; Wang, Y.; Wei, R. Genotype Diversity of Mycoplasma Hyopneumoniae in Chi-nese Swine Herds Based on Multilocus Sequence Typing. BMC Vet Res 2021, 17, doi:10.1186/s12917-021-03059-6. 28. Michiels, A.; Vranckx, K.; Piepers, S.; Del Pozo Sacristán, R.; Arsenakis, I.; Boyen, F.; Haesebrouck, F.; Maes, D. Impact of Diversity of Mycoplasma Hyopneumoniae Strains on Lung Lesions in Slaughter Pigs. Vet Res 2017, 48, doi:10.1186/s13567-016-0408-z. 29. Toledo, L.T.; de Souza, L.F.L.; Pereira, C.E.R.; Polveiro, R.C.; Bressan, G.C.; Yamatogi, R.S.; Jeong, K.C.; Marks, F.S.; Diamantino, C.A.; de Carvalho, V.H.R.; et al. A Genetic and Virulence Characterization of Brazilian Strains of Mycoplasma Hyopneumoniae. Front Microbiol 2023, 14, doi:10.3389/fmicb.2023.1280588. 30. Marois, C.; Cariolet, R.; Morvan, H.; Kobisch, M. Transmission of Pathogenic Respiratory Bacteria to Specific Pathogen Free Pigs at Slaughter. Vet Microbiol 2008, 129, 325–332, doi:10.1016/j.vetmic.2007.11.030. 31. Sarli, G.; D’annunzio, G.; Gobbo, F.; Benazzi, C.; Ostanello, F. The Role of Pathology in the Diagnosis of Swine Respiratory Disease. Vet Sci 2021, 8. 32. Maes, D.; Segales, J.; Meyns, T.; Sibila, M.; Pieters, M.; Haesebrouck, F. Control of Mycoplasma Hyopneu-moniae Infections in Pigs. Vet Microbiol 2008, 126, 297–309. 33. Menegatt, J.C.O.; Perosa, F.F.; Gris, A.H.; Piva, M.M.; Serena, G.C.; Bordignon, D.L.; Reck, C.; Menin, Á.; Watanabe, T.T.N.; Driemeier, D. Main Causes of Death in Piglets from Different Brazilian Nursery Farms Based on Clinical, Microbiological, and Pathological Aspects. Animals 2023, 13, doi:10.3390/ani13243819. 34. de Conti, E.R.; Takeuti, K.L.; Schwertz, C.I.; Bianchi, R.M.; Driemeier, D.; de Barcellos, D.E.S.N. Agents of Pneumonia in Slaughtered Pigs in Southern Brazil. Pesquisa Veterinaria Brasileira 2021, 41, doi:10.1590/1678-5150-PVB-6669. 35 Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.