Research Article Production and Catalytic Properties of Amylases from Lichtheimia ramosa and Thermoascus aurantiacus by Solid-State Fermentation Ana Paula Aguero de Oliveira,1 Maria Alice Silvestre,1 Nayara Fernanda Lisboa Garcia,1 Heloíza Ferreira Alves-Prado,2 André Rodrigues,3 Marcelo Fossa da Paz,1 Gustavo Graciano Fonseca,4 and Rodrigo Simões Ribeiro Leite1 1Laboratory of Enzymology and Fermentation Processes, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (FCBA/UFGD), Rodovia Dourados/Itahum, km 12, 79804-970 Dourados, MS, Brazil 2Faculty of Engineering, Department of Phytotechnology, Food Technology and Social Economy, São Paulo State University (FEIS/UNESP), Avenida Brasil, No. 56, 15385-000 Ilha Solteira, SP, Brazil 3Laboratory of Fungal Ecology and Systematics, Biosciences Institute, Department of Biochemistry and Microbiology, São Paulo State University (IB/UNESP), Avenida 24A, No. 1515, 13506-900 Rio Claro, SP, Brazil 4Laboratory of Bioengineering, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (FCBA/UFGD), Rodovia Dourados/Itahum, km 12, 79804-970 Dourados, MS, Brazil Correspondence should be addressed to Rodrigo Simões Ribeiro Leite; simoesbio@yahoo.com.br Received 25 February 2016; Revised 11 May 2016; Accepted 31 May 2016 Academic Editor: Maurizio Petruccioli Copyright © 2016 Ana Paula Aguero de Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The present study compared the production and the catalytic properties of amylolytic enzymes obtained from the fungi Lichtheimia ramosa (mesophilic) andThermoascus aurantiacus (thermophilic). The highest amylase production in both fungi was observed in wheat bran supplemented with nutrient solution (pH 4.0) after 96 hours of cultivation, reaching 417.2U/g of dry substrate (or 41.72U/mL) and 144.5U/g of dry substrate (or 14.45U/mL) for L. ramosa and T. aurantiacus, respectively. The enzymes showed higher catalytic activity at pH 6.0 at 60∘C.The amylases produced by L. ramosa and T. aurantiacuswere stable between pH 3.5–10.5 and pH 4.5–9.5, respectively. The amylase of L. ramosa was stable at 55∘C after 1 hour of incubation, whereas that of T. aurantiacus maintained 60%of its original activity under the same conditions. Both enzymeswere active in the presence of ethanol.The enzymes hydrolyzed starch from different sources, with the best results obtained with corn starch. The enzymatic complex produced by L. ramosa showed dextrinizing and saccharifying potential. The enzymatic extract produced by the fungus T. aurantiacus presented only saccharifying potential, releasing glucose monomers as the main hydrolysis product. 1. Introduction Population growth prompts the discovery of new food and energy sources, which will be possible with the best use of the polysaccharides that constitute the vegetal biomass [1, 2]. Starch is one of the major vegetable reserve compounds, composed of glucose units linked by glycosidic bonds. This polysaccharide has been used as a major energy source in several trophic levels of the food chain [3]. The saccharification of starch enables the obtainment of maltose or glucose syrups as sweeteners for the food industry and for the production of ethanol derived from fermentation processes [1, 4]. Hydrolysis of starch by enzymatic methods has advantages compared to that with chemical methods, such as operating under mild conditions of pH and tem- perature, preventing equipment corrosion, and subsequent neutralization steps. Enzymes have substrate specificity, elim- inating the formation of undesirable by-products, commonly observed in acid hydrolysis [5, 6]. In addition to the production of biofuels from starch sources, amylases are applied in bread-making, in detergents Hindawi Publishing Corporation e Scientific World Journal Volume 2016, Article ID 7323875, 10 pages http://dx.doi.org/10.1155/2016/7323875 2 The Scientific World Journal for industrial cleaning, and in the degumming processes of textile fibers. Thus, amylases represent about 25–33% of the global enzymemarket [7, 8]. However, the production cost of enzymes on an industrial scale is still elevated. It is estimated that the formulation of microbial culture medium represents about 30–40% of the final cost of an enzyme [9]. The need for reducing the production costs of industrial enzymes encourages the search for low-costmicrobial culture medium. In this regard, agroindustrial residues have been used as substrates for microbial-derived enzymes under solid-state fermentation (SSF) [10, 11] and several published works have used this process for the production of various enzymes [6, 12–14]. Solid-state fermentation has some similarities to the natural environment of the microorganisms, especially for the filamentous fungi, as a promising alternative for the cultivation of these organisms. However, some disadvantages can also be highlighted owing to the low accessibility of the substrates and low homogeneity of the medium, making it difficult to control the operating parameters (pH, temper- ature, moisture, and others). These aspects have stimulated research to improve the use of SSF for industrial processes [10, 11]. In this study, we compared the production and the catalytic properties of amylases produced by the filamentous fungi Lichtheimia ramosa andThermoascus aurantiacus, cul- tivated by SSF in agroindustrial residues. These strains were isolated in the Midwest Brazilian region (less explored for microbial bioprospecting) and selected for amylase produc- tion. 2. Materials and Methods 2.1.Microorganisms. Thefilamentous fungi L. ramosa (meso- philic species) and T. aurantiacus (thermophilic species) were assessed for amylase production.The microorganism L. ramosa was isolated from sugarcane bagasse processed in a sugarcane ethanol plant [15]. The fungus T. aurantiacus was isolated from leaf litter of Atlantic seasonal forest fragment located in Dourados, Mato Grosso do Sul State, Brazil. Working-stock cultures of both fungi were incubated on Sabouraud dextrose agar medium at 4∘C. 2.2. Inoculum. The fungi were cultivated in 250mL Erlen- meyer flask containing 40mL of Sabouraud dextrose agar, incubated for 48 hours at 28∘C and 45∘C for L. ramosa and T. aurantiacus, respectively.The fungal suspensions were obtained by gently scraping the surface of the culturemedium and putting it into 30mL of nutrient solution (0.1% ammo- nium sulfate, 0.1%magnesium sulfate heptahydrate, and 0.1% ammonium nitrite, Merheb-Dini et al. [16]). The fungi were inoculated in the agroindustrial residues by transfer of 5mL of the microbial suspension. 2.3. Solid-State Fermentation. The fungi were cultivated in 250mL Erlenmeyer flasks containing 5 g of different agroin- dustrial residues (wheat bran, soy bran, corn cob, corn straw, rice peel, and sugarcane bagasse). Other fermentative parameters were also varied in this study such as the nutrient solution pH (3.0–5.0), the initial moisture (50–90%), and the cultivation time (24–168 h). The best growth conditions established in each step were adopted in subsequent assays. All material was autoclaved for 20min at 121∘C. All assays were performed in duplicate and the values described repre- sent the respective averages. 2.4. Enzyme Extraction. Enzymes were obtained from the fermented residues by adding 50mL of distilled water and shaking constantly at 100 rpm for 1 h. The samples were filtered through nylon cloth and centrifuged at 3,000×g for 5min at 5∘C. The supernatant was considered the extracellu- lar enzymatic extract and used in the subsequent steps. 2.5. Determination of Amylase Activity. The enzyme activity was determined by adding 0.1mL of enzymatic extract to 0.9mL of sodium acetate buffer (0.1M, pH 5.0) containing 1% corn starch. After 10minutes of reaction at 50∘C, the reducing sugars released were quantified by measuring the absorbance at 540 nm by the DNSmethod (3,5-dinitrosalicylic acid) [17]. One unit of enzymatic activity was defined as the amount of enzyme required to release 1 𝜇mol of the product per minute of reaction. 2.6. Biochemical Characterization of the Amylases Produced by SSF 2.6.1. Effect of pH and Temperature. The optimum pH was determined bymeasuring the enzymatic activity at 50∘Cwith different pH conditions (3.0–8.0) by using McIlvaine buffer 0.1M. The optimum temperature was determined by mea- suring the enzymatic activity from 30 to 75∘C at the respec- tive optimal pH of each enzyme. The enzymatic stability to variations in pHwas assessed by incubating the enzymes at 25∘C for 24 h at different pH range.The following buffers were used:McIlvaine 0.1M (3.0–8.0), Tris-HCl 0.1M (8.0–8.5), and Glycine-NaOH 0.1M (8.5–10.5). The thermostability of the enzymes was assessed by incubating for 1 h at different tem- peratures (30–75∘C). The residual activity was determined under optimum conditions of pH and temperature [18]. 2.6.2. Effect of Ethanol on Enzymatic Activity. Enzyme activ- ity was quantified by adding different concentrations of ethanol (0–30%) to the reaction mixture. The assays were performed at 50∘C in McIlvaine buffer (0.1M, pH 6.0) containing 1% corn starch [18]. 2.6.3. Enzymatic Hydrolysis of Starch Derived from Several Vegetal Sources. Enzymatic assays were performed using potato, corn, wheat, and cassava starch (1%) as substrates. The enzymatic reactions were performed in McIlvaine buffer 0.1M (pH 6.0). The sugar released was quantified using the DNS method [17]. 2.6.4. Dextrinization Potential of Enzymatic Extracts. Dex- trinizing activity was assessed using corn starch (1%) as enzy- matic substrate in McIlvaine buffer 0.1M (pH 6.0) and the The Scientific World Journal 3 Table 1: Amylase production by solid-state fermentation in several agroindustrial residues after 120 hours of cultivation with 75%mois- ture at pH 5.0. Average production with different letters indicates significant differences (𝑃 < 0.0001) according to Tukey test. Substrate Lichtheimia ramosa (U/g dry substrate) Thermoascus aurantiacus (U/g dry substrate) Sugarcane bagasse — 3.7 ± 0.0c Corn straw 8.8 ± 0.5b 6.2 ± 0.0bc Soy bran 10.5 ± 0.3b 7.6 ± 0.1b Rice peel 3.9 ± 0.1b 4.7 ± 0.1bc Corn cob 9.2 ± 0.5b 5.2 ± 0.9bc Wheat bran 320.7 ± 6.1a 44.2 ± 1.0a iodometric methods described by Fuwa [19] and Pongsawadi and Yagisawa [20]. The reaction mix contained 0.1mL of enzymatic extract in 0.3mL of buffer solution containing starch. After 10 minutes at 60∘C, the reaction was stopped by adding 4mL of 0.2M HCl. Finally, 0.5mL of reactive iodine and 10mL of distilled water were added. The absorbance was quantified at 700 nm. One unit of activity was defined as the amount of enzyme required to reduce the intensity of the blue color of the starch iodine complex by 10% per minute of reaction. 2.6.5. Saccharification Potential of Enzymatic Extracts. The saccharifying activity of the enzymatic extracts was assessed by the glucose oxidase/peroxidase method, using 1% corn starch as enzymatic substrate in McIlvaine buffer 0.1M (pH 6.0) [21]. The reaction mixture contained 0.1mL of the enzy- matic extract in 0.4mL of buffer solution containing starch. After 10 minutes at 60∘C, the reaction was stopped in ice bath.The glucose released was quantified using an enzymatic colorimetric kit (Glicose-PP, Gold Analisa Diagnóstica Ltda, Brazil). The absorbance was measured at 505 nm. One unit of enzyme activity was defined as the amount of enzyme required to release 1 𝜇mol of glucose per minute of reaction. 2.7. Statistical Analysis. All experiments were performed as duplicates and the results are presented as the mean of two independent tests. Statistical analysis of the data included a one-way ANOVA followed by Tukey’s test with a 5% significance level. 3. Results and Discussion 3.1. Amylase Production by SSF. Among the tested substrates, both microorganisms showed higher production of amylase, on wheat bran, reaching 320.4U/g of dry substrate (or 32.04U/mL) for L. ramosa and 44.2U/g of dry substrate (or 4.42U/mL) for T. aurantiacus (Table 1). Regarding the analysis of variance, the results were significant with ANOVA 𝑃 value being < 0.0001, considered extremely significant. In general, wheat bran has the highest amount of macro- and micronutrients when compared to other agricultural residues such as sugarcane bagasse, rice straw, wheat straw, and rice bran [22]. According to Haque et al. [23], wheat bran consists of a complex substrate rich in proteins, car- bohydrates, minerals, lipids, and vitamins favoring microbial growth and enzyme production. Additionally, Kunamneni et al. [24] reported that wheat bran was the best substrate for amylase production by the fungusThermomyces lanuginosus. Moreira et al. [25] demonstrated a higher amylase production when different Aspergillus species were cultivated on wheat bran, increasing the production of the enzyme by up to 10- fold compared to that obtained by growth on other residues. Considering the data presented in Table 1, wheat bran was used in subsequent cultivation steps to evaluate different fermentative parameters for amylase production, such as initial moisture, pH of the nutrient solution, and cultivation time. There are no significant differences between 55 and 65 but it is clear that highest amylase production was obtained when L. ramosa was cultivated at 60% moisture (w/v), with a maximum value of 369.8U/g of dry substrate (or 36.98U/mL). The fungus T. aurantiacus increased amylase production, about 65.1 U/g of dry substrate (or 6.51 U/mL), when grown on wheat bran containing 65% moisture (w/v) (Figure 1(a)). 𝑃 value is 0.0004, considered extremely signifi- cant. Moisture in the substrate is a fundamental parameter in SSF. The medium should contain enough moisture to allow microbial physiological activities but it cannot exceed the substrate absorption limit, leaving free water among the solid particles. Excess moisture results in the decrease of porosity, affects gas exchange, and favors bacterial contamination, disfavoring the growth and enzyme production [26, 27]. Significant difference was found in the study of nutrient solution pH (3.0–5.0). The highest amylase production was obtained in cultures supplemented with nutrient solution adjusted to pH 4.0 (Figure 1(b)), with enzymatic activity of 407.9U/g of dry substrate (or 40.79U/mL) for L. ramosa and 103.1 U/g of dry substrate (or 10.31 U/mL) for T. aurantiacus. Omemu et al. [28] reported that pH 4.0 was optimal for amylase production by Aspergillus niger and the same was observed by Gomes et al. [29] for Aspergillus flavus. The last fermentative parameter evaluated in this study was the cultivation time. All parameters defined as optimum in the previous assays were employed for this experiment. Both organisms had statistical significance for the highest enzymatic production at 96 hours of cultivation, at which point 417.2U/g of dry substrate (or 41.72U/mL) for L. ramosa and 144.5U/g of dry substrate (or 14.45U/mL) for T. aurantiacus were obtained (Figure 1(c)). The results showed a considerable decrease in enzymatic activity, after reaching the production peak (Figure 1(c)). This reduction is likely due to the prolonged incubation period, which may have led to (i) nutrient depletion in the culturemedium, (ii) variations in the pH due to themicrobial metabolic activity, or (iii) the presence of proteolytic enzymes [30, 31]. After the optimization of the fermentative process, amy- lase production by L. ramosa rose from 320.4 to 417.2U/g of 4 The Scientific World Journal 50 55 60 65 70 75 80 0 50 100 150 200 250 300 350 D C BB A A A m yl as e a ct iv ity (U /g su bs tr at e) Moisture (%) L. ramosa A Moisture (%) 55 60 65 70 75 80 0 10 20 30 40 50 60 70 D A CD BCB T. aurantiacus A m yl as e a ct iv ity (U /g su bs tr at e) BC (a) L. ramosa A m yl as e a ct iv ity (U /g su bs tr at e) 3 4 5 0 100 200 300 400 B A pH B T. aurantiacus A m yl as e a ct iv ity (U /g su bs tr at e) 3 4 5 pH 0 20 40 60 80 100 A BB (b) L. ramosa 24 48 72 96 120 144 0 100 200 300 400 500 BC B BC A C A m yl as e a ct iv ity (U /g su bs tr at e) Time (hours) D T. aurantiacus A m yl as e a ct iv ity (U /g su bs tr at e) 24 48 72 96 120 144 0 40 80 120 160 C B A B C D Time (hours) (c) Figure 1: Amylase production by L. ramosa and T. aurantiacus by solid-state fermentation in wheat bran. (a) Influence of initial substrate moisture; (b) influence of initial cultivation pH; (c) influence of cultivation time. Average productionwith different letters indicates significant differences according to Tukey test. The Scientific World Journal 5 dry substrate, an increase of approximately 30% (Table 1 and Figure 1(c)). On the other hand, the most notable result was the increase of amylase production of T. aurantiacus from 44.2 to 144.5U/g of dry substrate, representing a gain of more than 200%when compared to the initial cultures (Table 1 and Figure 1(c)). Considering the several studies on amylase production, our results are promising. Bhatti et al. [32] reported the glucoamylase production (about 61.35U/g of dry substrate) when cultivated in Fusarium solani by SSF using wheat bran as substrate. Moreira et al. [25] obtained amylases by SSF using wheat bran as substrate with no additional carbon sources, achieving approximately 350, 240, and 210U/g of dry substrate by the fungi Aspergillus flavus, Aspergillus fumiga- tus, andAspergillus tamari, respectively.The authors reported a 1.5- to 2-fold increase in the production of amylases inwheat bran supplemented with various carbon sources. Kunamneni et al. [24] obtained maximum amylase production (about 534U/g of substrate) after 120 hours in SSF forThermomyces lanuginosus, in wheat bran supplemented with 1% soluble starch. 3.2. Biochemical Characterization of the Amylases Produced by SSF 3.2.1. Effect of pH and Temperature. The amylases produced by both fungi showed optimum activity at pH 6.0 and at 60∘C (Figures 2(a) and 2(b)). The enzymes evaluated in this study showed maximum activity at temperatures higher than those described by Alva et al. [30] for amylases produced by Aspergillus in SSF. This suggests high structural stability of enzymes produced by L. ramosa and T. aurantiacus. However, our results showed similarity to previously published articles. Giannesi et al. [33] reported that amylase obtained from different microbial sourcesmay have optimumpHbetween 4.5 and 7.0.The same authors described 60∘C as the optimum temperature for 𝛼- glucosidase purified from enzymatic extracts of Chaetomium thermophilum var. coprophilum. Both enzymes were stable in a wide pH range. The amy- lase produced by L. ramosamaintained its activity at pH from 3.5 to 10.5 (Figure 2(c)) and the enzymeproduced byT. auran- tiacus was stable at pH 4.5 to 9.5 (Figure 2(c)). According to Michelin et al. [34] the maintenance of enzymatic activity in a wide pH range is an advantage for application in industrial processes, because it requires lower pH adjustments between the sequential treatments of liquefaction and saccharification of starch. The amylase produced by L. ramosa retained its catalytic activity after 1 hour at 55∘C and 75% of its original activity when incubated for the same period at 60∘C (Figure 2(d)). The amylase produced byT. aurantiacus remained stable after 1 hour at 50∘C; when the temperature was raised to 60∘C, the enzyme showed only 25% of its initial activity (Figure 2(d)). The results presented in Figure 2 indicate that the amylase produced by the mesophilic fungus L. ramosa had a higher structural stability compared to the enzyme produced by the thermophilic fungus T. aurantiacus. This characteristic is very appreciable in industrial applications, considering that industrial environment differs significantly from laboratory conditions, in regard to the control of pH and temperature. The structural stability of the enzymes is indispensable to withstand variations in these parameters during different processes. According to Bruins et al. [35], there is no complex structural system that distinguishes a stable protein from another with less stability. Small molecular alterations as the number of hydrogen and disulfide bonds, folding, and hydrophobicity degree of the molecule and the amount of ionic linkages can produce large modifications in the stability of a protein. Although it is not usual to observe high thermostability in enzymes produced by mesophilic microorganisms, results from previous studies support this possibility [18]. Gomes et al. [29] reported thermostability ranging from 10 to 60∘C for amylases produced by Aspergillus flavus (mesophilic) and from 10 to 40∘C for amylases of Thermomyces lanuginosus (thermophilic). 3.2.2. Effect of Ethanol on Enzymatic Activity. Ethanol inhi- bition is a strong trend in the study of certain enzymes, since they can be exposed to substantial concentrations of alcohol for various industrial applications [6]. The results demonstrate that amylase produced by L. ramosa showed residual activity around 65% and T. aurantiacus amylase showed greater than 90% residual activity when incubated at concentrations of 10% ethanol (Figure 3). This data reveals that both enzymes have potential for use in alcoholic fermentation processes derived from starch sources. In conventional alcoholic production processes, con- centrations higher than 10% ethanol are extremely harmful to the fermenters organisms [36]. The increase of catalytic potential by ethanol may be associated with transferase activity, with ethanol being used as an intermediate acceptor by the enzyme; thus, resulting in increased reaction rate [18, 37]. 3.2.3. Enzymatic Hydrolysis of Starch Derived from Several Vegetal Sources. The action of amylolytic enzymes on starch from different vegetal sources was evaluated. Enzymatic extracts showed the highest catalytic potential on corn starch, obtaining 34.94U/mL and 12.26U/mL for amylases produ- ced by L. ramosa and T. aurantiacus, respectively (Figure 4). Differences in the action of amylolytic enzymes may be related to the composition of the starch molecules, in particular, the amylose content and the extent of their chains. The lipid, protein, and mineral levels may also influence the enzyme activity. Another factor that may be related to the susceptibility of starch granules to enzymatic attack is the pore-size present on their surface [38]. The content of amylose and amylopectin varies according to the botanical source, providing specific characteristics to starch, reflecting in the granule architecture and its textural properties [39]. The corn starch has a higher amount of amylose, compared to other starches and consequently lower amylopectin content, favoring enzymatic degradation. The amylopectin exhibits highly ramified structure with high molecular weight, disfavoring the catalytic performance of amylolytic enzymes [40]. 6 The Scientific World Journal 3 4 5 6 7 8 5 10 15 20 25 30 35 A m yl as e a ct iv ity (U /m L) L. ramosa pH 3 4 5 6 7 8 pH 2 4 6 8 10 12 T. aurantiacus A m yl as e a ct iv ity (U /m L) (a) L. ramosa 40 50 60 70 80 15 20 25 30 35 40 45 50 A m yl as e a ct iv ity (U /m L) T. aurantiacus A m yl as e a ct iv ity (U /m L) 2 4 6 8 10 12 14 16 18 40 50 60 70 80 Temperature (∘C) Temperature (∘C) (b) 3 4 5 6 7 8 9 10 11 75 80 85 90 95 100 Re sid ua l a ct iv ity (% ) pH 3 4 5 6 7 8 9 10 11 pH 20 40 60 80 100 Re sid ua l a ct iv ity (% ) L. ramosa T. aurantiacus (c) Figure 2: Continued. The Scientific World Journal 7 30 40 50 60 70 30 40 50 60 70 80 90 100 Re sid ua l a ct iv ity (% ) Temperature (∘C) Re sid ua l a ct iv ity (% ) 10 20 30 40 50 60 70 80 90 100 30 40 50 60 70 Temperature (∘C) L. ramosa T. aurantiacus (d) Figure 2: Effect of pH and temperature on amylase activity of L. ramosa and T. aurantiacus. (a) Amylase activity at different pHs and (b) at different temperatures; (c) amylase residual activity after 24 h at different pHs and (d) after one hour at different temperatures (each data point was the average of two replicate determinations, and the error bars show the data ranges). 0 5 10 15 20 25 30 40 50 60 70 80 90 100 110 120 Re sid ua l a ct iv ity (% ) Ethanol (%) (a) Re sid ua l a ct iv ity (% ) 0 5 10 15 20 25 30 Ethanol (%) 50 60 70 80 90 100 110 120 (b) Figure 3: Effect of ethanol on amylase activity. (a) L. ramosa; (b) T. aurantiacus (each data point was the average of two replicate determinations, and the error bars show the data ranges). 3.2.4. Dextrinization and Saccharification Potential of Enzy- matic Extracts. Comparing the action of enzymatic extracts on the starch molecule by different colorimetric methods, we observed that the enzymatic extract produced by L. ramosa showed high depolymerizing potential (dextriniz- ing activity), resulting in high amount of reducing chain ends (Figures 5(a) and 5(b)), some of which being glucose monomers, measured by glucose oxidasemethod, specific for determining glucose (Figure 5(c)). These results suggest that the enzymatic extract obtained by L. ramosa under the conditions described above shows synergic activity of dextrinizing and saccharifying enzymes (endo and exoamylases production). The synergic action of amylases produced by a single microorganism is not com- monly found. However, previous studies confirm this possi- bility. Silva et al. [41] reported the production of dextriniz- ing and saccharifying enzymes by the filamentous fungus Rhizomucor pusillus. Ezeji and Bahl [42] also reported the potential for producing 𝛼-amylase and glucoamylase by the bacterium Geobacillus thermodenitrificans. The enzymatic extract produced by T. aurantiacus pre- sented low depolymerizing potential (Figure 5(a)). Similar amounts of total reducing sugar (quantified by DNS) and free glucose (glucose oxidase quantified) suggest a predominantly exoamylolytic activity (Figures 5(b) and 5(c)) with glucose monomers as the main product, a typical catalytic property 8 The Scientific World Journal 0 5 10 15 20 25 30 35 Cassava Potato Corn Wheat L. ramosa T. aurantiacus A m yl as e a ct iv ity (U /m L) Substrate sources Figure 4: Enzymatic hydrolysis of starch derived from several vegetal sources (DNSmethod) (each data point was the average of two replicate determinations, and the error bars show the data ranges). L. ramosa T. aurantiacus 0 10 20 30 40 50 60 70 80 A m yl as e a ct iv ity (U /m L) Microorganisms (a) L. ramosa T. aurantiacus Microorganisms 0 5 10 15 20 25 30 35 40 A m yl as e a ct iv ity (U /m L) (b) L. ramosa T. aurantiacus Microorganisms 0 5 10 15 20 25 A m yl as e a ct iv ity (U /m L) (c) Figure 5: Enzymatic modifications of the corn starch molecule. (a) Quantification of dextrinizing activity using the iodometric method (reduction in the starch polymerization degree); (b) quantification of sugars and reducing ends using the DNS method; (c) quantification of glucose using the glucose/oxidase method (each data point was the average of two replicate determinations, and the error bars show the data ranges). The Scientific World Journal 9 of glucoamylase (EC 3.2.1.3) or 𝛼-glucosidase (EC 3.2.1.20). Previous studies confirm these results. Carvalho et al. [43] reported 𝛼-glucosidase production by submerged fermenta- tion of the fungus T. aurantiacus. 4. Conclusions The two examined strains showed potential for amylase pro- duction by SSF, using wheat bran as substrate. However, the production of amylase by L. ramosa was considerably higher, compared to that of T. aurantiacus. The enzyme produced by L. ramosa also showed greater stability at different pHs and temperatures, characteristics that are very appreciable for industrial application. Enzymes of both microorganisms retained their catalytic activities in alcoholic conditions, so they can be applied to processes for obtaining ethanol from starch sources. Another interesting characteristic observed in the enzymatic extract produced by L. ramosa is the synergic potential of liquefaction and saccharification of starch, indicating the presence of endo and exoamylases in its composition. The properties described for amylase obtained from the fungus L. ramosa highlight the importance of this work, considering that this fungal species is still less explored for amylase production. Competing Interests The authors declare that there is no conflict of interests. Acknowledgments The authors acknowledge Conselho Nacional de Desenvolvi- mento Cient́ıfico e Tecnológico (CNPq), Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT), and Coordenação de Aperfeiçoamento Pessoal deNı́vel Superior (CAPES) for finan- cial support. References [1] C. A. Cardona and Ó. J. Sánchez, “Fuel ethanol production: pro- cess design trends and integration opportunities,” Bioresource Technology, vol. 98, no. 12, pp. 2415–2457, 2007. [2] F. Scott, J. Quintero, M.Morales, R. Conejeros, C. Cardona, and G. Aroca, “Process design and sustainability in the production of bioethanol from lignocellulosic materials,” Electronic Journal of Biotechnology, vol. 16, no. 3, pp. 1–16, 2013. [3] S. C. Zeeman, S. M. Smith, and A. M. Smith, “The breakdown of starch in leaves,” New Phytologist, vol. 163, no. 2, pp. 247–261, 2004. [4] S. Mitidieri, A. H. S. Martinelli, A. Schrank, and M. H. Vain- stein, “Enzymatic detergent formulation containing amylase from Aspergillus niger: a comparative study with commercial detergent formulations,” Bioresource Technology, vol. 97, no. 10, pp. 1217–1224, 2006. [5] S. Sivaramakrishnan, D. Gangadharan, K. M. Nampoothiri, C. R. Soccol, and A. Pandey, “𝛼-Amylases from microbial sour- ces—an overview on recent developments,” Food Technology and Biotechnology, vol. 44, no. 2, pp. 173–184, 2006. [6] A. P.A. deOliveira,M.A. Silvestre,H. F.Alves-Prado et al., “Bio- prospecting of yeasts for amylase production in solid state fer- mentation and evaluation of the catalytic properties of enzy- matic extracts,” African Journal of Biotechnology, vol. 14, no. 14, pp. 1215–1223, 2015. [7] S. Özdemir, F. Matpan, K. Güven, and Z. Baysal, “Production and characterization of partially purified extracellular ther- mostable 𝛼-amylase by bacillus subtilis in submerged fermenta- tion(SmF),” Preparative Biochemistry and Biotechnology, vol. 41, no. 4, pp. 365–381, 2011. [8] S. Tiwari, N. Shukla, P.Mishra, andR.Gaur, “Enhanced produc- tion and characterization of a solvent stable amylase from solvent tolerant Bacillus tequilensis RG-01: thermostable and surfactant resistant,” Scientific World Journal, vol. 2014, Article ID 972763, 11 pages, 2014. [9] E. Romero, J. Bautista, A. M. Garćıa-Martinez, O. Cremades, and J. Parrado, “Bioconversion of corn distiller’s dried grains with solubles (CDDGS) to extracellular proteases and pep- tones,” Process Biochemistry, vol. 42, no. 11, pp. 1492–1497, 2007. [10] A. Pandey, “Solid-state fermentation,” Biochemical Engineering Journal, vol. 13, no. 2-3, pp. 81–84, 2003. [11] R. R. Singhania, A. K. Patel, C. R. Soccol, andA. Pandey, “Recent advances in solid-state fermentation,” Biochemical Engineering Journal, vol. 44, no. 1, pp. 13–18, 2009. [12] C. A. D. A. Silva, M. P. F. Lacerda, R. S. R. Leite, and G. G. Fonseca, “Production of enzymes from Lichtheimia ramosa using Brazilian savannah fruit wastes as substrate on solid state bioprocessess,” Electronic Journal of Biotechnology, vol. 16, no. 5, 2013. [13] R. R. Singhania, R. K. Sukumaran, A. K. Patel, C. Larroche, and A. Pandey, “Advancement and comparative profiles in the pro- duction technologies using solid-state and submerged fermen- tation for microbial cellulases,” Enzyme and Microbial Technol- ogy, vol. 46, no. 7, pp. 541–549, 2010. [14] P. D. S. Delabona, R. D. P. B. Pirota, C. A. Codima, C. R. Trema- coldi, A. Rodrigues, and C. S. Farinas, “Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: biomass-degrading enzymes pro- duction and characterization,” Industrial Crops and Products, vol. 42, no. 1, pp. 236–242, 2013. [15] F. A. Gonçalves, R. S. R. Leite, A. Rodrigues, E. J. S. Argandoña, and G. G. Fonseca, “Isolation, identification and characteriza- tion of a novel high level 𝛽-glucosidase-producing Lichtheimia ramosa strain,” Biocatalysis and Agricultural Biotechnology, vol. 2, no. 4, pp. 377–384, 2013. [16] C. Merheb-Dini, H. Cabral, R. S. R. Leite et al., “Biochemical and functional characterization of a metalloprotease from the thermophilic fungus Thermoascus aurantiacus,” Journal of Agricultural and Food Chemistry, vol. 57, no. 19, pp. 9210–9217, 2009. [17] G. L. Miller, “Use of dinitrosalicylic acid reagent for determina- tion of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959. [18] R. S. R. Leite, H. F. Alves-Prado, H. Cabral, F. C. Pagnocca, E. Gomes, and R. Da-Silva, “Production and characteristics comparison of crude 𝛽-glucosidases produced by microorgan- isms Thermoascus aurantiacus e Aureobasidium pullulans in agricultural wastes,” Enzyme and Microbial Technology, vol. 43, no. 6, pp. 391–395, 2008. [19] H. Fuwa, “A new method for microdetermination of amylase activity by the use of amylose as the substrate,” Journal of Biochemistry, vol. 41, no. 5, pp. 583–603, 1954. 10 The Scientific World Journal [20] P. Pongsawadi and M. Yagisawa, “Screening and identification of a cyclomaltoxtrinv glucanotransferase-producing bacteria,” Journal of Fermentation Technology, vol. 65, no. 4, pp. 463–467, 1987. [21] H. U. Bergmeyer and E. Bernt, Methods of Enzymatic Analysis, Verlag Chemie, New York, NY, USA, 1974. [22] E. S. Dias, É. M. Koshikumo, R. F. Schwan, and R. d. Silva, “Cul- tivo do cogumelo Pleurotus sajor-caju em diferentes reśıduos agŕıcolas,”Ciência e Agrotecnologia, vol. 27, no. 6, pp. 1363–1369, 2003. [23] M. A. Haque, M. Shams-Ud-Din, and A. Haque, “The effect of aqueous extracted wheat bran on the baking quality of biscuit,” International Journal of Food Science and Technology, vol. 37, no. 4, pp. 453–462, 2002. [24] A. Kunamneni, K. Permaul, and S. Singh, “Amylase production in solid state fermentation by the thermophilic fungus Ther- momyces lanuginosus,” Journal of Bioscience and Bioengineering, vol. 100, no. 2, pp. 168–171, 2005. [25] F. G. Moreira, V. Lenartovicz, C. G. M. De Souza, E. P. Ramos, andR.M. Peralta, “Theuse of𝛼-methyl-d-glucoside, a synthetic analogue of maltose, as inducer of amylase by Aspergillus sp in solid-state and submerged fermentations,” Brazilian Journal of Microbiology, vol. 32, no. 1, pp. 15–19, 2001. [26] U. Hölker, M. Höfer, and J. Lenz, “Biotechnological advantages of laboratory-scale solid-state fermentation with fungi,”Applied Microbiology andBiotechnology, vol. 64, no. 2, pp. 175–186, 2004. [27] F. D. H. Dalsenter, G. Viccini, M. C. Barga, D. A. Mitchell, and N. Krieger, “A mathematical model describing the effect of temperature variations on the kinetics of microbial growth in solid-state culture,” Process Biochemistry, vol. 40, no. 2, pp. 801– 807, 2005. [28] A. M. Omemu, I. Akpan, M. O. Bankole, and O. D. Teniola, “Hydrolysis of raw tuber starches by amylase ofAspergillus nı́ger AM07 isolated from the soil,” African Journal of Biotechnology, vol. 4, no. 1, pp. 19–25, 2005. [29] E. Gomes, S. R. De Souza, R. P. Grandi, and R. D. Silva, “Production of thermostable glucoamylase by newly isolated Aspergillus flavus a 1.1 and Thermomyces lanuginosus a 13.37,” Brazilian Journal of Microbiology, vol. 36, no. 1, pp. 75–82, 2005. [30] S. Alva, J. Anupama, J. Savla et al., “Production and character- ization of fungal amylase enzyme isolated from Aspergillus sp. JGI 12 in solid state culture,” African Journal of Biotechnology, vol. 6, no. 5, pp. 576–581, 2007. [31] S. Shafique, R. Bajwa, and S. Shafique, “Screening of Aspergillus niger and A. Flavus strains for extra cellular alpha-amylase activity,” Pakistan Journal of Botany, vol. 41, no. 2, pp. 897–905, 2009. [32] H. N. Bhatti, M. H. Rashid, R. Nawaz, M. Asgher, R. Perveen, and A. Jabbar, “Optimization of media for enhanced glucoamy- lase production in solid-state fermentation by Fusarium solani,” Food Technology and Biotechnology, vol. 45, no. 1, pp. 51–56, 2007. [33] G. C. Giannesi,M. L. T.M. Polizeli, H. F. Terenzi, and J. A. Jorge, “A novel 𝛼-glucosidase from Chaetomium thermophilum var. coprophilum that converts maltose into trehalose: purification and partial characterisation of the enzyme,” Process Biochem- istry, vol. 41, no. 8, pp. 1729–1735, 2006. [34] M. Michelin, R. Ruller, R. J. Ward et al., “Purification and bio- chemical characterization of a thermostable extracellular glu- coamylase produced by the thermotolerant fungusPaecilomyces variotii,” Journal of Industrial Microbiology and Biotechnology, vol. 35, no. 1, pp. 17–25, 2008. [35] M. E. Bruins, A. E.M. Janssen, and R.M. Boom, “Thermozymes and their applications: A review of recent literature and patents,” Applied Biochemistry and Biotechnology—Part A: Enzyme Engi- neering and Biotechnology, vol. 90, no. 2, pp. 155–186, 2001. [36] Y. Gu,M. Qiao, Q. Zhou, Z. Zhou, and G. Chen, “Hyperproduc- tion of alcohol using yeast fermentation in highly concentrated molasses medium,” Tsinghua Science and Technology, vol. 6, no. 3, pp. 225–230, 2001. [37] M. A. Villena, J. F. U. Iranzo, S. B. Gundllapalli, R. R. C. Otero, and A. I. B. Pérez, “Characterization of an exocellular 𝛽-gluco- sidase from Debaryomyces pseudopolymorphus,” Enzyme and Microbial Technology, vol. 39, no. 2, pp. 229–234, 2006. [38] K.C.Huber and J.N. Bemiller, “Channels ofmaize and sorghum starch granules,” Carbohydrate Polymers, vol. 41, no. 3, pp. 269– 276, 2000. [39] D. J. Thomas andW. A. Atwell, Starches: Practical Guides for the Food Industry, Eagan Press Handbook, Eagan Press, St. Paul, Minn, USA, 1999. [40] R. Cruz, E. L. de Souza, E. H. E. Hoffmann, M. Z. Bellini, V. D. Cruz, and C. R. Viéıra, “Relationship between carbon source, production and pattern action of 𝛼-amilase from Rhizopus sp,” Revista de Microbiologia, vol. 28, no. 2, pp. 101–105, 1997. [41] T. M. Silva, D. Attili-Angelis, A. F. A. Carvalho, R. Da Silva, M. Boscolo, and E. Gomes, “Production of saccharogenic and dextrinogenic amylases byRhizomucor pusillusA 13.36,” Journal of Microbiology, vol. 43, no. 6, pp. 561–568, 2005. [42] T. C. Ezeji and H. Bahl, “Purification, characterization, and synergistic action of phytate-resistant 𝛼-amylase and 𝛼𝛼- glucosidase fromGeobacillus thermodenitrificansHRO10,” Jour- nal of Biotechnology, vol. 125, no. 1, pp. 27–38, 2006. [43] A. F. A. Carvalho, M. Boscolo, R. da Silva, H. Ferreira, and E. Gomes, “Purification and characterization of the 𝛼-glucosidase produced by thermophilic fungus Thermoascus aurantiacus CBMAI 756,” Journal of Microbiology, vol. 48, no. 4, pp. 452– 459, 2010. Submit your manuscripts at http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Anatomy Research International Peptides International Journal of Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com International Journal of Volume 2014 Zoology Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Molecular Biology International Genomics International Journal of Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Bioinformatics Advances in Marine Biology Journal of Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Signal Transduction Journal of Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 BioMed Research International Evolutionary Biology International Journal of Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Biochemistry Research International Archaea Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Genetics Research International Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Advances in Virolog y Hindawi Publishing Corporation http://www.hindawi.com Nucleic Acids Journal of Volume 2014 Stem Cells International Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Enzyme Research Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Microbiology