Ultrasonics Sonochemistry 38 (2017) 256–270 Contents lists available at ScienceDirect Ultrasonics Sonochemistry journal homepage: www.elsevier .com/ locate/ul tson Structural evolution, growth mechanism and photoluminescence properties of CuWO4 nanocrystals http://dx.doi.org/10.1016/j.ultsonch.2017.03.007 1350-4177/� 2017 Elsevier B.V. All rights reserved. ⇑ Corresponding author. E-mail address: laeciosc@bol.com.br (L.S. Cavalcante). E.L.S. Souza a, J.C. Sczancoski b, I.C. Nogueira c, M.A.P. Almeida d, M.O. Orlandi e, M.S. Li f, R.A.S. Luz a, M.G.R. Filho a, E. Longo e, L.S. Cavalcante a,⇑ a PPGQ-CCN-GERATEC, Universidade Estadual do Piauí, Rua: João Cabral, N. 2231, P.O. Box 381, 64002-150 Teresina, PI, Brazil bDQ-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, São Carlos, SP 13565-905, Brazil c ICE-Universidade Federal do Amazonas, Av. Rodrigo Otávio Japiim, P.O. Box 670, 69077-000 Manaus, AM, Brazil dCCT-Universidade Federal do Maranhão, P.O. Box 322, 65080-805 São Luís, MA, Brazil eDepartamento de Físico-Química, Universidade Estadual Paulista, 14800-060 Araraquara, SP, Brazil f IFSC-Universidade de São Paulo, P.O. Box 369, 13560-970 São Carlos, SP, Brazil a r t i c l e i n f o a b s t r a c t Article history: Received 31 January 2017 Received in revised form 6 March 2017 Accepted 6 March 2017 Available online 8 March 2017 Keywords: CuWO4 crystals Sonochemistry Clusters Raman spectroscopy TEM images Photoluminescence properties Copper tungstate (CuWO4) crystals were synthesized by the sonochemistry (SC) method, and then, heat treated in a conventional furnace at different temperatures for 1 h. The structural evolution, growth mechanism and photoluminescence (PL) properties of these crystals were thoroughly investigated. X- ray diffraction patterns, micro-Raman spectra and Fourier transformed infrared spectra indicated that crystals heat treated and 100 �C and 200 �C have water molecules in their lattice (copper tungstate dihy- drate (CuWO4�2H2O) with monoclinic structure), when the crystals are calcinated at 300 �C have the pres- ence of two phase (CuWO4�2H2O and CuWO4), while the others heat treated at 400 �C and 500 �C have a single CuWO4 triclinic structure. Field emission scanning electron microscopy revealed a change in the morphological features of these crystals with the increase of the heat treatment temperature. Transmission electron microscopy (TEM), high resolution-TEM images and selected area electron diffrac- tion were employed to examine the shape, size and structure of these crystals. Ultraviolet–Visible spectra evidenced a decrease of band gap values with the increase of the temperature, which were correlated with the reduction of intermediary energy levels within the band gap. The intense photoluminescence (PL) emission was detected for the sample heat treat at 300 �C for 1 h, which have a mixture of CuWO4�2H2O and CuWO4 phases. Therefore, there is a synergic effect between the intermediary energy levels arising from these two phases during the electronic transitions responsible for PL emissions. � 2017 Elsevier B.V. All rights reserved. 1. Introduction published papers have reported on the structural features, Hydrous copper tungstate (CuWO4�xH2O) crystals can be natu- rally found as a mineral, presenting colors from bright yellowish to green [1]. This mineral, also known as ‘‘Cuprotungstite”, has been discovered and analyzed by Whitney T. Schaller in 1892. However, the same designation also is adopted for copper tungstate (CuWO4), i.e., an oxide material belongs to wolframite sub-group [2]. Whitney T. Schaller verified that CuWO4�xH2O crystals are composed of two water molecules; therefore, it was posteriorly described as copper tungstate dihydrate (CuWO4�2H2O) [1,2]. In general, CuWO4�2H2O crystals are easily produced by the reaction between copper nitrate and sodium tungstate precursors in aque- ous solutions, using specific pH and temperature conditions. Some morphological aspects and electronic properties of this tungstate [3–12]. Particularly, some of these studies [3–7]. consider the CuWO4�2H2O as a raw or precursor precipitate formed during the initial synthesis stages due to its favorable thermodynamic condi- tion [8–12]. In past years, CuWO4 crystals were obtained by several tradi- tional methods, mainly including oxide mixture or solid state reac- tion [13–17], flux growth technique [18,19], melting at a high temperature [20], and Czochralski process [21]. Generally, these techniques require high temperatures, long processing times and sophisticated equipment with high maintenance costs [22]. On the other hand, to overcome these drawbacks, simple methods were developed for the preparation of CuWO4 micro- and nanocrystals, such as precipitation reaction [23–26], polyol- mediated at low-temperature [27], hydrothermal conventional [28,29], and microwave-assisted synthesis [30]. http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultsonch.2017.03.007&domain=pdf http://dx.doi.org/10.1016/j.ultsonch.2017.03.007 mailto:laeciosc@bol.com.br http://dx.doi.org/10.1016/j.ultsonch.2017.03.007 http://www.sciencedirect.com/science/journal/13504177 http://www.elsevier.com/locate/ultson E.L.S. Souza et al. / Ultrasonics Sonochemistry 38 (2017) 256–270 257 The wolframite-type monoclinic structure is commonly found in tungstates composed of transition metals belonging to the fourth period of the periodic table (MnWO4 [31], FeWO4 [32], CoWO4 [33], NiWO4 [34], and ZnWO4 [35]). The only exception is CuWO4, which crystallizes in a triclinic structure at room temper- ature [36–38]. In addition, CuWO4 crystals exhibit a phase transi- tion from triclinic structure at low-pressure to monoclinic structure at high-pressure (9.9 GPa) [39]. Therefore, when subjected to extreme pressure environments, the researchers [40–43] have reported that these crystals have a monoclinic struc- ture characterized by space group (P2/c), point group symmetry (C4 2h) and two molecular formula units per unit cell (Z = 2) [43,44]. On the other hand, under low-pressure conditions at room temperature, these crystals exhibit a triclinic structure with space group (P�1), point group symmetry (Ci) and two molecular formula units per unit cell (Z = 2) [45–47]. Moreover, CuWO4 crystals with triclinic structure are influenced by Jahn-Teller effect due to the presence of Cu2+ ions, which promote distortions on octahedral [CuO6] clusters. Consequently, this phenomenon gives rise to a d- orbital splitting, in which the degeneracy ofr-antibonding orbitals is broken [48,49]. According to the literature [50,51], the Pauli exclusion principle can provide that the Cu2+ ions have an electron with unpaired spin occupying the dx 2 �y 2 orbital, indicating that this electronic level could produce a mid-gap band state. The additional stabilization is greater in a Jahn–Teller-elongated Cu2+ ions (where 3dz2 contains two electrons) [52]. Currently, the scientific studies on the electronic properties of pure and doped CuWO4 have been mainly focused on the photocat- alytic (PC) degradation of organic dyes (Rhodamine B, eosin yellow dye and methylene blue) under ultraviolet and visible light [53– 55], magnetic [56–59], photoelectrochemical water splitting [60– 64], visible and solar-assisted water splitting [65,66], photoanode for solar water oxidation [67,68], electrical transport [69], and pho- toluminescence (PL) [24,53,70]. An important point to be consid- ered is that the theoretical studies [16,71–75], performed by means of ab initio calculations based on the density-functional the- ory (DFT) for the electronic structure of CuWO4 crystals, have shown that the conduction band (CB) of this oxide is composed of 3d orbitals (Cu atoms) and 5d orbitals (W atoms), while the valence band (VB) is formed of 2p orbitals (O atoms). Therefore, the aim of the present study was to investigate the structural, morphological and optical properties of CuWO4 crystals. These crystals were initially synthesized by the sonochemistry (SC) method (30 min), and then, heat treated in a conventional furnace at different temperatures for 1 h. A crystal growth mechanism was proposed in order to explain the evolution of particle shape/size with the increase of the heat treatment temperature. Finally, the optical properties of these crystals were investigated by Ultraviolet-Visible spectroscopy and PL measurements at room temperature. 2. Experimental details 2.1. Synthesis of CuWO4 crystals The synthesis of CuWO4 crystals is described as follows: 1 � 10�3 mols of sodium tungstate dihydrate (Na2WO4�2H2O; 99.5% purity, Sigma-Aldrich) and 1 � 10�3 mols of copper nitrate trihydrate [Cu(NO3)2�3H2O; 99% purity, Sigma-Aldrich] were sepa- rately placed in two plastic tubes (Falcon – capacity of 50 mL) and dissolved with deionized water. The two solutions (pH = 6) were transferred into a beaker (250 mL) and ultrasonicated for 30 min by means of an ultrasonic cleaner (model CPX-1800H, Branson – USA) at frequency of 42 kHz. These suspensions containing bright green precipitates were seven times washed (water and acetone) and centrifuged (8500 rpm for 10 min), and then, dried in a single hot plate (60 �C for 30 min). Finally, the obtained CuWO4�2H2O precipitates were heat treated at different temperatures (100 �C, 200 �C, 300 �C, 400 �C, and 500 �C for 1 h), maintaining a heating rate of 5 �C.min�1. The increase in the heat treatment temperature was employed to monitor the crystallization process of single CuWO4 phase. CuWO4�2H2O crystals were synthesized via chemical reaction between hexaaquacopper(II) complex ion ([Cu(H2O)6]2+) and tung- state ions (WO2� 4 ) in aqueous solution. These ions were originated by means of the complete dissolution of their respective chemical precursors [Na2WO4�2H2O and Cu(NO3)2�3H2O], as described in Eqs. (1)--(3): Na2WO4 � 2H2OðsÞ !H2O 2NaþðaqÞ þWO2� 4ðaqÞ þ 2H2O ð1Þ CuðNO3Þ2:3H2OðsÞ �!H2O ½CuðH2OÞ6�2þ þ 2NO�3ðaqÞ þ 3H2O ð2Þ The heat treatment performed at low temperatures (from 100 �C to 200 �C) was responsible for the partial removal of water molecules belonging to CuWO4�2H2O structure, according to Eq. (4): CuWO4 � 2H2OðsÞ . . . x:H2OðadsÞ �!�100�Cand200�C=1h CuWO4:xH2OðsÞ þ 2H2OðgÞ ð4Þ The water removal (dehydration process) continues at low tem- peratures (�300 �C); however, there is a mixture of CuWO4�xH2O and CuWO4 phases, as proposed in Eq. (5): 2CuWO4 � xH2OðsÞ �!�300�C=1h CuWO4 � xH2OðsÞ þ CuWO4ðsÞ ð5Þ The formation of single CuWO4 crystals occurs at temperatures above 400 �C, according to Eq. (6): CuWO4 � xH2OðsÞ þ CuWO4ðsÞ �!�400�Cand500�C=1h 2CuWO4ðsÞ þ xH2OðgÞ ð6Þ 2.2. Characterizations of CuWO4 crystals CuWO4 nanocrystals were structurally characterized by X-ray diffraction (XRD) with a DMax/2500PC diffractometer (Rigaku, Japan), using Cu-Ka radiation (k = 0.15406 nm). Data were col- lected over 2h ranging from 10� to 70�, employing a step scan of 2�.min�1. Rietveld analysis was performed over 2h ranging from 5� to 120�, at a scan step and step size of 1�.min�1 and 0.02�, respectively. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were carried out in a STA 409 thermal ana- lyzer (Netzsch, Germany). These thermal measurements were per- formed from room temperature to 550 �C under synthetic air flow (15 cm3.min�1), maintaining a heating rate of 10 �C.min�1. Micro Raman (M-Raman) spectra were recorded using a LabRAM HR 800 spectrometer (Horiba Jobin Yvon, France). These spectra were 258 E.L.S. Souza et al. / Ultrasonics Sonochemistry 38 (2017) 256–270 obtained from 50 cm�1 to 1000 cm�1 with an Ar+ laser of 514.5 nm (model CCD DU420AOE325), maintaining a maximum output power of 6 mW. A 50 lm lens was used to prevent sample over- heating. Fourier Transform infrared (FT-IR) spectra were performed from 200 cm�1 to 1000 cm�1 with a Bomem–Michelson spec- trophotometer operated in transmittance mode (model MB-102). Ultraviolet–Visible (UV–Vis) spectra were taken using a Cary 5G spectrophotometer (Varian, USA) operated in diffuse reflectance mode. The morphological features were examined by using a Supra 35-VP field-emission scanning electron microscope (FE-SEM) (Carl Zeiss, Germany) operated at 10 kV, and with a CM200 transmission electron microscope (TEM) (Philips/FEI, Netherlands) operated at 200 kV. The shape, average size and crystal growth directions of CuWO4 crystals were determined using the selected-area electron diffraction (SAED) and high resolution (HR)-TEM, respectively. The samples for TEM and HR-TEM were prepared depositing (dropwise) dilute suspensions of CuWO4 crystals in acetone on 300-mesh Cu grids. The photoluminescence (PL) spectra were conducted at room temperature by using a Monospec 27 monochromator (Thermal Jarrel Ash, USA) coupled to a R955 photomultiplier (Hamamatsu Photonics, Japan). A krypton-ion laser (Coherent Innova 90 K; k = 350 nm) was used as an excitation source, maintaining a maximum output power at 500 mW. The laser beam passed through an optical chopper, so that the maxi- mum power incident on the sample was maintained at 14 mW. Fig. 1. XRD patterns of (a) CuWO4�2H2O and (b) CuWO4 crystals, respectively. The vertical lines in red color indicate the position and relative intensity of XRD patterns for CuWO4�2H2O phase reported in Joint Committee on Powder Diffraction Standards (JCPDS) card No. 33-0503. The symbol (�) is assigned to CuWO4 phase. The vertical lines in black color show the position and relative intensity of XRD patterns for CuWO4 phase described in Inorganic Crystal Structure Database (ICSD) card No. 16009. 3. Results and discussions 3.1. Long-range structural analyses Fig. 1(a, b) shows XRD patterns of CuWO4�2H2O and CuWO4 crystals heat treated at different temperatures, respectively. According to the literature [76], the degree of structural order/ disorder or periodicity of a crystalline lattice in oxide materials can be analyzed by means of X-ray diffraction. In Fig. 1(a), the precip- itated crystals heat treated at 100 �C and 200 �C for 1 h revealed the presence of wide XRD peaks assigned to CuWO4�2H2O mono- clinic structure. This widening can be due to the presence of water molecules bonded in this crystalline structure (TGA and DTA pro- files in Support Information Fig. SI-1(a, b)) as well as because of effects of order–disorder [77], i.e., these crystals have not a com- plete long-range structural ordering. Increasing the heat treatment temperature up to 300 �C (Fig. 1(a)), XRD patterns revealed a mix- ture of CuWO4�2H2O and CuWO4 phases. Therefore, in this temper- ature occurs a significant elimination of water molecules in CuWO4�2H2O. Chen and Xu [28] described the CuWO4�2H2O crys- tals as a crystalline phase with monoclinic structure referring to JCPDS Card No. 33-0503. When the heat treatment was performed at 400 �C and 500 �C for 1 h, all XRD patterns showed diffraction peaks ascribed to CuWO4 triclinic structure, in agreement with the ICSD card No. 16009 [78]. In order to confirm this triclinic structure, the structural refinement by means of Rietveld method [79] was performed for CuWO4 crystals heat treated at 500 �C for 1 h. The Rietveld method is based on the construction of diffraction patterns calculated according to a structural model [80]. The calcu- lated patterns are adjusted to the observed pattern, providing the structural parameters of the desired material and its diffraction profile. In the present study, the Rietveld method was applied to estimate the atomic positions, lattice parameters, and unit cell vol- ume of CuWO4 crystals. The Rietveld refinement was performed using the general structure analysis software (GSAS) program [81], in which the refined parameters were scale factor, back- ground, shift lattice constants, profile half-width parameters (u, v, w), isotropic thermal parameters, lattice parameters, strain ani- sotropy factor, preferential orientation, factor occupancy, and atomic functional positions. The background was corrected using a Chebyschev polynomial of the first order. The peak profile func- tion was modeled using a convolution of the Thompson–Cox–Hast ings pseudo-Voigt (pV-TCH) function [82] with the asymmetry function described by Finger et al. [83] In order to explain the ani- sotropy in the half width of the reflections, the model by Stephens [84] was used. Fig. 2 shows the Rietveld refinement plot for CuWO4 crystals synthesized by the SC method and heat treated at 500 �C for 1 h. All structural refinement results obtained by the Rietveld method [80] are consistent with ICSD No. 16009 reported by Kihl- borg and Gebert [78]. According to the literature [85], single CuWO4 crystals have a triclinic structure, presenting a space group (P�1), point group symmetry (Ci) and two molecular formula units per unit cell (Z = 2). The structural refinement confirmed the triclinic structure for CuWO4 crystals (Fig. 2). In general, slight Fig. 2. Rietveld refinement plot of CuWO4 crystals heat treated at 500 �C for 1 h. Fig. 3. Schematic representation of CuWO4 triclinic structure. E.L.S. Souza et al. / Ultrasonics Sonochemistry 38 (2017) 256–270 259 differences in the intensity scale were identified between experimental and calculated XRD patterns, as described by the line (YObs–YCalc). However, the quality of the structural refinement can be accurately determined by the R-values (Rwp, RBragg, Rp, v2, and S). More details on the Rietveld refinement results are displayed in Table 1. In this table, the fit parameters (RBragg, Rwp, Rp, v2, and S) sug- gest that refinement results are very reliable. In general, small vari- ations in atomic positions of O atoms were identified, while Cu and W atoms are fixed in their respective positions within the struc- ture. In this case, the O atoms are able to induce distortions on both O–Cu–O or O–W–O bonds, resulting in distorted octahedral [CuO6] and [WO6] clusters. Fig. 4. Micro-Raman spectra of CuWO4 crystals heat treated at (a) 100 �C, (b) 200 �C, (c) 300 �C, (d) 400 �C and (e) 500 �C for 1 h. Inset shows a typical symmetric stretching vibration of O–W–O bonds in octahedral [WO6] clusters. The vertical dotted lines with symbol ( ) indicate the relative positions and intensities of Raman-active modes of CuWO4 crystals, while the symbol (*) show the presence of water molecules within these crystals, respectively. 3.2. Structural representation, and coordination of clusters in CuWO4 Fig. 3 shows a schematic representation of CuWO4 triclinic structure. This triclinic structure was modeled through the visualization system for electronic and structural analysis (VESTA) software (version 3.4.0 for version of Windows 7-64-bit) [86,87], using the lattice parameters and atomic positions obtained from the Rietveld refinement data listed in Table 1. In Fig. 3, Cu and W atoms are both coordinated to six O atoms, forming distorted octahedral [CuO6] and [WO6] clusters, which are octahedron-type polyhe- drons with 6-vertices, 8-faces and 12-edges [88]. In principle, these CuWO4 crystals heat treated at different temperatures are able to present variations in both (O–Cu–O)/(O–W–O) bond angles and lengths. This behavior implies in distortions on octahedral [CuO6] and [WO6] clusters with distinct degrees of order–disorder in the lattice. Table 1 Rietveld refinement results for CuWO4 crystals obtained by the sonochemistry method an Atoms Wyckoff Site Cu 2i 1 W 2i 1 O1 2i 1 O2 2i 1 O3 2i 1 O4 2i 1 a = 4.7062(7) Å, b = 5.8432(8) Å, c = 4.8829(4) Å, a = 91.6680(3)�, b = 92.4985(3)�, c = 82. and S = 1.08166. 3.3. Short-range structural analysis Fig. 4(a–e) shows the M-Raman spectra of CuWO4 crystals heat treated at different temperatures. The short-range structural ordering in the lattice of any mate- rial can be analyzed via Raman spectroscopy [89]. According to group theory calculations, tungstates with triclinic structure, space group (P�1) and point group symmetry (Ci) have 36 different d heat treated at 500 �C for 1 h. x y z 0.4959(5) 0.6589(9) 0.2450(6) 0.0202(8) 0.1729(2) 0.2538(3) 0.2472(9) 0.3569(4) 0.4257(0) 0.2126(9) 0.8846(4) 0.4321(0) 0.7334(9) 0.3837(4) 0.0993(0) 0.7334(9) 0.9131(4) 0.0545(0) 7871(3)�; V = 133.054(7)Å3, RBragg (%) = 2.50, Rwp (%) = 8.84, Rp (%) = 6.89, v2 = 1.17 Fig. 5. FT-IR spectra of CuWO4 crystals heat treated at (a) 100 �C, (b) 200 �C, (c) 300 �C, (d) 400 �C and (e) 500 �C for 1 h. Inset shows a typical anti-symmetric stretching vibration of O–W–O bonds in octahedral [WO6] clusters. The vertical dotted lines with symbol (�) indicate the relative positions and intensities of IR- active modes. 260 E.L.S. Souza et al. / Ultrasonics Sonochemistry 38 (2017) 256–270 {(Raman) and [infrared]} vibrational modes, as described in Eq. (7) [40,41,71]. CfðRamanÞþ½Infrared�g ¼ fð18AgÞ þ ½18Au�g ð7Þ where Ag are Raman-active vibrational modes, and Au are infrared- active vibrational modes. Therefore, 18 Raman-active vibrational modes are expected for CuWO4 crystal, shown in Eq. (8): CðRamanÞ ¼ 18Ag ð8Þ According to the literature [71,90], vibrational modes observed in Raman spectra of tungstates are classified into two groups, external and internal modes. The vibrational external modes are related to lattice phonons, corresponding to the motion of dis- torted octahedral [CuO6] clusters (Oh symmetry) and rigid units. Vibrational internal modes are ascribed to vibrations of distorted octahedral [WO6] clusters in the lattice, assuming the center of mass in a stationary state. Distorted octahedral [WO6] clusters have point group symmetry (Ci), in which the vibrations are com- posed of internal modes (Ag); the other vibrations are external modes (Ag) [91]. As can be observed in Fig. 4(a–e), there are Raman-active modes for the two crystals (CuWO4.2H2O and CuWO4). Firstly, the samples heat treated at 100 �C and 200 �C have vibrational modes arising from water molecules (⁄H2O) in CuWO4.2H2O crystals (Fig. 4(a, b)). The disappearing or lower intensity of these Raman-active modes in the spectrum illustrated in Fig. 4(c) indicates that the temperature of 300 �C is critical for a phase transition from CuWO4�2H2O (monoclinic structure) to CuWO4 crystals (triclinic structure). In Fig. 4(d, e), when the sam- ples were heat treated at 400 �C and 500 �C for 1 h, the Raman- active vibrational modes are only ascribed to CuWO4 triclinic structure. Another important point to be considered is that the heat treatment at 500 �C resulted in more intense and well- defined Raman-active bands for CuWO4 crystals. In this case, the evolution of temperature also leads to an increase of short-range structural ordering for this oxide. Table 2 shows a comparative between the respective positions of Raman-active vibrational modes for CuWO4 reported experimentally and theoretically in papers published in the literature [41] with those obtained in our present study. Table 2 Comparative data of the respective positions of Raman-active modes of CuWO4 reported i M – THEO T (�C) – – t (h) – – R A1g 95.3 81 a A1g 127.6 115.6 m A1g 149.1 137.7 a A1g 179.2 164.4 n A1g 191 178 A1g 223.8 209.2 A A1g 282.6 263.5 c A1g 292.6 276.2 t A1g 316.2 294.3 i A1g 358.2 341 v A1g 397.5 374.9 e A1g 403.4 391.9 A1g 479.9 454.1 M A1g 549.8 525.2 o A1g 676.7 633.6 d A1g 733.1 695.8 e A1g 778.9 763.2 s A1g 905.9 854.4 Ref. [40] [41] M = Method; t = time; Raman modes = (cm�1); THEO = Theoretical, TSSG = top-seede = References. In this table, there is a good agreement between our experimen- tal Raman-active vibrational modes with the reported in other papers previosly published [40–42,92]. The slight displacements in the positions of these vibratiol modes can be related to varia- tions in the degree of structural order-disorder on both octahedral [CuO6] and [WO6] clusters, as a consequence of the peculiarities of each synthesis condition (temperature, time) adopted for the for- mation of CuWO4 phase. 3.4. FT-IR spectroscopy analyses Fig. 5(a–e) illustrate FT-IR spectra of CuWO4 crystals heat trea- ted at different temperatures. n the literature with those obtained in the present study. TSSG SC-C SC-C SC-C 1000 500 400 500 48 5 1 1 – – 87.4 86.8 – – 118.2 118.3 – – 140.1 140.2 180 – 170.2 170.2 192 190 181.1 181.2 224 223 213.1 213.4 283 279 272.2 272.4 293 314 304.8 305.5 315 395 331.2 332 358 447 346.8 347.2 398 547 380.3 381.2 405 447 392.8 391.2 479 547 472.1. 472.3 550 673 538.1 538.8 676 731 665.7 667.6 733 778 728.8 729.1 779 805 769.1 771.5 906 905 900.9 901.2 [42] [92] z z d solution growth; SC-C = Sonochemical-Calcination; [z] = This work and Ref. E.L.S. Souza et al. / Ultrasonics Sonochemistry 38 (2017) 256–270 261 According to the literature [93], IR spectra also is able to provide information on the degree of structural order-disorder in atomic bonds of ABO4 materials. Eq. (7) shows that the CuWO4 crystals with triclinic structure have 18 Raman-active vibrational modes and 18 IR-active vibrational modes, as indicated by Eq. (9) [94]: C½Infrared� ¼ 18Au ð9Þ As illustrated in Fig. 5(a–e), only eleven IR-active vibrational bands [Au modes] were detected in our IR spectra. This behavior is explained by the low symmetry of CuWO4 lattice and phonon pattern associated with each mode that is in general complex and involves the whole unit cell [94]. However, the atom dynamics associated to highest energy modes can be understood on the basis of the main atomic shifts [94,95]. The band located at around 910 cm�1 is related to symmetric stretching vibrations ( O W?O?) in distorted octahedral [WO6] clusters. It was noted a smaller band at 812 cm�1, which cannot be related to opti- cal modes at zone center [94]. Another band of low intensity at 720 cm�1 is related to anti-symmetric stretching vibrations in dis- torted octahedral [WO6] clusters (Inset Fig. 5). Also, it was noted a shoulder at 631 cm�1 [Au mode], which cannot be attributed to optical modes [94]. The symmetric stretching vibrations ( O W?O W?O?) between [WO6]–[WO6] clusters were ver- ified at 558 cm�1. On the other hand, the symmetric stretching vibrations ( O Cu?O?) of distorted octahedral [CuO6] clusters were detected at 478 cm�1. The small band at 417 cm�1 is arising from symmetric bending vibrations (-O-W%O%) in [WO6] clus- ters.[94] Finally, the last four modes (from 275 cm�1 to 377 cm�1) are assigned to anti-symmetric (?O?Cu?O-Cu-O-) and sym- metric ( O Cu?O Cu?O?) stretching vibrations between [CuO6]–[CuO6] clusters, and symmetric bending vibrations (-O-Cu%O%) in [CuO6] clusters, respectively. A comparison between the respective positions of IR-active vibrational modes of CuWO4 obtained in our study with others published in the liter- ature [41] are listed in Table 3. As expected in this table, our exper- imental IR-active vibrational modes are in good agreement with the results verified in other papers [41,94–97]. In addition, we have noted that some of these infrared vibrational modes of CuWO4 nanocrystals are similar to isostructural CuMoO4 crystals [98]. Table 3 Comparative data of the respective positions of IR-active modes of CuWO4 reported in the M THEO TSSG CP-C T (�C) – 1000 450 t (h) – 48 6 I A1u – – – n A1u – – – f A1u – – – r A1u 101.4 – – a A1u 157.3 – – r A1u 214.2 – – e A1u 239 253 – d A1u 266.1 275 – A1u 281 290 – Ac A1u 320.5 355 – ti A1u 332.3 – – ve A1u 383.8 395 – A1u 438.9 466 500 M A1u 474.8 540 – o A1u 516.5 600 – d A1u 639.6 722 – e A1u 727.7 760 748 s A1u 852.7 911 876 Ref. [40] [94] [95] M = method; T = temperature; t = time; IR-active modes = (cm�1); TSSG = Top-seeded so C = Sonochemical-Calcination; THEO = Theoretical, and [z] = this work. 3.5. FE-SEM images analyses Fig. 6(a–e) shows FE-SEM images of CuWO4 crystals heat trea- ted at different temperatures. FE-SEM micrographs can be used as a powerful tool to accom- pany the particle shape evolution and growth process of CuWO4 nanocrystals. Fig. 6(a) shows that the CuWO4�2H2O microcrystals obtained at 100 �C have a similar aspect of irregular flowers, which are formed by aggregated assemblies of several crystals (as ‘‘petals”). These ‘‘petals” show many imperfections and surface defects, as a direct result of both uncontrollable formation and interaction of nanocrystals caused by the chemical synthesis employed, solvent nature or intrinsic morphological feature of CuWO4�2H2O microcrystals [64]. These final structures similar to flowers have an average size of 4.7 lm, while their petals have an average size of 860 nm (Support Information Fig. SI-2(a, b)). When the heat treatment was performed at 200 �C, both shape and size of these crystals were modified. This morphological change can be due to the initial stage of elimination of water mole- cules in CuWO4�2H2O, resulting in irregular stone-like microcrys- tals with average crystal size of 3.3 lm (Fig. 6(b)). These microcrystals are composed of several aggregated nanocrystals with average size of approximately 7.7 nm (Support Information Fig. SI-2(c, d)). In Fig. 6(c), the increase of heat treatment temper- ature up to 300 �C was able to maintain the morphological feature of stone-like microcrystals in the samples. In this case, it was esti- mated for these microcrystals an average size of approximately 6.6 lm, in which their aggregated nanocrystals presented an aver- age crystal size of 11 nm (Support Information Fig. SI-2(e, f)). In Fig. 6(d), the presence of a large number of small crystals was ver- ified on the surface of stone-like microcrystals heat treated at 400 �C for 1 h. As detected by XRD patterns (Fig. 1(b)), in this tem- perature occurs only the presence of CuWO4 triclinic structure. Therefore, the counting of these stone-like CuWO4 microcrystals revealed an average size at around 9.3 lm, which are formation by irregular nanocrystals with average size of 18.3 nm (Support Information Fig. SI-2(g, h)). Finally, for the temperature of 500 �C, it was possible to prove that these large stone-like microcrystals are composed of several flake-like CuWO4 nanocrystals. For these literature with those obtained in the present study. CP-C SSR SC-C SC-C 800 800 400 500 8 36 1 1 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 270 274 275 – 290 296 297 – 340 344 345 – 375 376 377 – 415 416 417 – – 477 478 545 550 557 558 – 605 630 631 710 740 719 720 799 800 811 812 900 910 909 910 [96] [97] z z lution growth; CP-C = Co-precipitation-Calcination; SSR = Solid state reaction; SC- Fig. 6. FE-SEM images of CuWO4 crystals heat treated at different temperatures: (a) 100 �C, (b) 200 �C, (c) 300 �C, (d) 400 �C and (e) 500 �C for 1 h, respectively. 262 E.L.S. Souza et al. / Ultrasonics Sonochemistry 38 (2017) 256–270 nanocrystals was found an average size of approximately 41 nm (Support Information Fig. SI-2(i)). All results on the average size distribution of CuWO4 crystals are summarized in Table 4 and (Support Information Fig. SI-2(a–i)). All experimental results obtained in our study are good agree- ment with the literature [99–103]. In addition, all statistical data obtained through the counting of particle sizes using FESEM and TEM images were well-described by the log-normal distribution [104]. 3.6. TEM and HR-TEM images analyses Fig. 7(a–j) show TEM and HR-TEM images of CuWO4 crystals heat treated at different temperatures. Based on the TEM characterization for the material obtained at 100 �C, it was possible to confirm that the ‘‘petals” are originated by the joint between several nanocrystals, which are able to aggre- gate to form the flower-like microcrystals. Fig. 7(a) shows the pres- ence of some nanoparticles attached in a common crystallographic Table 4 Comparative results between the morphological features (crystal size and shape) and optical band gap energy (Egap) of CuWO4 crystals heat treated at different temperatures for 1 h obtained in the present study with those reported in the literature. M Crystal shape Average crystal size (nm)*/(lm) j T(�C) t(h) Egap (eV) Ref. HC Hollow microspheres 300* 180 18 2.3 [99] SC-C Nanoparticles 30–50* 500 2 3.2 [100] HC/CC Nanoflakes 30*/1j 450 1 2.22 [101] MI-C Nanoparticles 31.8* 500 2 – [102] P-C Nanoparticles 50* 500 1 2.0 [103] SC-C Petal-like/Flower-like 860*/4.68j 100 1 2.45 z SC-C Flakes-like/Rough stones-like 7.664*/3.32j 200 1 2.28 z SC-C Flakes-like/Rough stones-like 11*/6.653j 300 1 2.34 z SC-C Flakes-like/Rough stones-like 18.3*/9.313j 400 1 2.24 z SC-C Flakes-like 41* 500 1 2.19 z M =method; T = temperature; t = time; HC = Hydrothermal conventional; SC-C = Sonochemistry-Calcination; CC = Chemical conversion; MI-C = Microwave irradiation-Cal- cination; P-C = Polyol-Calcination; [z] = This work. E.L.S. Souza et al. / Ultrasonics Sonochemistry 38 (2017) 256–270 263 orientation. HR-TEM image presented in Fig. 7(b) shows the pres- ence of nanocrystals with diameters of approximately 4 nm. The interplanar distance for these nanocrystals was estimated in approximately 0.23 nm, which correspond to (200) crystallo- graphic plane of CuWO4 triclinic phase, which is present in small points locally in the hydrated global lattice. The selected area elec- tron diffraction (SAED) image (inset in Fig. 7(b)) was indexed also as CuWO4 phase. In this case, it is important to emphasize that both TEM and SAED focused on some nanocrystals locally indicate the CuWO4 phase, while X-ray patterns, due to be a long-range technique, indicated the CuWO4�2H2O phase. The low resolution TEM image for the sample obtained at 200 �C showed several aggregated nanoparticles (Fig. 7(c)). SAED (not shown here) indi- cated the presence of low intensity rings related to nanocrystalline particles, which is supported by HR-TEM image in Fig. 7(d). The materials heat treated at 300 �C are illustrated in Fig. 7(e, f). Again, the micrographs revealed that the stone-like CuWO4 microcrystals are clearly formed by randomly distributed aggregated nanoparti- cles, as confirmed by low intensity rings in SAED (Inset in Fig. 7(f)). HR-TEM image also revealed the same interplanar distance (0.23 nm), as observed in Fig. 7(b), i.e., proving the CuWO4 triclinic phase. Exactly, this same behavior was also identified for the mate- rials obtained at 400 �C (Fig. 7(g, h)). For the material heat treated at 500 �C, the existence of larger particles was identified, in which some of them are well-faceted (high degree of crystallinity). TEM images also showed these particles are agglomerated instead of aggregated, presenting an interplanar distance of 0.31 nm related to (�1�11) plane of CuWO4 triclinic phase. The other TEM and HR- TEM images can support the explanations above as found in Sup- port Information Figs. SI-3(a–j). All experimental results obtained in this study are in good agreement with the literature and pre- sented in Table 4 [99–103]. Therefore, TEM images provides some advantages over SEM images, specially confirming that larger par- ticles for samples obtained from 200 �C to 400 �C are composed of smaller nanoparticles. On the other hand, the particles observed at 500 �C are single-crystalline. SAED agrees with XRD results, in which the synthesis method allowed the formation of crystalline nanoparticles of CuWO4. 3.7. Crystal growth mechanism Fig. 8(a–k) shows a schematic representation of all stages involved in the synthesis and growth of CuWO4 nanocrystals syn- thesized by the SC method and heat treated at different tempera- tures for 1 h. Initially, there is the coulomb interaction between [Cu(H2O)6]2+ and WO2� 4 complex ions in aqueous solution, promoting the forma- tion of first CuWO4�2H2O nuclei (Fig. 8(a, b)). These nuclei control the kinetics of nucleation and growth of CuWO4 nanocrystals. In the next growth stage (Fig. 8(c, d)), the crystals in the aqueous medium are able to rotate and align to find a common crystallo- graphic plane via self-assembly process. As this process is uncon- trollable, there is the random and spontaneous aggregation of nanocrystals, resulting in petal-like CuWO4�2H2O microcrystals (Fig. 8(e)). After heat treatment performed at 100 �C for 1 h, flower-like CuWO4�2H2Omicrocrystals are formed, which are com- posed of several petal-like crystals (Fig. 8(f)). The initial stage of elimination of water molecules in CuWO4�2H2O due to the heat treatment temperature at 200 �C resulted in irregular stone-like microcrystals (Fig. 8(g)). The progressive removal of these water molecules in the lattice with the increase of heat treatment pro- moted a phase transition from CuWO4�xH2O (monoclinic structure) to CuWO4 crystals (triclinic structure). However, for temperatures of 300 �C and 400 �C, the morphological aspect of irregular stone- like microcrystals is maintained (Fig. 8(i, j)). Finally, when the materials were heat treated at 500 �C, CuWO4 crystals grew by means of nanocrystals. These results can be proved through FESEM, TEM and HR-TEM images (Figs. 6(e) and 7(i, j)). 3.8. Uv–vis spectra and optical band gap energy The optical band gap energy (Egap) was calculated using the method proposed by Kubelka and Munk [105]. This methodology is based on the transformation of diffuse reflectance measure- ments to estimate Egap values of semiconductors with good accu- racy [106]. The Kubelka–Munk Eq. (10) for any wavelength is defined as: FðR1Þ ð1� R1Þ 2R1 ¼ k s ð10Þ where F(R1) is the Kubelka–Munk function or absolute reflectance of the sample. In our case, magnesium oxide (MgO) was adopted as standard in reflectance measurements. R1 = Rsample/RMgO, where R1 is the reflectance, k is the molar absorption coefficient, and s is the scattering coefficient. The optical band gap and absorption coeffi- cient of semiconductor oxides [107] can be calculated using the fol- lowing Eq. (11): ahm ¼ C1ðhv � EgapÞn ð11Þ where a is the linear absorption coefficient of the material, hm is the photon energy, C1 is a proportionality constant, and n is a constant associated to the type of electronic transition (n = 0.5, 2, 1.5, and 3 for direct allowed, indirect allowed, direct forbidden, and indirect forbidden transitions, respectively). According to Lalic et al. [72] and Lacomba-Perale et al. [108] CuWO4 crystals have an optical absorption spectrum governed by indirect electronic transitions Fig. 7. TEM/HR-TEM images and SAED of CuWO4 crystals heat treated at different temperatures: (a, b) 100 �C, (c, d) 200 �C, (e, f) 300 �C, (g, h) 400 �C and (i, j) 500 �C for 1 h, respectively. 264 E.L.S. Souza et al. / Ultrasonics Sonochemistry 38 (2017) 256–270 Fig. 7 (continued) E.L.S. Souza et al. / Ultrasonics Sonochemistry 38 (2017) 256–270 265 between the valence band (VB) and conduction band (CB). After the electronic absorption process, the electrons located in the maximum-energy states in VB return indirectly to minimum- energy states in CB (different points in the Brillouin zone) [109]. Based on this information, Egap values of CuWO4 crystals were cal- culated using n = 2 in Eq. (11). Finally, using the remission function described in Eq. (10) with the term k = 2a and C2 as a proportional- ity constant, the modified Kubelka–Munk equation can be obtained, as indicated by Eq. (12): ½FðR1Þhm� 1 2 ¼ C2ðhm� EgapÞ ð12Þ By finding the F(R1) value from Eq. (12) and plotting [F(R1) hm]1/2 against hm, the Egap value of CuWO4 crystals was determined. Fig. 9(a–f) shows the UV–vis diffuse reflectance spectra of CuWO4 crystals heat treated at (a) 100 �C, (b) 200 �C, (c) 300 �C, (d) 400 �C, and (e) 500 �C for 1 h, (f) optical band gap values as a function of temperature. In this figure, a slight decrease in Egap values with the increase in the heat treatment temperature was detected. This behavior, for samples heat treated from 100 �C to 300 �C, is related to remo- tion of water molecules (dehydration process) in the lattice, result- ing in a phase transition from CuWO4�xH2O to CuWO4, modifying the number and organization of intermediary energy levels between the VB and CB (Fig. 9(a–c)). Moreover, the exponential optical absorption profile as well as Egap are controlled by the degree of structural order-disorder in the lattice [110]. For samples heat treated at 400 �C and 500 �C, there is only single CuWO4 tri- clinic phase; therefore, the decrease in Egap values (2.24 and 2.19 eV) can be explained by the presence of low symmetry and distortions on both octahedral [CuO6] and [WO6] clusters in the lattice. However, the contributions of electronic levels in these crystals can be achieved only by means of theoretical calculations, which will be perforated in a future study. 3.9. Photoluminescence properties Fig. 10(a–e) illustrates PL spectra at room temperature of CuWO4 crystals heat treated at different temperatures. In the last years, the experimental results previosly reported in the literature [26,53,70] have explained the key factors or variables responsible for PL properties of CuWO4 crystals. Pourmortazavi et al. [26,70] and, ReddyPrasad and Naidoo [53] described the PL emission of these crystals with the electronic transitions within complex structure of WO2� 4 anion molecular as well as by the trap- Fig. 8. Schematic representation of the growth mechanism of CuWO4�2H2O and CuWO4 crystals obtained by the SC method: (a) reaction between complex ions; (b) appearance of the first CuWO4�2H2O nuclei; (c) rotation and alignment of nanocrystals, sharing common crystallographic planes; (d) self-assemble process; (e) aggregation of petal-like crystals; (f) formation of flower-like CuWO4�2H2O microcrystals; (g) crystal growth via heat treatment, (h) irregular stone-like CuWO4�xH2O microcrystals, (i) stone-like CuWO4�xH2O microcrystals and flake-like CuWO4 nanocrystals; (j) formation of aggregated CuWO4 nanocrystals; (k) crystal growth of flake-like CuWO4 nanocrystals. 266 E.L.S. Souza et al. / Ultrasonics Sonochemistry 38 (2017) 256–270 ping and recombination of photoinduced electrons and holes in the semiconductor. CuWO4 crystals published in these papers were excited with wavelengths of 290 nm � 4.276 eV and 350 nm � 3.543 eV, exhibiting maximum PL emissions at 483 nm and 455 nm, respectively. Particularly, all these explanations were directly correlated to WO2� 4 groups (ions), but CuWO4 is a crys- talline solid composed of interconnected (. . .[WO6]–[CuO6]– [WO6]. . .) clusters (Fig. 3). Therefore, in our study, we assume the distorted octahedral [WO6] clusters have an important role in the electronic transitions involving the energy levels located between the VB and CB. The existence of interconnections between octahe- dral [WO6] and [CuO6] clusters in the triclinic lattice indicates that any distortion caused on [WO6] clusters also promotes a slight deformation on O–Cu–O bonds ([CuO6] clusters). As O–Cu–O bonds have a covalent bond character than ionic, promoting a high degree of distortion on them. This Jahn-Teller effect, along the z-axis, are able to induce a symmetry break in the lattice, leading to the appearance of intermediate levels within the band gap. In Fig. 10 (a), CuWO4�2H2O microcrystals have a medium PL emission at 456 nm (blue) with a narrower profile in relation to other samples. Moreover, the increase of temperature at 200 �C promoted a decrease and a displacement of the PL emission for 529 nm (green region) (Fig. 10(b)) [38]. Therefore, these modifications in PL profile for samples heat treated at 100 �C and 200 �C are related to pro- gressive removal of water molecules in CuWO4�2H2O crystals. The highest and widest PL spectrum was detected for the sample heat treated at 300 �C (Fig. 10(c)). This optical feature can be due to the effective contribution in electronic transitions between the intermediary energy levels arising from both CuWO4�xH2O and CuWO4 crystals. In this case, this mixture of phases leads to differ- ent levels of short-range structural ordering in CuWO4 lattice, resulting in a favorable condition for the formation of intermediate levels responsible for recombination processes (electron/hole), improving the PL behavior at room temperature. On the other hand, a significant reduction or quenching in the PL intensity was observed for single CuWO4 crystals, i.e., for samples heat trea- ted at 400 �C and 500 �C, respectively (Fig. 10(d, e)). Also, it was noted a change in the color of the powders from dark green to black (digital photos in Fig. 10(a–e)). According to black body the- ory [111], a hypothetical material (black) absorbs all the electro- magnetic radiation. Therefore, the laser employed in the excitation process was more absorbed and not reflected in PL mea- surements of single CuWO4 crystals. In addition, this PL behavior can be associated to other factors, such as: inhomogeneous crystal size distribution, crystallographic orientation, and morphological changes (see Supporting Information Figs. SI-2(a–i) and Fig. 3(a–j)). 4. Conclusions In summary, CuWO4�2H2O and CuWO4 crystals were obtained by the sonochemistry method, followed by heat treatment per- formed at different temperatures (from 100 �C to 500 �C) for 1 h. XRD patterns, Rietveld refinement, micro-Raman and FT-IR spec- troscopies proved that CuWO4 crystals crystallize in a triclinic structure with space group (P�1). XRD patterns revealed that the temperature of 300 �C is responsible for a phase transition from CuWO4�2H2O (monoclinic) to single CuWO4 (triclinic). M-Raman spectra presented eighteen Raman-active vibrational modes for CuWO4 nanocrystals, which are caused by external modes of dis- torted octahedral [CuO6] clusters and internal modes ascribed to distorted octahedral [WO6] clusters. These M-Raman spectra also showed the existence of short-range structural ordering in these crystals. FT-IR spectra detected eleven IR-active vibrational modes for CuWO4 crystals, which are related to anti-symmetric, symmet- ric stretch, interaction forces in a chain and symmetric bending, which are present due to (O–Cu–O and O–W–O) bonds. FE-SEM images showed a dependence between the morphological aspects with the heat treatment temperature. In these micrographs, it Fig. 9. UV–vis spectra of CuWO4 crystals synthesized by the SC-C method and heat treated at (a) 100 �C, (b) 200 �C, (c) 300 �C, (d) 400 �C and (e) 500 �C for 1 h, and (f) Egap as a function of heat treatment temperature. E.L.S. Souza et al. / Ultrasonics Sonochemistry 38 (2017) 256–270 267 was verified that CuWO4�2H2O crystals have irregular flower- and stone-like shaped at 100 �C and 200 �C, respectively. On the other hand, CuWO4 crystals exhibited only the stone-like shaped. All these morphological shapes are composed of uncountable aggre- gated nanocrystals, which grew by means of self-assembly process, as observed by TEM and HR-TEM images. The decrease in Egap values with the increase of the temperature was caused by the reduction of intermediary energy levels between the VB and CB. CuWO4 crystals heat treated at 300 �C for 1 h exhibited the highest PL emission at room temperature. This behavior was favored due to the effective participation of intermediary energy levels arising from both CuWO4�2H2O and CuWO4 crystals. Fig. 10. PL emission spectra at room temperature of CuWO4 crystals heat treated at (a) 100 �C, (b) 200 �C, (c) 300 �C, (d) 400 �C and (e) 500 �C for 1 h, respectively. Insets show the digital photos of the powders, which exhibit different colors, depending on the heat treatment temperature. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 268 E.L.S. Souza et al. / Ultrasonics Sonochemistry 38 (2017) 256–270 Acknowledgements The authors acknowledge the financial support of the Brazilian research financing institutions: CNPq (479644/2012-8 and 304531/2013-8), FAPESP (2012/14004-5 and 2013/07296-2), and CAPES-PNPD (1268069). Appendix A. Supplementary data Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ultsonch.2017.03. 007. References [1] F.L. Hess, Tungsten Minerals and Deposits, vol. 1, U.S. Government Printing Office, 1917, pp. 651–654. [2] J.W. Mellor, A Comprehensive Treatise On Inorganic and Theoretical Chemistry, second ed., vol. 3, Longmans, Green and Co. LTD, 1928. [3] J.J. Zhao, J.W. Li, P.L. Zhang, S.Z. Wei, G.S. Zhang, L.J. Xu, Microstructure of W- 20%Cu composite powders prepared by hydrothermal synthesis combined with co-reduction method, Mater. Sci. Eng. Powder Metall. 19 (2014) 628– 634. [4] M. Douqin, X. Jingpei, L. Jiwen, W. Aiqin, W. Wenyan, L. Luoli, S. Haoliang, L. Shu, W. Fengmei, Hydrothermal synthesis of nano-sized cupric tungstate (VI) dihydrate and its synthesis mechanism, Rare Metal Mater. Eng. 43 (2014) 2917–2920. [5] H. Zhang, J. Li, S. Wei, L. Xu, X. Ma, Process research and characterization of W coated cu nanopowder prepared by hydrothermal co-reduction technology, Chin. J. Rare Metals 39 (2015) 442–449. [6] L. Wang, F. Ke, Q. Wang, J. Yan, C. Liu, X. Liu, Y. Li, Y. Han, Y. Ma, C. Gao, Effect of crystallization water on the structural and electrical properties of CuWO4 under high pressure, Appl. Phys. Lett. 107 (2015) 201603–201607. [7] J.G. Cheng, Y.C. Wu, Y.H. Xia, C.P. Lei, Y. Jiang, Preparation and characterization of W-Cu nanopowder by a novel homogenous coprecipitation process, J. Funct. Mater. 35 (2004), 3006–3006. [8] M. Hashempour, H. Razavizadeh, H.R. Rezaie, D. Heidari, Effects of precursor rooted contamination in the sintering and densification behavior of thermo- chemically manufactured W-Cu nanocomposites, Internat. J. Modern Phys. B 24 (2010) 183–190. [9] J.G. Cheng, C.P. Lei, Y. Jiang, Y.C. Wu, Y.H. Xia, Preparation of W-Cu nanopowder by homogeneous precipitation process and its sintering behavior, Chin. J. Nonferrous Met. 15 (2005) 89–93. [10] M. Hashempour, H. Razavizadeh, H.R. Rezaie, M.T. Salehi, Thermochemical preparation of W–25%Cu nanocomposite powder through a CVT mechanism, Mater. Charact. 60 (2009) 1232–1240. [11] M. Hashempour, H. Razavizadeh, H.R. Rezaie, M. Hashempour, M. Ardestani, Chemical mechanism of precipitate formation and pH effect on the morphology and thermochemical co-precipitation of W-Cu nanocomposite powders, Mater. Chem. Phys. 123 (2010) 83–90. [12] M. Hashempour, H.R. Rezaie, H. Razavizadeh, M.T. Salehi, H. Mehrjoo, M. Ardestani, Investigation on fabrication of W-Cu nanocomposites via a thermochemical co-precipitation method and its consolidation behavior, J. Nano Res. 11 (2010) 57–66. [13] M. Lazzari, L.P. Bicelli, B. Rivolta, Kinetics of the Solid State Reaction between CuO and WO3, Zeitsch. für. Naturfor. Sect. A J. Phys. Sci. 35 (1980) 332–335. [14] F.A. Benko, C.L. MacLaurin, F.P. Koffyberg, CuWO4 and Cu3WO6 as anodes for the photoelectrolysis of water, Mater. Res. Bull. 17 (1982) 133–136. [15] S.M. Montemayor, A.F. Fuentes, Electrochemical characteristics of lithium insertion in several 3D metal tungstates (MWO4, M=Mn Co, Ni and Cu) prepared by aqueous reactions, Ceram. Int. 30 (2004) 393–400. [16] O.Y. Khyzhun, V.L. Bekenev, Y.M. Solonin, First-principles calculations and X- ray spectroscopy studies of the electronic structure of CuWO4, J. Alloys Compd. 480 (2009) 184–189. [17] S. Dey, R.A. Ricciardo, H.L. Cuthbert, P.M. Woodward, Metal-to-metal charge transfer in AWO4 (A = Mg, Mn Co, Ni, Cu, or Zn) compounds with the Wolframite structure, Inorg. Chem. 53 (2014) 4394–4399. [18] J.B. Forsytht, C. Wilkinsont, A.I. Zvyagin, The antiferromagnetic structure of copper tungstate, CuWO4, J. Phys. Cond. Matter. 3 (1991) 8433–8440. [19] B. Lake, D.A. Tennant, R.A. Cowley, J.D. Axe, C.K. Chen, Magnetic excitations in the ordered phase of the antiferromagnetic alternating chain compound CuWO4, J. Phys. Cond. Mater. 8 (1996) 8613–8634. [20] B. Lake, R.A. Cowley, D.A. Tennant, A dimer theory of the magnetic excitations in the ordered phase of the alternating-chain compound CuWO4, J. Phys. Cond. Mater. 9 (1997) 10951–10975. [21] F. Yu, U. Schanz, E. Schmidbauer, Single crystal growth of FeWO4 and CuWO4, J. Crys. Growth 132 (1993) 606–608. [22] E.L.S. Souza, C.J. Dalmaschio, M.G.R. Filho, G.E. Luz Jr., R.S. Santos, E. Longo, L.S. Cavalcante, Microscopy: Advances in Scientific Research and Education, vol. 2, 2014, pp. 894–902. [23] W. Zhang, J. Yin, F. Min, L. Jia, D. Zhang, Q. Zhang, J. Xie, Cyclic voltammetry analysis of copper electrode performance in Na2WO4 solution and optical property of electrochemical synthesized CuWO4 nanoparticles, J. Alloys Compd. 690 (2017) 221–227. [24] J. Timoshenko, A. Anspoks, A. Kalinko, A. Kuzmin, Analysis of extended x-ray absorption fine structure data from copper tungstate by the reverse Monte Carlo method, Phys. Scrip. 89 (2014) 044006–044011. [25] M.B. Naseri, A.R. Kamali, S.M.M. Hadavi, Chemical synthesis of tungsten– copper nanocomposite powder, Russian J. Inorg. Chem. 55 (2010) 167–173. [26] S.M. Pourmortazavi, M. Rahimi-Nasrabadi, M. Khalilian-Shalamzari, H.R. Ghaeni, S.S. Hajimirsadeghi, Facile chemical synthesis and characterization of copper tungstate nanoparticles, J. Inorg. Organomet. Polym. 24 (2014) 333–339. [27] J. Ungelenk, M. Speldrich, R. Dronskowski, C. Feldmann, Polyol-mediated low- temperature synthesis of crystalline tungstate nanoparticles MWO4 (M = Mn, Fe Co, Ni, Cu, Zn), Solid State Sci. 31 (2014) 62–69. [28] H. Chen, Y. Xu, Photocatalytic organic degradation over W-rich and Cu-rich CuWO4 under UV and visible light, RSC Adv. 5 (2015) 8108–8113. [29] H. Chen, W. Leng, Y. Xu, Enhanced visible-light photoactivity of CuWO4 through a surface-deposited CuO, J. Phys. Chem. C 118 (2014) 9982–9989. [30] R.D. Kumar, S. Karuppuchamy, Microwave-assisted synthesis of copper tungstate nanopowder for supercapacitor applications, Ceram. Int. 40 (2014) 12397–12402. [31] M.A.P. Almeida, L.S. Cavalcante, M.S. Li, J.A. Varela, E. Longo, Structural refinement and photoluminescence properties of MnWO4 nanorods obtained by microwave-hydrothermal synthesis, J. Inorg. Organomet. Polym. 22 (2012) 264–271. [32] M.A.P. Almeida, L.S. Cavalcante, C. Morilla-Santos, C.J. Dalmaschio, S. Rajagopal, M.S. Li, E. Longo, Effect of partial preferential orientation and distortions in octahedral clusters on the photoluminescence properties of FeWO4 nanocrystals, CrystEngComm 14 (2012) 7127–7132. [33] C. Zhang, D. Guo, C. Hu, Y. Chen, H. Liu, H. Zhang, X. Wang, Large-scale synthesis and photoluminescence of cobalt tungstate nanowires, Phys. Rev. B 87 (2013) 035416–035423. [34] S.M.M. Zawawi, R. Yahya, A. Hassan, H.N.M.E. Mahmud, M.N. Daud, Structural and optical characterization of metal tungstates (MWO4; M = Ni, Ba, Bi) synthesized by a sucrose-templated method, Chem. Cent. J. 7 (2013) 80–90. [35] P. Siriwong, T. Thongtem, A. Phuruangrat, S. Thongtem, Hydrothermal synthesis, characterization, and optical properties of wolframite ZnWO4 nanorods, CrystEngComm 13 (2011) 1564–1569. [36] S. Muthamizh, R. Suresh, K. Giribabu, R. Manigandan, S.P. Kumar, S. Munusamy, L. Vijayalakshmi, A. Stephen, V. Narayanan, Solid state synthesis of copper tungstate nanoparticles and its electrochemical detection of 4-chlorophenol, AIP Confer. Proc. 1591 (2014) 508–510. [37] D. Prasher, M. Chong, Y. Chang, P. Sarker, M.N. Huda, N. Gaillard, Development of metal tungstate alloys for photoelectrochemical water splitting, Proc. SPIE 8822 (2013) 88220E1–88220E7. [38] D.J. Jovanovic, Lj I. Validzic, M. Mitric, J.M. Nedeljkovic, Synthesis and structural characterization of nano-sized copper tungstate particles, Acta Chim. Slov. 59 (2012) 70–74. http://dx.doi.org/10.1016/j.ultsonch.2017.03.007 http://dx.doi.org/10.1016/j.ultsonch.2017.03.007 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0005 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0005 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0005 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0010 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0010 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0010 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0015 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0015 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0015 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0015 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0020 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0020 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0020 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0020 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0025 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0025 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0025 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0030 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0030 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0030 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0035 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0035 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0035 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0040 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0040 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0040 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0040 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0045 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0045 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0045 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0050 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0050 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0050 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0055 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0055 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0055 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0055 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0060 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0060 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0060 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0060 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0065 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0065 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0065 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0065 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0070 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0070 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0070 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0070 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0070 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0075 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0075 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0075 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0080 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0080 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0080 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0080 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0085 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0085 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0085 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0090 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0090 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0090 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0095 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0095 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0095 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0095 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0100 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0100 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0100 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0100 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0105 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0105 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0105 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0105 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0110 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0110 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0110 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0110 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0115 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0115 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0115 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0115 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0115 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0115 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0115 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0120 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0120 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0120 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0125 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0125 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0130 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0130 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0130 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0130 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0135 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0135 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0135 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0140 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0140 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0140 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0145 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0145 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0150 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0150 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0150 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0155 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0155 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0155 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0155 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0155 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0160 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0160 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0160 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0160 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0160 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0165 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0165 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0165 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0170 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0170 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0170 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0170 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0170 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0175 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0175 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0175 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0180 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0180 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0180 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0180 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0185 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0185 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0185 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0190 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0190 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0190 E.L.S. Souza et al. / Ultrasonics Sonochemistry 38 (2017) 256–270 269 [39] J. Ruiz-Fuertes, A. Segura, F. Rodríguez, D. Errandonea, M.N. Sanz-Ortiz, Anomalous high-pressure Jahn-Teller behavior in CuWO4, Phys. Rev. Lett. 108 (2012) 166402–166405. [40] J. Ruiz-Fuertes, M.N. Sanz-Ortiz, J. González, F. Rodríguez, A. Segura, D. Errandonea, Optical absorption and Raman spectroscopy of CuWO4, J. Phys. Conf. Ser. 215 (2010) 012048–012052. [41] J. Ruiz-Fuertes, D. Errandonea, R. Lacomba-Perales, A. Segura, J. González, F. Rodríguez, F.J. Manjón, S. Ray, P. Rodríguez-Hernández, A. Muñoz, Z. Zhu, C.Y. Tu, High-pressure structural phase transitions in CuWO4, Phys. Rev. B 81 (2010) 224115–224124. [42] J. Ruiz-Fuertes, D. Errandonea, A. Segura, F.J. Manjón, Z. Zhu, C.Y. Tu, Growth, characterization, and high-pressure optical studies of CuWO4, High Press. Res. 28 (2008) 565–570. [43] J. Ruiz-Fuertes, A. Friedrich, J. Pellicer-Porres, D. Errandonea, A. Segura, W. Morgenroth, E. Haussühl, C.Y. Tu, A. Polian, Structure solution of the high- pressure phase of CuWO4 and evolution of the Jahn-Teller distortion, Chem. Mater. 23 (2011) 4220–4226. [44] P.F. Schofield, S.A.T. Redfern, Ferroelastic phase transition in the sanmartinite (ZnWO4)-cuproscheelite (CuWO4) solid solution, J. Phys.: Condens. Matter. 4 (1992) 375–388. [45] P.F. Schofield, C.M.B. Henderson, S.A.T. Redfern, G. van der Laan, Cu 2p absorption spectroscopy as a probe for the site occupancy of (ZnxCul-x)WO4 solid solution, Phys. Chem. Minerals 20 (1993) 375–381. [46] P.F. Schofield, J.M. Charnock, G. Cressey, C.M.B. Henderson, An EXAFS study of cation site distortions through the P2/c-P1 phase transition in the synthetic cuproscheelite-sanmartinite solid solution, Miner. Magaz. 58 (1994) 185– 199. [47] S.A.T. Redfern, P.F. Schofield, Order parameter saturation (plateau effect) as a function of composition in the sanmartinite (ZnWO4) – cuproscheelite (CuWO4) solid solution, Phase Trans. 59 (1996) 25–38. [48] M. Imada, A. Fujimori, Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70 (1998) 1039–1263. [49] P. Patureau, M. Josse, R. Dessapt, J.Y. Mevellec, F. Porcher, M. Maglione, P. Deniard, C. Payen, Incorporation of Jahn�Teller Cu2+ ions into magnetoelectric multiferroic MnWO4: structural, magnetic, and dielectric permittivity properties of Mn1�xCuxWO4 (x 0.25), Inorg. Chem. 54 (2015) 10623–10631. [50] J.P. Doumerc, J. Hejtmanek, J.P. Chaminade, M. Pouchard, M. Krussanova, A photoelectrochemical study of CuWO4 single crystals, Phys. Status Solidi A 82 (1984) 285–294. [51] K.J. Pyper, J.E. Yourey, B.M. Bartlett, Reactivity of CuWO4 in photoelectrochemical water oxidation is dictated by a midgap electronic state, J. Phys. Chem. C 117 (2013) 24726–24732. [52] M.A. Halcrow, Interpreting and controlling the structures of six-coordinate copper(II) centres – When is a compression really a compression?, Dalton Trans 1 (2003) 4375–4384. [53] P. ReddyPrasad, E.B. Naidoo, Ultrasonic synthesis of high fluorescent C-dots and modified with CuWO4 nanocomposite for effective photocatalytic activity, J. Mol. Struct. 1098 (2015) 146–152. [54] T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami, P. Fornasiero, Synthesis, characterization and photocatalytic performance of transition metal tungstates, Chem. Phys. Lett. 30 (2010) 113–119. [55] P. Schmitt, N. Brem, S. Schunk, C. Feldmann, Polyol-mediated synthesis and properties of nanoscale molybdates/tungstates: Color, luminescence, catalysis, Adv. Funct. Mater. 21 (2011) 3037–3046. [56] B. Schwarz, H. Ehrenberg, H. Weitzel, A. Senyshyn, B. Thybusch, M. Knapp, G.J. McIntyred, H. Fuess, Crystal chemistry, structure and magnetic properties of the Cu(MoxW1-x)O4 solid solution series, Philos. Mag. 88 (2008) 1235–1258. [57] B.C. Schwarz, H. Ehrenberg, H. Weitzel, H. Fuess, Investigation on the influence of particular structure parameters on the anisotropic spin- exchange interactions in the distorted wolframite-type oxides Cu(MoxW1-x) O4, Inorg. Chem. 46 (2007) 378–380. [58] H.J. Koo, M.H. Whangbo, Spin dimer analysis of the anisotropic spin exchange interactions in the distorted Wolframite-Type oxides CuWO4, CuMoO4-III, and Cu(Mo0.25W0.75)O4, Inorg. Chem. 40 (2001) 2161–2169. [59] J.E. Yourey, J.B. Kurtz, B.M. Bartlett, Structure, optical properties, and magnetism of the full Zn1–xCuxWO4 (0 x 1) composition range, Inorg. Chem. 51 (2012) 10394–10401. [60] Y. Tang, N. Rong, F. Liu, M. Chu, H. Dong, Y. Zhang, P. Xiao, Enhancement of the photoelectrochemical performance of CuWO4 films for water splitting by hydrogen treatment, Appl. Surf. Sci. 361 (2016) 133–140. [61] D. Bohra, W.A. Smith, Improved charge separation via Fe-doping of copper tungstate photoanodes, Phys. Chem. Chem. Phys. 17 (2015) 9857–9866. [62] A. Martínez-García, V.K. Vendra, S. Sunkara, P. Haldankar, J. Jasinski, M.K. Sunkara, Tungsten oxide-coated copper oxide nanowire arrays for enhanced activity and durability with photoelectrochemical water splitting, J. Mater. Chem. A 1 (2013) 15235–15241. [63] M. Valenti, D. Dolat, G. Biskos, A. Schmidt-Ott, W.A. Smith, Enhancement of the photoelectrochemical performance of CuWO4 thin films for solar water splitting by plasmonic nanoparticle functionalization, J. Phys. Chem. C 119 (2015) 2096–2104. [64] F. Zhan, J. Li, W. Li, Y. Liu, R. Xie, Y. Yang, Y. Li, Q. Chen, In situ formation of CuWO4/WO3 heterojunction plates array films with enhanced photoelectrochemical properties, Int. J. Hydrogen Energy 40 (2015) 6512– 6520. [65] N. Gaillard, Y. Chang, A. DeAngelisa, S. Higginsa, A. Braun, A nanocomposite photoelectrode made of 2.2 eV band gap copper tungstate (CuWO4) and multi-wall carbon nanotubes for solar-assisted water splitting, Int. J. Hydrogen Energy 38 (2013) 3166–3176. [66] J.E. Yourey, B.M. Bartlett, Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation, J. Mater. Chem. 21 (2011) 7651–7660. [67] J.C. Hill, K.S. Choi, Synthesis and characterization of high surface area CuWO4 and Bi2WO6 electrodes for use as photoanodes for solar water oxidation, J. Mater. Chem. A 1 (2013) 5006–5014. [68] S.K. Pilli, T.G. Deutsch, T.E. Furtak, L.D. Brown, J.A. Turner, A.M. Herring, BiVO4/CuWO4 heterojunction photoanodes for efficient solar driven water oxidation, Phys. Chem. Chem. Phys. 15 (2013) 3273–3278. [69] R. Bharati, R. Shanker, R.A. Singh, Electrical transport properties of CuWO4, Pramana 14 (1980) 449–454. [70] S.M. Pourmortazavi, M. Rahimi-Nasrabadi, Y. Fazli, M. Mohammad-Zadeh, Taguchi method assisted optimization of electrochemical synthesis and structural characterization of copper tungstate nanoparticles, Int. J. Refract. Met. Hard Mater. 51 (2015) 29–34. [71] A. Kuzmin, A. Kalinko, R.A. Evarestov, Ab initio LCAO study of the atomic, electronic and magnetic structures and the lattice dynamics of triclinic CuWO4, Acta Mater. 61 (2013) 371–378. [72] M.V. Lalic, Z.S. Popovic, F.R. Vukajlovic, Ab initio study of electronic, magnetic and optical properties of CuWO4 tungstate, Comput. Mater. Sci. 50 (2011) 1179–1186. [73] P. Sarker, D. Prasher, N. Gaillard, M.N. Huda, Predicting a new photocatalyst and its electronic properties by density functional theory, J. Appl. Phys. 114 (2013) 133508–133517. [74] V.V. Atuchin, I.B. Troitskaia, O.Y. Khyzhun, V.L. Bekenev, Y.M. Solonin, Electronic properties of h-WO3 and CuWO4 nanocrystals as determined from X-ray spectroscopy and first-principles band-structure calculations, Inter. J. Appl. Phys. Mathem. 1 (2011) 19–23. [75] J.C. Hill, Y. Ping, G.A. Galli, K.S. Choi, Synthesis, photoelectrochemical properties, and first principles study of n-type CuW1-xMoxO4 electrodes showing enhanced visible light absorption, Energy Environ. Sci. 6 (2013) 2440–2446. [76] R.F. Gonçalves, L.S. Cavalcante, I.C. Nogueira, E. Longo, M.J. Godinho, J.C. Sczancoski, V.R. Mastelaro, I.M. Pinatti, I.L.V. Rosa, A.P.A. Marques, Rietveld refinement, cluster modelling, growth mechanism and photoluminescence properties of CaWO4:Eu3+ microcrystals, CrystEngComm 17 (2015) 1654– 1666. [77] S.N. Guin, D. Sanyal, K. Biswas, The effect of order–disorder phase transitions and band gap evolution on the thermoelectric properties of AgCuS nanocrystals, Chem. Sci. 7 (2016) 534–543. [78] L. Kihlborg, E. Gebert, CuWO4, a distorted Wolframite-type structure, Acta Cryst. Sec. B 26 (26) (1970) 1020–1026. [79] H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystallogr. 22 (1967) 151–152. [80] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2 (1969) 65–71. [81] A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), National Laboratory, Los Alamos, 2001. [82] P. Thompson, D.E. Cox, J.B. Hastings, Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3, J. Appl. Cryst. 20 (1987) 79–83. [83] L.W. Finger, D.E. Cox, A.P. Jephcoat, A correction for powder diffraction peak asymmetry due to axial divergence, J. Appl. Cryst. 27 (1994) 892–900. [84] P.W. Stephens, Phenomenological model of anisotropic peak broadening in powder diffraction, J. Appl. Cryst. 32 (1999) 281–289. [85] P.F. Schofield, K.S. Knight, S.A.T. Redfern, G. Cressey, Distortion characteristics across the structural phase transition in (Cul-xZnx)WO4, Acta Cryst. Sec. B 53 (1997) 102–112. [86] K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J. Appl. Crystallogr. 41 (2008) 653–658. [87] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272–1276. [88] L.S. Cavalcante, E. Moraes, M.A.P. Almeida, C.J. Dalmaschio, N.C. Batista, J.A. Varela, E. Longo, M. Siu Li, J. Andres, A. Beltran, A combined theoretical and experimental study of electronic structure and optical properties of b- ZnMoO4 microcrystals, Polyhedron 54 (2013) 13–25. [89] I.M. Pinatti, I.C. Nogueira, W.S. Pereira, P.F.S. Pereira, R.F. Gonçalves, J.A. Varela, E. Longo, I.L.V. Rosa, Structural and photoluminescence properties of Eu3+ doped a-Ag2WO4 synthesized by the green coprecipitation methodology, Dalton Trans. 44 (2015) 17673–17685. [90] R.L. Frost, L. Duong, M. Weier, Raman microscopy of selected tungstate minerals, Spectrochim. Acta Part A 60 (2004) 1853–1859. [91] T.T. Basiev, A.A. Sobol, Y.K. Voronko, P.G. Zverev, Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers, Opt. Mater. 15 (2000) 205–2016. [92] R.K. Selvan, A. Gedanken, The sonochemical synthesis and characterization of Cu1�xNixWO4 nanoparticles/nanorods and their application in electrocatalytic hydrogen evolution, Nanotechnology 20 (2009) 105602– 105608. [93] L.S. Cavalcante, M.A.P. Almeida, W. Avansi Jr., R.L. Tranquilin, E. Longo, N.C. Batista, V.R. Mastelaro, M. Siu Li, Cluster coordination and photoluminescence properties of a–Ag2WO4 microcrystals, Inorg. Chem. 51 (2012) 10675–10687. http://refhub.elsevier.com/S1350-4177(17)30099-8/h0195 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0195 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0195 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0195 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0200 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0200 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0200 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0200 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0205 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0205 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0205 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0205 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0205 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0210 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0210 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0210 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0210 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0215 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0215 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0215 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0215 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0220 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0220 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0220 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0220 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0220 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0225 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0225 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0225 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0225 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0225 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0225 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0230 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0230 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0230 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0230 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0235 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0235 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0235 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0235 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0235 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0240 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0240 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0245 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0245 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0245 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0245 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0245 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0245 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0245 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0245 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0245 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0245 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0245 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0245 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0245 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0250 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0250 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0250 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0250 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0255 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0255 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0255 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0255 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0260 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0260 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0260 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0265 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0265 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0265 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0265 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0270 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0270 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0270 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0275 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0275 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0275 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0280 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0280 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0280 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0280 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0280 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0280 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0280 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0280 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0285 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0285 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0285 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0285 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0285 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0285 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0285 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0285 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0290 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0290 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0290 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0290 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0290 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0290 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0290 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0290 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0295 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0295 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0295 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0295 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0295 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0295 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0295 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0295 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0295 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0300 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0300 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0300 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0300 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0305 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0305 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0310 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0310 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0310 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0310 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0315 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0315 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0315 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0315 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0315 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0320 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0320 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0320 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0320 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0320 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0320 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0325 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0325 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0325 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0325 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0325 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0330 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0330 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0330 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0330 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0335 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0335 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0335 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0335 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0335 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0340 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0340 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0340 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0340 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0340 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0345 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0345 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0345 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0350 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0350 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0350 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0350 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0355 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0355 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0355 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0355 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0360 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0360 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0360 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0360 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0365 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0365 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0365 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0370 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0370 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0370 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0370 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0370 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0370 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0375 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0375 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0375 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0375 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0375 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0380 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0380 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0380 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0380 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0380 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0380 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0380 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0385 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0385 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0385 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0390 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0390 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0390 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0395 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0395 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0400 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0400 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0405 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0405 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0405 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0410 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0410 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0415 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0415 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0420 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0420 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0425 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0425 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0425 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0425 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0425 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0425 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0425 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0430 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0430 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0435 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0435 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0440 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0440 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0440 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0440 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0440 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0445 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0445 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0445 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0445 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0445 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0445 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0445 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0450 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0450 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0455 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0455 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0455 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0460 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0460 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0460 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0460 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0460 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0465 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0465 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0465 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0465 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0465 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0465 270 E.L.S. Souza et al. / Ultrasonics Sonochemistry 38 (2017) 256–270 [94] J. Ruiz-Fuertes, J. Pellicer-Porres, A. Segura, P. Rodríguez-Hernández, A. Muñoz, Lattice and electronic contributions to the refractive index of CuWO4, J. Appl. Phys. 116 (2014) 103706–103711. [95] H. Ramezanalizadeh, F. Manteghi, Design and development of a novel BiFeO3/ CuWO4 heterojunction with enhanced photocatalytic performance for the degradation of organic dyes, J. Photochem. Photobiol. A Chem. 338 (2017) 60–71. [96] A. Anspoks, A. Kalinko, J. Timoshenko, A. Kuzmin, Local structure relaxation in nanosized tungstates, Solid State Commun. 183 (2014) 22–26. [97] G.M. Clark, W.P. Doyle, Infra-red spectra of anhydrous molybdates and tungstates, Spectrochim. Acta 22 (1966) 1441–1447. [98] A.W. Sleight, High pressure CuMoO4, Mater. Res. Bull. 8 (1973) 863– 866. [99] L. Liang, H. Liu, Y. Tian, Q. Hao, C. Liu, W. Wang, X. Xie, Fabrication of novel CuWO4 hollow microsphere photocatalyst for dye degradation under visible- light irradiation, Mater. Lett. 182 (2016) 302–304. [100] S.M. Hosseinpour-mashkani, A. Sobhani-Nasa, Simple synthesis and characterization of copper tungstate nanoparticles: investigation of surfactant effect and its photocatalyst application, J. Mater. Sci. Mater. Electron. 27 (2016) 7548–7553. [101] W. Ye, F. Chen, F. Zhao, N. Han, Y. Li, CuWO4 nanoflake array-based single- junction and heterojunction photoanodes for photoelectrochemical water oxidation, ACS Appl. Mater. Interf. 8 (2016) 9211–9217. [102] R.D. Kumar, Y. Andou, M. Sathish, S. Karuppuchamy, Synthesis of nanostructured Cu-WO3 and CuWO4 for supercapacitor applications, J. Mater. Sci. Mater. Electron. 27 (2016) 2926–2932. [103] X. Xie, M. Liu, C. Wang, L. Chen, J. Xu, Y. Cheng, H. Dong, F. Lu, W.H. Wang, H. Liu, W. Wang, Efficient photo-degradation of dyes using CuWO4 nanoparticles with electron sacrificial agents: a combination of experimental and theoretical exploration, RSC Adv. 6 (2016) 953–959. [104] E. Limpert, W. Stahel, M. Abbt, Log-normal distributions across the sciences: keys and clues, BioScience 51 (2001) 341–352. [105] P. Kubelka, F. Munk, Ein Beitrag zur optik der farbanstriche, Z. Fur Tech. Phys. 12 (1931) 593–601. [106] M.L. Myrick, M.N. Simcock, M. Baranowski, H. Brooke, S.L. Morgan, J.N. Mccutcheon, The Kubelka-Munk diffuse reflectance formula revisited, Appl. Spectrosc. Rev. 46 (2011) 140–165. [107] R.A. Smith, Semiconductors, second ed., vol. 1, Cambridge University Press, London, 1978. [108] R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martınez-Garcıa, A. Segura, Optical absorption of divalent metal tungstates: correlation between the band-gap energy and the cation ionic radius, Europhys. Lett. 83 (2008) 37002–37011. [109] E. Longo, D.P. Volanti, V.M. Longo, L. Gracia, I.C. Nogueira, M.A.P. Almeida, A. N. Pinheiro, M.M. Ferrer, L.S. Cavalcante, J. Andres, Toward an understanding of the growth of ag filaments on a-Ag2WO4 and their photoluminescent properties: a combined experimental and theoretical study, J. Phys. Chem. C 118 (2014) 1229–1239. [110] R.A. Roca, J.C. Sczancoski, I.C. Nogueira, M.T. Fabbro, H.C. Alves, L. Gracia, L.P. S. Santos, C.P. de Sousa, J. Andrés, G.E. Luz Jr., E. Longo, L.S. Cavalcante, Facet- dependent photocatalytic and antibacterial properties of a-Ag2WO4 crystals: combining experimental data and theoretical insights, Catal. Sci. Technol. 5 (2015) 4091–4107. [111] M. Massoud, Blackbody Radiation. Engineering Thermofluids: Thermodynamics, Fluid Mechanics, and Heat Transfer, Springer-Verlag, Berling, 2005. http://refhub.elsevier.com/S1350-4177(17)30099-8/h0470 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0470 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0470 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0470 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0475 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0475 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0475 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0475 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0475 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0475 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0480 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0480 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0485 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0485 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0490 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0490 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0495 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0495 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0495 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0495 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0500 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0500 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0500 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0500 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0505 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0505 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0505 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0505 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0510 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0510 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0510 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0510 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0510 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0515 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0515 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0515 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0515 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0520 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0520 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0525 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0525 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0530 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0530 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0530 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0535 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0535 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0535 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0540 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0540 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0540 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0540 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0540 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0540 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0545 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0545 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0545 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0545 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0545 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0545 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0545 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0550 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0550 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0550 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0550 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0550 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0550 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0550 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0555 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0555 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0555 http://refhub.elsevier.com/S1350-4177(17)30099-8/h0555 Structural evolution, growth mechanism and photoluminescence properties of CuWO4 nanocrystals 1 Introduction 2 Experimental details 2.1 Synthesis of CuWO4 crystals 2.2 Characterizations of CuWO4 crystals 3 Results and discussions 3.1 Long-range structural analyses 3.2 Structural representation, and coordination of clusters in CuWO4 3.3 Short-range structural analysis 3.4 FT-IR spectroscopy analyses 3.5 FE-SEM images analyses 3.6 TEM and HR-TEM images analyses 3.7 Crystal growth mechanism 3.8 Uv–vis spectra and optical band gap energy 3.9 Photoluminescence properties 4 Conclusions Acknowledgements Appendix A Supplementary data References