RESSALVA Atendendo solicitação do(a) autor(a), o texto completo será disponibilizado somente a partir de 18/10/2026 At the author's request, the full text will not be available online until October 18, 2026 RELATÓRIO FINAL Chamada CNPq 25/2021 - Pós-Doutorado Júnior - PDJ 2021 Processo: 150858/2022-1 Comunidade microbiana do solo e seleção rizosférica pelo milho e Urochloa ruziziensis em sistema consorciado com aplicações de calcário e fosfogesso João William Bossolani Botucatu Agosto de 2023 2 JOÃO WILLIAM BOSSOLANI COMUNIDADE MICROBIANA DO SOLO E SELEÇÃO RIZOSFÉRICA PELO MILHO E Urochloa ruziziensis EM SISTEMA CONSORCIADO COM APLICAÇÕES DE CALCÁRIO E FOSFOGESSO Relatório de Pós-doutorado realizado na Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agronômicas, Botucatu. Supervisor: Prof. Dr. Carlos Alexandre Costa Crusciol Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) – Processo No 150858/2022-1 Botucatu 2023 36 to be the main modulator of the soil microbiome, and that rhizosphere selection by cultivated plants is dependent on the changes caused by soil amendments. Important results were identified related to nitrogen cycle responses, in particular greater urealysis in soils treated with L and LPG, as well as the presence of mycorrhizae in high fertile soils treated with LPG. Lastly, further analysis is required to gain a better grasp the mechanisms by which the intercropped plants select the rhizospheric community. Conflict of Interest The authors declare that they have no competing interests. Acknowledgements This study was supported by National Council for Scientific and Technological Development (CNPq) (Grant150858/2022-1), by São Paulo Research Foundation (FAPESP) (Grant 2018/11063-7 and 2019/12764-1), and The Netherlands Organization for Scientific Research (NWO) grant 870.15.022. In addition, the second author would like to thank the National Council for Scientific and Technological Development (CNPq) for an award for excellence in research. Publication number XXXX of the Netherlands Institute of Ecology (NIOO-KNAW). References Ahmad F, Zhu D, Sun J. 2020. Bacterial chemotaxis: a way forward to aromatic compounds biodegradation. Environmental Sciences Europe 32. DOI: 10.1186/s12302-020-00329-2 Alvares CA, Stape JL, Sentelhas PC, de Moraes Gonçalves JL, Sparovek G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728. DOI: https://doi.org/10.1127/0941-2948/2013/0507 Arcand MM, Helgason BL, Lemke RL. 2016. Microbial crop residue decomposition dynamics in organic and conventionally managed soils. Applied Soil Ecology 107: 347– 359. DOI: 10.1016/j.apsoil.2016.07.001 Bakker MG, Chaparro JM, Manter DK, Vivanco JM. 2015. Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays. Plant and Soil 392: 115– 126. DOI: 10.1007/s11104-015-2446-0 37 Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM. 2012. Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil 360: 1–13. DOI: 10.1007/s11104-012-1361-x Bossolani JW, Crusciol CAC, Garcia A, Moretti LG, Portugal JR, Rodrigues VA, Fonseca M de C da, Calonego JC, Caires EF, Amado TJC, Reis AR dos. 2021a. Long-term lime and phosphogypsum amended-soils alleviates the field drought effects on carbon and antioxidative metabolism of maize by improving soil fertility and root growth. Frontiers in Plant Science 12: 1437. DOI: 10.3389/fpls.2021.650296 Bossolani JW, Crusciol CAC, Leite MFA, Merloti LF, Moretti LG, Pascoaloto IM, Kuramae EE. 2021b. Modulation of the soil microbiome by long-term Ca-based soil amendments boosts soil organic carbon and physicochemical quality in a tropical no-till crop rotation system. Soil Biology and Biochemistry 156: 108188. DOI: 10.1016/j.soilbio.2021.108188 Bossolani JW, Crusciol CAC, Merloti LF, Moretti LG, Costa NR, Tsai SM, Kuramae EE. 2020. Long-term lime and gypsum amendment increase nitrogen fixation and decrease nitrification and denitrification gene abundances in the rhizosphere and soil in a tropical no-till intercropping system. Geoderma 375: 114476. DOI: 10.1016/j.geoderma.2020.114476 Bossolani JW, Crusciol CAC, Momesso L, Portugal JR, Moretti LG, Garcia A, Fonseca M de C da, Rodrigues VA, Calonego JC, Andre. 2022a. Surface liming triggers improvements in subsoil fertility and root distribution to boost maize crop physiology , yield and revenue. Plant and Soil 472: 1–23. DOI: 10.1007/s11104-022-05432-2 Bossolani JW, Crusciol CAC, Moretti LG, Garcia A, Portugal JR, Bernart L, Vilela RG, Caires EF, Amado TJC, Calonego JC, dos Reis AR. 2022b. Improving soil fertility with lime and phosphogypsum enhances soybean yield and physiological characteristics. Agronomy for Sustainable Development 42. DOI: 10.1007/s13593-022-00765-9 Bossolani JW, Crusciol CAC, Portugal JR, Moretti LG, Garcia A, Rodrigues VA, Fonseca M de C da, Bernart L, Vilela RG, Mendonça LP, Reis AR. 2021c. Long-term liming improves soil fertility and soybean root growth, reflecting improvements in leaf gas exchange and grain yield. European Journal of Agronomy 128: 126308. DOI: 10.1016/j.eja.2021.126308 Brody JR, Kern SE. 2004. Sodium boric acid: a Tris-free, cooler conductive medium for DNA electrophoresis. BioTechniques 36: 214–216. DOI: https://doi.org/10.2144/04362BM02 Buscot F, Varma A. 2019. Mineralization and Humification Pathways. Microorganisms in Soils: Roles in Genesis and Functions. DOI: 10.1017/CBO9781107415324.004 Caires EF, Garbuio FJ, Churka S, Barth G, Corrêa JCL. 2008. Effects of soil acidity amelioration by surface liming on no-till corn, soybean, and wheat root growth and yield. European Journal of Agronomy 28: 57–64. DOI: 10.1016/j.eja.2007.05.002 Caires EF, Guimarães AM. 2018. A novel phosphogypsum application recommendation method under continuous no-till management in Brazil. Agronomy Journal 110: 1987– 1995. DOI: 10.2134/agronj2017.11.0642 Callahan BJ, McMurdie PJ, Holmes SP. 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME Journal 11: 2639–2643. DOI: 10.1038/ismej.2017.119 38 Cantarella H, RAIJ B van, Camargo CEO. 1997. Adubação de cereais. RAIJ, B. van et al., eds. Recomendações de adubação e calagem para o Estado de São Paulo 2: 43–50 Carmeis Filho ACA, Crusciol CAC, Castilhos AM. 2017a. Liming demand and plant growth improvements for an Oxisol under long-term no-till cropping. Journal of Agricultural Science 155: 1093–1112. DOI: 10.1017/S0021859617000235 Carmeis Filho ACA, Penn CJ, Crusciol CAC, Calonego JC. 2017b. Lime and phosphogypsum impacts on soil organic matter pools in a tropical Oxisol under long- term no-till conditions. Agriculture, Ecosystems and Environment 241: 11–23. DOI: 10.1016/j.agee.2017.02.027 Clark JS, Nemergut D, Seyednasrollah B, Turner PJ, Zhang S. 2017. Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data. Ecological Monographs. DOI: 10.1002/ecm.1241 Córdova SC, Olk DC, Dietzel RN, Mueller KE, Archontouilis S V., Castellano MJ. 2018. Plant litter quality affects the accumulation rate, composition, and stability of mineral- associated soil organic matter. Soil Biology & Biochemistry 125: 115–124. DOI: 10.1016/j.soilbio.2018.07.010 Coskun D, Britto DT, Shi W, Kronzucker HJ. 2017. How Plant Root Exudates Shape the Nitrogen Cycle. Trends in Plant Science 22: 661–673. DOI: 10.1016/j.tplants.2017.05.004 Costa CHM, Crusciol CAC. 2016. Long-term effects of lime and phosphogypsum application on tropical no-till soybean-oat-sorghum rotation and soil chemical properties. European Journal of Agronomy 74: 119–132. DOI: 10.1016/j.eja.2015.12.001 Costa RF, Firmano RF, Bossolani JW, Alleoni LRF. 2023. Soil Chemical Properties, Enzyme Activity and Soybean and Corn Yields in a Tropical Soil Under No-till Amended with Lime and Phosphogypsum. International Journal of Plant Production 17: 235–250. DOI: 10.1007/s42106-023-00233-8 Crusciol CAC, Bossolani JW, Portugal JR, Moretti LG, Momesso L, Campos M, Costa NR, Volf MR, Calonego JC, Rosolem CA. 2022. Exploring the synergism between surface liming and nitrogen fertilization in no‐till system. Agronomy Journal 1–16. DOI: 10.1002/agj2.20988 Crusciol CAC, Marques RR, Carmeis Filho ACA, Soratto RP, Costa CHM, Ferrari Neto J, Castro GSA, Pariz CM, Castilhos AM, Franzluebbers AJ. 2019. Lime and gypsum combination improves crop and forage yields and estimated meat production and revenue in a variable charge tropical soil. Nutrient Cycling in Agroecosystems 115: 347– 372. DOI: 10.1007/s10705-019-10017-0 Crusciol CAC, Marques RR, Filho ACAC, Soratto RP, Costa CHM, Neto JF, Castro GSA, Pariz CM, de Castilhos AM. 2016. Annual crop rotation of tropical pastures with no-till soil as affected by lime surface application. European Journal of Agronomy 80: 88–104. DOI: 10.1016/j.eja.2016.07.002 DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK. 2009. Selective progressive response of soil microbial community to wild oat roots. The ISME Journal 3: 168–178. DOI: 10.1038/ismej.2008.103 Fageria NK, Nascente AS. 2014. Management of soil acidity of South American soils for 39 sustainable crop production. Advances in Agronomy. Elsevier. DOI: 10.1016/B978-0- 12-802139-2.00006-8 Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. 2018. Assembly and ecological function of the root microbiome across angiosperm plant species. Proceedings of the National Academy of Sciences of the United States of America 115: E1157–E1165. DOI: 10.1073/pnas.1717617115 Ganugi P, Masoni A, Pietramellara G, Benedettelli S. 2019. A review of studies from the last twenty years on plant–arbuscular mycorrhizal fungi associations and their uses for wheat crops. Agronomy 9. DOI: 10.3390/agronomy9120840 Guo A, Ding L, Tang Z, Zhao Z, Duan G. 2019a. Microbial response to CaCO3 application in an acid soil in southern China. Journal of Environmental Sciences 79: 321–329. DOI: 10.1016/j.jes.2018.12.007 Guo A, Ding L, Tang Z, Zhao Z, Duan G. 2019b. Microbial response to CaCO 3 application in an acid soil in southern China. Journal of Environmental Sciences (China) 79: 321– 329. DOI: 10.1016/j.jes.2018.12.007 Hasan HAH. 2000. Ureolytic microorganisms and soil fertility: A review. Communications in Soil Science and Plant Analysis 31: 2565–2589. DOI: 10.1080/00103620009370609 Holland JE, Bennett AE, Newton AC, White PJ, McKenzie BM, George TS, Pakeman RJ, Bailey JS, Fornara DA, Hayes RC. 2018. Liming impacts on soils, crops and biodiversity in the UK: A review. Science of the Total Environment 610–611: 316–332. DOI: 10.1016/j.scitotenv.2017.08.020 Inagaki TM, de Moraes Sá JC, Caires EF, Gonçalves DRP. 2017. Why does carbon increase in highly weathered soil under no-till upon lime and gypsum use? Science of the Total Environment 599–600: 523–532. DOI: 10.1016/j.scitotenv.2017.04.234 Johnson D, Leake JR, Read DJ. 2005. Liming and nitrogen fertilization affects phosphatase activities, microbial biomass and mycorrhizal colonisation in upland grassland. Plant and Soil 271: 157–164. DOI: 10.1007/s11104-004-2267-z Jones JP, Woltz SS. 1970. Fusarium wilt of tomato: interaction of soil liming and micronutrient amendments on disease development. Phytopathology 60: 812–813. DOI: 10.1094/Phyto-60-812 Kiehl EJ. 1979. Edaphology manual: soil-plant relationship. Agronômica Ceres. São Paulo, Brazil: Piracicaba Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH. 2013. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology 22: 5271–5277. DOI: 10.1111/mec.12481 Lammel DR, Barth G, Ovaskainen O, Cruz LM, Zanatta JA, Ryo M, de Souza EM, Pedrosa FO. 2018. Direct and indirect effects of a pH gradient bring insights into the mechanisms driving prokaryotic community structures. Microbiome 6: 7–9. DOI: 10.1186/s40168- 40 018-0482-8 Lecomte SM, Achouak W, Abrouk D, Heulin T, Nesme X, Haichar F el Z. 2018. Diversifying anaerobic respiration strategies to compete in the rhizosphere. Frontiers in Environmental Science 6: 1–16. DOI: 10.3389/fenvs.2018.00139 Leite MFA, Kuramae EE. 2020. You must choose, but choose wisely: Model-based approaches for microbial community analysis. Soil Biology & Biochemistry 151. DOI: 10.1016/j.soilbio.2020.108042 Li S, Liu J, Yao Q, Yu Z, Li Y, Jin J, Liu X, Wang G. 2022. Short-term lime application impacts microbial community composition and potential function in an acid black soil. Plant and Soil 470: 35–50. DOI: 10.1007/s11104-021-04913-0 Ling N, Wang T, Kuzyakov Y. 2022. Rhizosphere bacteriome structure and functions. Nature communications 13: 836. DOI: https://doi.org/10.1038/s41467-022-28448-9 Lupatini M, Korthals GW, Roesch LFW, Kuramae EE. 2019. Long-term farming systems modulate multi-trophic responses. Science of the Total Environment 646: 480–490. DOI: 10.1016/j.scitotenv.2018.07.323 Ma L, Pang AP, Luo Y, Lu X, Lin F. 2020. Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii. Microbial Cell Factories 19: 1–12. DOI: 10.1186/s12934-020-1281-z Mendes LW, Kuramae EE, Navarrete AA, Van Veen JA, Tsai SM. 2014. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME Journal 8: 1577–1587. DOI: 10.1038/ismej.2014.17 Méndez DFS, de Paula AM, Ramos MLG, Busato JG. 2019. Maize productivity, mycorrhizal assessment, chemical and microbiological soil attributes influenced by maize-forage grasses intercropping. Brazilian Archives of Biology and Technology 62: 1–14. DOI: 10.1590/1678-4324-2019170737 Merloti LF, Mendes LW, Pedrinho A, de Souza LF, Ferrari BM, Tsai SM. 2019. Forest-to- agriculture conversion in Amazon drives soil microbial communities and N-cycle. Soil Biology and Biochemistry 137: 107567. DOI: 10.1016/j.soilbio.2019.107567 Pang Z, Tayyab M, Kong C, Hu C, Zhu Z, Wei X, Yuan Z. 2019. Liming positively modulates microbial community composition and function of sugarcane fields. Agronomy 9: 1–17. DOI: 10.3390/agronomy9120808 Pegg KG, Coates LM, O’Neill WT, Turner DW. 2019. The Epidemiology of Fusarium Wilt of Banana. Frontiers in Plant Science 10: 1–19. DOI: 10.3389/fpls.2019.01395 Pegoraro RF, Da Silva IR, Novais RF, De Sá Mendonça E, De Oliveira Gebrim F, Moreira FF. 2006. Diffusive flux and bioavailability of micronutrients in soils: Influence of liming, soil texture and green manure. Revista Brasileira de Ciencia do Solo 30: 859– 868. DOI: 10.1590/S0100-06832006000500012 Pozo MJ, Zabalgogeazcoa I, Vazquez de Aldana BR, Martinez-Medina A. 2021. Untapping the potential of plant mycobiomes for applications in agriculture. Current Opinion in Plant Biology 60: 102034. DOI: 10.1016/j.pbi.2021.102034 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web- 41 based tools. Nucleic Acids Research 41: 590–596. DOI: 10.1093/nar/gks1219 Ritchie SW, Hanway JJ, Benson GO. 1993. How a corn plant develops. Special Report n. 48. Iowa State University of Science and Technology. Cooperative Extension Service. Ames, IA, USA Santos HG, Jacomine PKT, Dos Anjos LHC, De Oliveira VA, Lumbreras JF, Coelho MR, De Almeida JA, de Araújo Filho JC, De Oliveira JB, Cunha TJF. 2018. Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa, 2018. Soil Survey Staff. 2014. Keys to Soil Taxonomy. USDA - Natural Resources Conservation Service: Washington, DC, 360 Subbarao GV, Yoshihashi T, Worthington M, Nakahara K, Ando Y, Sahrawat KL, Rao IM, Lata JC, Kishii M, Braun HJ. 2015. Suppression of soil nitrification by plants. Plant Science 233: 155–164. DOI: 10.1016/j.plantsci.2015.01.012 Sumner ME, Noble AD. 2003. Soil acidification: the world story. Handbook of soil acidity. Marcel Dekker, New York 1–28 Team RC. 2015. R: A Language and environment for statistical computing. R Foundation for Statistical Computing Tian J, Dungait JAJ, Lu X, Yang Y, Hartley IP, Zhang W, Mo J, Yu G, Zhou J, Kuzyakov Y. 2019. Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Global Change Biology 25: 3267–3281. DOI: 10.1111/gcb.14750 Tkacz A, Bestion E, Bo Z, Hortala M, Poole PS. 2020. Influence of plant fraction, soil, and plant species on microbiota: A multikingdom comparison. mBio 11: 1–17. DOI: 10.1128/mBio.02785-19 van Raij B, Cantarella H, Quaggio JA, Furlani AMC. 1997. Recomendações de adubação e calagem para o Estado de São Paulo. Instituto Agronômico/Fundação IAC Campinas van Raij B, Quaggio JA, Cantarella H, Abreu CA. 2001. Os métodos de análise química do sistema IAC de análise de solo no contexto nacional. Análise química para avaliação da fertilidade de solos tropicais 5–39 Wang GM, Stribley DP, Tinker PB, Walker C. 1993. Effects of pH on arbuscular mycorrhiza I. Field observations on the long‐term liming experiments at Rothamsted and Woburn. New Phytologist 124: 465–472. DOI: 10.1111/j.1469-8137.1993.tb03837.x Wang Y, Yao Z, Zhan Y, Zheng X, Zhou M, Yan G, Wang L, Werner C, Butterbach-Bahl K. 2021. Potential benefits of liming to acid soils on climate change mitigation and food security. Global Change Biology 27: 2807–2821. DOI: 10.1111/gcb.15607 Yan Y, Kuramae EE, De Hollander M, Klinkhamer PGL, Van Veen JA. 2017. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME Journal 11: 56–66. DOI: 10.1038/ismej.2016.108 Zhalnina K, Louie KB, Hao Z, Mansoori N, Da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP. 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature microbiology 3: 470–480. DOI: https://doi.org/10.1038/s41564-018-0129-3 Zhang R, Rong L, Zhang L. 2022. Soil nutrient variability mediates the effects of erosion on 42 soil microbial communities: results from a modified topsoil removal method in an agricultural field in Yunnan plateau, China. Environmental Science and Pollution Research 29: 3659–3671. DOI: 10.1007/s11356-021-15894-z Zhang Z, Chai X, Tariq A, Zeng F, Li X, Graciano C. 2021. Intercropping Systems Modify Desert Plant-Associated Microbial Communities and Weaken Host Effects in a Hyper- Arid Desert. Frontiers in Microbiology 12. DOI: 10.3389/fmicb.2021.754453 Zoca SM, Penn C. 2017. An Important Tool With No Instruction Manual: A Review of Gypsum Use in Agriculture. Advances in Agronomy 144: 1–44. DOI: 10.1016/bs.agron.2017.03.001