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Abstract. We construct vector rogue wave solutions of the two-dimensional two coupled nonlinear
Schrödinger equations with distributed coefficients, namely diffraction, nonlinearity and gain parameters
through similarity transformation technique. We transform the two-dimensional two coupled variable coef-
ficients nonlinear Schrödinger equations into Manakov equation with a constraint that connects diffraction
and gain parameters with nonlinearity parameter. We investigate the characteristics of the constructed
vector rogue wave solutions with four different forms of diffraction parameters. We report some interesting
patterns that occur in the rogue wave structures. Further, we construct vector dark rogue wave solutions of
the two-dimensional two coupled nonlinear Schrödinger equations with distributed coefficients and report
some novel characteristics that we observe in the vector dark rogue wave solutions.

1 Introduction

A rogue wave (RW) is a nonlinear wave which is local-
ized in both space and time and appears from nowhere
and disappears without a trace [1]. It was first observed
in ocean [2] with a wave-height (the distance from trough
to crest) two or three times greater than the significant
wave height [2,3]. It arises due to the instability of a cer-
tain class of initial conditions that tend to grow expo-
nentially and thus have the possibility of increasing up to
very high amplitudes, due to modulation instability. Later
RWs have been observed in many physical systems includ-
ing water wave tank experiments [4], capillary waves [5],
nonlinear optics [6,7] and Bose-Einstein condensates [8].
Subsequently, efforts have been made to explain the RW
excitation through nonlinear process. It has been found
that the nonlinear Schrödinger (NLS) equation can de-
scribe the structural and dynamical properties of the RWs.
A rational solution of the NLS equation can be used to
model the RWs [9,10]. During the past ten years or so
several works have been devoted to study and analyze the
characteristics of RW solutions in the NLS equation and
its variants by considering their potential applications in
transmitting highly intense signals through optical fibers.
For a summary of recent progress on optical RWs we refer
to [11] and references therein.

In real fibers, there always exist some nonuniformi-
ties owing to diverse factors such as imperfections of
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manufacture, variations in the lattice parameters of the
fiber media, fluctuations in the fiber diameters and so
on [12]. These nonuniformities often produce fiber gain
or loss, phase modulation and variable dispersion [12].
The variable coefficients NLS (vcNLS) equation is an ef-
ficient model to study the inhomogeneous effects of non-
linear optical pulses [13]. Unlike the constant coefficient
NLS equation the studies on vcNLS equation reveal that
one can control/amplify the localized structures through
their inhomogeneity parameters. Subsequently, identify-
ing and the possibility of controlling RWs in the one-
dimensional vcNLS equations have been investigated by
several authors [14–20]. Even though the one-dimensional
equations have given a good understanding on the dy-
namics, a detailed investigation on the higher-dimensional
version (two or three dimensions) of the system will pro-
vide a clear visualization about the localized structures.
Motived by this, few investigations have been made on
the higher dimensional versions of scalar vcNLS equations.
For example, (i) self-similar solutions of the higher dimen-
sional vcNLS equation have been obtained analytically
and numerically in references [21–26], (ii) stable bright
and vortex solitons for a two-dimensional vcNLS equa-
tion have been identified through numerical simulations
in reference [27], (iii) exact bright and dark similariton
pairs have been identified in a generalized two-dimensional
NLS equation with distributed coefficients in reference [28]
and (iv) nonlinear tunneling of controllable RWs in the
two-dimensional graded-index waveguides have been ana-
lyzed in references [29,30].
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In certain physical situations, two or more wave pack-
ets of different frequencies or polarizations appear simul-
taneously and their interactions are then governed by the
coupled NLS equations [12,13,31]. For example, nonlin-
ear light propagation in a birefringent optical fiber or a
wavelength-division-multiplexed system [13,31], the evo-
lution of two surface wave packets in deep water [32],
the interaction of Bloch-wave packets in a periodic sys-
tem [33] and spinor Bose-Einstein condensates [34]. All
the above processes are modelled by coupled NLS equa-
tions. These vector systems allow energy transfer be-
tween their additional degress of freedom. The vector
NLS equations yield potentially rich and significant re-
sults for optical fiber communication systems [12]. Mo-
tivated by this, several studies have also been under-
taken to identify the localized solutions in coupled NLS
equations with constant coefficients [35–47]. Subsequently
attempts have been made to identify the localized solu-
tions such as bright-bright, bright-dark, dark-dark soli-
ton and RW solutions in the coupled vcNLS equations
(in one-dimensions) [48–55]. Very recently attempts have
been made to identify RW and breather solutions in the
(2+1)-dimensional coupled vcNLS equations [56,57]. To
construct these localized structures the authors of [56,57]
have transformed the (2+1)-dimensional coupled vcNLS
equations into scalar (1+1)-dimensional NLS equation.
As we pointed out earlier the coupled constant coefficient
NLS equations exhibit certain new RW structures that
are absent in the scalar NLS equation. In other words
transforming a (2+1)-dimensional coupled vcNLS equa-
tions into the coupled constant coefficient NLS equations
will reveal certain new localized solutions, vector RWs and
dark-dark RWs, for the equation under investigation. Mo-
tivated by this, in this paper, we transform the two cou-
pled vcNLS equations into two coupled constant coeffi-
cient NLS equations. Through this approach we construct
vector RW solutions and study their characteristics in
the two-dimensional two coupled NLS equations with dis-
tributed coefficients such as diffraction, nonlinearity and
gain/loss parameter.

In this work, we transform the considered equation
into two component NLS equation (Manakov equation)
through the similarity transformation with a constraint
that connects diffraction and gain parameters with non-
linearity parameter. From the known RW solutions of the
Manakov equation we derive RW solutions of the two-
dimensional two coupled vcNLS equations. The Manakov
equation exhibits two different forms of RW solutions [41].
These two forms in turn yield two different types of
RW solutions for the two-dimensional two coupled vc-
NLS equations. We investigate the characteristics of these
two vector RWs with four different forms of diffraction
parameters, namely (i) β(z) = β0 cos (σz) exp (γ0z), (ii)
β(z) = β1 exp (−β0z), (iii) β(z) = β1 − β0z and (iv)
β(z) = β1 − β0z − β2z

2/2, where β0, β1 and β2 are posi-
tive constants. We consider the same gain profile, namely
γ(z) = γ0/2 in all the four cases. Once the diffraction and
gain parameters are chosen the nonlinearity parameter can
be fixed through the constraint. For a constant diffraction
parameter, the vector RWs show usual RW features but

are localized in different orientations in each component.
In the case of exponentially growing periodic diffraction
parameter (case (i)) the RWs propagate periodically and
their amplitudes increase along the propagation direction
in both the components. In the exponentially distributed
diffraction parameter case (case (ii)) the amplitude of the
RWs monotonically increases along the propagation direc-
tion in both the components. In case (iii) we come across
a composite RWs (RW pair) in each component. The RWs
merge together when we increase the value of the parame-
ter β0 and they separate out in the plane when we decrease
the value of this parameter. In the fourth profile we ob-
serve three separate RWs (composite RWs) that occur at
three different positions along the propagation direction.

Next we move on to investigate the characteristics
of the dark-dark RWs in the (2+1)-dimensional coupled
vcNLS equations. In this equation the nonlinearity and
the diffraction parameters are in opposite signs which in
turn produce a new localized structure, namely dark RW.
Recently, several works on dark RWs have been made
by considering their potential applications in fiber optic
communications [42,44,58]. The dark RW differs from the
Peregrine soliton. In the dark RW the amplitude at the
centre has less value than the amplitude of the back-
ground [58]. We construct vector dark RW solutions for
the (2+1)-dimensional two coupled vcNLS equations by
transforming them into the two coupled constant coeffi-
cient NLS equations. The transformed equation is different
from the one which we considered to derive the bright RWs
above. From the known dark RW solutions of the latter
equation we construct dark RW solutions of the considered
two coupled vcNLS equations. We then examine the char-
acteristics of dark-dark RWs with the same diffraction pa-
rameters that we considered in the bright RW case. In the
constant diffraction parameter case, the dark RW in each
component reveal the usual RW features whereas in the
exponentially growing periodic diffraction parameter case
(case (i)) the dark RWs exhibit breathing profiles along
the propagation direction in both the components. As far
as the exponentially distributed diffraction parameter is
concerned (case (ii)) the dip of the modified dark RWs be-
come more darkened in both the components. In the third
profile, an interaction between two dark RWs (composite
RWs) occurs in both the components in the (x-z) plane. In
the fourth profile, an interaction between three dark RWs
(composite RWs) occur along the propagation direction in
both the components. When we increase the value of the
gain parameter in the diffraction profiles the background
gets more steepened and if we decrease the value of the
gain parameter, the background becomes flattered in both
the components.

We organize our work as follows. In Section 2, we con-
sider the (2+1)-dimensional two coupled vcNLS equations
and construct the vector RW solutions of it. In Section 3,
we investigate in detail the characteristics of vector RWs
by considering four different forms of diffraction parame-
ters. In Section 4, we construct the vector dark RW solu-
tions of (2+1)-dimensional two coupled vcNLS equation
and investigate the characteristics of them by considering
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the same forms of diffraction parameters. In Section 5, we
present our conclusions.

2 Model and RW solutions
of two-dimensional two coupled vcNLS
equations

Multimode wave propagation in inhomogeneous nonlinear
waveguides are described by the following two-dimensional
two coupled vcNLS equations [12,13], that is

iψ1z +
β(z)

2
(ψ1xx + ψ1yy) +R(z)

2∑

k=1

|ψk|2ψ1 = iγ(z)ψ1,

iψ2z +
β(z)

2
(ψ2xx + ψ2yy) +R(z)

2∑

k=1

|ψk|2ψ2 = iγ(z)ψ2,

(1)

where ψj(x, y, z), j = 1, 2, represent complex envelope of
the electrical field, z represents the normalized propaga-
tion distance along the waveguides and x and y are the
transverse coordinates. The functions β(z), R(z) and γ(z)
denote the diffraction, nonlinearity and gain/loss parame-
ter, respectively and all of them are real analytic functions
of z. To identify the vector RW solutions and investigate
the dynamical evolutions of them in equation (1), we con-
sider a similarity transformation of the form

ψj(x, y, z) = ρ(z)Uj(X,Z) exp[iφ(x, y, z)], j = 1, 2, (2)

where ρ(z) is the amplitude, Z(z) is the effective propa-
gation distance, X(x, y, z) is the similarity variable and
φ(x, y, z) is the phase factor which are all to be deter-
mined. We also demand that the complex functions
Uj(X,Z) should satisfy the two component NLS equa-
tions of the form

i
∂U1

∂Z
+
∂2U1

∂X2
+ 2(|U1|2 + |U2|2)U1 = 0,

i
∂U2

∂Z
+
∂2U2

∂X2
+ 2(|U1|2 + |U2|2)U2 = 0, (3)

whose solutions are known. To determine the unknown
functions of equation (2) we substitute it into equation (1)
and obtain the following set of partial differential equa-
tions (PDEs) for these unknown functions, that is

Xxx +Xyy = 0,

Xz + β(z)(Xxφx +Xyφy) = 0,

φz +
β(z)

2
(φ2

x + φ2
y) = 0,

ρz

ρ(z)
+
β(z)

2
(φxx + φyy) − γ(z) = 0,

Zz −R(z)ρ2(z) = 0, β(z)(X2
x +X2

y ) −R(z)ρ2(z) = 0.
(4)

Solving these PDEs, we find the following expressions,
namely

q(z) =
q0
f(z)

, r(z) =
r0
f(z)

, (5a)

s(z) =
−s0 + (b0 + a0s0)M(z)

f(z)
, (5b)

X(x, y, z) = q(z)x+ r(z)y + s(z), (5c)

G(z) =
∫ z

0

γ(s)ds, (5d)

Z(z) =
(q20 + r20)M(z)

2f2
0 (1 − a0M(z))

, (5e)

ρ(z) =
ρ0 exp (G(z))
1 − a0M(z)

, (5f)

φ(x, y, z) = φ0 − a0(x2 + y2)
2(1 − a0M(z))

− b0(x/q0 + y/r0)
2(1 − a0M(z))

− (q20 + r20)b
2
0M(z)

8q20r
2
0(1 − a0M(z))

, (5g)

where M(z) =
∫ z

0 β(s)ds represents the accumulated
dispersion/diffraction and the function f(z) = f0(1 −
a0M(z)) can be related to the wavefront curvature of the
wave [30]. The parameters a0, b0, ρ0, s0, f0, q0 and r0,
which arise from integration, can be interpreted as fol-
lows: The parameters a0 and b0 are the initial curvature
and position of the wavefront, ρ0 and s0 are the initial am-
plitude and position of the pulse center, f0 is the initial
wave profile width and q0 and r0 are the group velocity
parameters, respectively [30].

The existence of localized structures in (1) can be guar-
anteed by the fulfillment of the following constraint be-
tween gain/loss and diffraction parameter with the non-
linearity parameter, that is

R(z) =
β(z)(q20 + r20) exp (−2G(z))

(f0ρ0)2
, (6)

where G(z) is given in (5d). We can choose γ(z) and β(z)
arbitrarily but the nonlinearity parameter R(z) should be
fixed as per (6). Once the constraint equation (6) has been
accommodated the solutions of (1) can be picked up from
the solutions of the two component NLS equation (3).

Equation (3) is the well-known Manakov equation
whose integrability properties have been extensively stud-
ied in the literature [35–44]. A detailed investigation on
the soliton solutions of two coupled NLS equation with
same nonlinearity (nonlinear coefficients have the same
signs ‘+’ and ‘−’) and mixed nonlinearity (nonlinear co-
efficients have opposite signs) gave birth to three different
vector soliton solutions, namely (i) bright-bright [35,36],
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Fig. 1. Intensity profiles of Type-I RWs for β(z) = β0 cos (σz) exp (γ0z) and γ(z) = γ0/2. When the parameter γ0 = 0 and
σ = 0 for (a, b) and γ0 = 0.15 and σ = 2.5 for (c, d). The other parameters are fixed as q0, r0, ρ0 = 1.0, s0 = 0.01, β0 = f0 = 0.5,
a0 = b0 = 0.1, y = 0.1, p = φ0 = 0.01 and d2 = 0.5.

(ii) bright-dark [59,60] and (iii) dark-dark solitons [36,61].
The explicit multi-bright and multi-dark soliton solutions
of the Manakov system were obtained in references [36,37].
Recently, one dark-dark soliton and the general breather
solution of a generalized version of equation (3) have been
constructed through Hirota’s bilinearization method [62].
Very recently, a new form of localized solution, called
RW solution, has attracted considerable attention in
the two coupled NLS equation (3) [39–42]. In refer-
ences [42–44], explicit RW solutions of two coupled
NLS equation have been constructed through modified
Darboux transformation method. Interestingly two types
of RW solutions have been obtained for equation (3)
through Darboux transformation method [41]. Since we
are interested in constructing vector RW solutions of equa-
tion (1) we consider both of them in our analysis [41].

Equation (3) admits two different forms of RW solu-
tions which we call Type-I RW and Type-II RW, respec-
tively. The exact form of Type-I RW is given by [41]:

U1(X,Z) = α exp(iθ1)
(
−1 − i

√
3

+−6δα
√

3−36Zα2√3−3+i(36α2Z+6δα+5
√

3)

12α2δ2+8δα
√

3+144Z2α4+5

)
,

U2(X,Z) = α exp(iθ2)
(
−1 + i

√
3

+−6δα
√

3+36Zα2√3−3+i(36α2Z−6δα−5
√

3)

12α2δ2+8δα
√

3+144Z2α4+5

)
, (7)

where δ = X+6pZ, θ1 = d1X+(2c21+2c22−d2
1)Z and θ2 =

d2X+(2c21+2c22−d2
2)Z, respectively. The parameters α =

d2 +3p, d1 = d2−2α, c1, c2 = ±2α, d2 and p are arbitrary
constants. The RW solution given above is similar to the
first-order RW solution of the scalar NLS equation [10].

Type-II RW solution is given by:

U1(X,Z) = α

(
−1 − i

√
3 +

G1 + iH1

D

)
exp(iθ1),

U2(X,Z) = α

(
−1 + i

√
3 +

G2 + iH2

D

)
exp(iθ2), (8a)

where

D = 1 + 4
√

3αδ + 24α2δ2 + 16
√

3α3δ3 + 12α4δ4

+ 48α4(9 + 8
√

3αδ + 6α2δ2)Z2 + 1728α8Z4,

G1 = −3(−1 + 6α2δ2 + 4
√

3α3δ3 + 4α2(
√

3 + 12αδ

+ 6
√

3α2δ2)Z+24α4(3+2
√

3αδ)Z2+288
√

3α6Z3),

G2 = 3(1 − 6α2δ2 − 4
√

3α3δ3 + 4α2(
√

3 + 12αδ

+ 6
√

3α2δ2)Z−24α4(3+2
√

3αδ)Z2+288
√

3α6Z3),

H1 =
√

3+12αδ+18
√

3α2δ2+12α3δ3+12α2(9+8
√

3αδ

+ 6α2δ2)Z + 24α4(13
√

3 + 6αδ)Z2 + 864α6Z3,

H2 = −
√

3 − 12αδ − 18
√

3α2δ2 − 12α3δ3

+ 12α2(9 + 8
√

3αδ + 6α2δ2)Z − 24α4(13
√

3

+ 6αδ)Z2 + 864α6Z3. (8b)

The strucutral difference between Type-I and Type-II RW
solutions is as follows. Type-I RW solution is similar to
the Peregrine soliton which has one largest crest and two
troughs as shown in Figure 1a whereas Type-II RW solu-
tion has one largest crest, two subcrests and two troughs,
as shown in Figure 2a.

By choosing a suitable form of diffraction parame-
ter β(z) and the gain/loss profile γ(z) and considering
the nonlinearity parameter which comes out from the
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Fig. 2. Intensity profiles of Type-II RWs for β(z) = β0 cos (σz) exp (γ0z) and γ(z) = γ0/2. When the parameter γ0 = 0 and
σ = 0 for (a, b) and γ0 = 0.1 and σ = 2.5 for (c, d). The other parameters are same as in Figure 1.

condition (6), the exact solution of equation (1) can now
be produced in the form

ψj(x, y, z) =
ρ0 exp(G(z))
1 − a0M(z)

Uj(X,Z)

× exp
[{
i

(
φ0 − a0(x2 + y2)

2(1 − a0M(z))
− b0(x/q0 + y/r0)

2(1 − a0M(z))

− (q20 + r20)b
2
0M(z)

8q20r
2
0(1 − a0M(z))

)}]
, j = 1, 2, (9)

where Uj(X,Z)′s are given in equations (7) and (8).
We identify certain novel optical RW structures of equa-
tion (1) from equation (9) by selecting the arbitrary func-
tions appropriately. The arbitrary functions will provide
us further choices to develop fruitful structures related to
the optical RWs, which may be useful to raise the fea-
sibility of corresponding experiments and potential ap-
plications of optical pulses in real world communication
systems.

3 Characteristics of vector RWs
in two-dimensional two coupled vcNLS
equations

To understand the behaviour of the obtained exact so-
lution (9) of equation (1), we consider certain specific
forms for diffraction and gain parameters. The nonlinear-
ity parameter should be fixed through the constraint (6).
With these forms we analyze the solution profile (9). We
will consider four different forms of diffraction parameters
and study the characteristics of the associated inhomoge-
neous RWs.

3.1 Case 1

Periodic distributed systems are found potential appli-
cations in long-distance communication systems [63,64].
Motivated by this, to begin, we consider the diffrac-
tion parameter β(z) be an exponentially growing periodic
diffraction in z, that is β(z) = β0 cos (σz) exp (γ0z) and
the gain parameter as γ(z) = γ0/2. Here σ is related
to the variation period of the waveguide parameter and
γ0 is an arbitrary parameter [28]. With these parameters
the solution reads now

ψj(x, y, z) =
ρ0(γ2

0 + σ2)
γ2
0 + σ2 − e γ0za0β0s2

× Uj(X,Z)η(x, y, z), j = 1, 2, (10a)

η(x, y, z) = exp
{
γ0z

2
+

e γ0zβ0s2((q20+r20)b
2
0+8q20r

2
0a0φ0)

8q20r
2
0(γ

2
0 +σ2−e γ0za0β0s2)

−s1(q0b0y+r0(b0x+q0a0(x2+y2)−2q0φ0))
8q20r

2
0(γ

2
0 +σ2−e γ0za0β0s2)

}
,

(10b)

where s1 = 4q0r0(γ2
0 + σ2), s2 = γ0 cos (σz) + σ sin (σz),

and Uj(X,Z)’s are given in equations (7) and (8),
respectively.

Figure 1 shows the intensity profiles of Type-I RWs of
equation (1) obtained from (10) with the diffraction pa-
rameter β(z) = β0 cos (σz) exp (γ0z). We begin our study
by considering the diffraction parameter is a constant,
that is β(z) = β0. The corresponding intensity profiles
of RWs are shown in Figures 1a and 1b where one can
see the usual RW features. The amplitudes of RWs are
equal but they are localized in different positions in the
(x-z) plane. We choose γ0 = 0.1 and σ = 2.5 and depict
the intensity profiles in Figures 1c and 1d. We observe
that the RWs breathe along the propagation direction
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Fig. 3. Intensity profiles of the RWs for β(z) = β1 exp (−β0z) and γ(z) = γ0/2. (a, b) Type-I RWs and (c, d) Type-II RWs.
The other parameters are same as in Figure 1 with β0 = 0.9, β1 = 0.5.

and their amplitudes are enhancing in the propagation
direction which can induce rapid periodic changes in the
refractive index of the waveguide. The breathing comes
out due to the presence of a periodic function in β(z).
The total number of photons of the system also increase
continuously along z due to the presence of gain term (1).
The outcome reveals that the system (1) is not a conser-
vative one. This nonconservative nature of system causes
growth in the amplitude of the RW. The addition of pho-
tons (through the gain term) does not destabilize the lo-
calized structure of the system. The width of the RWs
also increases along the propagation direction due to the
presence of exponential factor in β(z).

Substituting equation (8) into equation (10), we obtain
Type-II RW solution for (1). This RW solution replicates
a beam propagating in nonlinear waveguides. The corre-
sponding intensity profiles are shown in Figure 2. The
intensity profiles for the constant diffraction parameter
β(z) = β0 are shown in Figures 2a and 2b. The amplitudes
of the RWs are equal but they are localized in different
orientations (in particular the two subcrests of RWs) in
the (x-z) plane. As we done in the previous case we choose
the parameters as γ0 = 0.1 and σ = 2.5 and study the
changes that occur in the RW pattern. The intensity pro-
files exhibit breathing profiles and their amplitudes in-
crease along the propagation direction as shown in Fig-
ures 2c and 2d.

From the above observations, we conclude that both
the Type-I and Type-II RWs do not get distorted in the
constant diffraction parameter whereas for exponentially
growing periodic diffraction parameter both the Type-I
and Type-II RWs exhibit breathing behaviour and their
amplitudes grow in the propagation direction. Thus, RWs
can be amplified along the propagation distance without
any other relay device because of the inhomogeneous na-
ture of optical waveguides. This amplification process do
not introduce noise and the quality of optical amplification
can be improved through this manner [65].

3.2 Case 2

Next we consider an exponentially distributed diffraction
parameter, β(z) = β1 exp (−β0z) with γ(z) = γ0/2, which
has potential applications in the long-distance communi-
cation systems [63,64]. Here β0 > 0 corresponds to the dis-
persion decreasing waveguide and β0 < 0 represents
the dispersion increasing waveguide. Substituting this ex-
pression into equation (9), we obtain

ψj(x, y, z) =
β0ρ0

a0β1 + β0eβ0z
Uj(X,Z)η(x, y, z), j = 1, 2,

(11a)

η(x, y, z) = exp

⎛

⎝1
8

⎛

⎝−
4ib0

(
x
q0

+ y
r0

)

a0β1eβ0(−z)

β0
+ 1

+
iβ1b

2
0

(
q20 + r20

)

q20r
2
0 (a0β1 + β0eβ0z)

− 4ia0

(
x2 + y2

)

a0β1eβ0(−z)

β0
+ 1

+8β0z + 4γ0z + 8iφ0

⎞

⎠

⎞

⎠ , (11b)

where Uj(X,Z)’s are given in equations (7) and (8).
The evolution of Type-I RWs for this diffraction pa-

rameter is given in Figures 3a and 3b. The amplitudes of
the RWs in both the components increase monotonically
along the propagation direction. The intensity profiles of
Type-II RWs for the same diffraction parameter are pre-
sented in Figures 3c and 3d. Here also the amplitudes
of the RWs monotonically increase along the propagation
direction. The width of the RWs does not change. Thus,
choosing an exponentially distributed diffraction parame-
ter we can enhance the amplitude of the optical RWs by
keeping the width of them constant.

http://www.epj.org
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Fig. 4. Intensity profiles of composite RWs for β(z) = β1 − β0z and γ(z) = γ0/2. Type-I RWs: (a, d) for β0 = 0.7 and (b, e)
for β0 = −0.7 and Type-II RWs: (c, f) for β0 = 0.7. The other parameters are same as in Figure 1 with β1 = 0.7.

3.3 Case 3

In the above, we have investigated how the optical RWs
get amplified along the propagation direction by con-
sidering two different forms of diffraction parameters.
Next we consider a linear profile for β(z), that is β(z) =
β1−β0z [66,67] with γ(z) = γ0/2, where β1, β0 and γ0 are
arbitrary parameters. We construct Type-I and Type-II
RW solutions of equation (1) for this profile and analyze
how they get modified along the propagation direction. In
the present case, the solution (9) reads

ψj(x, y, z) =
2ρ0

a0s4z + 2
Uj(X,Z)η(x, y, z), j = 1, 2,

(12a)

η(x, y, z) = exp

(
−i
(
8b0q0r0 (q0y+r0x)−b20z

(
q20+r20

)
s4
)

8q20r20 (a0s4z+2)

−4iq20r
2
0

(
a0

(
2
(
x2 + y2 + β1zs3

)− β0z
2s3
)− 2s3

)

8q20r
2
0 (a0s4z + 2)

)
,

(12b)

where s3 = 2φ0− iγ0z, s4 = β0z−2β1, and Uj(X,Z)’s are
given in equations (7) and (8).

To begin, we consider Type-I RW solution. We start
our analysis by choosing β0 = 0.2 in the considered profile.
The resultant structure is found to be the same as shown
in Figures 1a and 1b. When we increase the value of β0 we
obtain composite RWs consisting of two RWs (RW pair).
The outcome is drawn in Figure 4. When β0 = 0.7, we
obtain two separate RWs in each component as shown in
Figures 4a and 4d. The RWs occur at two different prop-
agation distances, namely z1 and z2 at x = 0. The first
RW appears and rapidly disappears around z1 ≈ 1 and
the second one appears z2 ≈ 3.5. When we increase the
value of β0 the RWs merge together and when we decrease
the value of β0 the RWs separate out in the x-z plane

which is not shown here. A similar characteristics were
also observed in [66,67] in the case of scalar derivative
NLS equation. When β0 = −0.7, the RW pair reemerges
in the x-z plane z ≤ 0 in each component. The first RW
appears and it disappears rapidly at z1 ≈ −3.5 whereas
the second RW appears at z2 ≈ 1 as shown in Figures 4b
and 4e. The intensity profiles of Type-II RWs for the same
diffraction parameter are displayed in Figures 4c and 4f.
Here also the RWs appear at two different propagation dis-
tances, namely z1 and z2 at x = 0. When we increase the
value of β0 the RWs merge together while we decrease the
value of β0 the RWs separate out in the x-z plane. When
β0 = −0.7, the RW pair reemerges in the plane z ≤ 0 in
each component. We also observe from these figures that
the amplitude of the RWs increases in z1 < z2 manner in
the x-z plane. As far as the linear profile is concerned our
results reveal that the relative position of one of the two
constituents of RWs can be altered.

3.4 Case 4

Finally, we choose the diffraction parameter in the form
β(z) = β1 −β0z−β2z

2/2 with γ(z) = γ0/2, where β1, β0,
β2 and γ0 are arbitrary parameters [66]. Substituting this
diffraction parameter into equation (9), we obtain

ψj(x, y, z) =
6ρ0

(a0s5z + 6)
× Uj(X,Z)η(x, y, z), j = 1, 2,

(13a)
η(x, y, z)

= exp

(
− i
(
24b0q0r0 (q0y+r0x)−b20z

(
q20+r20

)
s5
)

8q20r
2
0 (a0zs5+6)

− i
(
a0

(
6(x2 + y2) + iβ2γ0z

4 − s6
)− 6s3

)

2 (a0zs5 + 6)

)
,

(13b)
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Fig. 5. Intensity profiles of composite RWs for β(z) = β1−β0z−β2z
2/2 and γ(z) = γ0/2. (a, b) Type-I RWs and (c, d) Type-II

RWs. The other parameters are same as in Figure 1 with β0 = 0.8, β1 = 2 and β2 = 2.5.

where s5 = −6β1 +β2z
2 +3β0z, s6 = 2β2z

3φ0 +3β0z
2s3−

6β1zs3 and Uj(X,Z)’s are given in equations (7) and (8).
This choice provides the composite RWs consist of

three RWs in both types. The triplet RWs appear along
the propagation direction for β0 = 0.8, β1 = 2 and
β2 = 2.5 as shown in Figure 5. The intensity profiles
of both Type-I and Type-II RWs (composite RWs) of
each component are shown in Figures 5a and 5b and Fig-
ures 5c and 5d, respectively. We observe that three sepa-
rate RWs occur at three different propagation distances,
namely z1, z2 and z3 and their amplitudes increase in the
order z1 < z2 < z3 in the x-z plane. For this type of
diffraction parameter, we conclude that the location of
the composite RWs can be manipulated. Very recently an
attempt has been made to transform the two-dimensional
two coupled vcNLS equations into two coupled constant
coefficient NLS equations [68]. In this work, the authors
have identified only the vector Peregrine soliton solution
and bright-dark-soliton-RW solutions.

4 Characteristics of dark-dark RWs

In this section, we pay our attention on identifying another
localized structure, namely dark-dark RWs in the two cou-
pled vcNLS equations. To construct this localized solution,
we consider the (2+1)-dimensional defocusing coupled vc-
NLS equations [12,13], that is

iψ1z +
β(z)

2
(ψ1xx + ψ1yy) −R(z)

2∑

k=1

|ψk|2ψ1 = iγ(z)ψ1,

iψ2z +
β(z)

2
(ψ2xx + ψ2yy) −R(z)

2∑

k=1

|ψk|2ψ2 = iγ(z)ψ2,

(14)

where ψ1(x, y, z) and ψ2(x, y, z) denote the complex enve-
lope of the electrical fields in the moving frame, z is the
coordinate along the propagation direction and x and y
are the transverse coordinates. The function β(z) repre-
sents the diffraction coefficient, R(z) is the nonlinearity
parameter and γ(z) is the gain or loss parameter. Equa-
tion (14) can be transformed to the defocusing two cou-
pled NLS equation (15) through the similarity transfor-
mation (2). The unknown functions ρ(z), φ(x, y, z) and
X(x, y, z) can be determined by following the same proce-
dure as given in Section 2. Repeating the steps we obtain
the same expressions as given in equations (5a)–(5g) ex-
cept Z(z) which reads now Z(z) = − (q2

0+r2
0)M(z)

2f2
0 ε(1−a0M(z))

. The
existence of dark RW solutions in equation (14) can be
guaranteed by the fulfillment of the same constraint (6).
The only difference which we make here is that the func-
tions Uj(X,Z)′s should satisfy the coupled NLS equations
of the form

i
∂U1

∂Z
− ∂2U1

∂X2
+ 2(|U1|2 + |U2|2)U1 = 0,

i
∂U2

∂Z
− ∂2U2

∂X2
+ 2(|U1|2 + |U2|2)U2 = 0, (15)

which is different from equation (3). Here the nonlinear-
ity and dispersion are in opposite signs. The existence of
RWs in the normal dispersion regime of two coupled NLS
equation (15) has been investigated in references [42,44].
Vector RW (black or dark RW) solutions of equation (15)
have been constructed through Hirota bilinear transform
method [58]. It has been found that the resultant RW is
localized algebraically in both space and time similar to
the Peregrine soliton of a scalar NLS equation [9]. The
difference occur at the center of the RW where the ampli-
tude is less than the amplitude of the background. This
localized structure is called dark RW.
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Fig. 6. Intensity profiles of the dark-dark RWs for β(z) = β0 cos (σz) exp (γ0z) and a gain/loss parameter γ(z) = γ0/2. When
the parameter γ0 = 0 and σ = 0 for (a, b) and γ0 = 0.1 and σ = 2.5 for (c, d). The other parameters are same as in Figure 1
with h = 1, s = 0.5.

Equation (15) admits the following form of dark-dark
RW solutions [58]

U1(X,Z) = h exp (4ih2Z)

×
(

1+
4g2(−1+i(−sX−s2Z+g2Z))

(g2+s2)(g2(X+sZ)2+g4Z2+1)

)
,

U2(X,Z) = h exp (isX + is2Z + 4ih2Z) (16)

×
(

1+
4g2(−1+i(−sX−s2Z+g2Z))

(g2+s2)(g2(X+sZ)2+g4Z2+1)

)
,

where g = ±
√
−4h2 − s2 + 2

√
(2h2)2 + 4s2h2, h denotes

the amplitude of the continuous wave background and s is
an arbitrary parameter and the criterion for the existence
of RW is s2 < 8h2.

As long as the condition (6) is satisfied, the exact so-
lution of equation (14) can be given in the form

ψj(x, y, z) =
ρ0 exp(G(z))
1 − a0M(z)

Uj(X,Z)

× exp
[
i

(
φ0 − a0(x2 + y2)

2(1 − a0M(z))
− b0(x/q0 + y/r0)

2(1 − a0M(z))

− (q20 + r20)b
2
0M(z)

8q20r
2
0(1 − a0M(z))

)]
, j = 1, 2, (17)

where Uj(X,Z)′s, is the solution of defocusing coupled
NLS equations which is given in equation (16). In the fol-
lowing, we discuss in detail how the dark-dark RW struc-
tures get deformed for different forms of diffraction pa-
rameter β(z).

As we done earlier, to begin, we consider an ex-
ponentially growing periodic diffraction parameter, say

β(z) = β0 cos (σz) exp (γ0z) with γ(z) = γ0/2. Substitut-
ing these expressions into equation (17), we can obtain
the dark-dark RW solutions of equation (14). The inten-
sity profiles of the dark-dark RWs of (14) are depicted in
Figure 6. The intensity profiles of the constant dispersion
parameter β(z) = β0 (σ, γ0 = 0) are shown in Figure 6a
and 6b, affirms the fundamental RW features. As we vi-
sualize the amplitude of the dark RW of first and second
component turns out to be the same even though they
are localized in different orientations. For the parametric
choice γ0 = 0.1 and σ = 2.5, the dark RW in each compo-
nent propagates periodically and their intensities increase
gradually along the propagation direction as shown in Fig-
ures 6c and 6d. From the outcome, we conclude that the
dark RW is not being distorted for the constant diffrac-
tion parameter whereas in the case of the exponentially
growing periodic diffraction parameter the dark RWs of
both the components exhibit breathing nature along the
propagation direction.

Next we consider an exponentially distributed diffrac-
tion parameter β(z) = β1 exp (−β0z), where β1 and β0 are
arbitrary parameters [63,64]. The intensity profiles of the
modified dark-dark RWs for this diffraction parameter are
shown in Figures 7a and 7d. The amplitudes of the dark
RWs are equal but the dips of the modified dark RWs
become more darkened in both the components. We also
observe that the background of the RW becomes steeper
due to the presence of gain parameter γ0 which is chosen
as 0.15. When we increase the value of γ0, the background
gets more steeper and when we decrease the value of γ0

the background becomes flatter in both the components.
The characteristics of dark-dark RWs (17) which come

out from the linear diffraction parameter, that is β(z) =
β1−β0z and γ(z) = γ0/2, where β0, β1 and γ are arbitrary
parameters differ from the above two cases. With β0 =
0.7, we come across an interaction of two separate dark

http://www.epj.org
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Fig. 7. Intensity profiles of the dark-dark RWs for (a, d) β(z) = β1 exp (−β0z), (b, e) β(z) = β1 − β0z and (c, f) β(z) =
β1 − β0z − β2z

2/2. The other parameters are same as in Figure 1 with h = 1, s = 0.5.

RWs in each component as shown in Figures 7b and 7e.
The amplitudes of the dark RW pair of first and second
component are found to be equal but they are localized
in different positions. The two dark RWs occur at two
different propagation distances, namely z1 and z2, in the
x-z plane. When we increase the value of β0 we observe
that the RW pair separates out from each other and when
we decrease the value β0 the RW pair merges together in
the plane wave background. Here also when we increase
the value of γ0, the background gets more steeper and
when decrease the value of γ0 the background becomes
flatter in both the components.

The intensity profiles of three composite dark RWs
which arise in individual components for β(z) = β1−β0z−
β2z

2/2 are demonstrated in Figures 7c and 7f. The am-
plitudes of the dark RWs of first and second component
are equal but they are localized in different locations. The
three dark RWs occur at three different locations, namely
z1, z2 and z3, in the x-z plane in each component. Here
also we come across a bending background due to presence
of gain parameter. When we increase the value of γ0 from
0.15, the curved background gets more steeper whereas
when we decrease the value of γ0 the background becomes
flatter in both the components.

5 Conclusion

In this work, we have constructed vector RW solutions
for the two-dimensional two coupled NLS equations with
distributed coefficients such as diffraction, nonlinearity
and gain/loss parameter. We have transformed the vcNLS
equations into the Manakov equation through similarity
transformation with a constraint. The Manakov equation
admits a family of RW solutions. For our studies we have
considered two types of RW solutions. By substituting
these two RW solutions back in the similarity transfor-
mation we have obtained two different types of RW so-
lutions for the considered equation. We then investigated

the characteristics of these two types of RW solutions by
considering four different forms of diffraction parameters.
The outcome was reported in detail. We have also con-
structed the dark-dark RW solutions for the coupled two-
dimensional inhomogeneous NLS equations and investi-
gated the characteristics of dark RWs for the same forms
of diffraction parameters. We have observed some novel
characteristics among the vector RWs. Our results will be
useful for the experimental research on fiber lasers and
super continuum generation.
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