Characteristics, Properties and Analytical Methods of Cefadroxil: A Review

Bianca Aparecida de Marco & Hérida Regina Nunes Salgado

To cite this article: Bianca Aparecida de Marco & Hérida Regina Nunes Salgado (2017) Characteristics, Properties and Analytical Methods of Cefadroxil: A Review, Critical Reviews in Analytical Chemistry, 47:2, 93-98, DOI: 10.1080/10408347.2016.1219649

To link to this article: https://doi.org/10.1080/10408347.2016.1219649

Accepted author version posted online: 05 Aug 2016.
Published online: 31 Aug 2016.

Submit your article to this journal

Article views: 188

Citing articles: 11 View citing articles
Characteristics, Properties and Analytical Methods of Cefadroxil: A Review

Bianca Aparecida de Marco and Hérida Regina Nunes Salgado

Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil

ABSTRACT
Infections are the second leading cause of mortality worldwide and there are many reasons justifying the need for further studies of antimicrobial agents. Cefadroxil is a drug that has bactericidal activity and broad spectrum of action. Quantitative analyzes about cefadroxil are essential for the understanding of bioavailability, bioequivalence, and therapeutic control, which will ensure the product’s characteristics and patients’ safety. Thus, this study highlights a brief literature review about the drug and the existing methods developed for the determination of cefadroxil found in official and scientific papers. According to the methods found in literature, liquid chromatography and spectrophotometry of absorption in the ultraviolet region prevailed over the others. Importantly, most of the solvents used for the development of the described analytical methods are toxic to the environment, making it necessary to educate researchers and pharmaceutical companies to use nontoxic solvents to provide environmentally-friendly methods and better benefits to equipments and mainly to analysts.

KEYWORDS
Absorption spectrophotometry in the ultraviolet region; cefadroxil; high-performance liquid chromatography

Introduction
Since the mid-1940s, antimicrobials began to have important functions for the control of infectious diseases (Guimarães et al., 2010). There are a wide variety of micro-organisms, and because of this significant difference, antimicrobials must be increasingly studied and known to combat bacterial resistance and restore the balance of infected organisms (Hoefel and Lautert, 2006).

Antimicrobials can have synthetic or natural structures, which are responsible for inhibiting the growth of fungi and bacteria or lead them to death (Guimarães et al., 2010). Among the various existing classes of antibiotics, cephalosporins are derived from the fungus Cephalosporium acremonium, and they were first discovered in 1945 by Giuseppe Brotzu in Sardinia and stand out by having bactericidal activity against Gram-positive and Gram-negative bacteria (Climeni et al., 2009; Perera et al., 2001).

Cephalosporins can be classified into five different generations, which differ in the pharmacokinetics, pharmacodynamics, and features that have antimicrobial activity (Fernandes et al., 2013).

Among the first-generation cephalosporins, cefadroxil (CFD) is an effective antibiotic against Gram-positive and Gram-negative bacteria and stands out for presenting high-potential chemotherapeutic oral administration and is widely used for treating bronchitis, tonsillitis, skin infections, soft tissues and ear, gonorrhea, urinary tract, bones and joints (Sharif et al., 2010; Tanrisever and Santella, 1986).

In the Brazilian pharmaceutical market, cefadroxil is marketed as pharmaceutical presentations in the form of tablets with a concentration of 1 g, hard gelatin capsules with a concentration of 500 mg, and powder for suspension with concentrations of 50 mg/mL and 100 mg/mL (Brazil, 2015; Brazil, 2016).

Cefadroxil can be found with the following names: Cefamox® (Bristol-M-Squibb), Cedroxil® (Legrand), Neo Cefadril® (Neo Química), Celoxin® (Vitapan) and Drocef® (Eurofarma), and Cefamox® is a reference product (BPR, 2014). The drug can also be found by the name of cefadroxil (marked “G”) as a class of generics produced by companies, such as Abbott, Apotex, Biosintética, Brainfarma, EMS, Eurofarma, Medley, Methaphílarm, Novartis, Ranbaxy, and Teuto, all with record in the National Health Surveillance Agency (ANVISA) for the treatment of infections caused by microorganisms susceptible to cefadroxil (BPR, 2014; Brazil, 2016).

The infections caused by microorganisms vulnerable to cefadroxil reach a large proportion of the population and are very common in society, so the prevalence of cefadroxil sales is much considerable, making studies inevitable, especially to quality control, which has great impact about the quality of medicines, and its data is obtained with the objective to provide information about the composition of material as well as to develop analytical methods (La Roca et al., 2007).

The quality control also needs to ensure safety standards and efficacy of medicinal products in order to avoid risks to the population. Thus, the physicochemical characteristics of drugs must conform to the standards necessary for the proper handling and industrialization of the same to ensure the confidence during treatments about their function (La Roca et al., 2007).

Based on the information and facts that point to the importance of the development of analytical methods, this study will point a review of the characteristics, properties, and analytical methods already developed for the quantification and identification of cefadroxil.
Cefadroxil

Structural modification

Cefadroxil (Figure 1) is obtained from a derivative of D-(-)-4-hydroxyphenylglycine with amino group protected in the form of methyl acetoacetate enamine. The carboxylic group is activated by conversion to an anhydride upon reaction with ethyl chloroform in the presence of triethylamine. The activated derivative then reacts with 7-ADCA, releasing the amine function by acid hydrolysis (Garcia et al., 2005).

Structural forms

Action mechanism

Cefadroxil has bactericidal activity by inhibiting the synthesis of the bacterial cell wall; it is much used in the treatment of infections caused by Gram-positive cocci, including pneumococci, streptococci, and staphylococci except for enterococci and methicillin-resistant staphylococci and some Gram-negative bacteria as Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, and anaerobic cocci (for example, Peptococcus, Peptostreptococcus) (Katzung et al., 2014).

This drug is an antibiotic able to combat skin infections (for example, staphylococcal lesions) or small polymicrobial infections such as soft-tissue abscesses and/or cellulitis, pharyngitis, tonsillitis, gonorrhea, ear infections, urinary infections, and post-surgical infections. However, it is not advised during severe systemic infections (Delucia et al., 2007; Katzung et al., 2014; Tanrisever and Santella, 1986).

Pharmacokinetics and pharmacodynamics

Cefadroxil is the analog p-hydroxy for cephalaxin (first-generation cephalosporin), and despite its slightly higher concentration in plasma and urine, it presents in vitro activity very similar to that of cephalaxin (Delucia et al., 2007; Tanrisever and Santella, 1986).

In pharmaceutical formulations, such as in the form of tablets, capsules, or powder for suspension, cefadroxil is rapidly absorbed after oral administration, and after 1–3 hours it is possible to obtain maximum concentrations of the active substance (AHFS, 2014; DEF, 2015).

Levels of binding protein of cefadroxil in the plasma lie on the boundary between 15% and 20%, and according to biotransformation and excretion, 90% of the active pharmaceutical ingredient is eliminated unaltered in the urine within 24 hours (AHFS, 2014; DEF, 2015).

Physicochemical properties

Cefadroxil is a semisynthetic antibiotic intended for oral administration, white and/or almost white in color, and is chemically designated as (6R,7R)-7-[(2R)-2-amino-2-(4-hydroxyphenyl) acetyl amino]-3-methyl-8-oxo-5-tia-1-azabicyclo[4.2.0]oct-2-eno-2-carboxilic acid (BP2012;USP35, 2012).

Its molecular formula is C16H17N3O5S, and has molecular weight of 363.4 g/mol in anhydrous form, 372.4 g/mol in hemihydrate form, and 381.4 g/mol in monohydrate form (Brazilian P., 2010; Argentina P., 2003).

Cefadroxil has low solubility in water, very slightly soluble in ethanol, and practically insoluble in chloroform and ethyl ether. It has power rating of 950 pg, and not more than 1050 mg/mg for C16H17N3O5S in relation to anhydrous substance (Brazilian P., 2010). Its melting point is 197°C and its log p is −0.4 with pKa 3.45 (acid) and 7.43 (basic) (Drug Bank, 2016).

Analytical methods for determining the cefadroxil

The quantification of cefadroxil is extremely important to conduct bioavailability and bioequivalence studies as well as...
<table>
<thead>
<tr>
<th>Method</th>
<th>Conditions</th>
<th>Detection system</th>
<th>Matrices</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPLC-UV</td>
<td>Column C18 (250 mm × 4 mm). Mobile phase: potassium phosphate monobasic buffer 0.05 M with pH 5.0 and acetonitrile (96:4 v/v).</td>
<td>230 nm</td>
<td>Standard Argentina Pharmacopoeia (2003); Brazilian Pharmacopoeia (2010); Indian Pharmacopoeia (2007); USP Pharmacopoeia (2012)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column C18 (250 mm × 4 mm). Mobile phase: potassium phosphate monobasic buffer 0.05 M with pH 5.0 and methanol (17:3 v/v).</td>
<td>262 nm</td>
<td>Japanese Pharmacopoeia (2011)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column C18 (250 mm × 4.6 mm). Mobile phase: potassium phosphate monobasic buffer 0.05 M with pH 5.0 and acetonitrile (96:4 v/v).</td>
<td>254 nm</td>
<td>British Pharmacopoeia (2012)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column C18 (100 mm × 4.6 mm). Mobile phase: potassium phosphate monobasic buffer with pH 5.0 and methanol (98:2 v/v).</td>
<td>220 nm</td>
<td>European Pharmacopoeia (2013) and Portuguese Pharmacopoeia (2007)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column Hypersil C18 (200 mm × 4.6 mm). Mobile phase: potassium phosphate monobasic buffer 0.05 M with pH 3.4 and acetonitrile (87.5:12.5 v/v).</td>
<td>254 nm</td>
<td>Standard Zhang et al. (1999)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column Lichrosorb RP-8 (250 mm × 4.0 mm). Mobile phase: potassium phosphate monobasic buffer with pH 5.0 and acetonitrile (95.5 v/v).</td>
<td>280 nm</td>
<td>Human urine Eshra et al. (1993)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column Hypersil C18 (250 mm × 4.6 mm). Mobile phase: potassium phosphate monobasic buffer with pH 5.0 and acetonitrile (96:4 v/v).</td>
<td>254 nm</td>
<td>Tablets Devaliya and Jain (2009)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column Supelco RP C-18 (250 mm × 4.6 mm). Mobile phase: methanol and disodium hydrogen orthophosphate buffer 0.05 M with pH 3.0 adjusted with phosphoric acid (60:40 v/v).</td>
<td>264 nm</td>
<td>Standard Anjum et al. (2012)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column C18 (250 mm × 4.6 mm). Mobile phase: potassium phosphate monobasic buffer 0.05 M with pH 3.4 and acetonitrile (94:6 v/v).</td>
<td>225 nm</td>
<td>Tablets Sharif et al. (2010)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column Purospher BDS C18 (250 mm × 4.6 mm). Mobile phase: ammonium acetate 0.5 M and acetonitrile with pH adjusted to 7.0 using orthophosphoric acid (50:50 v/v).</td>
<td>247 nm</td>
<td>Capsules Dhoka and Chopade (2012)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column Hypersil C18 (250 mm × 4.6 mm). Mobile phase: potassium phosphate monobasic buffer with pH adjusted to 5.0 using potassium hydroxide 10 M and acetonitrile (96:4 v/v).</td>
<td>230 nm</td>
<td>Standard Hendrix et al. (1993a)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column LiChrospher 100 RP-18 (5 mm). Mobile phase: potassium phosphate monobasic buffer 0.02 M with pH adjusted to 3.0 with phosphoric acid and acetonitrile (95:5 v/v).</td>
<td>260 nm</td>
<td>Human urine El-Gindy et al. (2000)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column Chromolith®-SpeedROD RP-18e (500 mm × 4.6 mm). Mobile phase: acetic acid buffer–sodium acetate with pH 4.0 and methanol–acetic acid (90:10 v/v).</td>
<td>265 nm</td>
<td>Human plasma and urine Samanidou et al. (2004)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column Spherisorb ODS-2 (250 mm × 4 mm). Mobile phase: acetic acid buffer–sodium acetate with pH 4.0 and methanol (78:22 v/v).</td>
<td>265 nm</td>
<td>Human plasma and urine Samanidou et al. (2003)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column Altex Ultrasphere Octyl reverse phase C8 (260 mm × 4.6 mm). Mobile phase: monosodium phosphate buffer and methanol with pH 2.6 (80:20 v/v).</td>
<td>240 nm</td>
<td>Human plasma McAteer et al. (1987)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column C18 (200 mm × 4.6 mm) 10 µm, with pre column stainless-steel screens (150 mm × 4.6 mm). Mobile phase: phosphate buffer 10 M with pH 7.0 and acetonitrile (87:13 v/v).</td>
<td>260 nm</td>
<td>Bovine Plasma Snippe et al. (1994)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column PLRP-S (250 mm × 4.6 mm). Mobile phase: acetonitrile 0.2 M, sodium 1-octanesulfonate 0.2 M and phosphoric acid with pH 1.4 (10:5:10 v/v/v).</td>
<td>254 nm</td>
<td>Standard Hendrix et al. (1993b)</td>
<td></td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column C18 (150 mm × 4.5 mm) 5 µm. Mobile phase: methanol and potassium phosphate monobasic buffer with pH 4.0 (10:90 v/v).</td>
<td>260 nm</td>
<td>Capsules Rahim et al. (2015)</td>
<td></td>
</tr>
</tbody>
</table>

(Continued on next page)
pharmacokinetic parameters for the therapeutic monitoring of the substance.

In this study, there is a predominance of determination by high-performance liquid chromatography (HPLC) and UV absorption spectroscopy.

The advantages of performing quantitative studies by the HPLC technique include the specificity, efficiency, speed (due to shorter analysis time), and accuracy with facility in monitoring technique.

The analytical methods described in the literature for the development and validation that the analytical methods can contribute effectively to ensure the quality of medicines and the safety of the same in relation to the operators. So that such problems are minimized, it is necessary to choose equipment that is more sensitive and as specific as the other; has low cost analysis, and consequently reduces energy consumption (the fact that implies directly on the final cost of the product); requires smaller amounts of solvents or that can identify lower concentrations of the same; can recover toxic solvents (for not be discarded in the environment); can educate researchers and pharmaceutical companies to use nontoxic solvents and improve environment in order to reduce the risk on the population and analysts.

Thus, the contribution to the analysis by universities and research centers should be taken into consideration so that the methods can contribute effectively to ensure the quality of medicines and the safety of the same in relation to population.

Table 1. (Continued.)

<table>
<thead>
<tr>
<th>Method</th>
<th>Conditions</th>
<th>Detection system</th>
<th>Matrices</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPLC-UV</td>
<td>Column C18 (150 mm × 4.5 mm) 5 μm. Mobile phase: potassium phosphate monobasic buffer with pH 4.0 and methanol (96:4 v/v).</td>
<td>260 nm</td>
<td>Human plasma</td>
<td>Rahim et al. (2014)</td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column Phenomenex Synergi MAX RP C18 (150 mm × 4 mm). Mobile phase: sodium dihydrogen phosphate monohydrate buffer 0.02 M, methanol and acetonitrile (90:8:2 v/v/v).</td>
<td>230 nm</td>
<td>Human plasma</td>
<td>Kano et al. (2012)</td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column Hypersil C18 (250 mm × 4.6 mm) 5 μm. Mobile phase: potassium phosphate monobasic buffer 0.2 M with pH 3.5 adjusted with orthophosphoric acid and acetonitrile (65:35 v/v/v).</td>
<td>220 nm</td>
<td>Tablets</td>
<td>Rao et al. (2014)</td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Column Purospher® RP-C18 (250 mm × 4.6 mm). Mobile phase: water, methanol and triethylamine with pH 5.5 adjusted with phosphoric acid (85:15:0.1 v/v/v).</td>
<td>258 nm</td>
<td>Tablets</td>
<td>Patel et al. (2014)</td>
</tr>
<tr>
<td>HPLC–MS/MS</td>
<td>Column YMC Hypersphere C18 (150 mm × 4 mm) 5 μm. Mobile phase: acetonitrile in water (0.1%) and formic acid (15:85 v/v).</td>
<td>Electrospray ionization (ESI) and triple quadrupole</td>
<td>Standard</td>
<td>Nygren and Lindahl (2011)</td>
</tr>
<tr>
<td>HPLC–MS/MS</td>
<td>Column C18 (150 mm × 2.0 mm) 4 μm. Mobile phase: formic acid and methanol (62:38 v/v).</td>
<td>Positive electrospray ionization (ESI) Quadrupole and atmospheric pressure chemical ionization (APCI)</td>
<td>Rat plasma and urine Human plasma</td>
<td>Jin et al. (2014) Nagarajan et al. (2013)</td>
</tr>
<tr>
<td>HPLC–MS/MS</td>
<td>Column C18 reverse phase. Mobile phase: methanol, acetonitrile and ammonium acetate 2 M with pH 3.5 (25:25:50 v/v/v), 0.8 mL/min.</td>
<td>264 nm</td>
<td>Standard</td>
<td>Schmidt et al. (2012)</td>
</tr>
<tr>
<td>UPLC-UV</td>
<td>Column Acquity UPLC HSS T3 (210 mm × 5 mm) 1.8 μm. Mobile phase: formic acid 0.1% and acetonitrile (10:90 v/v).</td>
<td>263 nm</td>
<td>Standard</td>
<td>Brazilian Pharmacopoeia (2010); European Pharmacopoeia (2013); Japanese Pharmacopoeia (2011) Naveed et al. (2014)</td>
</tr>
<tr>
<td>Absorption</td>
<td>Dilution with citrate-phosphate buffer pH 6.0 until the concentration 0.002% p/v.</td>
<td>475 nm</td>
<td>Tablets</td>
<td>Standard</td>
</tr>
<tr>
<td>spectroscopy UV</td>
<td>Dilution with water until the concentration 10 μg/mL.</td>
<td>342 nm</td>
<td>Capsules</td>
<td>Shantier et al. (2010)</td>
</tr>
<tr>
<td>Absorption</td>
<td>Dilution with 100 mL of water until the concentration of 10 μg/mL.</td>
<td>264 nm</td>
<td>Standard</td>
<td>Dey et al. (2010)</td>
</tr>
<tr>
<td>spectroscopy UV</td>
<td>1 mL of sodium hydroxide 1 M in 10 mL of distilled water for 30 minutes.</td>
<td>257 nm</td>
<td>Tablets</td>
<td>Patel et al. (2010)</td>
</tr>
<tr>
<td>UV–VIS</td>
<td>Dilution in methanol until the concentration of 200 μg/mL.</td>
<td>578 nm</td>
<td>Tablets</td>
<td>Patel and Patel (2011)</td>
</tr>
<tr>
<td>Absorption</td>
<td>Dilution in methanol until the concentration of 10 μg/mL.</td>
<td>233 nm</td>
<td>Tablets</td>
<td>Jain et al. (2014)</td>
</tr>
<tr>
<td>spectroscopy UV</td>
<td>Dilution with methanol and water (50:50 v/v) until the concentration of 100 μg/mL.</td>
<td>Dilution in methanol and water (50:50 v/v) until the concentration of 100 μg/mL.</td>
<td>Dilution in methanol until the concentration of 200 μg/mL.</td>
<td>Dilution in methanol until the concentration of 10 μg/mL.</td>
</tr>
</tbody>
</table>
Conclusion

Cefadroxil is an antibiotic belonging to the cephalosporin class and has bactericidal activity and broad spectrum of action. The significant consumption of this drug contributes to the need to develop new researches about different analytical and bioanalytical methods of the active pharmaceutical ingredient.

Although there are a large number of analytical methods for identification and quantification of cefadroxil, many use toxic and hazardous solvents. Thus, implementing an innovative vision of ecologically correct methods is very important to improve the productivity of quality control techniques in environmental, social, and economic terms.

Conflicts of Interest

The authors declare no conflicts of interest.

References

AHFS. Drug Information; Bethesda: Maryland, United States, 2014.

BPR. Guide of Medicines; Escala: São Paulo, Brazil, 2014.

DEF. Pharmaceutical Specialties Dictionary; Epuc: São Paulo, Brazil, 2015.

Garcia, P. C.; Cruz, S. V.; Miron, C. E. Fundamentals of Drug Syntheses; University of Barcelona: Barcelona, Spain, 2005.

Katzung, B. G.; Masters, S. B.; Trevor, A. J. Basic Pharmacology & Clinical; McGraw Hill InterAmerican of Brazil: São Paulo, Brazil, 2014.

