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PACS 98.80.-k – Cosmology

Abstract – We investigate the influence of massive photons on the evolution of the expanding uni-
verse. Two particular models for generalized electrodynamics are considered, namely de Broglie-
Proca and Bopp-Podolsky electrodynamics. We obtain the equation of state (EOS) P = P (ε) for
each case using dispersion relations derived from both theories. The EOS are inputted into the
Friedmann equations of a homogeneous and isotropic space-time to determine the cosmic scale
factor a(t). It is shown that the photon non-null mass does not significantly alter the result
a ∝ t1/2 valid for a massless photon gas; this is true either in de Broglie-Proca’s case (where
the photon mass m is extremely small) or in Bopp-Podolsky theory (for which m is extremely
large).

Copyright c© EPLA, 2017

Introduction. – Physical cosmology assumes a homo-
geneous and isotropic universe in very large scales [1].
These symmetry requirements lead to major simplifica-
tions on Einstein’s equations of general relativity [2],
which reduce to the so-called Friedmann and conservation
equations

(
ȧ

a

)2

=
8πG

3
ε, (1)

dε

da
+

3
a
(P + ε) = 0, (2)

where a = a(t) is the scale factor, a function of cosmic
time t related to distances in the cosmos. (The dot on top
of variables denotes a time derivative.) We are neglect-
ing the cosmological constant (Λ = 0), the spatial section
of space-time is taken as flat (the curvature parameter
is taken as null, κ = 0) and G stands for the Newto-
nian gravitational constant. ε is the energy density asso-
ciated with the matter energy content assumed to fill the
universe.

Baryonic matter is usually described as an incoher-
ent set of particles respecting the dust-like equation of

state (EOS), with null pressure: P = 0. Radiation is
treated as a thermalized massless photon gas in accordance
with Maxwell electrodynamics; then, blackbody statistical
mechanics [3] gives P = ε/3 for the EOS of the radiation
content. The substitution of these two EOS into (2) leads
to ε ∝ a−3 and ε ∝ a−4 for matter and radiation, re-
spectively. Inserting these formulas of ε = ε(a) into (1)
results in the dynamics a ∝ t2/3 for dust and a ∝ t1/2 in
the case of radiation. This means that, in an expanding
universe, the contribution from radiation is energetically
more relevant in the early universe, whereas baryonic mat-
ter is comparatively more important to cosmic dynamics
(i.e. the time evolution of the scale factor) at later times.
One might ask how this whole picture would change if,
instead of being massless as in Maxwell electrodynamics,
the photon had a mass. The present paper is an attempt
to address this point.

Naturally, the relevance of this question is deeply
connected to the importance one gives alternatives to
the standard theory of electromagnetism. Maxwell’s
theory has been remarkably well tested through a
plethora of experiments and observations [4,5]. Mod-
ifications to Maxwellian electromagnetism, such as
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de Broglie-Proca [6–9] and Bopp-Podolsky [10–12] the-
ories, introduce a non-null mass for the photon1. Should
this mass have consequences for cosmic dynamics which
are detectable, then cosmological observations could be an
instrument to set constraints on the value of the photon
mass and, at the same time, serve as a testing ground for
the standard and alternative theories of electromagnetism.

de Broglie-Proca field equations are the simplest rel-
ativistic way to introduce mass in electromagnetism [4]
since the vector potential Aμ(x) respects a Klein-Gordon
equation; moreover, the Wentzel-Pauli Lagrangian [13,14]
leading to de Broglie-Proca electromagnetism presents no
additional derivative terms on Aμ besides those making up
the field strength Fμν —see section “de Broglie-Proca cos-
mology” below. Experimental constraints on the mass of
the de Broglie-Proca photon are very restrictive; they are
given in [4,5,15–17] and demand it to be extremely small.
The Stueckelberg field [18,19] does not bear higher-order
derivative terms in its field equations and has the addi-
tional feature of preserving gauge invariance; however one
pays the price of introducing an extra scalar field B(x).
Generalizations of de Broglie-Proca’s and Stueckelberg’s
approaches are available today; see e.g. [20] and references
therein.

Podolsky’s Generalized Electrodynamics [11,21] differs
from the previous cases by exhibiting derivative couplings.
Bopp-Podolsky action includes derivatives of Fμν , a fact
that leads to field equations for the vector potential with
order higher than two —cf. section “Bopp-Podolsky cos-
mology”. These additional terms were introduced to
make the resulting generalized quantum electrodynamics
(GQED) regular in the first order [21]. Moreover, in Bopp-
Podolsky the extra term generates a massive mode which
preserves the U(1) gauge invariance without the necessity
of introducing new fields. Literature offers references with
classical [22] and quantum [23–25] developments of Bopp-
Podolsky’s proposal; some of those works impose bounds
on the massive Bopp-Podolsky photon [26–28].

The above generalizations of Maxwell electromag-
netism may be classified as linear theories. Conversely,
there are non-linear electrodynamics (NLED) [29] com-
ing from Euler-Heisenberg [30,31] and Born-Infeld [32,33]
Lagrangians. NLED are a clear example of how impor-
tant modifications to Maxwell electromagnetism can be
to cosmology: they may offer an explanation to accelerat-
ing universe [34,35], generate bouncing [36] and produce
cyclic universes [37,38].

Some attempts have been made to investigate the in-
fluence of massive photons in cosmology in the context of
the generalized Proca electrodynamics [39–41] and Bopp-
Podolsky theory [42]; however, these approaches were im-
plemented via field theory. As far as these authors are

1The approach by Bopp and Podolsky is based on modifying the
ordinary Lagrangian of electrodynamics. Landé contribution had
a different motivation —namely to address the problem of electron
self-energy— but he himself soon realized the equivalence between
his proposal and the one by Bopp.

aware, none of the mentioned works address this problem
through a thermodynamical approach, using EOS built
from the statistical treatment of the massive photon gas.
That is what we perform in the following sections.

de Broglie-Proca cosmology. – The Lagrangian of
de Broglie-Proca electrodynamics in vacuum is

L = −1
4
FμνFμν +

1
2
m2AμAμ, (3)

where
Fμν = ∂μAν − ∂νAμ. (4)

The massive term in eq. (3) violates gauge invariance
which makes it arguably the introduction of the field
strength (4) in a deductive way as done in [43]. Never-
theless, the photon mass m is admittedly small so that de
Broglie-Proca term is a correction to Maxwell’s theory; in
fact, experimental constraints set [15,16]2:

m ≤ 10−18 eV (de Broglie-Proca). (5)

From the de Broglie-Proca Lagrangian we obtain the
following vacuum field equations:

∂μFμν + m2Aν = 0. (6)

Applying ∂ν to eq. (6) and using the antisymmetry prop-
erty of Fμν , one checks that de Broglie-Proca field satisfies

∂μAμ = 0, (7)

which is the ordinary Lorenz condition. This relation is a
constraint reducing the degrees of freedom of the theory
to three.

Using (7), the equations of motion (6) may be written
in terms of the potential Aμ:(

� + m2) Aμ = 0. (8)

Then, by means of a Fourier transform,

Aμ(x) =
1

(2π)4

∫
Āμ(k)e−ikνxν

d4x, (9)

one obtains the dispersion relation

kμkμ = m2 ⇒ ω2 = m2 + p2, (10)

where k0 = ω and pi = ki in units, where c = � = 1.
The de Broglie-Proca field is a vector boson. Due to this

nature, the canonical partition function associated with
the massive photon gas is [3]

ln Z = − g

(2π)3

∫
d3x

∫
d3p ln

(
1 − e−βω

)

= −g

2
m2

π2 V

∞∑
k=1

K2(kβm)
k2β

, (11)

where g is the number of internal degrees of freedom, the
parameter β = 1

T is the inverse of the temperature T (in
units of normalized Boltzmann constant, kB = 1), K2 is

2Reference [44] shows that the result in [15] is partly speculative.
However, even if the constraint is as high as m � 10−13 eV the
conclusions presented here would essentially remain the same.
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the modified Bessel function of the second kind [45] and
V is the volume occupied by the gas.

The partition function Z(β, V ; m) is a key ingredient for
obtaining the energy density ε and the pressure P of the
massive photon gas [3]:

ε = − 1
V

∂

∂β
ln Z and P =

1
β

∂

∂V
ln Z . (12)

By substituting (11) into (12), one calculates

P =
g

2
m4

π2

∞∑
k=1

K2(kβm)
(kβm)2

, (13)

and

ε − 3P =
g

2
m4

π2

∞∑
k=1

K1(kβm)
(kβm)

. (14)

Notice that K1(z) � z−1 for z � 1. Therefore, eq. (14)
leads to P = 1

3ε in the limit as m → 0, which is the
expected result for the blackbody radiation of a massless
photon gas as in Maxwell electrodynamics.

Let us now turn to the study of the cosmic dynamics
for a de Broglie-Proca photon gas.

In order to solve eq. (2) one requires an equation of
state. However, it is clear that we cannot analytically in-
vert eq. (14) for obtaining β = β(ε), which would be, in
turn, substituted into (13) leading to P = P (ε). There-
fore, there is no analytical function ε = ε(a) to be in-
serted into the Friedmann equation (1) which would be
integrated to give a = a(t). Of course, we could solve
the pair of equations for cosmology (1), (2) along with
the constitutive equations (13), (14) for de Broglie-Proca
electrodynamics numerically. Nevertheless, it is possible
to obtain approximated analytic solutions in the limits as
βm � 1 or βm � 1 which are physically meaningful.

The property

K2(z) � 2
z2 − 1

2
(z � 1) (15)

is useful to analyze the limit βm � 1. In this case, pres-
sure and energy density for a de Broglie-Proca photon gas
assume the following simple forms:

P � 1
3

(
π2

15
1
β4

)
g

2

(
1 − 3

5
4

1
π2 (βm)2

)
(βm � 1), (16)

ε �
(

π2

15
1
β4

)
g

2

(
1 − 5

4
1
π2 (βm)2

)
(βm � 1) . (17)

Equation (17) can be promptly inverted and substituted
into (16) to give

P � ε

3

(
1 − 4

M2
√

ε

)
(βm � 1), (18)

where

M2 = M2(m) ≡ 1
6

√
15
π2

√
g

2
m2

4
(de Broglie-Proca).

(19)

It is worth noting that M2√
ε

� 1, since βm � 1. By
substituting (18) into (2), it results in

dε

da
+

4
a
ε

(
1 − M2

√
ε

)
= 0, (20)

which is immediately integrated to give:

ε(a) = ε0

(a0

a

)4
[
1 − M2

√
ε0

(
1 − a2

a2
0

)]2

(βm � 1),

(21)
under the integration condition ε(a0) = ε0 and taking a0
as an arbitrary fixed value of the scale factor, such as its
present-day value. Equation (21) is the same as expected
for a radiation gas in standard cosmology plus a correction
due to the (small) value of the de Broglie-Proca mass. The
last step in the cosmological analysis is to substitute (21)
in the Friedmann equation (1) and integrate the resulting
differential equation. This leads to

a � a0

{
1 + 2H0(t − t0)

[
1 +

M2

√
ε0

H0(t − t0)
]}1/2

(22)

(βm � 1), with the initial condition a(t0) = a0 and H0 =√
8πGε0/3 is the Hubble function H = ȧ/a calculated

at the time t = t0. Solution (22) is precisely the scale
factor for the standard radiation era plus a small extra
term which depends on m.

The maximum possible mass value for the photon in de
Broglie-Proca theory allowed by experimental constraints
is m = 10−18 eV, cf. [16]. This means that the con-
dition βm � 1 is consistent with temperatures rang-
ing from extremely high values till values of the order
TP ∼ 10−18 eV ∼ 10−14 K, corresponding to the distant
future universe. In fact, the temperature and the scale
factor are roughly inversely proportional, so that

aP

a0
∼ T0

TP
⇒ aP ∼ 1014a0. (23)

is the estimate for the scale factor above which the in-
fluence of de Broglie-Proca mass in cosmology is appre-
ciable. (T0 � 2.73 K is the cosmic microwave background
radiation temperature today.) The bottom line is that the
condition βm � 1 applies whenever a � 1014a0, i.e., for
all values of a less than 1014 the present-day scale factor,
the influence of de Broglie-Proca mass in cosmic dynam-
ics is negligible: this encompasses all the period from the
primeval universe up to the present and towards the dis-
tant future. This conclusion is confirmed by the study of
the theory in the other limit for βm, below.

For the limit βm � 1, the convenient asymptotic form
for the modified Bessel functions is

K1(z) � K2(z) �
√

π

2z
e−z (z � 1). (24)

By substituting this result in eqs. (13) and (14) and keep-
ing only the first term in the sums over index k, one gets:

P � g

2
1
β4

(βm)3/2
√

2π3
e−βm (βm � 1), (25)
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ε � g

2
1
β4

(βm)5/2
√

2π3
e−βm (βm � 1), (26)

so that the equation of state is

P

ε
� 1

βm
(βm � 1). (27)

Therefore, P � ε in the limit βm � 1 and one can adopt
the dust approximation for incoherent particles: P � 0.
As a consequence, eqs. (1), (2) lead to

ε = ε0

(a0

a

)3
and a ∼ t2/3 (βm � 1), (28)

which are the equations for non-relativistic matter in
cosmology.

Notice that the condition βm � 1 is violated for values
of β which cannot compensate the extremely small value
of m. Hence, the condition is consistent with high values
of β, or conversely small values of T , namely T ∼ TP .
Thus, in the limit βm � 1 we are dealing with the distant
future universe, far larger than aP .

From all the discussion above, we notice that the energy
density of the massive photon in the de Broglie-Proca the-
ory is either practically the same as the massless photon
of the Maxwell theory (ε ∼ a−4) or it scales as the en-
ergy density of ordinary and dark matter (ε ∼ a−3). On
the other hand, baryonic and dark matter are much more
abundant than radiation today. Therefore the influence of
the de Broglie-Proca electrodynamics is negligible for the
cosmic dynamics.

Bopp-Podolsky cosmology. – Podolsky’s general-
ized electrodynamics is derived from the Lagrangian

L = −1
4
FμνFμν +

a2

2
∂μFμν∂ρF

ρ
ν , (29)

where the field strength Fμν is defined in (4). Unlike de
Broglie-Proca’s case, this theory is completely consistent
with Utiyama’s procedure for building a gauge theory from
a symmetry requirement [46].

The field equation in the absence of sources is(
1 + a2�

)
∂μFμν = 0. (30)

When one writes (30) in terms of Aμ and uses the gener-
alized Lorenz gauge condition [47](

1 + a2�
)
∂μAμ = 0, (31)

it results in (
1 + a2�

)
�Aμ = 0. (32)

The r.h.s. of this equation equals the four-current jμ if
there are sources. Using (9), eq. (32) implies two indepen-
dent dispersion relations for the Bopp-Podolsky photon:

kμkμ = 0 ⇒ ω2 = p2, (33)

and
1 − a2kμkμ = 0 ⇒ ω2 =

1
a2 + p2. (34)

The first dispersion relation is the one typical of a massless
photon and the second one is the same as (10) under the
identification

m2 =
1
a2 . (35)

Equations (34), (35) are the reason for attributing a non-
zero mass to the Bopp-Podolsky photon. In fact, if the
Bopp-Podolsky term in the Lagrangian is supposed to rep-
resent only a correction to Maxwell electrodynamics, then
the coupling constant a should be very small, i.e., the
Bopp-Podolsky photon mass m should be very large. Con-
sequently, one might expect a Bopp-Podolsky–type pho-
ton gas to be relevant for the cosmic dynamics of the early
universe, when the mean energy is high enough to access
the massive mode for the photon. One of the goals of this
paper is to check this hypothesis.

Equations (33) and (34) also show the separation of the
Bopp-Podolsky theory into a massless mode (Maxwell)
and a massive mode (a de Broglie-Proca–type dispersion
relation except for the hugeness of the mass). As a conse-
quence, the partition function for a Bopp-Podolsky pho-
ton gas will bare two terms, each one related to a different
mode:

ln Z = − gMV

(2π)3

∫
d3p ln

(
1 − e−βp)

− gV

(2π)3

∫
d3p ln

(
1 − e−β

√
p2+m2

)
. (36)

The first term of the r.h.s. is the ordinary partition func-
tion for the massless photon of Maxwell electrodynam-
ics with helicity two, meaning gM = 2 for the number
of internal degrees of freedom. The second term of the
r.h.s. of eq. (36) is the de Broglie-Proca–like contribution
—compare with eq. (11). In spite of the presence of a de
Broglie-Proca–like term in the thermodynamics of Bopp-
Podolsky massive photon gas, one should not expect the
same consequences derived in the previous section to hold
here. There is a crucial difference concerning the pho-
ton mass: for Bopp-Podolsky’s case m � 1, whilst in de
Broglie-Proca’s case m � 1. Moreover, the assumption
g = 3 for the massive sector of the Bopp-Podolsky theory
is consistent with blackbody radiation measurements.

The first integral in eq. (36) is found in standard text-
books on statistical mechanics, see, e.g., [3]; the second
integral was solved in the section “de Broglie-Proca cos-
mology”. Hence, the Bopp-Podolsky partition function is

ln Z =
π2

45
V

β3 +
g

2
m3

π2 V (βm)
∞∑

k=1

K2(kβm)
(kβm)2

. (37)

Equations (12) and (37) lead to

P =
π2

45β4

[
1 + 45

g

2
(βm)4

π4

∞∑
k=1

K2(kβm)
(kβm)2

]
, (38)

and

ε − 3P =
g

2
m4

π2

∞∑
k=1

K1(kβm)
(kβm)

. (39)
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Fig. 1: (Colour online) Plot of ε/εM as a function of the pa-
rameter βm. It is assumed that the degeneracy degree of the
Bopp-Podolsky radiation is g = 3. The energy density of the
Bopp-Podolsky massive photon gas tends to the ordinary en-
ergy density of a massless photon gas as βm assumes values
larger than ∼10.

Notice that eqs. (14) and (39) for the energy density of
de Broglie-Proca and Bopp-Podolsky theories are formally
the same. However, the values for ε(β, m) will not be the
same since the pressures in eqs. (13) and (38) are different.

Equation (39) may be written as

ε = εM (1 + δε) , (40)

where

εM =
π2

15
1
β4 (41)

is the energy density of a Maxwellian massless photon gas
and

δε = 15
g

2
(βm)4

π4

∞∑
k=1

[
K1(kβm)
(kβm)

+ 3
K2(kβm)

(kβm)2

]
(42)

is the correction due to Bopp-Podolsky mass.
Figure 1 shows the plot of ε/εM as a function of

the dimensionless parameter βm. It is assumed g = 3
for the Bopp-Podolsky photon gas. One notices that
δε approaches g/2 as βm approaches zero, so that
limβm→0(ε/εM ) = 2.5 —see eqs. (40) and (42). The same
plot also shows that δε is negligible for large values of
βm once the curve for ε/εM approaches 1 from βm ∼ 10
(a condition that is guaranteed for a temperature ten times
smaller than the rest mass of the Bopp-Podolsky photon).
Reference [28] sets the most restrictive limit for the mass
of the photon in the Podolsky generalized electrodynamics
known today, namely

m � 3.7 × 1010 eV � 1014 K (Bopp-Podolsky); (43)

this is the scale of energy where one expects δε being rele-
vant. This energy scale corresponds to the early universe,
way before the quark-gluon deconfinement. The primeval
universe is consistent with the regime where βm � 1 in
the Bopp-Podolsky theory. This limit and its implication
to cosmology are analyzed below.

Equation (37) may be simplified in the limit βm � 1.
The resulting expression for ln Z(V, β; m) is then substi-
tuted into eq. (12) yielding

P � 1
3

(
π2

15
1
β4

) [
1 +

g

2

(
1 − 15

4π2 (βm)2
)]

(βm � 1),

(44)

ε �
(

π2

15
1
β4

) [
1 +

g

2

(
1 − 5

4π2 (βm)2
)]

(βm � 1),

(45)
which are similar to, but not equal to, eqs. (16), (17) since
they include the Maxwellian contribution to the terms
coming from the massive photon.

By inverting eq. (45) and substituting the result in (44),
one gets

P � ε

3

(
1 − 4

M2
√

ε

)
(βm � 1), (46)

if one defines

M2 = M2(m) ≡ 1
6

√
15
π2

g
2√

1 + g
2

m2

4
(Bopp-Podolsky).

(47)
Equation (46) is formally the same as eq. (18), the differ-
ence being the definition of the parameter M : compare
eqs. (47) and (19) keeping in mind that m is very large in
the Bopp-Podolsky electrodynamics while it is very small
in the Proca case. This fact guarantees that the steps
to calculate a(t) for the Bopp-Podolsky radiation are the
same as the ones previously followed in de Broglie-Proca’s
case, cf. sentences containing eqs. (20)–(22). Therefore,
the scale factor for a Bopp-Podolsky photon gas in the
high-energy regime is3:

a(t) � a0

{
1 + 2H0(t − t0)

[
1 +

M2

√
ε0

H0(t − t0)
]}1/2

(48)
(βm � 1), just like in de Broglie-Proca’s future uni-
verse —see eq. (22) and the interpretation below it.
Equation (48) essentially means that Bopp-Podolsky mas-
sive photons may not produce sensible effects in cosmic
dynamics. This will be confirmed in the following analysis
of the non-approximate solution to Friedmann equations.

The ratio of eqs. (38) and (39) leads to the parameter
of the barotropic equation of state

w =
P

ε
=

1
3

1
(1 + f)

, (49)

where

f = f(βm) =
g
30 (βm)4

∑∞
k=1

K1(kβm)
kβm

1 + g
10 (βm)4

∑∞
k=1

K2(kβm)
(kβm)2

(50)

is the function distinguishing the Maxwellian result (P =
ε/3; f = 0) from the Bopp-Podolsky electrodynamics.
Figure 2 shows the plot for w = w(βm).

3In eq. (48), a(t0) = a0 cannot be interpreted as the value of the
scale factor today because a(t) is valid for the early universe.
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Fig. 2: (Colour online) Plot of w as a function of the parameter
βm. The dashed line corresponds to w = 1/3 as expected for a
massless photon gas. The continuous line exhibits the behavior
of the EOS parameter w for the Bopp-Podolsky theory with
g = 3; in this case, w is the minimum for βm equal to 2.899.

The Maxwell equation-of-state parameter w = wM =
1/3 is recovered for both βm → 0 (i.e., βm � 1) and
βm � 1; this means that the presence of the massive
photon cannot sensitively alter the cosmic dynamics ei-
ther in the distant past or in the present/future. In the
distant past (βm � 1) the mean thermal energy of the
universe is much greater than the rest energy of the mas-
sive photon, and the Bopp-Podolsky photon behaves as
an ultra-relativistic particle. In the other limit, the con-
dition βm � 1 is satisfied whenever the photon mass is
much greater than the temperature T = β−1; this is a
condition fulfilled by the present-day universe whose tem-
perature is T0 � 2.73 K � 2.35 × 10−4 eV while m is
3.70 × 1010 eV at least —ref. [28]. In spite of the equiv-
alence Maxwell-Podolsky concerning the parameter w in
the limits βm � 1 and βm � 1, it is worth mentioning
that this is not the case for the energy density: ε → εM

when βm � 1, but ε → (5/2)εM if βm → 0, cf. fig. 1.
The maximum influence of Bopp-Podolsky massive pho-

tons to the equation of state corresponds to the minimum
of the curve w(βm) in fig. 2: wmin � 0.282 for βm � 2.899,
when the mass is about three times the value of the mean
thermal energy of the universe. At this value of βm

Δw

wM
=

wM − wmin

wmin
� 15.4%

and the universe attains its minimum deceleration com-
pared to the one achieved by a massless photon gas. This
is true once ä/a ∝ (1 + 3w), as one can easily show from
eqs. (1), (2) and P = wε.

Final remarks. – This paper analyzes the effects that
a massive photon accommodated by de Broglie-Proca and
Bopp-Podolsky theories could produce on cosmic dynam-
ics. The approach is based on the hypothesis of thermal
equilibrium which allows the construction of an equation
of state for the massive photon gas in each case. It was
shown that a barotropic equation of state P �= ε/3 is pro-
duced; this is true for both de Broglie-Proca and Bopp-
Podolsky electrodynamics. (This is different from what

happens for non-linear electrodynamics in a background
field, where P = ε/3 is preserved [48] and no new cos-
mological phenomenon appears.) However, the departure
of the EOS from a Maxwellian form does not guarantee a
significant modification in the functional form of the scale
factor a ∝ t1/2 typical of massless radiation.

In particular, the effect of a de Broglie-Proca photon
mass is completely negligible for cosmic dynamics when
one considers the more realistic context where dark mat-
ter and dark energy are present. In fact, as shown in the
section “de Broglie-Proca cosmology”, from the early uni-
verse until a future where afuture = 1012a0, de Broglie-
Proca’s radiation behaves approximately as Maxwell’s:
ε ∼ a−4. In addition, observations [49] show that the en-
ergy density of radiation (εγ) in the present-day universe
is ten thousand times smaller then the matter energy den-
sity (εm) today, i.e., εγ0 ∼ 10−4εm0, regardless of the
nature of the cosmic photon gas (either massive or mass-
less). Thus, in a future where the scale factor amounts
to afuture, one estimates εγ,future � 10−16εm,future because
εm ∼ a−3: this makes radiation dynamically irrelevant in
the face of matter.

If one insists on advancing even further towards the
future, considering a > afuture, the de Broglie-Proca mass
begins to take its toll; εγ slowly modifies its functional
dependence on the scale factor, evolving from a−4 to
a−3 in the future infinity. In this regime (a � 1014a0)
radiation behaves as non-relativistic, but with an initial
condition where the radiation energy density is 16 orders
of magnitude smaller than the matter energy density.
Consequently, matter utterly dominates radiation. The
situation is deeply aggravated in the presence of some
type of dark energy (DE) scaling as εDE ∼ a−n where
n < 2; then εγ,future � 10−14εDE,future rendering the de
Broglie-Proca mass even more negligible compared to the
dark component.

As seen in the section “Bopp-Podolsky cosmology”,
Bopp-Podolsky electrodynamics differs from de Broglie-
Proca’s in two fundamental ways: the mass of the pho-
ton is humongous (instead of being extremely small) and
there are derivative terms in the field strength entering
the Lagrangian (instead of quadratic terms involving Aμ).
Someone will argue that these derivative terms lead to the
appearance of ghosts, that a theory with such a plague
should be immediately discarded as inconsistent. How-
ever, some works analyze this issue —e.g., ref. [50]— and
they point to a well-behaved type of ghosts. In fact,
ref. [50] shows that the Bopp-Podolsky electrodynamics
belongs to a wide class of higher-derivative systems ad-
mitting a bounded integral of motion which makes them
dynamically stable despite their canonical energy being
unbounded. Thermodynamics of the Bopp-Podolsky mas-
sive photon gas does affect cosmic dynamics, and this oc-
curs for 0 ≤ βm � 8 (see fig. 2). However, this influence is
not pronounced: The massive term is not able to produce
any sensible deviation of cosmic dynamics from a massless
photon gas in the radiation-dominated era. In particular,
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the Bopp-Podolsky radiation cannot produce an acceler-
ated expansion in the early universe since its EOS param-
eter respects 0.282 < w < 1/3.

This paper shows that the maximum influence of the
Bopp-Podolsky theory on cosmic dynamics takes place
for βm � 2.899. If one chooses the minimum value
m = 37 GeV in accordance with eq. (43), this corresponds
to kT � 13 GeV; i.e., one order of magnitude below the
energy scale of electro-weak unification. Notice that the
cosmic dynamics for the Bopp-Podolsky radiation was de-
termined at all times in terms of the product βm: it
does not depend directly on the photon mass. In this
sense, our work implies that the standard cosmological
model does not rule out the Bopp-Podolsky massive pho-
ton gas as a real possibility. This very fact, along with
the success of predictions by generalized quantum elec-
trodynamics [23–25,28], motivates the continuing study
of the Bopp-Podolsky theory. In addition, the massive
mode of the Bopp-Podolsky photon may interact with the
charged particles present in the cosmic soup4. The re-
sulting dynamics of this interaction is not trivial and a
realistic model should take it into account; this might be
a suitable subject for future investigation.
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177 (1923) 507.
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