Universidade Estadual Paulista “Júlio de Mesquita Filho” Faculdade de Odontologia de Araraquara LILIANE DE CARVALHO ROSAS GOMES Método fotográfico para diagnóstico do padrão esquelético facial e avaliação da postura crânio-cervical Dissertação apresentada ao Programa de Pós- Graduação em Ciências Odontológicas - Área de Ortodontia, da Faculdade de Odontologia de Araraquara, da Universidade Estadual Paulista, para obtenção do título de Mestre em Ciências Odontológicas. Orientador: Prof. Dr. João Roberto Gonçalves Araraquara 2012 Gomes, Liliane de Carvalho Rosas Método fotográfico para diagnóstico do padrão esquelético facial e avaliação da postura crânio-cervical / Liliane de Carvalho Rosas Gomes.-- Araraquara: [s.n.], 2012. 139 f. ; 30 cm. Dissertação (Mestrado) – Universidade Estadual Paulista, Faculdade de Odontologia Orientador: Prof. Dr. João Roberto Gonçalves 1. Fotografia 2. Diagnóstico 3. Estudos de validação I. Título Ficha catalográfica elaborada pela Bibliotecária Marley C. Chiusoli Montagnoli, CRB-8/5646 Serviço Técnico de Biblioteca e Documentação da Faculdade de Odontologia de Araraquara / UNESP LILIANE DE CARVALHO ROSAS GOMES Método fotográfico para diagnóstico do padrão esquelético facial e avaliação da postura crânio-cervical COMISSÃO JULGADORA DISSERTAÇÃO PARA OBTENÇÃO DO GRAU DE MESTRE Presidente e Orientador: Prof. Dr. João Roberto Gonçalves 2° Examinador: Prof. Dr. Ronald de Freitas Paixão 3° Examinador: Prof. Dr. Luiz Gonzaga Gandini Júnior Araraquara, 19 de Setembro de 2012 Dados Curriculares LLiliane de CCarvalho RRosas GGomes Nascimento: 26/04/1982 - Salvador/BA Filiação: Luiz Carlos Rosas Eliane Pinheiro de Carvalho 2000-2004: Curso de Graduação em Odontologia. Universidade Estadual de Feira de Santana - UEFS 2004-2005: Aperfeiçoamento em Ortodontia e Ortopedia Facial. Associação Brasileira de Odontologia - ABO/FSA 2006-2008: Especialização em Ortodontia. União Metropolitana de Educação e Cultura - UNIME/BA 2010-2012: Curso de Pós-Graduação em Ciências Odontológicas, Área de Concentração em Ortodontia, nível Mestrado. Faculdade de Odontologia de Araraquara - FOAr/UNESP Associações: Associação Brasileira de Ortodontia e Ortopedia Facial - ABOR/BA Associação dos Ex-Alunos de Ortodontia de Araraquara - AOA Sociedade Brasileira de Pesquisa Odontológica - SBPqO International Association for Dental Research - IADR Dedicatória Dedicatória Dedico este trabalho primeiramente a Deus, fonte única de todo o saber, por ter tornado este sonho realidade; e a todos que amo, todos que acreditaram em mim e sempre me apoiaram. Ao meu marido Marcelo Regis Gomes, meu pai Luiz Carlos Rosas, minha mãe Eliane Pinheiro de Carvalho e meus irmãos Luiz Carlos Rosas Júnior, Christiane Rosas e a pequena Giovanna Rosas, pessoas mais importantes da minha vida, pelo amor incondicional e incentivo constante nesta jornada. Estendo esta dedicatória aos meus queridos professores Dr. Ronald de Freitas Paixão, Me. Alexandre Protásio Vianna, Dra. Patrícia Panizzi Gimenes Sakima e Me. Alexandre Tatsuke Sakima, pelo grande incentivo para que eu fizesse o mestrado. Sem a força e a confiança de vocês, eu não teria acreditado que era capaz. Agradecimentos Especiais Agradecimentos Especiais A Deus, por estar sempre comigo, guiando os meus passos e conduzindo a minha vida. Por me amparar nos momentos difíceis, mostrar a direção nas horas incertas e me dar força para seguir em frente; superando as barreiras, e vencendo muitas vezes os meus próprios limites. Agradeço a Ele pelo dom da vida, pelas oportunidades que me foram concedidas, e por todas as pessoas maravilhosas que colocou no meu caminho. Ao meu marido Marcelo Regis Gomes, o meu grande presente de Deus; por todo amor, compreensão, companheirismo, confiança e incentivo. Por ter renunciado a si próprio, ao conforto de ter sua esposa ao seu lado todos os dias, simplesmente por amar, por confiar, por entender o verdadeiro sentido do casamento e acreditar que Deus nos uniu para que pudéssemos construir uma vida inteira juntos. Vivemos momentos muito difíceis, a saudade muitas vezes nos corroeu os corações, mas o grande amor que nos une e a certeza de que estamos juntos para um grande propósito nos deu forças para suportarmos as dificuldades e olharmos para o futuro na certeza da vitória. Sem o seu apoio, este sonho não teria se tornado real! Ao meu pai Luiz Carlos Rosas, por toda dedicação, cuidado, carinho e amor. Por me ensinar os valores mais importantes da vida, principalmente os princípios de integridade e solidariedade. Obrigada por ter me proporcionado a oportunidade de estudar e por sempre me incentivar a ir além; tendo em mente que através do esforço do nosso trabalho podemos alcançar grandes conquistas. Sua história de vida é um exemplo para mim e me inspira a querer crescer mais e mais a cada dia. Sinto muito orgulho de ser sua filha. Esta conquista também é sua! À minha mãe Eliane Pinheiro de Carvalho, pelo grande amor, carinho, dedicação, e por me fazer procurar sempre em Deus a força maior para o meu desenvolvimento como ser humano. Obrigada por ter estado ao meu lado durante todo o período do curso, por ter abdicado da sua vida, da sua casa, para me acompanhar nesta jornada. Agradeço por toda força, incentivo, pelo apoio em todos os momentos e por cada palavra de conforto nos períodos mais difíceis. Muito obrigada pela demonstração de amor diário e por estar sempre ao meu lado, torcendo, acreditando e vibrando com cada conquista! Você faz parte desta vitória! Ao meu orientador Prof. Dr. João Roberto Gonçalves, a quem dedico minha especial admiração e gratidão pelos ensinamentos transmitidos, pela atenção, compreensão e, principalmente, por toda a confiança em mim depositada. Muito obrigada por cada palavra de incentivo, por acreditar no meu trabalho, e por sempre me motivar a ir além! Ao professor Dr. Ary dos Santos Pinto, pelo grande exemplo de generosidade e amor à profissão; por transmitir seus conhecimentos com tanta dedicação, e pela gentileza e disponibilidade em me auxiliar sempre que precisei. Meus sinceros agradecimentos. Ao professor Dr. Ronald de Freitas Paixão, pessoa fundamental na minha formação profissional. Exemplo de competência e profissionalismo. Mestre que me acompanha desde os meus primeiros passos na Ortodontia. Pessoa a quem preservo profundo respeito e admiração. Muito obrigada por ter acreditado em mim e me incentivado a seguir em frente! Ao amigo e professor Me. Alexandre Protásio Vianna, pelo apoio, confiança e incentivo constantes! Agradeço por todos os ensinamentos que me foram transmitidos durante a minha formação, sempre com tanta competência, simplicidade e serenidade que lhes são características. Muito obrigada pelo suporte em Araraquara, por toda atenção, disponibilidade e amizade. Aos professores Dra. Patrícia Panizzi Gimenes Sakima e Me. Alexandre Tatsuke Sakima, sou muito grata pelo carinho, atenção, por todo apoio, confiança e incentivo a mim dispensados. Aos meus sogros Antônio Carlos Gomes e Adnólia Regis Gomes, por terem me recebido como uma filha. Muito obrigada pelo carinho, atenção e apoio sincero. Agradeço a Deus por tê-los em minha vida! Aos meus irmãos Luiz Carlos Rosas Júnior, Christiane Rosas e Giovanna Casella Monzini Rosas, por todo amor, carinho, pela amizade sincera e pelo apoio em todas as situações. Obrigada de coração! Aos meus queridos avós, tios, primos, cunhados e concunhadas, pessoas que sempre me incentivaram e torceram pela minha vitória; em especial à minha vovó Zely, vovô José (in memoriam) e vovó Jacy. Obrigada por todo amor, carinho e atenção que me dedicam. Vocês são muito importantes para mim! À Lucineide Pereira Monzini Rosas, por seu carinho e apoio. Muito obrigada! Aos pastores Rony e Fernanda Lima, e aos amigos da IBCA, por toda atenção, carinho e pelas orações constantes. Às minhas queridas amigas Paula Roberta Brasil, Maria Olívia Aguilar, Patrícia Pedrosa Moura, Ellen Freitas de Cerqueira, e Kamilla Telles, por todo carinho, incentivo e pela amizade sincera. Agradeço a compreensão pela minha ausência neste período, e a grande torcida pela minha vitória! A distância não é suficiente para separar os verdadeiros amigos! Vocês são pessoas muito especiais para mim! Agradecimentos Agradecimentos À Universidade Estadual Paulista “Júlio de Mesquita Filho” - UNESP, na pessoa de seu Pró-Reitor de Administração no exercício da Reitoria Prof. Dr. Ricardo Samih Georges Abi Rached. À Faculdade de Odontologia de Araraquara - FOAr, da Universidade Estadual Paulista “Júlio de Mesquita Filho” - UNESP, na pessoa de sua Diretora Profa. Dra. Andréia Affonso Barreto Montandon e vice-diretora Profa. Dra. Elaine Maria Sgavioli Massucato. À Coordenação do curso de Pós-Graduação em Ciências Odontológicas, na pessoa da Profa. Dra. Josimeri Hebling Costa, pela oportunidade de ser aluna deste conceituado programa de Pós- Graduação, e pela cordialidade a mim dispensada. À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela bolsa de estudo concedida durante o curso. Aos docentes das Disciplinas de Ortodontia e Odontopediatria da FOAr/UNESP: Prof. Dr. Ary dos Santos Pinto, Prof. Dr. Dirceu Barnabé Raveli, Prof. Dr. João Roberto Gonçalves, Profa. Dra. Lídia Parsekian Martins, Prof. Dr. Luiz Gonzaga Gandini Júnior, Prof. Dr. Maurício Tatsuei Sakima, Profa. Dra. Ângela Cristina Cilense Zuanon, Prof. Dr. Cyneu Aguiar Pansani, Profa. Dra. Elisa Maria Aparecida Giro, Prof. Dr. Fábio César Braga de Abreu e Lima, Profa. Dra. Josimeri Hebling Costa, Profa. Dra. Lourdes Aparecida Martins dos Santos Pinto e Profa. Dra. Rita de Cássia Loiola Cordeiro; pela agradável convivência e contribuição à minha formação profissional. Ao Prof. Dr. Luiz Gonzaga Gandini Júnior, Prof. Dr. Ary dos Santos Pinto, Prof. Dr. Dirceu Barnabé Raveli, Profa. Dra. Lídia Parsekian Martins e Prof. Dr. João Roberto Gonçalves, exemplos de competência profissional e dedicação ao ensino e à pesquisa. Pela oportunidade de desfrutar de seus conhecimentos, manifesto meus sinceros agradecimentos, respeito e admiração. Para mim é motivo de imenso orgulho dizer que fui aluna desta casa, e de tão ilustres professores. Agradeço de coração a oportunidade que me foi concedida! Ao professor Dr. Maurício Tatsuei Sakima, pela atenção, gentileza e pela agradável convivência durante o estágio de docência. À professora Dra. Ana Maria Elias, pelos valiosos ensinamentos em análise estatística. Muito obrigada por toda atenção, paciência e incentivo! À professora Dra. Daniela Aparecida de Godoi Gonçalves, pela atenção e gentileza com que sempre me recebeu. Às amigas e companheiras de turma do curso de Mestrado em Ciências Odontológicas, Área de Ortodontia, da FOAr/UNESP: Ana Patrícia de Sousa Pereira, Cibele Braga de Oliveira, Karla Carpio Horta, Kélei Cristina de Mathias Almeida, Patrícia Alves Ferreira Amato e Vanessa Barbosa da Silva. Agradeço pela amizade, carinho, e pela convivência não somente nas atividades científicas, mas em todos os momentos. Levarei boas lembranças... Desejo muito sucesso a todas vocês!!! À amiga Karla Carpio Horta, agradeço em especial pela parceria na coleta dos dados para os nossos trabalhos de pesquisa. Foi difícil, mas conseguimos!!! Aos amigos de outras turmas do curso de Mestrado em Ciências Odontológicas, Área de Ortodontia, da FOAr/UNESP: Camilla Ivini Viana Vieira, Tiago Turri, Isabela Parsekian Martins, Taisa Boamorte Ravelli, Guilherme Porciúncula, Daniela Kameyama, Rachel Mendonça, Fernando Carvalho e Roberto Silva Júnior. Em especial à Camilla Ivini e Rachel Mendonça por toda atenção e disponibilidade em ajudar, e ao Guilherme Porciúncula pelo grande auxílio durante à coleta de dados para a pesquisa. Obrigada pela gentileza e agradável convivência! Desejo tudo de bom para vocês!!! Sucesso!!! Aos amigos do curso de Doutorado em Ciências Odontológicas, Área de Ortodontia, da FOAr/UNESP: Alexandre Protásio Vianna, Amanda Fahning Ferreira Magno, Sergei Godeiro Fernandes Rabelo Caldas, André da Costa Monini, Patrícia Bicalho de Mello, Sandra Patrícia Palomino Gomes, Adriano Porto Peixoto, Aldrieli Regina Ambrósio, Alexandre Antônio Ribeiro, Renata de Cássia Gonçalves e Roberta Maria de Paula Amaral. Obrigada por toda atenção, disponibilidade e pela agradável convivência! Desejo muito sucesso a todos vocês!!! Aos amigos do curso de especialização em Ortodontia da UNIME-BA, Alessandra Anholeto de Andrade Queiroz, Cristina Mastique de Castro, Elaine Cristina da Silva, Êrica Rocha Rios, Eric Asevedo Mattos, Joe Wilton Fernandes Barbosa, Marcelo Junho Chiarini, Nívea Oliveira de Souza, Patrícia Pedrosa Martins Moura, Querlei Milene Rocha Veloso e Ricardo Girelli Coelho. Obrigada pela força, incentivo e pela torcida! Aos funcionários da Seção de Pós-Graduação da Faculdade de Odontologia de Araraquara - UNESP, em especial à Mara Cândida Munhoz do Amaral e José Alexandre Garcia, por todo o auxílio prestado durante o curso, pela gentileza e atenção com que sempre me atenderam. Aos funcionários do Departamento de Clínica Infantil da Faculdade de Odontologia de Araraquara - UNESP, em especial à Sônia Maria Tircailo, Dulce Helena de Oliveira, Odete Amaral e Tânia Aparecida Moreira dos Santos, pelo convívio agradável, gentileza e pela assistência. Aos funcionários da Biblioteca da Faculdade de Odontologia de Araraquara - UNESP, em especial à Ceres Maria Carvalho Galvão de Freitas e à Marley Cristina Chiusoli Montagnoli, pela simpatia, disposição e pelo grande auxílio prestado na confecção desta dissertação. Ao Grupo de Estudos Ortodônticos e Serviços - GESTOS, nas pessoas dos professores Dr. Ary dos Santos-Pinto, Dr. Luiz Gonzaga Gandini Júnior, Dr. Dirceu Barnabé Raveli e Dra. Lídia Parsekian Martins, pela contribuição para o desenvolvimento deste trabalho. Aos funcionários do GESTOS, pela gentileza com que me atenderam sempre que precisei. Ao curso de Ortodontia da APCD, na pessoa do seu coordenador, Prof. Dr. Tatsuko Sakima, pela contribuição para o desenvolvimento desta pesquisa. À ARADOC, na pessoa do professor Dr. Marcelo Gonçalves e sua esposa Maristela, pela parceria no desenvolvimento deste trabalho. Aos funcionários da ARADOC, em especial à Valquíria, Edineide, Paulo, Marcos e Edson, pela atenção e disposição em ajudar. À empresa Radio Memory, pela gentileza em nos ceder o software Radiocef Studio 2 para o desenvolvimento deste estudo. Às crianças participantes deste trabalho de pesquisa, agradeço pela alegria e espontaneidade que trouxeram descontração a cada momento que compartilhamos juntos. Agradeço de coração aos seus pais e responsáveis pelo comprometimento e disponibilidade em nos ajudar. Sem vocês esta pesquisa não teria se concretizado! À todos aqueles que de alguma forma contribuíram para a realização desse trabalho... ...meus sinceros agradecimentos! “É preciso ter sonhos. Sem sonhos não há conquistas, não há realizações. Sem sonhos não se chega a lugar algum. Mas não adianta sonhar e não lutar para tornar os sonhos realidade, porque sem luta não há vitória.” Augusto Cury Sumário Sumário Resumo.........................................................................................25 Abstract.....................................................................................28 1 Introdução..............................................................................31 2 Proposição..............................................................................37 3 Capítulos.................................................................................39 3.1 Capítulo 1 Photographic assessment of cephalometric measurements..............................................................................41 3.2 Capítulo 2 Photographic assessment of hyperdivergent class II patients...........................................................................79 4 Considerações Finais.........................................................115 5 Referências..........................................................................118 6 Apêndices..............................................................................132 7 Anexos....................................................................................137 Resumo Gomes LCR. Método fotográfico para diagnóstico do padrão esquelético facial e avaliação postural [Dissertação de mestrado]. Araraquara: Faculdade de Odontologia da UNESP; 2012. Resumo Objetivos: O presente estudo teve como objetivo geral a descrição do método fotográfico, visando testar sua validade no diagnóstico do padrão esquelético facial e avaliação postural. Como objetivos específicos, buscou-se a investigação da relação existente entre medidas cefalométricas e fotográficas análogas, e a verificação da eficácia do método no diagnóstico do padrão esquelético classe II hiperdivergente e na avaliação da postura da cabeça e coluna cervical. Materiais e Métodos: Dois artigos científicos foram elaborados e utilizados para a avaliação dos propósitos apresentados. Resultados: Tanto a repetibilidade quanto a reprodutibilidade do método fotográfico foram satisfatórias. A maioria das mensurações apresentou ICC acima de 0,80. Verificaram-se correlações altamente significativas (p ≤ 0,001) comparando a maioria das variáveis fotográficas com medidas cefalométricas análogas. Não foram encontradas correlações significativas para algumas variáveis posturais. Dentre todas as mensurações utilizadas, o ângulo A'N'B' foi o mais eficaz em explicar a variabilidade da medida cefalométrica correspondente, principalmente para indivíduos do gênero feminino (r2 = 0,80). O ângulo FMA' apresentou os melhores resultados para a avaliação vertical (r2 = 0,65). Uma função canônica discriminante composta por duas variáveis fotográficas (A'N'B', FMA') classificou corretamente 85% dos pacientes classe II hiperdivergentes durante a validação interna (p < 0,001). O método demonstrou sensibilidade de 83% e especificidade de 73% no processo de validação externa. Conclusões: O método fotográfico pode ser considerado uma alternativa viável, prática e confiável para o diagnóstico de pacientes padrão esquelético classe II hiperdivergente em estudos epidemiológicos de larga escala, uma vez que um protocolo adequado de padronização da técnica seja seguido. É importante que haja cautela quando da inferência do alinhamento das vértebras cervicais a partir da análise de fotografias de perfil. Estudos adicionais são necessários a fim de testar a precisão do método no diagnóstico de outros padrões esqueléticos faciais. PALAVRAS-CHAVE: Fotografia; Diagnóstico; Estudos de validação. Abstract Gomes LCR. Photographic method for skeletal pattern diagnosis and postural evaluation [Dissertação de mestrado]. Araraquara: Faculdade de Odontologia da UNESP; 2012. Abstract Objectives: The general purpose of this study was to describe the photographic method, in order to test its validity for the diagnosis of skeletal facial pattern and postural evaluations. The specific goals consisted on the investigation of the relationship between analogous cephalometric and photographic measurements, and the verification of method effectiveness in diagnosing the hyperdivergent class II patient and assessing the posture of the head and cervical column. Materials and Methods: Two scientific papers were elaborated and used for assessing the purposes presented. Results: The reliability of the photographic technique was satisfactory. Most measurements showed ICC above 0.80. It was found highly significant correlations (p ≤ 0.001) for almost all analogous photographic and cephalometric variables. No significant correlations were found for some postural variables. Among all measurements used, A’N’B’ angle was the most effective in explaining the variability of its analogous cephalometric, mainly for female subjects (r2 = 0.80). FMA’ angle showed the best results for vertical assessment (r2 = 0.65). A canonical discriminant function composed of two photographic variables (A’N’B’, FMA’) correctly classified 85% of the hyperdivergent class II patients during internal validation (p < 0.001). The method showed 83% sensitivity and 73% specificity in external validation procedure. Conclusions: The photographic method has proven to be a feasible, practical and reliable alternative for diagnosing the hyperdivergent class II patient in large scale epidemiological research, since a standardized protocol is followed. Caution is needed when inferring vertebral alignment from observed surface contours. Further studies must be performed in order to establish the diagnostic accuracy of the method for other skeletal patterns. KEYWORDS: Photography; Diagnosis; Validation studies. 1 Introdução 1 Introdução A análise de fotografias faciais tem sido realizada como auxiliar de diagnóstico na prática clínica desde os primórdios da Ortodontia19. Com o advento do cefalostato e a padronização da técnica radiográfica por Broadbent e Hofrath em 1931, a fotografia facial tornou- se um registro de importância secundária, utilizado apenas para fins ilustrativos9, 15, 58, estando subordinado à cefalometria no planejamento do tratamento ortodôntico. Diversas análises cefalométricas foram desenvolvidas ao longo dos anos, o que proporcionou a difusão dos conceitos de normalidade e anormalidade dos padrões esqueléticos faciais através de avaliações de caráter objetivo10, 41, 53, 66, 68, 70. Todavia, aspectos concernentes à radioproteção levantaram a possibilidade de avaliação quantitativa da morfologia craniofacial através de fotografias de perfil padronizadas9, propiciando o aumento substancial da eficácia clínica desta ferramenta de diagnóstico15, 27, 28, 49. Apesar da noção de fotogrametria facial datar da época do Renascimento51, somente a partir de meados do século XX foram 33 encontrados os primeiros relatos na literatura acerca de mensurações antropométricas faciais realizadas através de fotografias43, 47, 50, 67. Posteriormente, uma gama de estudos foi publicada sobre a avaliação do perfil facial a partir de fotografias padronizadas. A grande maioria relatou diferenças entre gêneros, características raciais, avaliação de resultados do tratamento e apresentação de valores normativos para medidas faciais em populações específicas, visando utilizá-los como referência em tratamentos com finalidade estética2, 4, 5, 9, 13-15, 33, 39, 49, 56, 57, 67. Além de estudar as características próprias do perfil em tecido mole, autores também abordaram a importância de relacioná-lo com o padrão cefalométrico34, 54, 55. No entanto, poucos estudos avaliaram de forma direta o grau de correlação entre medidas cefalométricas e fotográficas, observando-se resultados conflitantes65, 71. Considerando o fato de que tecidos moles variam em espessura, alguns autores têm questionado se o contorno do perfil reflete com precisão as estruturas subjacentes do esqueleto65, e se é possível determinar o padrão esquelético de um paciente a partir da análise da fotografia de perfil24. Zhang et al.71 (2007) concluíram que, embora a utilização de medidas lineares e angulares para caracterizar a morfologia facial possa ser obtida de forma precisa a partir de fotografias faciais, foram encontradas apenas correlações baixas à moderadas quando comparando-as com medidas cefalométricas análogas. Por outro lado, Staudt, Kiliaridis65 (2009) encontraram fortes correlações entre estruturas 34 esqueléticas faciais e tecidos moles sobrejacentes em indivíduos padrão esquelético classe III. A utilização de fotografias para o diagnóstico de alterações posturais tem sido difundida principalmente na área de fisioterapia26, 32, 52, 69. No entanto, ainda são raros os estudos que compararam variáveis posturais obtidas através de telerradiografias em norma lateral com aquelas provenientes de fotografias de perfil padronizadas. Estudos prévios não encontraram fortes correlações entre o alinhamento anatômico das vértebras cervicais e medidas da postura da cabeça e pescoço obtidas a partir da superfície de tecido mole32, 52. Por outro lado, van Niekerk et al.69 (2008) observaram que as fotografias forneciam um indicador válido e confiável da posição da coluna subjacente. Embora as radiografias cefalométricas constituam-se no padrão-ouro para avaliar a postura crânio-cervical 6, 29, 30, 36, 48, 60-64 e diagnosticar a morfologia esquelética craniofacial na prática clínica10, 41, 53, 66, 68, 70, elas não são viáveis para aplicação em estudos epidemiológicos de larga escala71. Alternativas não invasivas foram sugeridas a fim de estabelecer um diagnóstico preciso, sem exposição dos sujeitos da pesquisa à radiação65. Desde métodos simplificados como a antropometria manual11, 12, até os mais sofisticados sistemas de análise tridimensional têm sido descritos3, 7, 16, 17, 28. No entanto, enfatiza-se a utilização de fotografias padronizadas por se tratar de um procedimento 35 simples, prático e de baixo custo1, 25, 49, 65, 71. Ou seja, uma alternativa viável para o diagnóstico preliminar em tais estudos. A primeira parte do presente trabalho centrou-se na investigação da relação existente entre medidas obtidas a partir de telerradiografias laterais e medidas análogas provenientes de fotografias padronizadas do perfil facial, através da análise de modelos de regressão. A possibilidade de prever os valores das variáveis cefalométricas por meio de variáveis fotográficas pode ser de grande interesse na complementação da análise facial, possibilitando o diagnóstico do padrão esquelético através da utilização de fotografias padronizadas de perfil. A segunda parte do estudo avalia a possibilidade de análise da posição da cabeça e coluna cervical através de fotografias, e exibe a precisão do método fotográfico no diagnóstico do paciente classe II hiperdivergente por meio de uma função canônica discriminante. Este tipo esquelético foi particularmente escolhido para análise por estar associado à diferentes desordens, tais como alterações posturais6, 29, 30, 36, 40, 48, 59-64, maior prevalência de distúrbios do sono por obstrução das vias aéreas 8, 35, 37, 38, 42 e distúrbios da ATM18, 20-23, 31, 44-46. Entretanto, a relação de causa e efeito entre este padrão esquelético específico e possíveis condições patológicas ainda não foi elucidada, fato este que tem aumentado o interesse de pesquisadores em investigar mais profundamente estas questões. 36 A compreensão adequada do mecanismo que contribui para o desenvolvimento crânio-facial normal é de importância fundamental no diagnóstico e tratamento dos distúrbios morfológicos e funcionais do sistema estomatognático. Para que haja um maior entendimento a respeito da inter-relação entre morfologia craniofacial, postura crânio- cervical e o desenvolvimento de desordens funcionais, faz-se necessária a realização de estudos epidemiológicos longitudinais em larga escala, nos quais seja feito um acompanhamento, em longo prazo, de indivíduos em fase de crescimento. No entanto, a viabilidade de tal estudo está condicionada ao desenvolvimento de um método simplificado, reprodutível, que possibilite a obtenção de um diagnóstico preciso, sem expor o paciente à radiação. 2 Proposição 2 Proposição 2.1 Objetivo Geral Descrição do método fotográfico, visando testar sua validade para o diagnóstico do padrão esquelético facial e avaliação da postura da cabeça e coluna cervical. 2.2 Objetivos específicos 1. Investigar a relação existente entre medidas cefalométricas utilizadas para diagnóstico do padrão esquelético facial e medidas craniofaciais obtidas através do método fotográfico. 2. Testar a eficácia do método fotográfico no diagnóstico do padrão esquelético classe II hiperdivergente e na avaliação da postura da cabeça e coluna cervical. 3 Capítulos Esta dissertação de Mestrado foi redigida em capítulos correspondentes a artigos científicos para publicação em periódicos internacionais. Capítulo 1 Photographic assessment of cephalometric measurements. Liliane de Carvalho Rosas Gomes, Karla Orfelina Carpio Horta, Luiz Gonzaga Gandini Júnior, Marcelo Gonçalves, João Roberto Gonçalves. Artigo enviado para publicação no periódico American Journal of Orthodontics and Dentofacial Orthopedics. Capítulo 2 Photographic assessment of hyperdivergent class II patients. Liliane de Carvalho Rosas Gomes, Karla Orfelina Carpio Horta, Luiz Gonzaga Gandini Júnior, João Roberto Gonçalves. Artigo a ser enviado para publicação no periódico American Journal of Orthodontics and Dentofacial Orthopedics. Considerações Éticas: O presente estudo foi previamente aprovado pelo Comitê de Ética da Faculdade de Odontologia de Araraquara sob protocolo nº 66/10, conforme certificado (Anexo 1). Os responsáveis pelos pacientes participantes desta pesquisa assinaram o termo de consentimento livre e esclarecido (Apêndice 1) e o termo de autorização para uso de imagem (Apêndices 2 e 3). 3.1 Capítulo 1 Photographic assessment of cephalometric measurements Liliane de Carvalho Rosas Gomes a, Karla Orfelina Carpio Horta a, Luiz Gonzaga Gandini Júnior b, Marcelo Gonçalves c, João Roberto Gonçalves d a DDS, Masters Student in Orthodontics, FACULDADE DE ODONTOLOGIA DE ARARAQUARA, UNESP Univ Estadual Paulista, Araraquara, Sao Paulo, Brazil b DDS, MS, PhD, Associate Professor of Orthodontics, FACULDADE DE ODONTOLOGIA DE ARARAQUARA, UNESP Univ Estadual Paulista, Araraquara, Sao Paulo, Brazil c DDS, MS, PhD, Assistant Professor of Radiology, FACULDADE DE ODONTOLOGIA DE ARARAQUARA, UNESP Univ Estadual Paulista, Araraquara, Sao Paulo, Brazil d DDS, MS, PhD, Assistant Professor of Orthodontics, FACULDADE DE ODONTOLOGIA DE ARARAQUARA, UNESP Univ Estadual Paulista, Araraquara, Sao Paulo, Brazil Corresponding author: Liliane de Carvalho Rosas Gomes, FACULDADE DE ODONTOLOGIA DE ARARAQUARA, UNESP Univ Estadual Paulista, Departamento de Clínica Infantil, Rua Humaitá, 1680, Araraquara, São Paulo, Brasil. CEP: 14801-903. E-mail: lilianerosas@hotmail.com 42 ABSTRACT Introduction: Since cephalometric analysis constitutes the gold standard for diagnosing craniofacial morphology in clinical practice, the possibility of predicting cephalometric values through photographs may be relevant as a noninvasive diagnostic tool, especially for epidemiological studies. Objectives: This study focused on the investigation of the relationship between craniofacial measurements obtained from cephalometric radiographs with analogous measurements from profile photographs. Methods: Lateral cephalograms and standardized facial profile photographs were obtained from a sample of 123 subjects (65 girls, 58 boys, aged 7–12 years). Intraclass correlation coefficients (ICC) were calculated from repeated photographic measurements to evaluate method reliability. Analogous cephalometric and photographic measurements were compared to assess Pearson correlation coefficients. Linear regression analyses were conducted between the measurements that achieved correlation coefficients greater than r = 0.7. Results: The reliability of the photographic technique was satisfactory. Most measurements showed ICC above 0.80 and highly significant correlations (p ≤ 0.001) with cephalometric variables. Among all measurements used, A’N’B’ angle was the most effective in explaining the variability of its analogous cephalometric, mainly for female subjects (r2 = 43 0.80). FMA’ angle showed the best results for vertical assessment (r2 = 0.65). Conclusion: The photographic method has proven to be a reliable diagnostic tool since a standardized protocol is followed. Therefore, it may be considered a feasible and practical diagnostic alternative, particularly if there is a need for a low-cost and noninvasive method. KEY WORDS: Photography, Diagnosis, Regression analysis INTRODUCTION AND LITERATURE REVIEW Photographs have long been used as an adjunct in anthropometric research and orthodontics clinical practice. However, by the advent of cephalostat and standardization of the radiographic technique, facial photography became a secondary record for several years. The emphasis was on the objective assessment of cephalometric radiographs, leaving only a subjective role for lateral photographs.1-3 Several cephalometric analyses were developed, which gave orthodontics a basis to expand the concept of normal and abnormal skeletal pattern. Conversely, radioprotection concerns brought to light the possibility of performing quantitative analysis through photographs, which may increase its clinical effectiveness. Actually, such quantitative analysis may serve as a powerful method to address craniofacial disorders, 44 establish treatment planning, evaluate surgical results, orthodontic outcomes, as well as study facial growth. Thus, it may be effective either in orthodontics as in several medical fields.1,4,5 Although the notion of facial photogrammetry may be traced back to Renaissance,6 it was only from the middle 20th century that the first reports emerged regarding accurate anthropometric facial measurements recorded through photographs.7-10 Afterwards, various studies about soft- tissue evaluation on standardized two-dimensional photographs have been described. Most of them reported differences between genders, racial characteristics, treatment changes and also developed normative database to use as a guide for aesthetic treatment goals.1,3,5,7,11-19 Besides studying soft-tissue profile characteristics alone, it has been found consistent relationships between facial overlying tissues and skeletal structures through lateral radiographs analysis.20-22 However, comparisons involving cephalometric and photographic measurements have been seldom performed, and conflicting results found.23,24 Zhang et al.23 noticed that although both linear and angular craniofacial measurements could be reliably determined from facial photographs, only low to moderate correlations with analogous cephalometric measurements were found. Contrariwise, Staudt and Kiliaridis 24 found strong correlations between soft-tissue facial characteristics and skeletal variables. 45 Although normative data for facial analysis have been described, cephalometry still constitutes the current gold standard for diagnosing skeletal craniofacial morphology in clinical practice. Therefore, the possibility of predicting cephalometric findings through photographs may be relevant to supplement facial analysis, especially if there is a need for a low-cost and noninvasive diagnostic method. This study focused on the investigation of the relationship between craniofacial measurements obtained from cephalometric radiographs with analogous measurements from standardized facial profile photographs by means of regression prediction models. MATERIALS AND METHODS Study population Lateral cephalograms and standardized profile photographs were obtained from 123 subjects, 65 girls and 58 boys, aged between 7 and 12 years (mean 8.9 yrs, SD 1.4). The inclusion criteria were (1) no previous orthodontic or surgical treatment, (2) all six maxillary anterior teeth present, (3) no craniofacial trauma, (4) no congenital anomalies and (5) no neurological disturbances. The sample comprised children admitted for the treatment of various malocclusions at Araraquara Dental School, UNESP and private academic institutions. Thus, lateral radiographs were already 46 required as part of the initial orthodontic records. Parents or legal guardians were previously informed about the procedures and gave their written agreement to the investigation. The study was approved under the protocol nº 66/10, by the local Committee of Ethics. Photographic procedure Standardized right profile photographs were taken in natural head position (NHP), maximum intercuspation and lips at rest. Previously, glasses were removed and hairs piled high on the head, ensuring that the patient’s forehead, neck, and ears were clearly visible. Adhesive dots were placed on anatomical landmarks identified by palpation (Fig. 1). Me’ point was identified with an adhesive styrofoam bead to allow better visibility by the camera. To obtain NHP, a 75 X 30 cm mirror was hung on a tripod which allows vertical adjustments according to subject’s height. Patients were asked to keep feet slightly apart, arms relaxed and stand a step behind a line drawn 120 cm away from the mirror. They were instructed to tilt their head up and down with decreasing amplitude until they felt relaxed, and take a step forward, keep looking straight ahead into the reflection of their eyes in the mirror, to achieve the “orthoposition”.25,26 A protractor was placed on nose tip and soft-tissue Pogonion, and a plumb line recorded the NHP angle (Fig. 2).27 47 The same digital camera (Canon EOS Digital Rebel XT, Tokyo, Japan) mounted with the same lens (Canon EF 100mm f/2.8 USM Macro Lens, Tokyo, Japan) and flash (Canon Macro Ring Lite MR-14EX flash, Tokyo, Japan) was used for all photographic records. It was secured on a tripod for stabilization and adjustment according to the subject’s height. The 100-mm macro lens was chosen to avoid facial deformations and maintain natural proportions. The camera was used in its manual position to achieve maximum image quality given the local lighting condition. A 15 cm vertical scale was adapted in a plumb line, which indicated the true vertical (VER). The scale was positioned in the midsagittal plane in order to allow later measurements at life size (1:1). The photograph studio was designed according to figure 3. Radiographic method Digital lateral skull radiographs were taken with a Kodak 8000C (Kodak Dental Systems, Carestream Health, Atlanta, USA). This radiographic system uses a CCD sensor chip as an image receptor. The exposure parameters for the digital cephalographs were 78 kV, 10 mA, and 0.6 seconds. Cephalometric radiographs were taken in NHP (mirror position), maximum intercuspation and lips at rest. A chain with a 200g weight hung at its end was suspended in front of the patient, in the midsagittal plane, to register the VER. The chain was also used as a 48 scale, in order to allow later measurements at life size (1:1) (Fig. 4). Given the possibility of cephalostat interference during NHP achievement, a protractor, modified with a plumb line,27 was placed on nose tip and soft- tissue Pogonion to check if the same position achieved during photographic record had been also obtained during radiographic record. Computerized assessment Both digital photographic and radiographic records were analyzed with Radiocef® 2.0 (Radio Memory Ltda., Belo Horizonte, MG, Brazil) software for Windows. A specific analysis was previously customized using the landmarks defined for the purpose of this study. Table I shows detailed descriptions of the landmarks and reference planes used in this investigation. Traditional cephalometric angular and linear measurements (Fig. 5) and analogous photographic ones were used for sagittal and vertical assessment (Figs. 6, 7). The software automatically calculated all the measurements once the landmarks were properly identified on each record, which had previously been scaled to life size. Computerized analysis of facial morphology through radiographs and photographs were performed by the same operator in a blind design. 49 Method error Repeatability analysis was carried out on a sample of 27 subjects (15 males and 12 females) randomly selected. After a 1-week interval, the same rater replaced the adhesive dots on pre-established anatomical landmarks. Then, another picture was taken. Reproducibility analysis was conducted on a sample of 20 subjects (9 males and 11 females) randomly selected. Hence, a second rater repeated the landmark location by palpation and replaced the adhesive dots prior to taking the picture. Statistical analysis Data were subjected to statistical analysis using Statistical Package for the Social Sciences (SPSS), version 16.0 (SPSS Inc Chicago, IL, USA). Descriptive statistics were given for each photographic and cephalometric variable. Sexual dimorphism was evaluated by independent sample t-test. Intraclass correlation coefficients (ICC) were estimated from repeated photographic measurements to evaluate the repeatability and reproducibility of the method. Cephalometric measurements were compared with analogous photographic to assess Pearson correlation coefficients. Linear regression analyses were made between cephalometric (dependent variable to be estimated) and photographic (independent variable) measurements that achieved correlation 50 coefficients greater than r = 0.7. Levels of p < 0.05 were considered statistically significant. RESULTS Photographic technique repeatability and reproducibility, regarding sagittal diagnostic variables, were excellent. All measurements showed an intraclass correlation coefficients (ICC) greater than 0.90. Considering variables used for assessing vertical diagnosis, the reliability of the photographic technique was also satisfactory, with most of the measurements showing ICC above 0.80 (Table II). Means, standard deviations, ranges and gender differences for all cephalometric and photographic measurements are summarized in tables III and IV. In general, not significant gender differences were found for cephalometric measurements. Only the OPA was significantly greater in female subjects (p ≤ 0.05), which was not observed in photographic assessment. Significant differences were found for four photographic variables: A’N’B’, LAFH’, PFH’ and PFH’/AFH’ (p ≤ 0.05 to p ≤ 0.01). It was found highly significant correlations (p ≤ 0.001) for most sagittal and vertical diagnostic variables. Coefficients ranged from weak to strong. Given the entire sample, the highest coefficients were found between ANB versus A’N’B’ (r = 0.82) and FMA versus FMA’ (r = 0.81). 51 The lowest ones were obtained for LPFH versus PFH’ (r = 0.49) and PFH/AFH versus PFH’/AFH’ (r = 0.47) (Table V). Linear regression results are listed in table VI. Figures 8 and 9 illustrate such outcomes through scatterplots. Overall, the photographic variable which best explained the variability of its analogous cephalometric measurement was the A’N’B’ angle (r2= 0.68). Considering only female subjects, the A’N’B’ presented an even higher coefficient of determination (r2= 0.80). Among the photographic variables used for vertical diagnosis, FMA’ showed the best results (r2= 0.65). DISCUSSION Cephalometric analysis constitutes the current gold standard for diagnosing skeletal craniofacial morphology in orthodontics clinical practice. However, the photographic assessment has seemed to be a great diagnostic tool for epidemiological studies, since it provides cost- effectiveness and do not expose the patient to potentially harmful radiation.1 Through repeatability test, it was found that both linear and angular measurements useful for characterizing facial morphology can be reliable measured from facial photographs, which corroborates previous studies.3-5,12,18,23,24,28,29 This finding suggests that photography might be a feasible and practical alternative when radiography is considered too invasive or logistically impractical.18,23 52 Direct anthropometry may represent another practical alternative for craniofacial morphology diagnosis, however, standardized photographic technique has shown several advantages over it. Since the subjects do not move, it is easier to measure; there is no skin pressure related errors; and the period of interaction with the subject is potentially shorter. Moreover, measurements can be performed repeatedly and data stored permanently, which makes feasible longitudinal follow-up studies.4,5 Conversely, photographic technique incorporates some shortcomes such as the distortion by lens-subject distance 4,12 that causes objects near the camera appear larger than those farther from it. However, this factor is only critical when attempting to compare structures located in different planes of space. Since most landmarks obtained from lateral photographs in the current study are at the midline, this issue should minimally affect the measurements.12 In addition, it was most commonly used angular variables, which partially overcome the problem of magnification. Another source of error concerns head posture, which must be the same during radiographic and photographic recording protocol. Even a slight deviation of the natural head position can greatly affect landmarks location and modify measurements results.24 Furthermore, jaw opening, or lips straining by mentalis muscle constriction may increase error.2,24 A standardized photography protocol also includes accurate establishment of landmarks. In this study, it was set out nine landmarks of 53 which four were obtained by palpation. Previous studies reported difficulty in marking Go’ and Me’ when cheeks were fat or plump 4 and the soft- tissue under the chin was redundant 12. In spite of only 10% of the current sample had been comprised of fat or chubby patients, it was observed greater difficulty in positioning the adhesive dots in such cases. Considering that most photographic measurements were performed based on anatomical points achieved by palpation, reproducibility test was conducted to find the reliability in positioning the stickers, without the interference of other source of error. Hence, only one operator performed computerized analysis and picture taking. Results of our investigation showed that method reproducibility was also satisfactory. Although different skeletal facial patterns composed the current sample, in general, no significant gender differences were found for cephalometric measurements, which confirms the similar distribution into male and female subgroups. However, differences were found for A’N’B’, LAFH’, PFH’ and PFH’/AFH’ photographic variables, which were significantly higher in males (p ≤ 0.05 to p ≤ 0.01). Previous authors have reported sexual dimorphism in most parameters of labial, nasal, and chin areas when evaluating photographs. Male faces showed, on average, greater heights and lengths as well as greater prominences of these areas.1,15 Fernandez-Riveiro et al. 15 noticed that the Sn point was more prominent in males, which may explain in part the A’N’B’ angle 54 dimorphism. Studies have also reported significantly larger values for LAFH’ and PFH’ in males, which agreed with our findings.1,15,28,30 However, LAFH’/AFH’ and PFH’/LAFH’ ratio showed no significant gender differences in our study. Therefore, although male subjects showed greater absolute measurements, the values maintain similar proportions for both male and female subjects. The age group in the current study (7-12 yrs) was selected because it encompasses a period which the interrelationship between hard and soft-tissue shapes should be particularly close, without the added variability of aging effects in adults.2 It was found highly significant correlations (p ≤ 0.001) between analogous cephalometric and photographic measurements for most sagittal and vertical diagnostic variables. However, Pearson correlation coefficients ranged from weak to strong (0.39 ≤ r ≤ 0.89). It means that although there was a significant tendency for analogous photographic and cephalometric variables to vary together, this tendency was strong for some measurements and weak for others. In a previous study, Zhang et al. 23 reported only low to moderate correlations (0.36 ≤ r ≤ 0.64). Analogous photographic and cephalometric LAFH showed the highest one observed (r = 0.64). When comparing FMA’ with the cephalometric SN.GoMe, the authors found a weak correlation coefficient (r = 0.42).23 Contrariwise, by correlating cephalometric and photographic FMA analogous angles in Bittner and Pancherz’s study (r = 55 0.93),31 and in the current paper (r = 0.81), it was observed strong correlations. Such difference might be related to the inclination of intracranial SN line, which has shown individual variations.32,33 Staudt and Kiliaridis 24 observed that several soft-tissue measurements gave a reliable description of the underlying sagittal jaw relationship. A correlation coefficient of r = 0.80 was reported when comparing analogous photographic and cephalometric ANB angles. Our results largely support these findings. Other authors found moderate correlations regarding such variables (r = 0.63).31 Investigators evaluated the relationship between three-dimensional soft-tissue measurements and well-established two-dimensional cephalometric variables which analyze anteroposterior discrepancy. They noticed that the soft-tissue Wits was significantly correlated to the conventional Wits appraisal (r = 0.77),34 which corroborates our results through photographic analysis (r = 0.73). It was also assessed Camper Wits to supply an entirely external method for quantitative evaluation of jaw discrepancies. However, only moderate relationship was found with the conventional cephalometric Wits appraisal (r = 0.53). Our result regarding the Frankfurt plane (A’-B’perp) presented a slightly greater value (r = 0.61). Linear regression analysis showed that the photographic variable which best explained the variability of its analogous cephalometric measurement in the current study was the A’N’B’ angle (r2= 0.68). It 56 means that at least 68% of the variance of the cephalometric assessment can be explained by such photographic measurement given the total sample. This finding largely supports a previous report which found a coefficient of determination of r2= 0.63 between analogous soft-tissue and skeletal ANB angles.24 In the present sample, A’N’B’ showed an even higher coefficient of determination (r2= 0.80) among female subjects, which means that the soft-tissue thickness variability exerts less influence in these patients. Regarding vertical assessment, FMA’ showed the best results (r2= 0.65). This paper provided regression models that may predict the cephalometric variable by means of analogous photographic ones with a limited error of the estimate and a satisfactory predictive power. Further studies must be performed in order to establish the diagnostic accuracy of such models. CONCLUSIONS Highly significant correlations between analogous photographic and cephalometric measurements were found for most sagittal and vertical diagnostic variables. A’N’B’ and FMA’ angles were the photographic variables that best explained the variability of its analogous cephalometric measurement. 57 The photographic method showed to be a reliable, low-cost and noninvasive diagnostic alternative since a standardized protocol is followed. Further studies are needed in order to test the diagnostic accuracy of the predictive models obtained. ACKNOWLEDGMENTS: The authors gratefully acknowledge Radio Memory Ltda. for having generously provided the software Radiocef Studio version 2.0 for this study, and also thank GESTOS and APCD academic institutions for the partnership in performing this research. REFERENCES 1. Ferrario VF, Sforza C, Miani A, Tartaglia G. Craniofacial morphometry by photographic evaluations. Am J Orthod Dentofacial Orthop 1993;103:327-37. 2. Halazonetis DJ. Morphometric correlation between facial soft-tissue profile shape and skeletal pattern in children and adolescents. Am J Orthod Dentofacial Orthop 2007;132:450-7. 3. Dimaggio FR, Ciusa V, Sforza C, Ferrario VF. Photographic soft-tissue profile analysis in children at 6 years of age. Am J Orthod Dentofacial Orthop 2007;132:475-80. 58 4. Han K, Kwon HJ, Choi TH, Kim JH, Son D. Comparison of anthropometry with photogrammetry based on a standardized clinical photographic technique using a cephalostat and chair. J Craniomaxillofac Surg 2010;38:96-107. 5. Ozdemir ST, Sigirli D, Ercan I, Cankur NS. Photographic facial soft tissue analysis of healthy Turkish young adults: anthropometric measurements. Aesthetic Plast Surg 2009;33:175-84. 6. Peck S, Peck L. Selected aspects of the art and science of facial esthetics. Semin Orthod 1995;1:105-26. 7. Stoner MM. A photometric analysis of the facial profile. Am J Orthod 1955;41:453-69. 8. Muzj E. Biometric correlations among organs of the facial profile. Am J Orthod 1956;42:827-57. 9. Neger M. A quantitative method for the evaluation of the soft-tissue facial profile. Am J Orthod 1959;45:738-51. 59 10. Peck H, Peck S. A concept of facial esthetics. Angle Orthod 1970;40:284-318. 11. Bishara SE, Cummins DM, Jorgensen GJ, Jakobsen JR. A computer assisted photogrammetric analysis of soft tissue changes after orthodontic treatment. Part I: Methodology and reliability. Am J Orthod Dentofacial Orthop 1995;107:633-9. 12. Cummins DM, Bishara SE, Jakobsen JR. A computer assisted photogrammetric analysis of soft tissue changes after orthodontic treatment. Part II: Results. Am J Orthod Dentofacial Orthop 1995;108:38- 47. 13. Anic-Milosevic S, Lapter-Varga M, Slaj M. Analysis of the soft tissue facial profile by means of angular measurements. Eur J Orthod 2008;30:135-40. 14. Scavone H, Zahn-Silva W, do Valle-Corotti KM, Nahas AC. Soft tissue profile in white Brazilian adults with normal occlusions and well-balanced faces. Angle Orthod 2008;78:58-63. 60 15. Fernandez-Riveiro P, Suarez-Quintanilla D, Smyth-Chamosa E, Suarez-Cunqueiro M. Linear photogrammetric analysis of the soft tissue facial profile. Am J Orthod Dentofacial Orthop 2002;122:59-66. 16. Scavone H, Jr., Trevisan H, Jr., Garib DG, Ferreira FV. Facial profile evaluation in Japanese-Brazilian adults with normal occlusions and well- balanced faces. Am J Orthod Dentofacial Orthop 2006;129:721e-5. 17. Fernandez-Riveiro P, Smyth-Chamosa E, Suarez-Quintanilla D, Suarez-Cunqueiro M. Angular photogrammetric analysis of the soft tissue facial profile. Eur J Orthod 2003;25:393-9. 18. Kale-Varlk S. Angular photogrammetric analysis of the soft tissue facial profile of Anatolian Turkish adults. J Craniofac Surg 2008;19:1481-6. 19. Malkoc S, Demir A, Uysal T, Canbuldu N. Angular photogrammetric analysis of the soft tissue facial profile of Turkish adults. Eur J Orthod 2009;31:174-9. 20. Saxby PJ, Freer TJ. Dentoskeletal determinants of soft tissue morphology. Angle Orthod 1985;55:147-54. 61 21. Kasai K. Soft tissue adaptability to hard tissues in facial profiles. Am J Orthod Dentofacial Orthop 1998;113:674-84. 22. Rose AD, Woods MG, Clement JG, Thomas CD. Lateral facial soft- tissue prediction model: analysis using Fourier shape descriptors and traditional cephalometric methods. Am J Phys Anthropol 2003;121:172-80. 23. Zhang X, Hans MG, Graham G, Kirchner HL, Redline S. Correlations between cephalometric and facial photographic measurements of craniofacial form. Am J Orthod Dentofacial Orthop 2007;131:67-71. 24. Staudt CB, Kiliaridis S. A nonradiographic approach to detect Class III skeletal discrepancies. Am J Orthod Dentofacial Orthop 2009;136:52-8. 25. Molhave A. A biostatic investigation. The standing posture of man theoretically and statometrically illustrated. Acta Orthop Scand 1960;29:291-300. 26. Solow B, Tallgren A. Natural head position in standing subjects. Acta Odontol Scand 1971;29:591-607. 62 27. Moate SJ, Geenty JP, Shen G, Darendeliler MA. A new craniofacial diagnostic technique: the Sydney diagnostic system. Am J Orthod Dentofacial Orthop 2007;131:334-42. 28. Bishara SE, Jorgensen GJ, Jakobsen JR. Changes in facial dimensions assessed from lateral and frontal photographs. Part I-- Methodology. Am J Orthod Dentofacial Orthop 1995;108:389-93. 29. Aksu M, Kaya D, Kocadereli I. Reliability of reference distances used in photogrammetry. Angle Orthod 2010;80:482-89. 30. Bishara SE, Jorgensen GJ, Jakobsen JR. Changes in facial dimensions assessed from lateral and frontal photographs. Part II--Results and conclusions. Am J Orthod Dentofacial Orthop 1995;108:489-99. 31. Bittner C, Pancherz H. Facial morphology and malocclusions. Am J Orthod Dentofacial Orthop 1990;97:308-15. 32. Bjork A. Some biological aspects of prognathism and occlusion of the teeth. Angle Orthod 1951;21:3-27. 63 33. Moorrees CFA, Kean MR. Natural head position, a basic consideration in the interpretation of cephalometric radiographs. Am J Phys Anthropol 1958;16:213-34. 34. Ferrario VF, Serrao G, Ciusa V, Morini M, Sforza C. Cephalometric and in vivo measurements of maxillomandibular anteroposterior discrepancies: a preliminary regression study. Angle Orthod 2002;72:579- 84. 64 FIGURES Figure 1. Photographic landmarks. N’, Soft-tissue Nasion; Tr, Tragion; Or’, Soft-tissue Orbitale; A’, Soft-tissue Subspinale; B’, Soft-tissue Supramentale; Go’, Soft-tissue Gonion; Pog’, Soft-tissue Pogonion; Me’, Soft-tissue Menton; Sn, Subnasale. Adhesive dots were placed on Tr, Or’ and Go’. Me’ point was marked with an adhesive styrofoam bead to allow better visibility by the camera 65 Figure 2. Modified protractor on nose tip and soft-tissue Pogonion to assess NHP 66 Figure 3. Photographic setup 67 Fi gu re 4 . ( a) S ub je ct p la ce d in th e ce ph al os ta t; (b ) D ig ita l r ad io gr ap hi c re co rd 68 Fi gu re 5 . C ep ha lo m et ric m ea su re m en ts . (a ) Sa gi tta l as se ss m en t: (1 ) W its , m ax illo m an di bu la r lin ea r di sc re pa nc y; ( 2) A N B, m ax illo m an di bu la r an gu la r di sc re pa nc y; ( 3) F N P, fa ci al a ng le ; (4 ) N .A N S. Po g, ( 5) N .A N S. B, a ng le s of fa ci al c on ve xi ty . (b ) Ve rti ca l as se ss m en t: (6 ) A r.G o. M e, g on ia l a ng le ; ( 7) F M A , F ra nk fu rt to m an di bu la r pl an e an gl e; (8 ) O P A , F ra nk fu rt to o cc lu sa l p la ne a ng le ; (9 ) A FH ( N -M e) , a nt er io r fa ci al h ei gh t; (1 0) L A FH ( A N S -M e) , l ow er a nt er io r fa ci al h ei gh t; (1 1) P FH ( S -G o) , p os te rio r fa ci al h ei gh t; (1 2) L P FH (A r- G o) , l ow er p os te rio r f ac ia l h ei gh t 69 Fi gu re 6 . Ph ot og ra ph ic m ea su re m en ts . Sa gi tta l a ss es sm en t: (1 ) W its ’, so ft- tis su e m ax illo m an di bu la r lin ea r d is cr ep an cy . ( a) p at ie nt o cc lu di ng a w oo de n sp at ul as d ev ic e, (b ) s ch em at ic re pr es en ta tio n of th e de vi ce , (c ) di st an ce A ' -B ' ob ta in ed a fte r th e tra ns fe r of F H 'O P ' an gl e to t he p ho to gr ap hy h el d in m ax im um in te rc us pa tio n 70 Fi gu re 7 . Ph ot og ra ph ic m ea su re m en ts c on tin ua tio n. ( a) S ag itt al a ss es sm en t: (2 ) A’ -B ’p er p, s of t-t is su e m ax illo m an di bu la r lin ea r di sc re pa nc y; ( 3) A ’N ’B ’, so ft- tis su e m ax illo m an di bu la r an gu la r di sc re pa nc y; ( 4) F N P’ , so ft- tis su e fa ci al a ng le ; (5 ) N ’.S n. P og ’, (6 ) N ’.S n. B ’, so ft- tis su e an gl es o f f ac ia l c on ve xi ty . ( b) V er tic al a ss es sm en t: (7 ) T r.G o’ .M e’ , s of t-t is su e go ni al a ng le ; ( 8) F M A ’, so ft- tis su e Fr an kf ur t t o m an di bu la r pl an e an gl e; ( 9) O P A ’, so ft- tis su e Fr an kf ur t t o oc cl us al p la ne a ng le ; ( 10 ) A FH ’ ( N ’-M e’ ), so ft- tis su e an te rio r fa ci al h ei gh t; (1 1) L A FH ’ ( S n- M e’ ), so ft- tis su e lo w er a nt er io r f ac ia l h ei gh t; (1 2) P FH ’ ( Tr -G o’ ), so ft- tis su e po st er io r f ac ia l h ei gh t 71 Figure 8. Scatterplots illustrating linear regression results between cephalometric and photographic measurements used for sagittal assessment (n=123). (a) Wits vs. Wits’, (b) ANB vs. A’N’B’, (c) N.ANS.Pog vs. N’.Sn.Pog’, (d) N.ANS.B vs. N’.Sn.B’ 72 Figure 9. Scatterplots illustrating linear regression results between cephalometric and photographic measurements used for vertical assessment (n=123). (a) Ar.Go.Me vs. Tr.Go’.Me’, (b) FMA vs. FMA’, (c) OPA vs. OPA’, (d) LAFH vs. LAFH’, (e) AFH vs. AFH’ 73 TABLES Table I. Reference landmarks and planes used for the purpose of this study Anatomical landmarks and planes Symbol Definition Photographic parameters: Soft-tissue Nasion N’ Point in the middle line located at the nasal root Tragion Tr Posterior and superior point of the auricular tragus Soft-tissue Orbitale Or’ Lowest point in bony orbit below right eye obtained by palpation Soft-tissue Subspinale A’ Deepest point on anterior concavity of the upper lip Soft-tissue Supramentale B’ Deepest point of the inferior sublabial concavity Soft-tissue Gonion Go’ The most posterior and inferior point at the angle of the mandible obtained by palpation Soft-tissue Pogonion Pog’ The most anteriorly located point on the chin Soft-tissue Menton Me’ The most inferior point of the chin obtained by palpation Subnasale Sn Point on the bottom of the cutaneous part of the nasal septum Soft-tissue Frankfurt horizontal plane FH’ Horizontal plane running through Tragion and soft-tissue Orbitale Soft-tissue mandibular plane MP’ Line extending between soft-tissue Gonion and Menton Soft-tissue occlusal plane OP’ Defined by the occlusion of a wooden spatula device Soft-tissue facial plane NP’ Line extending between soft-tissue Nasion and Pogonion Cephalometric parameters: Nasion N The most anterior point of the frontonasal suture Articulare Ar The intersection between the external contour of the cranial base and the dorsal contour of the condylar head or neck Porion Po The midpoint on the upper edge of the externals acoustic meatus Orbitale Or The lowest point on the lower margin of the bony orbit (midpoint between right and left images) Subspinale A The most posterior point on the anterior contour of the upper alveolar process Supramentale B The most posterior point on the anterior contour of the lower alveolar process Gonion Go The point on which the jaw angle is the most interiorly, posteriorly, and outwardly directed Pogonion Pog The most anteriorly located point on the mandibular symphysis Menton Me The most inferior point in the contour of the mandibular symphysis Anterior Nasal Spine ANS Tip of the anterior nasal spine seen on the lateral radiographs 74 Sella turcica S The midpoint of Sella turcica Frankfurt horizontal plane FH Horizontal plane running through Porion and Orbitale Mandibular plane MP Line extending between Gonion and Menton Occlusal plane OP Line that joins the midpoint of the overlap of the mesio-buccal cusp of the first molar and the buccal cusp of the first premolar (as defined by Jacobson) 60 Facial plane NP Line extending between Nasion and Pogonion Table II. Repeatability and reproducibility of photographic method assessed by intraclass correlation coefficients (ICC) Photographic Measurement Repeatability (n = 27) Reproducibility (n = 20) ICC Lower bound Upper bound ICC Lower bound Upper bound Sagittal Assessment: Wits’ 0.904 0.803 0.955 0.910 0.790 0.963 A’-B’perp 0.945 0.884 0.974 0.934 0.844 0.973 A’N’B' 0.964 0.923 0.983 0.954 0.891 0.982 FNP' 0.903 0.801 0.954 0.899 0.768 0.959 N'.Sn.Pog' 0.980 0.958 0.991 0.970 0.927 0.988 N'.Sn.B' 0.981 0.959 0.991 0.955 0.893 0.982 Vertical Assessment: Tr.Go'.Me' 0.946 0.886 0.975 0.814 0.594 0.921 FMA' 0.942 0.879 0.973 0.850 0.665 0.937 OPA’ 0.813 0.634 0.910 0.855 0.675 0.940 LAFH' (Sn-Me') 0.855 0.710 0.931 0.909 0.789 0.963 AFH' (N'-Me') 0.838 0.678 0.922 0.878 0.723 0.950 PFH' (Tr-Go') 0.754 0.533 0.879 0.731 0.443 0.883 LAFH'/ AFH’ 0.883 0.763 0.945 0.941 0.860 0.976 PFH'/ AFH' 0.796 0.604 0.901 0.782 0.535 0.907 PFH'/ LAFH' 0.832 0.668 0.919 0.826 0.618 0.927 75 76 77 Table V. Correlation coefficients between cephalometric and photographic measurements Measurement parameters All subjects (n = 123) Male (n = 58) Female (n = 65) Cephalometric Photographic Correlation Sig. Correlation Sig. Correlation Sig. Sagittal Assessment: Wits Wits’ 0.73 *** 0.67 *** 0.78 *** Wits A’-B’perp 0.61 *** 0.51 *** 0.65 *** ANB A’N’B' a 0.82 *** 0.74 *** 0.89 *** FNP FNP' 0.61 *** 0.55 *** 0.65 *** N.ANS.Pog N'.Sn.Pog' 0.68 *** 0.56 *** 0.77 *** N.ANS.B N'.Sn.B' 0.69 *** 0.55 *** 0.78 *** Vertical Assessment: ArGoMe Tr.Go'.Me' 0.79 *** 0.82 *** 0.78 *** FMA FMA' 0.81 *** 0.81 *** 0.81 *** OPA a OPA' 0.72 *** 0.66 *** 0.75 *** LAFH (ANS-Me) LAFH' (Sn-Me') a 0.78 *** 0.75 *** 0.79 *** AFH (N-Me) AFH' (N'-Me') 0.70 *** 0.63 *** 0.75 *** LPFH (Ar-Go) PFH' (Tr-Go') a 0.49 *** 0.51 *** 0.45 *** PFH (S-Go) PFH' (Tr-Go') a 0.53 *** 0.48 *** 0.53 *** LAFH/ AFH LAFH'/ AFH’ 0.63 *** 0.61 *** 0.66 *** PFH/ AFH PFH'/ AFH' 0.47 *** 0.39 ** 0.54 *** LPFH/ LAFH PFH'/ LAFH' 0.48 *** 0.48 *** 0.48 *** ** p ≤ 0.01; *** p ≤ 0.001 a Variables that presented sexual dimorphism 78 Table VI. Linear regression analysis between cephalometric and photographic measurements (n=123) Linear predictor function ( y = a + bx ) Coefficient of determination (r2) Cephalometric variables (y) Photographic variables (x) Intercept coefficient (a) Slope coefficient (b) Sig. Std. Error of the Estimate Sagittal Assessment: Wits Wits’ T -2.432 0.762 *** 2.15 0.54 ANB A’N’B' T M F -3.555 -2.030 -4.963 0.988 0.808 1.168 *** *** *** 1.45 1.50 1.28 0.68 0.54 0.80 N.ANS.Pog N'.Sn.Pog' T 48.385 0.693 *** 3.96 0.47 N.ANS.B N'.Sn.B' T 52.371 0.662 *** 4.03 0.48 Vertical Assessment: Ar.Go.Me Tr.Go'.Me' T 33.416 0.728 *** 3.08 0.63 FMA FMA' T 5.086 0.745 *** 2.45 0.65 OPA OPA' T -0.313 0.696 *** 2.68 0.51 LAFH (ANS-Me) LAFH' (Sn-Me') T M F 12.598 14.823 10.638 0.727 0.689 0.762 *** *** *** 2.27 2.22 2.34 0.60 0.56 0.62 AFH (N-Me) AFH' (N'-Me') T 36.733 0.597 *** 3.56 0.49 *** p ≤ 0.001 T-total sample (n=123), M- male (n=58), F-female (n=65). Values for M and F groups were only shown for the variables which presented sexual dimorphism regarding photographic variables. 3.2 Capítulo 2 Photographic assessment of hyperdivergent class II patients Liliane de Carvalho Rosas Gomes a, Karla Orfelina Carpio Horta a, Luiz Gonzaga Gandini Júnior b, João Roberto Gonçalves c a DDS, Masters Student in Orthodontics, FACULDADE DE ODONTOLOGIA DE ARARAQUARA, UNESP Univ Estadual Paulista, Araraquara, Sao Paulo, Brazil b DDS, MS, PhD, Associate Professor of Orthodontics, FACULDADE DE ODONTOLOGIA DE ARARAQUARA, UNESP Univ Estadual Paulista, Araraquara, Sao Paulo, Brazil c DDS, MS, PhD, Assistant Professor of Orthodontics, FACULDADE DE ODONTOLOGIA DE ARARAQUARA, UNESP Univ Estadual Paulista, Araraquara, Sao Paulo, Brazil Corresponding author: Liliane de Carvalho Rosas Gomes, FACULDADE DE ODONTOLOGIA DE ARARAQUARA, UNESP Univ Estadual Paulista, Departamento de Clínica Infantil, Rua Humaitá, 1680, Araraquara, São Paulo, Brasil. CEP: 14801-903. E-mail: lilianerosas@hotmail.com 80 ABSTRACT Introduction: Temporomandibular disorders (TMD), sleep disturbances and postural changes constitute some of the problems that have been associated with hyperdivergent class II patients. Simplified procedures for diagnosing these individuals in epidemiological studies have not been developed so far. Objectives: The purpose of this study was to test the validity of the photographic method in diagnosing the hyperdivergent class II patient. Methods: Lateral cephalograms and standardized profile photographs were obtained from a sample of 123 subjects (65 girls, 58 boys, aged 7– 12 years) assigned into two groups. 51 patients comprised the hyperdivergent class II group (ANB>4.5º and SN.GoMe>36º) and the other 72 composed a second group. Cephalometric measurements were compared with analogous photographic in order to assess Pearson correlation coefficients. Discriminant analysis described a mathematical model to better diagnose the hyperdivergent class II patient through photographs. Intraclass correlation coefficients (ICC) were calculated from repeated photographic measurements. Results: Method reliability was satisfactory. Most measurements showed ICC above 0.80. It was found highly significant correlations (p ≤ 0.001) for almost all analogous diagnostic variables. No significant correlations were found for some postural variables. A canonical discriminant function 81 composed of two photographic variables (A’N’B’, FMA’) correctly classified 85% of the hyperdivergent class II patients during internal validation (p < 0.001). The method showed 83% sensitivity and 73% specificity in external validation procedure. Conclusion: The photographic method may be a feasible and practical alternative for diagnosing the hyperdivergent skeletal class II patient, particularly if there is a need for a low-cost and noninvasive method. KEY WORDS: Photography, Hyperdivergent, Class II, Diagnosis INTRODUCTION AND LITERATURE REVIEW The craniofacial growth process is influenced by a variety of endogenous and exogenous factors that may alter the normal adaptive capacity of growing tissues and modify facial morphology.1 Such altered skeletal pattern may be a risk factor on the development of abnormal physiological conditions. It has been shown that specific craniofacial features such as increased anterior facial height,1-3 reduced mandibular ramus height,1-3 greater inclination of the mandible and occlusal plane relative to cranial base,1,2 reduced forward growth of the maxillomandibular complex 3 and reduced mandibular corpus length 1-3 are linked to temporomandibular joint (TMJ) internal derangement. 82 Raised position of the head and forward inclination of the cervical column were also related to long-face morphology and retrognathic profile.4,5 Moreover, the hyperdivergent class II patient has been associated with higher prevalence and severity of sleep disturbances by airway obstruction.6 However, the cause and effect relationship among such particular skeletal type and these abnormal conditions is still unclear, which has increased investigators’ interest to address these issues in longitudinal epidemiological studies. Although cephalometric radiographs constitute the gold standard for diagnosing craniofacial morphology in clinical practice, it might not be feasible for large scale epidemiological studies.7 Noninvasive alternatives since manual anthropometry,8 to sophisticated methods such as electromagnetic digitizer,9 laser scanning of the face 10 and digital stereophotogrammetry11 have been suggested in order to establish an accurate diagnosis without radiation exposure.12 However, the use of standardized photographs has been investigated as a simple, quick, low- cost and low-tech needs procedure, i.e., a feasible alternative to lateral cephalograms for preliminary diagnosis.7,12-14 It has been a matter of concern whether the profile outline accurately reflects the underlying skeletal structures.12,15 Actually, relationships have been found between analogous structures,7,12,16-18 which suggest that soft-tissue profile can be used to estimate skeletal craniofacial pattern.12,15 Conversely, some studies have reported only low 83 _________________________________________________________________________________________ * Discriminant analysis requires the number of subjects in the sample to be at least five times the number of independent variables in the study. (Hair JF, Anderson RE, Tatham RL, Black W. Análise discriminante múltipla e regressão logística. In: Hair JF, Anderson RE, Tatham RL, Black W. Análise multivariada de dados. 5.ed. São Paulo: Artmed; 1998. p. 219-20.) to moderate correlations between photographic and cephalometric measurements.7 The aim of this study was to test the validity of the photographic method in diagnosing hyperdivergent skeletal class II patients, and determine a group of measurements that was the most suitable for this purpose. MATERIALS AND METHODS Lateral cephalograms and standardized profile photographs both taken in natural head position (mirror position) were obtained from a sample of 123 subjects,* 65 girls and 58 boys, aged between 7 and 12 years (Mean age 8.9 yrs, SD 1.4). The inclusion criteria were (1) no previous orthodontic or surgical treatment, (2) all six maxillary anterior teeth present, (3) no craniofacial or cervical trauma, (4) no congenital anomalies and (5) no neurological disturbances. The sample comprised children admitted for the treatment of various malocclusions at Araraquara Dental School, UNESP or at some of the partner institutions. Thus, lateral radiographs had been already required as part of the initial orthodontic records. Parents or legal guardians were previously informed about the procedures and gave their written agreement to the investigation. The 84 *See pages 45 to 47 (Chapter 1). study was approved under the protocol nº 66/10, by the local Committee of Ethics. Digital photographic and radiographic records were analyzed with Radiocef® 2.0 (Radio Memory Ltda., Belo Horizonte, MG, Brazil) software for Windows. Through cephalometric analysis, children were divided into two groups according to skeletal sagittal and vertical relationships accessed by ANB and SN.GoMe angles respectively. 51 patients, 22 boys and 29 girls, formed the hyperdivergent class II group (ANB>4.5º and SN.GoMe>36º) and the other 72 subjects, 36 boys and 36 girls (ANB≤4.5º and/ or SN.GoMe≤36º) composed the second group. Detailed description of our photographic and radiographic protocol is given in a previous paper.* Anatomical landmarks used in this investigation are shown in figure 1. Tables I and II present definitions of cephalometric and photographic reference points and planes. A specific analysis was previously customized in the software using the landmarks defined for the purpose of this study. Traditional cephalometric angular and linear measurements (Fig. 2) and analogous photographic ones were used for sagittal and vertical assessment as well as for craniocervical posture analysis (Figs. 3, 4). The software automatically calculated all the measurements once the landmarks were properly identified on each record, which had previously been scaled to life size. Computerized evaluation of facial morphology 85 through radiographs and photographs were performed by the same operator in a blind design. Method error Repeatability analysis was carried out on a sample of 27 subjects (15 males and 12 females) randomly selected. After a 1-week interval, adhesive dots were replaced by the same rater on the anatomical landmarks identified by palpation. Then, another picture was taken. Reproducibility analysis was also conducted on a sample of 20 subjects (9 males and 11 females) randomly selected. Hence, a second rater repeated the landmark location by palpation and replaced the adhesives prior to taking the picture. Statistical analysis Data were subjected to statistical analysis using the Statistical Package for the Social Sciences (SPSS), version 16.0 (SPSS Inc Chicago, IL, USA). Descriptive statistics were obtained for each photographic variable used for assessing sagittal and vertical diagnosis, regarding the two different skeletal facial types subgroups. Means and standard deviations were also presented for both cephalometric and photographic head and cervical posture variables. Differences between 86 the groups were evaluated by independent sample t-test. Intraclass correlation coefficients (ICC) were estimated from repeated photographic measurements to evaluate method repeatability and reproducibility. Analogous cephalometric and photographic measurements were compared to assess Pearson correlation coefficients. Discriminant analysis was conducted to obtain, from a wide range of photographic variables, the smallest set of measurements that mostly discriminate the hyperdivergent class II patient from the other skeletal patterns. Only variables which reached the level of significance in differentiating the groups were selected for the analysis. A canonical discriminant function was calculated by the stepwise procedure according to the method of Wilks. It was firstly included in the model the variable with the smallest value of Wilks’ lambda, i. e., the one which seemed to discriminate the groups the most. Subsequent variables were chosen by lambda recalculation for each remaining variables. The F-test criterion was set at 3.84, which corresponds to a significance level of 5%. After each new variable was added to the discriminant function, variables already included in the model were re-assessed and dropped out if the F-test criterion was no longer satisfied. The stepwise operation continued until there were no further variables giving F-values greater than the F criterion, i.e., since they no longer contributed significantly to the predictive power of the discriminant function.19 87 In order to carry out internal and external validation procedures, the whole sample was randomly subdivided into two groups. Approximately 70% of the total sample (n=89, 39 hyperdivergent class II, 50 other skeletal pattern) composed the calibration set, which was used to build the mathematical model and perform internal validation. The remaining sample (n=34, 12 hyperdivergent class II, 22 other skeletal pattern) formed the test set, which was used for external validation purposes. RESULTS Sagital measurements made over photographs showed excellent repeatability and reproducibility (ICC ≥ 0.90). Most vertical diagnostic measurements showed satisfactory reliability (ICC > 0.8). Moderate to strong coefficients were observed for head and cervical posture variables (Table III). Table IV summarizes descriptive statistics for sagittal and vertical photographic measurements, regarding the different skeletal facial patterns. Significant differences (p ≤ 0.05 to p ≤ 0.001) were found between the hyperdivergent class II and the other skeletal pattern groups for all sagittal and most vertical diagnostic variables. Means and standard deviation for head and cervical posture cephalometric and photographic measurements are shown in table V. Significant differences between hyperdivergent class II patients and the 88 other skeletal patterns were observed for some cephalometric measurements (p ≤ 0.05 to p ≤ 0.01). Photographic variables did not show significant difference between the groups. It was found highly significant correlations between analogous cephalometric and photographic measurements (p ≤ 0.001) for almost all sagittal and vertical diagnostic variables. Although most measures used for assessing head and cervical posture showed significant correlations with one another (p ≤ 0.05 to p ≤ 0.001), some of them did not. Given the entire sample, the highest coefficients were found between ANB versus A’N’B’ (r = 0.82) and FMA versus FMA’ (r = 0.81). The lowest significant one was found for NSL.OPT versus C7TrN' (r = 0.24) (Table VI). The ten photographic variables which reached the level of significance in differentiating the groups (Table IV) were selected for Discriminant Analysis. The stepwise method firstly included in the model the variable A’-B’perp. Subsequently, N’.Sn.Pog’ was selected. After the inclusion of FMA’ in the model, variables already included were re- assessed and A’-B’perp was dropped out since the F-test criterion was no longer satisfied. Finally, A’N’B’ was included in the model, which lead to the exclusion of N’.Sn.Pog’ (Table VII). Therefore, A’N’B’ and FMA’ showed the highest discriminating power in combination and were used to formulate the following canonical discriminant function (D): D= - 8.308 + (0.486 x A’N’B’) + (0.130 x FMA’) 89 It was found a satisfactory separation of the groups through the discriminant function (p < 0.001). “Group centroids”, i. e., the mean values of the discriminant score for a given category were at 0.879 for the hyperdivergent class II group, and -0.685 for the other group. Figure 5 shows scores distribution. The cut-off point or "Z critical" was calculated after obtaining "centroids" values of the discriminant groups I (C1) and II (C2), divided by the sum of the number of observations in each group (N1 + N2), from the equation: Z critical = (N2 x C1) + (N1 x C2) / (N1+N2) = (50 x 0.879) + (39 x -0.685) / 89 = (43.95 – 26.715) / 89 = 17.235/ 89 = 0.2 D values greater than 0.2 indicated a hyperdivergent class II patient, whereas values lower or equal to 0.2 suggests that the patient present other skeletal facial pattern. The method showed sensitivity of 79.5%, specificity of 82%, positive predictive value of 77.5% and negative predictive value of 85% during the calibration set. When used for the test set, it presented sensitivity of 75%, specificity of 77.3%, positive predictive value of 64.3% and negative predictive value of 85%. 90 Considering that the purpose of the present investigation was to develop a method for diagnosing the hyperdivergent class II patient among other skeletal patterns, a receiver operating characteristic (ROC) curve was used to find the cut-off point that, besides showing great balance between sensitivity and specificity, preferably improve its sensitivity. Therefore, the final threshold value adopted as cut-off point for DA models was -0.2 (Figure 6). The method turned to evidence sensitivity of 84.6% and specificity of 74% during the calibration set (Table VIII). When tested in another sample, method showed sensitivity of 83.3% and specificity of 72.7% (Table IX). Figure 7 illustrates the results of the discriminant analysis given the total sample (n=123). DISCUSSION Through repeatability and reproducibility tests, it was found that both linear and angular measurements useful for characterizing facial morphology can be reliably measured from facial photographs, which corroborates previous study.7,12-14,20-24 Regarding variables used for assessing head and cervical posture, ICC ranged from moderate to strong. This finding suggests that photography might be a reliable and practical alternative when radiography is considered too invasive or logistically impractical,7,23 however, care must be taken when considering postural variables. 91 Subjects, particularly children, found it uncomfortable to maintain the position while pictures were being taken, and tended to rest the head.24 This may explain the fact that the ICC obtained for measurements that assessed head and cervical posture had lower values when compared to ones which are less dependent on patient collaboration. Other authors have found greater ICC values when evaluating posture in adolescents or adult patients.25,26 The lowest ICC results were observed when assessing cervical lordosis reproducibility. This measurement requires an extremely accurate placement of C7 point, which is not an easy task. The seventh cervical vertebra (C7) has the most prominent spinous process in about 70% of the population.27 However, the remaining 30% have either the sixth cervical vertebra (C6) or the first thoracic vertebra (T1) as the most prominent. During head extension, C6 spinous process moves anteriorly in normal healthy subjects, while C7 is the first cervical spinous process remaining stationary during this movement.27 Thus, it is necessary to follow a rigid protocol to identify this structure, in order to avoid confusing with other vertebras. Such error showed lower relevance for angular measurements. Once this paper aimed to identify hyperdivergent class II patients in the population, the second group was not limited to a single skeletal pattern, but comprised patients with different craniofacial features. Significant differences between the groups were found for most diagnostic variables, except for some linear measurements. This finding suggests 92 that it is possible to distinguish the hyperdivergent class II patient from the other skeletal types through most photographic measurements studied, mainly the angular ones. In general, the results of the cephalometric postural analysis in the current study corroborated the “soft-tissue stretching” hypothesis 28 since it was observed higher craniocervical angles, and lower craniovertical and cervicohorizontal angles for the hyperdivergent class II group. However, these differences were only statistically significant for three cephalometric variables (NSL.VER, NSL.CVT, NSL.OPT). Conversely, there were no significant differences between the groups concerning any postural photographic measurements. It was found highly significant correlations (p ≤ 0.001) for most analogous cephalometric and photographic measurements in this research, which agreed previous studies.7,12 The strongest coefficients were observed for ANB vs. A’N’B’ and FMA vs. FMA’. However, our results corroborate statements that not all parts of the soft tissues follow the skeletal structures linearly.7,12,29,30 Although sagittal and vertical jaw relationship were, in general, well reflected by the overlying soft tissues, Pearson correlation coefficients ranged from weak to moderate when comparing analogous postural measurements. Comparisons involving the upper cervical vertebra segment showed the lowest correlations. These findings may suggest that the overlying soft-tissue of the neck did not reflect the anatomic alignment 93 of the cervical vertebrae, mainly the upper segment, which corroborates a previous report.25 Out of the 21 photographic variables evaluated in the current study, 10 showed statistically significant differences between the groups and may be used for diagnostic purposes. Discriminant analysis was conducted as an attempt to find, among them, the best set of predictors in distinguishing the hyperdivergent class II patient from the other skeletal patterns. Although A’-B’perp, N’.Sn.Pog’ were shown to differentiate the groups, A’N’B’ and FMA’ variables presented the highest discriminative power when in combination. The use of the discriminant function to predict group membership resulted in 79% of the patients being correctly classified, which ensured a satisfactory internal validation. When used for the external validation procedure, the discriminant model correctly classified 83% of hyperdivergent class II subjects and 73% of the patients with other skeletal patterns. Moreover, it was found a negative predictive value of 89%, which means that when the predicted diagnosis is negative, there is greater probability of the patient do not be a hyperdivergent class II indeed. It was observed that most part of the misclassified patients were borderline subjects, i. e., patients who presented values of ANB and/or SN.GoMe close to the norm. Given this fact, it can be inferred that the use of photographic method for diagnosing severe cases may present even greater results. 94 Overall, the photographic method provided a good prediction model for detecting the hyperdivergent skeletal class II patient. However, the results of this investigation corroborate previous findings in assuming that cephalometry remains the method of choice for clinical patient care.7 Photographs might be better for large-scale epidemiologic studies, especially when there is a need for a low-cost and noninvasive method.7 CONCLUSIONS Highly significant correlations between analogous photographic and cephalometric measurements were found for most sagittal and vertical diagnostic variables. However, caution is needed when inferring vertebral alignment from observed surface contours. A’N’B’ and FMA’ were the photographic measurements which showed higher discriminative power in combination. The photographic method may be considered a feasible and practical alternative for diagnosing the hyperdivergent skeletal class II patient in large-scale epidemiological studies. ACKNOWLEDGMENTS: The authors gratefully acknowledge Radio Memory Ltda. for having generously provided the software Radiocef Studio version 2.0 for this study, and also thank GESTOS and APCD academic institutions for the partnership in performing this research. 95 REFERENCES 1. Nebbe B, Major PW, Prasad NG. Male adolescent facial pattern associated with TMJ disk displacement and reduction in disk length: Part II. Am J Orthod Dentofacial Orthop 1999;116:301-7. 2. Hwang CJ, Sung SJ, Kim SJ. Lateral cephalometric characteristics of malocclusion patients with temporomandibular joint disorder symptoms. Am J Orthod Dentofacial Orthop 2006;129:497-503. 3. Flores-Mir C, Nebbe B, Heo G, Major PW. Longitudinal study of temporomandibular joint disc status and craniofacial growth. Am J Orthod Dentofacial Orthop 2006;130:324-30. 4. Solow B, Tallgren A. Head posture and craniofacial morphology. Am J Phys Anthropol 1976;44:417-35. 5. Solow B, Sandham A. Cranio-cervical posture: a factor in the development and function of the dentofacial structures. Eur J Orthod 2002;24:447-56. 6. Lowe AA, Santamaria JD, Fleetham JA, Price C. Facial morphology and obstructive sleep apnea. Am J Orthod Dentofacial Orthop 1986;90:484-91. 96 7. Zhang X, Hans MG, Graham G, Kirchner HL, Redline S. Correlations between cephalometric and facial photographic measurements of craniofacial form. Am J Orthod Dentofacial Orthop 2007;131:67-71. 8. Farkas LG, Katic MJ, Forrest CR, Alt KW, Bagic I, Baltadjiev G et al. International anthropometric study of facial morphology in various ethnic groups/races. J Craniofac Surg 2005;16:615-46. 9. Ferrario VF, Sforza C, Poggio CE, Cova M, Tartaglia G. Preliminary evaluation of an electromagnetic three-dimensional digitizer in facial anthropometry. Cleft Palate Craniofac J 1998;35:9-15. 10. Aung SC, Ngim RC, Lee ST. Evaluation of the laser scanner as a surface measuring tool and its accuracy compared with direct facial anthropometric measurements. Br J Plast Surg 1995;48:551-8. 11. Heike CL, Cunningham ML, Hing AV, Stuhaug E, Starr JR. Picture perfect? Reliability of craniofacial anthropometry using three-dimensional digital stereophotogrammetry. Plast Reconstr Surg 2009;124:1261-72. 12. Staudt CB, Kiliaridis S. A nonradiographic approach to detect Class III skeletal discrepancies. Am J Orthod Dentofacial Orthop 2009;136:52-8. 97 13. Ozdemir ST, Sigirli D, Ercan I, Cankur NS. Photographic facial soft tissue analysis of healthy Turkish young adults: anthropometric measurements. Aesthetic Plast Surg 2009;33:175-84. 14. Aksu M, Kaya D, Kocadereli I. Reliability of reference distances used in photogrammetry. Angle Orthod 2010;80:482-89. 15. Godt A, Muller A, Kalwitzki M, Goz G. Angles of facial convexity in different skeletal Classes. Eur J Orthod 2007;29:648-53. 16. Saxby PJ, Freer TJ. Dentoskeletal determinants of soft tissue morphology. Angle Orthod 1985;55:147-54. 17. Kasai K. Soft tissue adaptability to hard tissues in facial profiles. Am J Orthod Dentofacial Orthop 1998;113:674-84. 18. Rose AD, Woods MG, Clement JG, Thomas CD. Lateral facial soft- tissue prediction model: analysis using Fourier shape descriptors and traditional cephalometric methods. Am J Phys Anthropol 2003;121:172-80. 19. Klecka WR. Discriminant analysis. Beverly Hills, CA: SAGE Publications, Inc.; 1980. 98 20. Cummins DM, Bishara SE, Jakobsen JR. A computer assisted photogrammetric analysis of soft tissue changes after orthodontic treatment. Part II: Results. Am J Orthod Dentofacial Orthop 1995;108:38- 47. 21. Bishara SE, Jorgensen GJ, Jakobsen JR. Changes in facial dimensions assessed from lateral and frontal photographs. Part I- Methodology. Am J Orthod Dentofacial Orthop 1995;108:389-93. 22. Dimaggio FR, Ciusa V, Sforza C, Ferrario VF. Photographic soft-tissue profile analysis in children at 6 years of age. Am J Orthod Dentofacial Orthop 2007;132:475-80. 23. Kale-Varlk S. Angular photogrammetric analysis of the soft tissue facial profile of Anatolian Turkish adults. J Craniofac Surg 2008;19:1481-6. 24. Han K, Kwon HJ, Choi TH, Kim JH, Son D. Comparison of anthropometry with photogrammetry based on a standardized clinical photographic technique using a cephalostat and chair. J Craniomaxillofac Surg 2010;38:96-107. 99 25. Johnson GM. The correlation between surface measurement of head and neck posture and the anatomic position of the upper cervical vertebrae. Spine (Phila Pa 1976) 1998;23:921-7. 26. van Niekerk SM, Louw Q, Vaughan C, Grimmer-Somers K, Schreve K. Photographic measurement of upper-body sitting posture of high school students: a reliability and validity study. BMC Musculoskelet Disord 2008;9:113. 27. Shin S, Yoon DM, Yoon KB. Identification of the correct cervical level by palpation of spinous processes. Anesth Analg 2011;112:1232-5. 28. Solow B, Kreiborg S. Soft-tissue stretching: a possible control factor in craniofacial morphogenesis. Scand J Dent Res 1977;85:505-7. 29. Burstone CJ. The integumental profile. Am J Orthod 1958;44:1-25. 30. Subtelny JD. A longitudinal study of soft tissue facial structures and their profile characteristics, defined in relation to underlying skeletal structures. Am J Orthod 1959;45:481-507. 100 FIGURES Figure 1. Photographic landmarks. N’, Soft-tissue Nasion; Tr, Tragion; Or’, Soft-tissue Orbitale; A’, Soft-tissue Subspinale; B’, Soft-tissue Supramentale; Go’, Soft-tissue Gonion; Pog’, Soft-tissue Pogonion; Me’, Soft-tissue Menton; Sn, Subnasale, C7, seventh cervical spinous process tip. Adhesive dots or styrofoam beads were placed on the anatomical landmarks identified by palpation: Or’, Tr, Go’, Me’ and C7. 101 Fi gu re 2 . C ep ha lo m et ric m ea su re m en