A New Imidazole Alkaloid and Other Constituents from Pilocarpus grandiflorus and their Antifungal Activity Rejane C. de Souzaa, João B. Fernandesa, Paulo C. Vieiraa, M. Fátima das G. F. da Silvaa, Marizete F. P. Godoyb, Fernando C. Pagnoccab, Odair C. Buenob, M. José A. Heblingb, and José R. Piranic a Departamento de Quı́mica, Universidade Federal de São Carlos, Caixa Postal 676, São Carlos, SP, Brazil b Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, SP, Brazil c Departamento de Botanica, Instituto de Biociencias, Universidade de São Paulo, São Paulo – SP, Brazil Reprint requests to Prof. Dr. João Batista Fernandes. Fax: +55-16-3351-8350. E-mail: djbf@power.ufscar.br Z. Naturforsch. 60b, 787 – 791 (2005); received September 17, 2004 The stems of Pilocarpus grandiflorus have afforded the new imidazole alkaloid 4,6-dehydro- 1,2,4,5-tetrahydro-2,5-dioxopilocarpine in addition to the 17 known compounds germanicol, β - amiryn, ocotillone, stigmast-4-en-3-one, 3β -hydroxy-stigmast-5-en-7-one, 6β -hydroxy-stigmast-4- en-3-one, β -sitosterol, scopoletin, 3-(1’,1’-dimethylallyl)-scopoletin, elisin, dictamine, 4-methoxy-2- quinolone, platydesmine, syringaresinol, syringaldehyde, syringic acid and vanillic acid. Their struc- tures were elucidated on the basis of chemical and spectroscopic evidence. The phenolic compounds vanillic acid and syringaldehyde and the furoquinoline alkaloid platydesmine exhibited antifungal ac- tivity against Leucoagaricus gongylophorus, the symbiotic fungus of leaf-cutting ants (Atta sexdens rubropilosa). Key words: Pilocarpus grandiflorus, Jaborandi, Imidazole Alkaloid, Leucoagaricus gongylophorus, Atta sexdens rubropilosa Introduction Pilocarpus commonly known as “Jaborandi” is a shrub belonging to the Rutaceae and comprises 16 neotropical species spread over tropical and subtrop- ical America. In Brazil, the occurrence of thirteen species [1] has been reported. This genus has long been known as the most important source of the imidazole alkaloid pilocarpine. Imidazole alkaloids are histamine derivatives found only in the genus Casimiroa and Pi- locarpus [2]. The alkaloid content in some Pilocar- pus (0.5 – 1.0%) consists mainly of the imidazole alka- loid pilocarpine, together with small amounts of pilo- sine and related structures. Pilocarpine salts are valu- able in ophthalmic practice and used in eyedrops as miotics and for the treatment of glaucoma [3]. Leaf-cutting ants of the genera Atta and Acromyr- mex are among the most polyphagous agricultural pests of the South American countries. These ants cut veg- etables for substrate of their symbiotic food fungus and produce consistent economic damage to the harvesting of the cultivated plants. The agricultural pest control 0932–0776 / 05 / 0700–0787 $ 06.00 c© 2005 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com practices generally involve toxic bait applications dam- aging the environment [4]. An alternative control for these insects can be achieved by inhibiting the growth of their symbiotic fungus through more selective and less toxic natural products than the baits existent in the market. In this paper, we report the isolation of 18 com- pounds, the structural elucidation of a new imidazole alkaloid and the evaluation of their activities as in- hibitors of the growth of the symbiotic fungus Leuco- agaricus gongylophorus of leaf-cutting ants, Atta sex- dens rubropilosa. Results and Discussion In continuation of our search for compounds to be used in the control of leaf-cutting ants [5 – 15], we have investigated the dichloromethane extract of the stems of P. grandiflorus leading to the isolation of a new imidazole alkaloid (1) in addition to the known compounds germanicol (2) [16], β -amiryn (3) [17], ocotillone (4) [18], β -sitosterol (5) [19], stigmast- 788 R. C. de Souza et al. · Pilocarpus grandiflorus and their Antifungal Activity 4-en-3-one (6) [20], 3β -hydroxy-stigmast-5-en-7-one (7) [21], 6β -hydroxy-stigmast-4-en-3-one (8) [22], sy- ringaresinol (9) [23], syringaldehyde (10) [24], sy- ringic acid (11) [25], vanillic acid (12) [26], scopoletin R. C. de Souza et al. · Pilocarpus grandiflorus and their Antifungal Activity 789 Table 1. 1H (400 MHz) and 13C (100 MHz) NMR data of 1 (CDCl3, δ ). No. 1H 13C 2 – 152.4 4 – 132.2 5 – 162.4 6 5.23 d (11) 112.3 7 4.76 dddd (11.5; 7; 5.4; 2) 35.7 8b 4.08 dd (9; 2) 71.7 8a 4.42 dd (9; 5.4) 10 – 177.7 11 2.67 ddd (8; 7; 5) 45.4 12b 1.38 m 19.5 12a 1.84 m 13 1.01 t (7.4) 12.2 N-CH3 3.07 s 25.9 (13) [27], 3-(1’,1’-dimethylallyl)-scopoletin (14) [28], elisin (15) [29], dictamine (16) [30], 1-methyl-4- methoxy-2-quinolone (17) [31] and platydesmine (18) [32]. The known compounds were identified by compar- ison of their physical and spectral data with those al- ready reported in the literature. The new imidazole alkaloid had its structure determined on the basis of chemical and spectral evidence. The new alkaloid 1 had spectroscopic characteristics of the known imi- dazole alkaloid pilocarpine. The HREIMS spectrum displayed a molecular ion at m/z 238.0935 in accor- dance with the molecular formula C11H14O4N2. The 1H NMR spectrum (Table 1) showed signals at δ = 1.01 (3H, t, J = 7.4 Hz), δ = 1.84 (1H, m) and δ = 1.38 (1H, m) indicating an ethyl group; two double- doublets at δ = 4.42 (1H, dd, J = 9.0, 5.4 Hz) and δ = 4.08 (1H, dd, J = 9.0, 2.0 Hz) for protons of oxy- genated carbons at δ = 71.7 and other lactone carbon at δ = 177.8 and the signals at δ = 2.67 (1H, ddd, J = 8.0, 7.0, 5.0 Hz), δ = 4.76 (1H, dddd, J = 11.5, 7.0, 5.4, 2.0 Hz) indicating a pattern similar to pi- locarpine. The 13C NMR spectrum for 1 (Table 1) showed eleven carbons in agreement with the imi- dazole alkaloid structure. The signals at δ = 177.7, 162.4, 152.4, 132.2 and 112.3 suggesting a change in the structure of pilocarpine with two additional car- bonyl groups and a double bond. The absence of a signal in the aromatic region and the signal at δ = 5.23 (1H, d, 11.0 Hz) in addition to the two carbonyl observed in the 13C NMR spectrum suggests a mod- ification of the imidazole ring. This is supported by HMBC spectrum (Table 2), which showed a correla- tion of the N-methyl group to the carbonyl C-2 and C-9 at δ = 152.4 (3J) and 162.4 (3J), and from H-6 to Table 2. Correlations in the HMBC and G-NOESY two- dimensional observed for compound 1. H — HMBC — G-NOESY 2JC−H 3JC−H H 6 4 5; 8; 11 8b; N-CH3 7 6; 11 4; 10 8a; 8b; 11 8a 6 7; 8b; 11 8b 7 6; 10; 11 6; 7; 8a 11 7; 12 6; 13 7; 8a; 12a 12a 11; 13 7; 10 12b 11; 13 7; 10 13 12 11 N-CH3 2; 4 6 Table 3. Evaluation of the growth inhibitory activity of dichloromethane extract and compounds of P. grandiflorus. Extract/compounds Amount Growth inhibition (µg ml−1) (%) Dichloromethane extract 1000 100 Germanicol (2) 100 0 β -Amyrin (3) 100 0 β -Sitosterol (5) 100 0 Stigmast-4-en-3-one (6) 100 0 3β -Hydroxystigmast-5-en-7-one (7) 60 20 Syringaresinol (9) 50 0 Syringaldehyde (10) 50 80 Vanillic acid (12) 50 80 Dictamine (16) 40 40 1-Methyl-4-methoxy-2-quinolone (17) 60 0 Platydesmine (18) 50 80 the C-4 and C-5 at δ = 132.2 (3J) and 162.4 (3J). In the HSQC spectrum, the carbon at δ = 35.7 was cor- related with the signal at δ = 4.76. This value can be explained by anisotropic effects of the carbonyl group and the double bond. The G-NOESY experiments (Ta- ble 3) showed correlations of H-6 with the N-3-methyl group and H-8, requiring a cis configuration for the double bond. The dichloromethane extract of the stems as well as fractions of P. grandiflorus showed strong inhibitory activity on the growth of L. gongylophorus. Among the 18 isolated compounds, the phenolic compounds syringaldehyde (10) and vanillic acid (12) and the furo- quinoline alkaloid platydesmine (18) exhibited higher inhibition of the fungal growth at 50 µg ml−1. Antifungal activities have been described for pheno- lic compounds against Cladosporium herbarum [33], Aspergillus flavus and A. parasiticus [34], Geotrichum candidum, Coriolus versicolor, Phanerochaete chryso- sporium and Mycelia sterilia [35]. Grayer and Harbone [36] suggested that furoquino- line alkaloids might also play a role in the defense of plants against potentially pathogenic fungi. The result 790 R. C. de Souza et al. · Pilocarpus grandiflorus and their Antifungal Activity of our search confirmed the antifungal activity for this compound against L. gongylophorus. Experimental Section General experimental procedures 1H NMR (400 MHz) and 13C NMR (100 MHz): Bruker ARX-400 spectrometer, in CDCl3 containing TMS as int. standard. EIMS (70 eV): VG Platform II instrument and Shimadzu QP5000. HRMS: Autospec-Micromass EBE. CC were performed on silica gel 60 H (0.04 – 0.005 mm) and sı́lica gel (0.063 – 0.2 mm), respectively. Analytical TLC were performed on precoated Merck F254 sı́lica gel plates and visualized on UV (254 – 360 nm) and by spraying with vaniline-H2SO4. Plant material The stems of P. grandiflorus was collected in Poços D’antas, municı́pio de Murici, Alagoas state, Brazil in 1993. Identification of the plant was done by Professor Dr. José R. Pirani, and a voucher is deposited in the Herbarium of São Paulo University, Biosciences Institute. Extraction and isolation Stems of P. grandiflorus were dried and powdered (5.2 kg) and extracted with hexane, dichloromethane and methanol respectively. The dichloromethane extract (11.7 g) was sub- mitted to vacuum column chromatography over silica gel us- ing hexane, dichloromethane, ethyl acetate and methanol as eluents. The dichloromethane fr. (3.8 g) was subjected to Column Chromatography over silica gel using dichloromethane, ethyl acetate and methanol at different rations of increasing po- larity, furnishing 23 fr. Fr. 4-6 were purified by column Lo- bar Si60 using Hex-EtOAc-MeOH as eluents to yield 2 – 3 (16.3 mg), 5 (107.9 mg), 6 (16.0 mg) and 7 (7.0 mg). Fr. 22 was subjected to CC using gradient elution with Hex-AcOEt to yield the compounds 10 (4.5 mg), 13 (5.0 mg) and 14 (3.0 mg). The ethyl acetate fr. (11 g) was subjected to chromatog- raphy on a silica gel column, with dichloromethane, ethyl acetate and methanol as eluents, furnishing 17 fr. Fr. 2 was subjected to CC using gradient elution with Hex-AcOEt to yield the compounds 4 (1 mg), 8 (0.7 mg), 15 (1.3 mg), 16 (20.5 mg) and 17 (5.6 mg). The Fr. 3 was purified by CC us- ing gradient elution with Hex-AcOEt to give the compounds 16 (5.0 mg) and 18 (8.3 mg). Fr. 13 was subjected to CC using gradient elution with CH2Cl2-AcOEt-MeOH furnish- ing 5 fr. These fractions were further chromatographed by prep. TLC (silica gel, Hex-EtOAc, 8:2) to give 16 (6.0 mg), 9 (42.5 mg), 12 (7.7 mg), 10 (5.5 mg), 11 (6.0 mg) and 1 (6.0 mg). Fungicidal assay The fungus L. gongylophorus Singer was isolated from Atta sexdens rubropilosa Forel nest, kept in culture media and the fungicidal activity performed according to estab- lished protocols [37]. 4,6-Dehydro-1,2,4,5-tetrahydro-2,5-dioxopilocarpin (1) Yellow oil. [α]25 D +19.6 (c 0.005, CHCl3). – UV (MeOH): λmax(lgε) = 284 nm (3.98), 242 (3.46). – IR (film): ν̃ = 3444, 2967, 2932, 1767, 1731, 1604, 1442, 1382, 1175, 1121, 1065, 1019, 704, 641 cm−1. – 1H NMR and 13C NMR: Table 1. – HRMS (EI, 70 eV): found 238.0938 [M+], C11H14N2O4 requires 238.0954. – MS (EI, 70 eV): m/z (%) = 238 (47) [M+], 209 (20), 192 (56), 180 (93), 165 (53), 151 (67), 139 (35), 126 (60), 94 (100), 81 (62), 68 (83). Acknowledgements The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico- PRONEX (CNPq), and Financiadora de Estudos e Projetos (FINEP) for financial support. [1] L. A. Skorupa, M. L. F. Salatino, A. Salatino, Biochem. Syst. Ecol. 26, 655 (1998). [2] P. G. Waterman, M. F. Grundon, Chemistry and Chemi- cal Taxonomy of the Rutales. Academic Press, London (1983). [3] C. U. B. Pinheiro, Acta Bot. Bras. 16, 141 (2002). [4] H. G. Fowler, Biological Conservation 74, 147 (1995). [5] O. C. Bueno, F. C. Bueno, G. Betella, M. S. C. Morini, M. J. A. Hebling, F. C. Pagnocca, A. C. Leite, P. C. Vieira, J. B. Fernandes, Sociobiology 44, 599 (2004). [6] F. C. Pagnocca, V. L. V. Torkomian, M. J. A. Hebling, O. C. Bueno, O. A. da Silva, J. B. Fernandes, P. C. Vieira, M. F. das G. F. da Silva, A. G. Ferreira, J. Chem. Ecol. 22, 1325 (1996). [7] S. B. Ribeiro, F. C. Pagnocca, S. R. Victor, O. C. Bueno, M. J. Hebling, M. Bacci Jr., O. A. da Silva, J. B. Fernandes, P. C. Vieira, M. F. G. F. da Silva, An. da Soc. Entomol. do Brasil 27, 421 (1998). [8] M. R. Monteiro, V. L. V. Torkomian, F. C. Pagnocca, P. C. Vieira, J. B. Fernandes, M. F. G. F. da Silva, O. C. Bueno, M. J. A. Hebling, An. Acad. Bras. Ci. 70, 733 (1998). [9] M. F. M. Acácio-Bigi, M. J. A. Hebling, O. C. Bueno, F. C. Pagnocca, O. A. da Silva, J. B. Fernandes, R. C. de Souza et al. · Pilocarpus grandiflorus and their Antifungal Activity 791 P. C. Vieira, Rev. Bras. de Entomol. 41, 239 (1998). [10] O. C. Bueno, F. C. Bueno, J. Brochini, K. Sinhori, M. S. C. Morini, M. J. A. Hebling, F. C. Pagnocca, A. C. Leite, P. C. Vieira, J. B. Fernandes, Sociobiology 44, 511 (2004). [11] T. Rodrı́guez-Gamboa, S. R. Victor, J. B. Fernandes, E. Rodrigues Fo., M. F. G. F. da Silva, P. C. Vieira, F. C. Pagnocca, O. C. Bueno, M. J. A. Hebling, O. Castro, C. Phytochemistry 55, 837 (2000). [12] T. Rodrı́guez-Gamboa, J. B. Fernandes, E. Rodrigues Fo., M. F. G. F. da Silva, P. C. Vieira, M. Barrios Ch., O. Castro-Castillo, S. R. Victor, F. C. Pagnocca, O. C. Bueno, M. J. A. J. Brazil, Chem. Soc. 12, 386 (2001). [13] S. R. Victor, F. R. Crisóstomo, F. C. Pagnocca, J. B. Fer- nandes, A. G. Correa, O. C. Bueno, M. Bacci, M. J. A. Hebling, P. C. Vieira, M. F. G. F. da Silva, Pest. Manag. Sci. 57, 603 (2001). [14] J. B. Fernandes, V. David, P. H. Facchini, M. Galhiane, M. G. F. da Silva, E. Rodrigues Fo., P. C. Vieira, F. C. Pagnocca, O. C. Bueno, M. J. A. Hebling, S. R. Victor, A. M. R. dos Santos, Quim. Nova 25 1091 (2002). [15] M. F. M. A. Bigi, V. L. V. Torkomian, S. T. C. S. de Groote, M. J. A. Hebling, O. C. Bueno, F. C. Pagnocca, J. B. Fernandes, P. C. Vieira, M. F. G. F. da Silva, Pest Manag. Sc. 60, 933 (2004). [16] A. G. Gonzáles, B. M. Fraga, P. González, M. G. E. Hernandez, A. G. Ravelo, Phytochemistry 20, 1919 (1981). [17] S. Seo, Y. Tomita, K. Tori, Tetrahedron Letters 1, 7 (1975). [18] T. R. Govindachari, G. Suresh, G. N. K. Kumari, Phy- tochemistry 37, 1127 (1994). [19] S. Seo, A. Uomori, Y. Yoshimura, K. Takeda, H. Seto, Y. Ebizuka, H. Nogushi, V. Sankawa, J. Chem. Soc. Perkin I 2407 (1988). [20] K. C. Joshi, R. K. Bansal, P. Singh, Indian J. Chem. 12, 903 (1974). [21] G. R. Pettit, A. Numata, G. M. Cragg, D. L. Herald, T. Takada, C. Iwamoto, R. Riesen, J. M. Schimidt, D. L. Doubek, A. Goswami, J. Nat. Prod. 63, 72 (2000). [22] S. J. Correia, J. P. David, J. M. David, Quim. Nova 26, 36 (2003). [23] Y. W. Leong, L. J. Harrison, A. D. Powell, Phytochem- istry 50, 1237 (1999). [24] A. B. Gutierrez, W. Herbz, Phytochemistry 27, 3871 (1988). [25] Y. C. Chang, F. R. Chang, Y. C. Wu, J. Chin. Chem. Soc. 47, 373 (2000). [26] C. K. Lee, P. K. Lee, Y. H. Kuo, J. Chin. Chem. Soc. 48, 1053 (2001). [27] J. M. J. Vasconcelos, A. M. S. Silva, J. A. S. Cavaleiro, Phytochemistry 49, 1421 (1998). [28] W. von Brocke, E. Reinhard, G. Nicholson, W. A. König, Z. Naturforsch. 26b 1252 (1971). [29] J. M. Amaro-Luis, G. M. Massanet, E. Pando, F. Rodrigues-Luis, E. Zubia, Planta Med. 56, 304 (1990). [30] J. Pusset, J. L. Lopez, M. Pais, Planta Med. 57, 153 (1991). [31] I. S. Chen, Y. C. Lin, I. L. Tsai, C. M. Teng, F. N Ko, T. Ishikawa, H. Ishii, Phytochemistry 39, 1091 (1995). [32] I. L. Tsai, W. Y. Lin, C. M. Teng, T. Ishikawa, S. L. Doong, M. W. Huang, Y. C. Chen, I. S. Chen, Planta Med. 66, 618 (2000). [33] G. W. Ma, Y. Fukushi, B. Ducrey, K. Hostettmann, S. Tahara, Phytochemistry 51, 1087 (1999). [34] N. H. Aziz, S. E. Farag, L. A. Mousa, M. A. Abo-Zaid, Micróbios 93, 43 (1998). [35] F. FitzGibbon, D. Singh, G. Mcmullan, R. Marchant, Process Biochemistry 33, 799 (1998). [36] R. J. Grayer, J. B. Harborne, Phytochemistry 37, 19 (1994). [37] F. C. Pagnocca, O. A. Silva, M. J. Hebling-Beraldo, O. C. Bueno, J. B. Fernandes, P. C. Vieira, Bull. Ento- mol. Res. 80, 349 (1990).