This is the accepted manuscript made available via CHORUS. The article has been published as: High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube S. Adrián-Martínez et al. (Antares Collaboration, IceCube Collaboration, LIGO Scientific Collaboration, and Virgo Collaboration) Phys. Rev. D 93, 122010 — Published 23 June 2016 DOI: 10.1103/PhysRevD.93.122010 http://dx.doi.org/10.1103/PhysRevD.93.122010 High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube ANTARES Collaboration, IceCube Collaboration, LIGO Scientific Collaboration, and Virgo Collaboration∗ We present the high-energy-neutrino follow-up observations of the first gravitational wave tran- sient GW150914 observed by the Advanced LIGO detectors on Sept. 14th, 2015. We search for coincident neutrino candidates within the data recorded by the IceCube and Antares neutrino de- tectors. A possible joint detection could be used in targeted electromagnetic follow-up observations, given the significantly better angular resolution of neutrino events compared to gravitational waves. We find no neutrino candidates in both temporal and spatial coincidence with the gravitational wave event. Within ±500 s of the gravitational wave event, the number of neutrino candidates detected by IceCube and Antares were three and zero, respectively. This is consistent with the expected atmospheric background, and none of the neutrino candidates were directionally coincident with GW150914. We use this non-detection to constrain neutrino emission from the gravitational-wave event. I. INTRODUCTION Advanced LIGO’s first observation periods [1, 2] rep- resent a major step in probing the dynamical origin of high-energy emission from cosmic transients [3]. The sig- nificant improvement in gravitational wave (GW) search sensitivity enables a comprehensive multimessenger ob- servational effort involving partner electromagnetic ob- servatories from radio to gamma-rays, as well as neutrino detectors. The goals of multimessenger observations are to gain a more complete understanding of cosmic pro- cesses through a combination of information from dif- ferent probes, and to increase search sensitivity over an analysis using a single messenger [4–6]. The merger of neutron stars and black holes, and po- tentially massive stellar core collapse with rapidly rotat- ing cores, are expected to be significant sources of GWs [3]. These events can result in a black hole plus accre- tion disk system that drives a relativistic outflow [7, 8]. Energy dissipation in the outflow produces non-thermal, high-energy radiation that is observed as gamma-ray bursts (GRBs), and may have a �GeV neutrino com- ponent at comparable luminosities. Multiple detectors have been built that can search for this high-energy neutrino signature, including the Ice- Cube Neutrino Observatory—a cubic-kilometer facility at the South Pole [9–11], and Antares [12–14] in the Mediterranean sea. The construction of the KM3NeT cubic-kilometer scale neutrino detector in the Mediter- ranean Sea has started in December 2015 with the suc- cessful deployment of the first detection string [15]. Ice- Cube is planning a substantial increase in sensitivity with near-future upgrades [16, 17]. Another facility, the Baikal Neutrino Telescope is also planning an upgrade to cubic- kilometer volume [18]. An astrophysical high-energy neu- trino flux has recently been discovered by IceCube [19– 22], demonstrating the production of non-thermal high- energy neutrinos. The specific origin of this neutrino ∗ Full author list given at the end of the article. flux is currently unknown. Multimessenger analyses con- straining the common sources of high-energy neutrinos and GWs have been carried out in the past with both Antares and IceCube [23–25]. On Sept. 14th, 2015 at 09:50:45 UTC, a highly signifi- cant GW signal was recorded by the LIGO Hanford, WA and Livingston, LA detectors [26]. The event, labeled GW150914, was produced by a stellar-mass binary black hole merger at redshift z = 0.09+0.03 −0.04. The reconstructed mass of each black hole is ∼ 30 M�. Such a system may produce electromagnetic emission and emit neutrinos if the merger happens in a sufficiently baryon-dense envi- ronment, and a black hole plus accretion disk system is formed [27]. Current consensus is that such a scenario is unlikely, nevertheless, there are no significant observa- tional constraints. Here we report the results of a neutrino follow-up search of GW150914 using Antares and IceCube. Af- ter brief descriptions of the GW search (Section II) and the neutrino follow-up (Section III), we present the joint analysis, results of the search and source constraints, and conclusions (Section IV). II. GRAVITATIONAL WAVE DATA ANALYSIS AND DISCOVERY GW150914 was initially identified by low-latency searches for generic GW transients [28–30]. Subsequent analysis with three independent matched-filter analyses using models of compact binary coalescence waveforms [31, 32] confirmed that the event was produced by the merger of two black holes. The analyses established a false alarm rate of less than 1 event per 203 000 years, equivalent to a significance > 5.1σ [26]. Source parame- ters were reconstructed using the LALInference package [32–34], finding black-hole masses 36+5 −4 M� and 29+4 −4 M� and luminosity distance Dgw = 410+160 −180 Mpc, where the error ranges correspond to the range of the 90% credi- ble interval. The duration of the signal within LIGO’s sensitive band was 0.2 s. 2 The directional point spread function (sky map) of the GW event was computed through the full parameter es- timation of the signal, carried out using the LALInfer- ence package [33, 34]. The LALInference results pre- sented here account for calibration uncertainty in the GW strain signal. The sky map is shown in Fig. 1. At 90% (50%) credible level (CL), the sky map covers 590 deg2 (140 deg2). III. HIGH-ENERGY NEUTRINO COINCIDENCE SEARCH High-energy neutrino observatories are primarily sen- sitive to neutrinos with �GeV energies. IceCube and Antares are both sensitive to through-going muons (called track events), produced by neutrinos near the detector, above ∼ 100 GeV. In this analysis, Antares data include only up-going tracks for events originat- ing from the Southern hemisphere, while IceCube data include both up-going tracks (from the Northern hemi- sphere) as well as down-going tracks (from the Southern hemisphere). The energy threshold of neutrino candi- dates increases in the Southern hemisphere for IceCube, since downward-going atmospheric muons are not filtered by the Earth, greatly increasing the background at lower energies. Neutrino times of arrival are determined at µs precision. Since neutrino telescopes continuously take data ob- serving the whole sky, it is possible to look back and search for neutrino counterparts to an interesting GW signal at any time around the GW observation. To search for neutrinos coincident with GW150914, we used a time window of ±500 s around the GW transient. This search window, which was used in previous GW- neutrino searches, is a conservative, observation-based upper limit on the plausible emission of GWs and high- energy neutrinos in the case of GRBs, which are thought to be driven by a stellar-mass black hole—accretion disk system [35]. While the relative time of arrival of GWs and neutrinos can be informative [36–38], here we do not use detailed temporal information beyond the ±500 s time window. The search for high-energy neutrino candidates recorded by IceCube within ±500 s of GW150914 used IceCube’s online event stream. The online event stream implements an event selection similar to the event selec- tion used for neutrino point source searches [39], but opti- mized for real-time performance at the South Pole. This event selection consists primarily of cosmic-ray-induced background events, with an expectation per 1000 seconds of 2.2 events in the Northern sky (atmospheric neutri- nos), and 2.2 events in the Southern sky (high-energy atmospheric muons). In the search window of ±500 s centered on the GW alert time (see below), one event was found in the Southern sky and two in the Northern sky, which is consistent with the background expectation. The properties of these events are listed in Table I. The # ∆T [s] RA [h] Dec [◦] σrec µ [◦] Erec µ [TeV] fraction 1 +37.2 8.84 −16.6 0.35 175 12.5% 2 +163.2 11.13 12.0 1.95 1.22 26.5% 3 +311.4 −7.23 8.4 0.47 0.33 98.4% TABLE I. Parameters of neutrino candidates identified by Ice- Cube within the ±500 s time window around GW150914. ∆T is the time of arrival of the neutrino candidates relative to that of GW150914. Erec µ is the reconstructed muon energy. σrec µ is the angular uncertainty of the reconstructed track direc- tion [43]. The last column shows the fraction of background neutrino candidates with higher reconstructed energy at the same declination (±5◦). neutrino candidates’ directions are shown in Fig. 1. The muon energy in Table I is reconstructed assum- ing a single muon is producing the event. While the event from the Southern hemisphere has a significantly greater reconstructed energy [40] than the other two events, 12.5% of the background events in the same dec- lination range in the Southern hemisphere have energies in excess of the one observed. The intense flux of at- mospheric muons and bundles of muons that constitute the background for IceCube in the Southern hemisphere gradually falls as the cosmic ray flux declines with en- ergy [41]. The use of energy cuts to remove most of this background is the reason that IceCube’s sensitivity in the Southern sky is shifted to higher energies. An additional search was performed using the high- energy starting event selection described in [19]. No events were found in coincidence with GW150914. The IceCube detector also has sensitivity to outbursts of MeV neutrinos (as occur for example in core-collapse supernovae) via a sudden increase in the photomultiplier rates [42]. The global photomultiplier noise rate is mon- itored continuously, and deviations sufficient to trigger the lowest-level of alert occur roughly once per hour. No alert was triggered during the ±500 second time-window around the GW candidate event. The search for coincident neutrinos for Antares within ±500 s of GW150914 used Antares’s online re- construction pipeline [44]. A fast and robust algorithm [45] selected up-going neutrino candidates with ∼mHz rate, with atmospheric muon contamination less than 10%. In addition, to reduce the background of at- mospheric neutrinos [46], a requirement of a minimum reconstructed energy reduced the online event rate to 1.2 events/day. Consequently, for Antares the expected number of neutrino candidates from the Southern sky in a 1000 s window in the Southern sky is 0.014. We found no neutrino events from Antares that were temporally coincident with GW150914. This is consistent with the expected background event rate. 3 FIG. 1. GW skymap in equatorial coordinates, showing the reconstructed probability density contours of the GW event at 50%, 90% and 99% CL, and the reconstructed di- rections of high-energy neutrino candidates detected by Ice- Cube (crosses) during a ±500 s time window around the GW event. The neutrino directional uncertainties are < 1◦ and are not shown. GW shading indicates the reconstructed probabil- ity density of the GW event, darker regions corresponding to higher probability. Neutrino numbers refer to the first column of Table I. IV. RESULTS A. Joint analysis We carried out the joint GW and neutrino search fol- lowing the analysis developed for previous GW and neu- trino datasets using initial GW detectors [23, 25, 35, 47]. After identifying the GW event GW150914 with the cWB pipeline, we used reconstructed neutrino candidates to search for temporal and directional coincidences between GW150914 and neutrinos. We assumed that the a priori source directional distribution is uniform. For temporal coincidence, we searched within a ±500 s time window around GW150914. The relative difference in propagation time for �GeV neutrinos and GWs (which travel at the speed of light in general relativity) traveling to Earth from the source is expected to be � 1 s. The relative propagation time between neutrinos and GWs may change in alternative gravity models [48, 49]. However, discrepancies from gen- eral relativity could in principle be probed with a joint GW-neutrino detection by comparing the arrival times against the expected time frame of emission. Directionally, we searched for overlap between the GW sky map and the neutrino point spread functions, as- sumed to be Gaussian with standard deviation σrec µ (see Table I). The search identified no Antares neutrino candidates that were temporally coincident with GW150914. For IceCube, none of the three neutrino candidates temporally coincident with GW150914 were compatible with the GW direction at 90% CL. Additionally, the re- constructed energy of the neutrino candidates with re- spect to the expected background does not make them significant. See Fig. 1 for the directional relation of GW150914 and the IceCube neutrino candidates de- tected within the ±500 s window. This non-detection is consistent with our expectation from a binary black hole merger. To better understand the probability that the de- tected neutrino candidates are consistent with back- ground, we briefly consider different aspects of the data separately. First, the number of detected neutrino can- didates, i.e. 3 and 0 for IceCube and Antares, re- spectively, is fully consistent with the expected back- ground rate of 4.4 and � 1 for the two detectors, with p-value 1 − Fpois(Nobserved ≤ 2, Nexpected = 4.4) = 0.81, where Fpois is the Poisson cumulative distribution func- tion. Second, for the most significant reconstructed muon energy (Table I), 12.5% of background events will have greater muon energy. The probability that at least one neutrino candidate, out of 3 detected events, has an en- ergy high enough to make it appear even less background- like, is 1− (1− 0.125)3 ≈ 0.33. Third, with the GW sky area 90% CL of Ωgw = 590 deg2, the probability of a background neutrino candidate being directionally coin- cident is Ωgw/Ωall ≈ 0.014. We expect 3Ωgw/Ωall di- rectionally coincident neutrinos, given 3 temporal coinci- dences. Therefore, the probability that at least one of the 3 neutrino candidates is directionally coincident with the 90% CL skymap of GW150914 is 1− (1−0.014)3 ≈ 0.04. B. Constraints on the source We used the non-detection of coincident neutrino can- didates by Antares and IceCube to derive a stan- dard frequentist neutrino spectral fluence upper limit for GW150914 at 90% CL. Considering no spatially and tem- porally coincident neutrino candidates, we calculated the source fluence that on average would produce 2.3 de- tected neutrino candidates. We carried out this analysis as a function of source direction, and independently for Antares and IceCube. The obtained spectral fluence upper limits as a func- tion of source direction are shown in Fig. 2. We con- sidered a standard dN/dE ∝ E−2 source model, as well as a model with a spectral cutoff at high energies: dN/dE ∝ E−2 exp[− √ (E/100TeV)]. The latter model is expected for sources with exponential cutoff in the pri- mary proton spectrum [50]. This is expected for some galactic sources, and is also adopted here for compari- son to previous analyses [51]. For each spectral model, the upper limit shown in each direction of the sky is the more stringent limit provided by one or the other de- tector. We see in Fig. 2 that the constraint strongly depends on the source direction, and is mostly within E2dN/dE ∼ 10−1 − 10 GeV cm−2. Furthermore, the up- per limits by Antares and IceCube constrain different energy ranges in the region of the sky close to the GW candidate. For an E−2 power-law source spectrum, 90% of Antares signal neutrinos are in the energy range from 3 TeV to 1 PeV, whereas for IceCube at this southern 4 FIG. 2. Upper limit on the high-energy neutrino spectral fluence (νµ + νµ) from GW150914 as a function of source direction, assuming dN/dE ∝ E−2 (top) and dN/dE ∝ E−2 exp[− √ (E/100TeV)] (bottom) neutrino spectra. The re- gion surrounded by a white line shows the part of the sky in which Antares is more sensitive (close to nadir), while on the rest of the sky, IceCube is more sensitive. For compari- son, the 50% CL and 90% CL contours of the GW sky map are also shown. declination the corresponding energy range is 200 TeV to 100 PeV. To characterize the dependence of neutrino spectral fluence limits on source direction, we calculate these lim- its separately for the two distinct areas in the 90% cred- ible region of the GW skymap. For the larger region farther South (hereafter South region), we find upper limits E2dN/dE = 1.2+0.25 −0.36 GeV cm−2 and E2dN/dE = 7.0+3.2 −2.0 GeV cm−2 for our two spectral models without and with a cutoff, respectively. The error bars define the 90% confidence interval of the upper limit, showing the level of variation within each region. The average val- ues were obtained as geometric averages, which better represent the upper limit values as they are distributed over a wide numerical range. For the smaller region far- ther North (hereafter North region), we find upper lim- its E2dN/dE = 0.10+0.12 −0.06 GeV cm−2 and E2dN/dE = 0.55+1.79 −0.44 GeV cm−2. As expected, we see that the limits Energy range Limit [GeV cm−2] 100 GeV – 1 TeV 150 1 TeV – 10 TeV 18 10 TeV – 100 TeV 5.1 100 TeV – 1 PeV 5.5 1 PeV – 10 PeV 2.8 10 PeV – 100 PeV 6.5 100 PeV – 1 EeV 28 TABLE II. Upper limits on neutrino spectral fluence (νµ+νµ) from GW150914, separately for different spectral ranges, at Dec = −70◦. We assume dN/dE ∝ E−2 within each energy band. are much more constraining for the North region, given the stronger limits at the Northern hemisphere due to Ice- Cube’s greatly improved sensitivity there. Additionally, we see that the 90% confidence intervals for the South re- gion, which is much more likely to contain the real source direction than the North region, are fairly small around the average, with the lower and higher limits only differ- ing by about a factor of 2. The upper limits within this area can be considered essentially uniform. We observe a much greater variation in the North region. To provide a more detailed picture of our constraints on neutrino emission, we additionally calculated neutrino fluence upper limits for different energy bands. For these limits, we assume dN/dE ∝ E−2 within each energy band. We focus on Dec = −70◦, which is consistent with the most likely source direction, and also with most of the GW sky area’s credible region. For each energy range, we use the limit from the most sensitive detector within that range. The obtained limits are given in Table II. We now convert our fluence upper limits into a con- straint on the total energy emitted in neutrinos by the source. To obtain this constraint, we integrate emission within [100 GeV, 100 PeV] for each source model. The obtained constraint will vary with respect to source di- rection as we saw above. It will also depend on the un- certain source distance. To account for these uncertain- ties, we provide the range of values from the lowest to the highest possible within the 90% confidence intervals with respect to source direction and the 90% credible interval with respect to source distance. For simplicity, we treat the estimated source distance and its uncertainty inde- pendent of the source direction. We consider both of the distinct sky regions to provide an inclusive range. For our two spectral models, we obtain the following upper limit on the total energy radiated in neutrinos: Eul ν,tot = 5.4× 1051 – 1.3× 1054 erg (1) E ul(cutoff) ν,tot = 6.6× 1051 – 3.7× 1054 erg (2) with the first and second lines of the equation correspond- ing to the spectral models without and with cutoff, re- spectively. For comparison, the total energy radiated in GWs from the source is ∼ 5× 1054 erg. This value can also be compared to high-energy emission expected in 5 some scenarios for accreting stellar-mass black holes. For example, typical GRB isotropic-equivalent energies are ∼ 1051 erg for long and ∼ 1049 erg for short GRBs [52]. The total energy radiated in high-energy neutrinos in the case of GRBs can be comparable [53–57] or in some cases much greater [58, 59] than the high-energy electromag- netic emission. There is little reason, however, to expect an associated GRB for a binary black hole merger (see, nevertheless, [60]). V. CONCLUSION The results above represent the first concrete limit on neutrino emission from this GW source type, and the first neutrino follow-up of a significant GW event. With the continued increase of Advanced LIGO-Virgo sensitivities for the next observation periods, and the implied source rate of 2–400 Gpc−3yr−1 in the comoving frame based on this first detection [61], we can expect to detect a significant number of GW sources, allowing for stacked neutrino analyses and significantly improved constraints. Similar analyses for the upcoming observation periods of Advanced LIGO-Virgo will be important to provide constraints on or to detect other joint GW and neutrino sources. Joint GW and neutrino searches will also be used to improve the efficiency of electromagnetic follow-up observations over GW-only triggers. Given the signif- icantly more accurate direction reconstruction of neu- trinos (∼ 1 deg2 for track events in IceCube [40, 43] and ∼ 0.2 deg2 in Antares [62]) compared to GWs (& 100 deg2), a joint event candidate provides a greatly reduced sky area for follow-up observatories [63]. The de- lay induced by the event filtering and reconstruction after the recorded trigger time is typically 3–5 s for Antares [44], 20–30 s for IceCube [64], and O(1 min) for LIGO- Virgo, making data available for rapid analyses. ACKNOWLEDGMENTS The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Sci- entifique (CNRS), Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Commission Eu- ropéenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cité (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Région Île-de-France (DIM-ACAV), Région Alsace (con- trat CPER), Région Provence-Alpes-Côte d’Azur, Dé- partement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium für Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucle- are (INFN), Italy; Stichting voor Fundamenteel Onder- zoek der Materie (FOM), Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economı́a y Competi- tividad (MINECO), Prometeo and Grisoĺıa programs of Generalitat Valenciana and MultiDark, Spain; Agence de l’Oriental and CNRST, Morocco. We also acknowl- edge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities. We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation- Physics Division, University of Wisconsin Alumni Re- search Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wis- consin - Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and Na- tional Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineer- ing Research Council of Canada, WestGrid and Com- pute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastruc- ture for Computing (SNIC), and Knut and Alice Wal- lenberg Foundation, Sweden; German Ministry for Ed- ucation and Research (BMBF), Deutsche Forschungsge- meinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus pro- gramme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Fed- eral Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Aus- tralian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Founda- tion (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF) The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Tech- nology Facilities Council (STFC) of the United King- dom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter sup- ported by the Netherlands Organisation for Scientific Re- search, for the construction and operation of the Virgo detector and the creation and support of the EGO consor- tium. The authors also gratefully acknowledge research 6 support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineer- ing Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economı́a y Competitividad, the Conselleria d’Economia i Competitivitat and Conselleria d’Educació, Cultura i Universitats of the Govern de les Illes Balears, the Na- tional Science Centre of Poland, the European Commis- sion, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungar- ian Scientific Research Fund (OTKA), the Lyon Insti- tute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and In- novation, the Natural Science and Engineering Research Council Canada, Canadian Institute for Advanced Re- search, the Brazilian Ministry of Science, Technology, and Innovation, Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Min- istry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowl- edge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. This article has LIGO doc- ument number LIGO-P1500271. [1] J. Aasi et al., CQG 32, 074001 (2015), 1411.4547. [2] B. P. Abbott et al., (2013), arXiv:1304.0670. [3] I. Bartos, P. Brady, and S. Márka, CQG 30, 123001 (2013), arXiv:1212.2289. [4] M. W. E. Smith et al., Astropart. Phys. 45, 56 (2013), arXiv:1211.5602. [5] S. Ando et al., Rev. Mod. Phys.85, 1401 (2013), 1203.5192. [6] X. Fan, C. Messenger, and I. S. Heng, Astrophys. J.795, 43 (2014), 1406.1544. [7] D. Eichler, M. Livio, T. Piran, and D. N. Schramm, Na- ture 340, 126 (1989). [8] S. E. Woosley, Astrophys. J.405, 273 (1993). [9] A. Achterberg et al., Astropart. Phys. 26, 155 (2006), astro-ph/0604450. [10] R. Abbasi et al., Nucl. Instrum. Meth. A 601, 294 (2009). [11] R. Abbasi et al., Nucl. Instrum. Meth. A 618, 139 (2010), arXiv:1002.2442. [12] M. Ageron et al., Nucl. Instrum. Meth. A 656, 11 (2011), arXiv:1104.1607. [13] J. A. Aguilar et al., Nuclear Instruments and Methods in Physics Research A 570, 107 (2007), astro-ph/0610029. [14] J. A. Aguilar et al., Nuclear Instruments and Methods in Physics Research A 555, 132 (2005), physics/0510031. [15] S. Adrián-Mart́ınez et al., (2016), arXiv:1601.07459. [16] M. G. Aartsen et al., (2014), arXiv:1412.5106. [17] M. G. Aartsen et al., (2014), arXiv:1401.2046. [18] A. Avrorin et al., Nucl. Instrum. Meth. A 626-627, S13 (2011). [19] M. G. Aartsen et al., Phys. Rev. Lett.113, 101101 (2014), arXiv:1405.5303. [20] M. G. Aartsen et al., Phys. Rev. Lett.115, 081102 (2015), arXiv:1507.04005. [21] M. G. Aartsen et al., Phys. Rev. D91, 022001 (2015), arXiv:1410.1749. [22] M. G. Aartsen et al., Astrophys. J.809, 98 (2015), arXiv:1507.03991. [23] I. Bartos, C. Finley, A. Corsi, and S. Márka, Phys. Rev. Lett.107, 251101 (2011), arXiv:1108.3001. [24] S. Adrián-Mart́ınez et al., JCAP 6, 008 (2013), arXiv:1205.3018. [25] M. G. Aartsen et al., Phys. Rev. D90, 102002 (2014), arXiv:1407.1042. [26] LIGO Scientific Collaboration and Virgo Collaboration, B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016). [27] P. Mészáros, Ann. Rev. Astron. Astroph. 40, 137 (2002), astro-ph/0111170. [28] S. Klimenko, I. Yakushin, A. Mercer, and G. Mitsel- makher, CQG 25, 114029 (2008), arXiv:0802.3232. [29] S. Klimenko et al., (2015), arXiv:1511.05999. [30] B. Abbott et al., (2016), arXiv:1602.03843. [31] B. Abbott et al., (2016), arXiv:1602.03839. [32] B. Abbott et al., (2016), arXiv:1602.03840. [33] J. Aasi et al., Phys. Rev. D88, 062001 (2013), arXiv:1304.1775. [34] J. Veitch et al., Phys. Rev. D91, 042003 (2015), arXiv:1409.7215. [35] B. Baret et al., Astropart. Phys. 35, 1 (2011), arXiv:1101.4669. [36] S. Razzaque, P. Mészáros, and E. Waxman, Phys. Rev. D68, 083001 (2003), astro-ph/0303505. [37] I. Bartos, B. Dasgupta, and S. Márka, Phys. Rev. D86, 083007 (2012), 1206.0764. [38] I. Bartos and S. Márka, Phys. Rev. D90, 101301 (2014), 1409.1217. [39] M. G. Aartsen et al., Astrophys. J.796, 109 (2014). [40] M. G. Aartsen et al., J. Instrum. 9, P03009 (2014), arXiv:1311.4767. [41] IceCube Collaboration et al., (2015), arXiv:1506.07981. [42] R. Abbasi et al., Astron. Astrophys. 535, A109 (2011). [43] M. G. Aartsen et al., Phys. Rev. D89, 102004 (2014). [44] S. Adrian-Martinez et al., (2015), arXiv:1508.01180. [45] J. A. Aguilar et al., Astropart. Phys. 34, 652 (2011), arXiv:1105.4116. [46] S. Adrián-Mart́ınez et al., Eur. Phys. J. C 73, 2606 (2013). [47] B. Baret et al., Phys. Rev. D85, 103004 (2012), arXiv:1112.1140. [48] U. Jacob and T. Piran, Nature Physics 3, 87 (2007), hep-ph/0607145. [49] B. Abbott et al., (2016), arXiv:1602.03841. [50] A. Kappes, J. Hinton, C. Stegmann, and F. A. Aha- ronian, Journal of Physics Conference Series 60, 243 (2007). [51] S. Adrián-Mart́ınez et al., (2015), arXiv:1511.02149. [52] P. Mészáros, Rep. Prog. Phys. 69, 2259 (2006), astro- ph/0605208. [53] P. Mészáros, (2015), arXiv:1511.01396. [54] J. N. Bahcall and P. Mészáros, Physical Review Letters 85, 1362 (2000), hep-ph/0004019. 7 [55] I. Bartos, A. M. Beloborodov, K. Hurley, and S. Márka, Phys. Rev. Lett.110, 241101 (2013), arXiv:1301.4232. [56] K. Murase, K. Kashiyama, and P. Mészáros, Physical Review Letters 111, 131102 (2013), 1301.4236. [57] K. Murase, B. Dasgupta, and T. A. Thompson, Phys. Rev. D89, 043012 (2014), 1303.2612. [58] P. Mészáros and E. Waxman, Physical Review Letters 87, 171102 (2001), astro-ph/0103275. [59] K. Murase and K. Ioka, Physical Review Letters 111, 121102 (2013), 1306.2274. [60] V. Connaughton et al., ArXiv e-prints (2016), 1602.03920. [61] B. Abbott et al., (2016), arXiv:1602.03842. [62] S. Adrián-Mart́ınez et al., Astrophys. J. Lett. 786, L5 (2014). [63] S. Nissanke, M. Kasliwal, and A. Georgieva, Astrophys. J.767, 124 (2013), arXiv:1210.6362. [64] M. G. Aartsen et al., (2015), arXiv:1510.05222. Authors S. Adrián-Mart́ınez,1 A. Albert,2 M. André,3 G. Anton,4 M. Ardid,1 J.-J. Aubert,5 T. Avgitas,6 B. Baret,6 J. Barrios-Mart́ı,7 S. Basa,8 V. Bertin,5 S. Biagi,9 R. Bormuth,10, 11 M.C. Bouwhuis,10 R. Bruijn,10, 12 J. Brunner,5 J. Busto,5 A. Capone,13, 14 L. Caramete,15 J. Carr,5 S. Celli,13, 14 T. Chiarusi,16 M. Circella,17 A. Coleiro,6 R. Coniglione,9 H. Costantini,5 P. Coyle,5 A. Creusot,6 A. Deschamps,18 G. De Bonis,13, 14 C. Distefano,9 C. Donzaud,6, 19 D. Dornic,5 D. Drouhin,2 T. Eberl,4 I. El Bojaddaini,20 D. Elsässer,21 A. Enzenhöfer,4 K. Fehn,4 I. Felis,22 L.A. Fusco,23, 16 S. Galatà,6 P. Gay,24, 25 S. Geißelsöder,4 K. Geyer,4 V. Giordano,26 A. Gleixner,4 H. Glotin,27, 28 R. Gracia-Ruiz,6 K. Graf,4 S. Hallmann,4 H. van Haren,29 A.J. Heijboer,10 Y. Hello,18 J.J. Hernández-Rey,7 J. Hößl,4 J. Hofestädt,4 C. Hugon,30, 31 G. Illuminati,13, 14 C.W James,4 M. de Jong,10, 11 M. Jongen,10 M. Kadler,21 O. Kalekin,4 U. Katz,4 D. Kießling,4 A. Kouchner,6, 28 M. Kreter,21 I. Kreykenbohm,32 V. Kulikovskiy,9, 33 C. Lachaud,6 R. Lahmann,4 D. Lefèvre,34 E. Leonora,26, 35 S. Loucatos,36, 6 M. Marcelin,8 A. Margiotta,23, 16 A. Marinelli,37, 38 J.A. Mart́ınez-Mora,1 A. Mathieu,5 K. Melis,12 T. Michael,10 P. Migliozzi,39 A. Moussa,20 C. Mueller,21 E. Nezri,8 G.E. Păvălaş,15 C. Pellegrino,23, 16 C. Perrina,13, 14 P. Piattelli,9 V. Popa,15 T. Pradier,40 C. Racca,2 G. Riccobene,9 K. Roensch,4 M. Saldaña,1 D. F. E. Samtleben,10, 11 M. Sanguineti,30, 31 P. Sapienza,9 J. Schnabel,4 F. Schüssler,36 T. Seitz,4 C. Sieger,4 M. Spurio,23, 16 Th. Stolarczyk,36 A. Sánchez-Losa,7, 41 M. Taiuti,30, 31 A. Trovato,9 M. Tselengidou,4 D. Turpin,5 C. Tönnis,7 B. Vallage,36, 25 C. Vallée,5 V. Van Elewyck,6 D. Vivolo,39, 42 S. Wagner,4 J. Wilms,32 J.D. Zornoza,7 and J. Zúñiga7 (The Antares Collaboration) M. G. Aartsen,44 K. Abraham,74 M. Ackermann,91 J. Adams,58 J. A. Aguilar,54 M. Ahlers,71 M. Ahrens,81 D. Altmann,4 T. Anderson,87 I. Ansseau,54 G. Anton,4 M. Archinger,72 C. Arguelles,56 T. C. Arlen,87 J. Auffenberg,43 X. Bai,79 S. W. Barwick,68 V. Baum,72 R. Bay,49 J. J. Beatty,60, 61 J. Becker Tjus,52 K.-H. Becker,90 E. Beiser,71 S. BenZvi,88 P. Berghaus,91 D. Berley,59 E. Bernardini,91 A. Bernhard,74 D. Z. Besson,69 G. Binder,50, 49 D. Bindig,90 M. Bissok,43 E. Blaufuss,59 J. Blumenthal,43 D. J. Boersma,89 C. Bohm,81 M. Börner,63 F. Bos,52 D. Bose,83 S. Böser,72 O. Botner,89 J. Braun,71 L. Brayeur,55 H.-P. Bretz,91 N. Buzinsky,65 J. Casey,47 M. Casier,55 E. Cheung,59 D. Chirkin,71 A. Christov,66 K. Clark,84 L. Classen,4 S. Coenders,74 G. H. Collin,56 J. M. Conrad,56 D. F. Cowen,87, 86 A. H. Cruz Silva,91 J. Daughhetee,47 J. C. Davis,60 M. Day,71 J. P. A. M. de André,64 C. De Clercq,55 E. del Pino Rosendo,72 H. Dembinski,75 S. De Ridder,67 P. Desiati,71 K. D. de Vries,55 G. de Wasseige,55 M. de With,51 T. DeYoung,64 J. C. Dı́az-Vélez,71 V. di Lorenzo,72 H. Dujmovic,83 J. P. Dumm,81 M. Dunkman,87 B. Eberhardt,72 T. Ehrhardt,72 B. Eichmann,52 S. Euler,89 P. A. Evenson,75 S. Fahey,71 A. R. Fazely,48 J. Feintzeig,71 J. Felde,59 K. Filimonov,49 C. Finley,81 S. Flis,81 C.-C. Fösig,72 T. Fuchs,63 T. K. Gaisser,75 R. Gaior,57 J. Gallagher,70 L. Gerhardt,50, 49 K. Ghorbani,71 D. Gier,43 L. Gladstone,71 M. Glagla,43 T. Glüsenkamp,91 A. Goldschmidt,50 G. Golup,55 J. G. Gonzalez,75 D. Góra,91 D. Grant,65 Z. Griffith,71 C. Ha,50, 49 C. Haack,43 A. Haj Ismail,67 A. Hallgren,89 F. Halzen,71 E. Hansen,62 B. Hansmann,43 T. Hansmann,43 K. Hanson,71 D. Hebecker,51 D. Heereman,54 K. Helbing,90 R. Hellauer,59 S. Hickford,90 J. Hignight,64 G. C. Hill,44 K. D. Hoffman,59 R. Hoffmann,90 K. Holzapfel,74 A. Homeier,53 K. Hoshina,71 F. Huang,87 M. Huber,74 W. Huelsnitz,59 P. O. Hulth,81 K. Hultqvist,81 S. In,83 A. Ishihara,57 E. Jacobi,91 G. S. Japaridze,46 M. Jeong,83 K. Jero,71 B. J. P. Jones,56 M. Jurkovic,74 A. Kappes,4 T. Karg,91 A. Karle,71 U. Katz,4 M. Kauer,71, 76 A. Keivani,87 J. L. Kelley,71 J. Kemp,43 A. Kheirandish,71 M. Kim,83 T. Kintscher,91 J. Kiryluk,82 S. R. Klein,50, 49 G. Kohnen,73 R. Koirala,75 H. Kolanoski,51 R. Konietz,43 L. Köpke,72 C. Kopper,65 S. Kopper,90 D. J. Koskinen,62 M. Kowalski,51, 91 K. Krings,74 G. Kroll,72 M. Kroll,52 G. Krückl,72 J. Kunnen,55 S. Kunwar,91 N. Kurahashi,78 T. Kuwabara,57 M. Labare,67 J. L. Lanfranchi,87 M. J. Larson,62 D. Lennarz,64 M. Lesiak-Bzdak,82 M. Leuermann,43 J. Leuner,43 L. Lu,57 J. Lünemann,55 J. Madsen,80 G. Maggi,55 K. B. M. Mahn,64 M. Mandelartz,52 R. Maruyama,76 K. Mase,57 H. S. Matis,50 R. Maunu,59 F. McNally,71 K. Meagher,54 M. Medici,62 M. Meier,63 A. Meli,67 T. Menne,63 G. Merino,71 T. Meures,54 S. Miarecki,50, 49 E. Middell,91 L. Mohrmann,91 T. Montaruli,66 R. Morse,71 R. Nahnhauer,91 U. Naumann,90 G. Neer,64 H. Niederhausen,82 S. C. Nowicki,65 D. R. Nygren,50 A. Obertacke Pollmann,90 A. Olivas,59 A. Omairat,90 A. O’Murchadha,54 T. Palczewski,85 H. Pandya,75 D. V. Pankova,87 L. Paul,43 J. A. Pepper,85 C. Pérez de los Heros,89 C. Pfendner,60 D. Pieloth,63 E. Pinat,54 J. Posselt,90 P. B. Price,49 G. T. Przybylski,50 M. Quinnan,87 C. Raab,54 L. Rädel,43 M. Rameez,66 K. Rawlins,45 R. Reimann,43 M. Relich,57 E. Resconi,74 W. Rhode,63 M. Richman,78 S. Richter,71 B. Riedel,65 S. Robertson,44 M. Rongen,43 C. Rott,83 T. Ruhe,63 D. Ryckbosch,67 L. Sabbatini,71 H.-G. Sander,72 A. Sandrock,63 J. Sandroos,72 S. Sarkar,62, 77 K. Schatto,72 M. Schimp,43 P. Schlunder,63 T. Schmidt,59 S. Schoenen,43 S. Schöneberg,52 A. Schönwald,91 L. Schumacher,43 9 D. Seckel,75 S. Seunarine,80 D. Soldin,90 M. Song,59 G. M. Spiczak,80 C. Spiering,91 M. Stahlberg,43 M. Stamatikos,60 T. Stanev,75 A. Stasik,91 A. Steuer,72 T. Stezelberger,50 R. G. Stokstad,50 A. Stößl,91 R. Ström,89 N. L. Strotjohann,91 G. W. Sullivan,59 M. Sutherland,60 H. Taavola,89 I. Taboada,47 J. Tatar,50, 49 S. Ter-Antonyan,48 A. Terliuk,91 G. Tešić,87 S. Tilav,75 P. A. Toale,85 M. N. Tobin,71 S. Toscano,55 D. Tosi,71 M. Tselengidou,4 A. Turcati,74 E. Unger,89 M. Usner,91 S. Vallecorsa,66 J. Vandenbroucke,71 N. van Eijndhoven,55 S. Vanheule,67 J. van Santen,91 J. Veenkamp,74 M. Vehring,43 M. Voge,53 M. Vraeghe,67 C. Walck,81 A. Wallace,44 M. Wallraff,43 N. Wandkowsky,71 Ch. Weaver,65 C. Wendt,71 S. Westerhoff,71 B. J. Whelan,44 K. Wiebe,72 C. H. Wiebusch,43 L. Wille,71 D. R. Williams,85 L. Wills,78 H. Wissing,59 M. Wolf,81 T. R. Wood,65 K. Woschnagg,49 D. L. Xu,71 X. W. Xu,48 Y. Xu,82 J. P. Yanez,91 G. Yodh,68 S. Yoshida,57 and M. Zoll81 (The IceCube Collaboration) B. P. Abbott,92 R. Abbott,92 T. D. Abbott,93 M. R. Abernathy,92 F. Acernese,94, 95 K. Ackley,96 C. Adams,97 T. Adams,98 P. Addesso,94 R. X. Adhikari,92 V. B. Adya,99 C. Affeldt,99 M. Agathos,100 K. Agatsuma,100 N. Aggarwal,101 O. D. Aguiar,102 L. Aiello,103, 104 A. Ain,105 P. Ajith,106 B. Allen,99, 107, 108 A. Allocca,109, 110 P. A. Altin,111 S. B. Anderson,92 W. G. Anderson,107 K. Arai,92 M. C. Araya,92 C. C. Arceneaux,112 J. S. Areeda,113 N. Arnaud,114 K. G. Arun,115 S. Ascenzi,116, 104 G. Ashton,117 M. Ast,118 S. M. Aston,97 P. Astone,119 P. Aufmuth,99 C. Aulbert,99 S. Babak,120 P. Bacon,121 M. K. M. Bader,100 P. T. Baker,122 F. Baldaccini,123, 124 G. Ballardin,125 S. W. Ballmer,126 J. C. Barayoga,92 S. E. Barclay,127 B. C. Barish,92 D. Barker,128 F. Barone,94, 95 B. Barr,127 L. Barsotti,101 M. Barsuglia,121 D. Barta,129 J. Bartlett,128 I. Bartos,130 R. Bassiri,131 A. Basti,109, 110 J. C. Batch,128 C. Baune,99 V. Bavigadda,125 M. Bazzan,132, 133 B. Behnke,120 M. Bejger,134 A. S. Bell,127 C. J. Bell,127 B. K. Berger,92 J. Bergman,128 G. Bergmann,99 C. P. L. Berry,135 D. Bersanetti,136, 137 A. Bertolini,100 J. Betzwieser,97 S. Bhagwat,126 R. Bhandare,138 I. A. Bilenko,139 G. Billingsley,92 J. Birch,97 R. Birney,140 S. Biscans,101 A. Bisht,99, 108 M. Bitossi,125 C. Biwer,126 M. A. Bizouard,114 J. K. Blackburn,92 C. D. Blair,141 D. G. Blair,141 R. M. Blair,128 S. Bloemen,142 O. Bock,99 T. P. Bodiya,101 M. Boer,143 G. Bogaert,143 C. Bogan,99 A. Bohe,120 P. Bojtos,144 C. Bond,135 F. Bondu,145 R. Bonnand,98 B. A. Boom,100 R. Bork,92 V. Boschi,109, 110 S. Bose,146, 105 Y. Bouffanais,121 A. Bozzi,125 C. Bradaschia,110 P. R. Brady,107 V. B. Braginsky,139 M. Branchesi,147, 148 J. E. Brau,149 T. Briant,150 A. Brillet,143 M. Brinkmann,99 V. Brisson,114 P. Brockill,107 A. F. Brooks,92 D. D. Brown,135 N. M. Brown,101 C. C. Buchanan,93 A. Buikema,101 T. Bulik,151 H. J. Bulten,152, 100 A. Buonanno,120, 153 D. Buskulic,98 C. Buy,121 R. L. Byer,131 L. Cadonati,154 G. Cagnoli,155, 156 C. Cahillane,92 T. Callister,92 E. Calloni,157, 95 J. B. Camp,158 K. C. Cannon,159 J. Cao,160 C. D. Capano,99 E. Capocasa,121 F. Carbognani,125 S. Caride,161 J. Casanueva Diaz,114 C. Casentini,116, 104 S. Caudill,107 F. Cavalier,114 R. Cavalieri,125 G. Cella,110 C. B. Cepeda,92 L. Cerboni Baiardi,147, 148 G. Cerretani,109, 110 E. Cesarini,116, 104 R. Chakraborty,92 T. Chalermsongsak,92 S. J. Chamberlin,162 M. Chan,127 S. Chao,163 P. Charlton,164 E. Chassande-Mottin,121 H. Y. Chen,165 Y. Chen,166 C. Cheng,163 A. Chincarini,137 A. Chiummo,125 H. S. Cho,167 M. Cho,153 J. H. Chow,111 N. Christensen,168 Q. Chu,141 S. Chua,150 S. Chung,141 G. Ciani,96 F. Clara,128 J. A. Clark,154 F. Cleva,143 E. Coccia,116, 103, 104 P.-F. Cohadon,150 A. Colla,169, 119 C. G. Collette,170 L. Cominsky,171 M. Constancio Jr.,102 A. Conte,169, 119 L. Conti,133 D. Cook,128 T. R. Corbitt,93 N. Cornish,122 A. Corsi,161 S. Cortese,125 C. A. Costa,102 M. W. Coughlin,168 S. B. Coughlin,172 J.-P. Coulon,143 S. T. Countryman,130 P. Couvares,92 E. E. Cowan,154 D. M. Coward,141 M. J. Cowart,97 D. C. Coyne,92 R. Coyne,161 K. Craig,127 J. D. E. Creighton,107 J. Cripe,93 S. G. Crowder,173 A. Cumming,127 L. Cunningham,127 E. Cuoco,125 T. Dal Canton,99 S. L. Danilishin,127 S. D’Antonio,104 K. Danzmann,108, 99 N. S. Darman,174 V. Dattilo,125 I. Dave,138 H. P. Daveloza,175 M. Davier,114 G. S. Davies,127 E. J. Daw,176 R. Day,125 D. DeBra,131 G. Debreczeni,129 J. Degallaix,156 M. De Laurentis,157, 95 W. Del Pozzo,135 T. Denker,99, 108 H. Dereli,143 V. Dergachev,92 R. T. DeRosa,97 R. De Rosa,157, 95 R. DeSalvo,177 S. Dhurandhar,105 L. Di Fiore,95 M. Di Giovanni,169, 119 A. Di Lieto,109, 110 S. Di Pace,169, 119 I. Di Palma,120, 99 A. Di Virgilio,110 G. Dojcinoski,178 V. Dolique,156 F. Donovan,101 K. L. Dooley,112 S. Doravari,97, 99 R. Douglas,127 T. P. Downes,107 M. Drago,99, 179, 180 R. W. P. Drever,92 J. C. Driggers,128 Z. Du,160 M. Ducrot,98 S. E. Dwyer,128 T. B. Edo,176 M. C. Edwards,168 A. Effler,97 H.-B. Eggenstein,99 P. Ehrens,92 J. Eichholz,96 S. S. Eikenberry,96 W. Engels,166 R. C. Essick,101 T. Etzel,92 M. Evans,101 T. M. Evans,97 R. Everett,162 M. Factourovich,130 V. Fafone,116, 104, 103 H. Fair,126 S. Fairhurst,181 X. Fan,160 Q. Fang,141 S. Farinon,137 B. Farr,165 W. M. Farr,135 M. Favata,178 M. Fays,181 H. Fehrmann,99 M. M. Fejer,131 I. Ferrante,109, 110 E. C. Ferreira,102 F. Ferrini,125 F. Fidecaro,109, 110 I. Fiori,125 D. Fiorucci,121 R. P. Fisher,126 R. Flaminio,156, 182 M. Fletcher,127 J.-D. Fournier,143 S. Franco,114 S. Frasca,169, 119 F. Frasconi,110 Z. Frei,144 A. Freise,135 R. Frey,149 V. Frey,114 T. T. Fricke,99 10 P. Fritschel,101 V. V. Frolov,97 P. Fulda,96 M. Fyffe,97 H. A. G. Gabbard,112 J. R. Gair,183 L. Gammaitoni,123, 124 S. G. Gaonkar,105 F. Garufi,157, 95 A. Gatto,121 G. Gaur,184, 185 N. Gehrels,158 G. Gemme,137 B. Gendre,143 E. Genin,125 A. Gennai,110 J. George,138 L. Gergely,186 V. Germain,98 Archisman Ghosh,106 S. Ghosh,142, 100 J. A. Giaime,93, 97 K. D. Giardina,97 A. Giazotto,110 K. Gill,187 A. Glaefke,127 E. Goetz,188 R. Goetz,96 L. Gondan,144 J. M. Gonzalez Castro,109, 110 A. Gopakumar,189 N. A. Gordon,127 M. L. Gorodetsky,139 S. E. Gossan,92 M. Gosselin,125 R. Gouaty,98 C. Graef,127 P. B. Graff,153 M. Granata,156 A. Grant,127 S. Gras,101 C. Gray,128 G. Greco,147, 148 A. C. Green,135 P. Groot,142 H. Grote,99 S. Grunewald,120 G. M. Guidi,147, 148 X. Guo,160 A. Gupta,105 M. K. Gupta,185 K. E. Gushwa,92 E. K. Gustafson,92 R. Gustafson,188 J. J. Hacker,113 B. R. Hall,146 E. D. Hall,92 G. Hammond,127 M. Haney,189 M. M. Hanke,99 J. Hanks,128 C. Hanna,162 M. D. Hannam,181 J. Hanson,97 T. Hardwick,93 J. Harms,147, 148 G. M. Harry,190 I. W. Harry,120 M. J. Hart,127 M. T. Hartman,96 C.-J. Haster,135 K. Haughian,127 A. Heidmann,150 M. C. Heintze,96, 97 H. Heitmann,143 P. Hello,114 G. Hemming,125 M. Hendry,127 I. S. Heng,127 J. Hennig,127 A. W. Heptonstall,92 M. Heurs,99, 108 S. Hild,127 D. Hoak,191 K. A. Hodge,92 D. Hofman,156 S. E. Hollitt,44 K. Holt,97 D. E. Holz,165 P. Hopkins,181 D. J. Hosken,44 J. Hough,127 E. A. Houston,127 E. J. Howell,141 Y. M. Hu,127 S. Huang,163 E. A. Huerta,192, 172 D. Huet,114 B. Hughey,187 S. Husa,193 S. H. Huttner,127 T. Huynh-Dinh,97 A. Idrisy,162 N. Indik,99 D. R. Ingram,128 R. Inta,161 H. N. Isa,127 J.-M. Isac,150 M. Isi,92 G. Islas,113 T. Isogai,101 B. R. Iyer,106 K. Izumi,128 T. Jacqmin,150 H. Jang,167 K. Jani,154 P. Jaranowski,194 S. Jawahar,195 W. W. Johnson,93 D. I. Jones,117 R. Jones,127 R. J. G. Jonker,100 L. Ju,141 Haris K,196 C. V. Kalaghatgi,115, 181 V. Kalogera,172 S. Kandhasamy,112 G. Kang,167 J. B. Kanner,92 S. Karki,149 M. Kasprzack,93, 114, 125 E. Katsavounidis,101 W. Katzman,97 S. Kaufer,108 T. Kaur,141 K. Kawabe,128 F. Kawazoe,99, 108 M. S. Kehl,159 D. Keitel,99, 193 D. B. Kelley,126 W. Kells,92 R. Kennedy,176 J. S. Key,175 A. Khalaidovski,99 F. Y. Khalili,139 I. Khan,103 S. Khan,181 Z. Khan,185 E. A. Khazanov,197 N. Kijbunchoo,128 C. Kim,167 J. Kim,198 K. Kim,199 Nam-Gyu Kim,167 Namjun Kim,131 Y.-M. Kim,198 E. J. King,44 P. J. King,128 D. L. Kinzel,97 J. S. Kissel,128 L. Kleybolte,118 S. Klimenko,96 S. M. Koehlenbeck,99 K. Kokeyama,93 S. Koley,100 V. Kondrashov,92 A. Kontos,101 M. Korobko,118 W. Z. Korth,92 I. Kowalska,151 D. B. Kozak,92 V. Kringel,99 B. Krishnan,99 C. Krueger,108 G. Kuehn,99 P. Kumar,159 L. Kuo,163 A. Kutynia,200 B. D. Lackey,126 M. Landry,128 J. Lange,201 B. Lantz,131 P. D. Lasky,202 A. Lazzarini,92 C. Lazzaro,154, 133 P. Leaci,120, 169, 119 S. Leavey,127 E. O. Lebigot,121, 160 C. H. Lee,198 H. K. Lee,199 H. M. Lee,203 K. Lee,127 A. Lenon,126 M. Leonardi,179, 180 J. R. Leong,99 N. Leroy,114 N. Letendre,98 Y. Levin,202 B. M. Levine,128 T. G. F. Li,92 A. Libson,101 T. B. Littenberg,204 N. A. Lockerbie,195 J. Logue,127 A. L. Lombardi,191 J. E. Lord,126 M. Lorenzini,103, 104 V. Loriette,205 M. Lormand,97 G. Losurdo,148 J. D. Lough,99, 108 A. P. Lundgren,99 J. Luo,168 R. Lynch,101 Y. Ma,141 T. MacDonald,131 B. Machenschalk,99 M. MacInnis,101 D. M. Macleod,93 R. M. Magee,146 M. Mageswaran,92 E. Majorana,119 I. Maksimovic,205 V. Malvezzi,116, 104 N. Man,143 I. Mandel,135 V. Mandic,173 V. Mangano,127 G. L. Mansell,111 M. Manske,107 M. Mantovani,125 F. Marchesoni,206, 124 F. Marion,98 A. S. Markosyan,131 E. Maros,92 F. Martelli,147, 148 L. Martellini,143 I. W. Martin,127 R. M. Martin,96 D. V. Martynov,92 J. N. Marx,92 K. Mason,101 A. Masserot,98 T. J. Massinger,126 M. Masso-Reid,127 F. Matichard,101 L. Matone,130 N. Mavalvala,101 N. Mazumder,146 G. Mazzolo,99 R. McCarthy,128 D. E. McClelland,111 S. McCormick,97 S. C. McGuire,207 G. McIntyre,92 J. McIver,92 D. J. McManus,111 S. T. McWilliams,192 D. Meacher,162 G. D. Meadors,120, 99 J. Meidam,100 A. Melatos,174 G. Mendell,128 D. Mendoza-Gandara,99 R. A. Mercer,107 E. Merilh,128 M. Merzougui,143 S. Meshkov,92 C. Messenger,127 C. Messick,162 P. M. Meyers,173 F. Mezzani,119, 169 H. Miao,135 C. Michel,156 H. Middleton,135 E. E. Mikhailov,208 L. Milano,157, 95 J. Miller,101 M. Millhouse,122 Y. Minenkov,104 J. Ming,120, 99 S. Mirshekari,209 C. Mishra,106 S. Mitra,105 V. P. Mitrofanov,139 G. Mitselmakher,96 R. Mittleman,101 A. Moggi,110 M. Mohan,125 S. R. P. Mohapatra,101 M. Montani,147, 148 B. C. Moore,178 C. J. Moore,210 D. Moraru,128 G. Moreno,128 S. R. Morriss,175 K. Mossavi,99 B. Mours,98 C. M. Mow-Lowry,135 C. L. Mueller,96 G. Mueller,96 A. W. Muir,181 Arunava Mukherjee,106 D. Mukherjee,107 S. Mukherjee,175 N. Mukund,105 A. Mullavey,97 J. Munch,44 D. J. Murphy,130 P. G. Murray,127 A. Mytidis,96 I. Nardecchia,116, 104 L. Naticchioni,169, 119 R. K. Nayak,211 V. Necula,96 K. Nedkova,191 G. Nelemans,142, 100 M. Neri,136, 137 A. Neunzert,188 G. Newton,127 T. T. Nguyen,111 A. B. Nielsen,99 S. Nissanke,142, 100 A. Nitz,99 F. Nocera,125 D. Nolting,97 M. E. N. Normandin,175 L. K. Nuttall,126 J. Oberling,128 E. Ochsner,107 J. O’Dell,212 E. Oelker,101 G. H. Ogin,213 J. J. Oh,214 S. H. Oh,214 F. Ohme,181 M. Oliver,193 P. Oppermann,99 Richard J. Oram,97 B. O’Reilly,97 R. O’Shaughnessy,201 D. J. Ottaway,44 R. S. Ottens,96 H. Overmier,97 B. J. Owen,161 A. Pai,196 S. A. Pai,138 J. R. Palamos,149 O. Palashov,197 C. Palomba,119 A. Pal-Singh,118 H. Pan,163 C. Pankow,172 F. Pannarale,181 B. C. Pant,138 F. Paoletti,125, 110 A. Paoli,125 M. A. Papa,120, 107, 99 H. R. Paris,131 W. Parker,97 11 D. Pascucci,127 A. Pasqualetti,125 R. Passaquieti,109, 110 D. Passuello,110 B. Patricelli,109, 110 Z. Patrick,131 B. L. Pearlstone,127 M. Pedraza,92 R. Pedurand,156 L. Pekowsky,126 A. Pele,97 S. Penn,215 A. Perreca,92 M. Phelps,127 O. Piccinni,169, 119 M. Pichot,143 F. Piergiovanni,147, 148 V. Pierro,177 G. Pillant,125 L. Pinard,156 I. M. Pinto,177 M. Pitkin,127 R. Poggiani,109, 110 P. Popolizio,125 A. Post,99 J. Powell,127 J. Prasad,105 V. Predoi,181 S. S. Premachandra,202 T. Prestegard,173 L. R. Price,92 M. Prijatelj,125 M. Principe,177 S. Privitera,120 R. Prix,99 G. A. Prodi,179, 180 L. Prokhorov,139 O. Puncken,99 M. Punturo,124 P. Puppo,119 H. Qi,107 J. Qin,141 V. Quetschke,175 E. A. Quintero,92 R. Quitzow-James,149 F. J. Raab,128 D. S. Rabeling,111 H. Radkins,128 P. Raffai,144 S. Raja,138 M. Rakhmanov,175 P. Rapagnani,169, 119 V. Raymond,120 M. Razzano,109, 110 V. Re,116 J. Read,113 C. M. Reed,128 T. Regimbau,143 L. Rei,137 S. Reid,140 D. H. Reitze,92, 96 H. Rew,208 S. D. Reyes,126 F. Ricci,169, 119 K. Riles,188 N. A. Robertson,92, 127 R. Robie,127 F. Robinet,114 A. Rocchi,104 L. Rolland,98 J. G. Rollins,92 V. J. Roma,149 J. D. Romano,175 R. Romano,94, 95 G. Romanov,208 J. H. Romie,97 S. Rowan,127 P. Ruggi,125 K. Ryan,128 S. Sachdev,92 T. Sadecki,128 L. Sadeghian,107 L. Salconi,125 M. Saleem,196 F. Salemi,99 A. Samajdar,211 L. Sammut,174, 202 E. J. Sanchez,92 V. Sandberg,128 B. Sandeen,172 J. R. Sanders,188, 126 B. Sassolas,156 B. S. Sathyaprakash,181 P. R. Saulson,126 O. Sauter,188 R. L. Savage,128 A. Sawadsky,108 P. Schale,149 R. Schilling†,99 J. Schmidt,99 P. Schmidt,92, 166 R. Schnabel,118 R. M. S. Schofield,149 E. Schreiber,99 D. Schuette,99, 108 B. F. Schutz,181, 120 J. Scott,127 S. M. Scott,111 D. Sellers,97 A. S. Sengupta,184 D. Sentenac,125 V. Sequino,116, 104 A. Sergeev,197 G. Serna,113 Y. Setyawati,142, 100 A. Sevigny,128 D. A. Shaddock,111 S. Shah,142, 100 M. S. Shahriar,172 M. Shaltev,99 Z. Shao,92 B. Shapiro,131 P. Shawhan,153 A. Sheperd,107 D. H. Shoemaker,101 D. M. Shoemaker,154 K. Siellez,143, 154 X. Siemens,107 D. Sigg,128 A. D. Silva,102 D. Simakov,99 A. Singer,92 L. P. Singer,158 A. Singh,120, 99 R. Singh,93 A. Singhal,103 A. M. Sintes,193 B. J. J. Slagmolen,111 J. R. Smith,113 N. D. Smith,92 R. J. E. Smith,92 E. J. Son,214 B. Sorazu,127 F. Sorrentino,137 T. Souradeep,105 A. K. Srivastava,185 A. Staley,130 M. Steinke,99 J. Steinlechner,127 S. Steinlechner,127 D. Steinmeyer,99, 108 B. C. Stephens,107 R. Stone,175 K. A. Strain,127 N. Straniero,156 G. Stratta,147, 148 N. A. Strauss,168 S. Strigin,139 R. Sturani,209 A. L. Stuver,97 T. Z. Summerscales,216 L. Sun,174 P. J. Sutton,181 B. L. Swinkels,125 M. Tacca,121 D. Talukder,149 D. B. Tanner,96 S. P. Tarabrin,99 A. Taracchini,120 R. Taylor,92 T. Theeg,99 M. P. Thirugnanasambandam,92 E. G. Thomas,135 M. Thomas,97 P. Thomas,128 K. A. Thorne,97 K. S. Thorne,166 E. Thrane,202 S. Tiwari,103 V. Tiwari,181 K. V. Tokmakov,195 C. Tomlinson,176 M. Tonelli,109, 110 C. V. Torres‡,217 C. I. Torrie,92 F. Travasso,123, 124 G. Traylor,97 M. C. Tringali,179, 180 L. Trozzo,218, 110 M. Tse,101 M. Turconi,143 D. Tuyenbayev,175 D. Ugolini,219 C. S. Unnikrishnan,189 A. L. Urban,107 S. A. Usman,126 H. Vahlbruch,108 G. Vajente,92 G. Valdes,175 N. van Bakel,100 M. van Beuzekom,100 J. F. J. van den Brand,152, 100 C. Van Den Broeck,100 D. C. Vander-Hyde,126, 113 L. van der Schaaf,100 J. V. van Heijningen,100 A. A. van Veggel,127 M. Vardaro,132, 133 S. Vass,92 R. Vaulin,101 A. Vecchio,135 G. Vedovato,133 J. Veitch,135 P. J. Veitch,44 K. Venkateswara,220 D. Verkindt,98 F. Vetrano,147, 148 S. Vinciguerra,135 D. J. Vine,140 J.-Y. Vinet,143 S. Vitale,101 T. Vo,126 H. Vocca,123, 124 C. Vorvick,128 D. Voss,96 W. D. Vousden,135 S. P. Vyatchanin,139 A. R. Wade,111 L. E. Wade,221 M. Wade,221 M. Walker,93 L. Wallace,92 S. Walsh,107, 99, 120 G. Wang,103 H. Wang,135 M. Wang,135 X. Wang,160 Y. Wang,141 R. L. Ward,111 J. Warner,128 M. Was,98 B. Weaver,128 L.-W. Wei,143 M. Weinert,99 A. J. Weinstein,92 R. Weiss,101 T. Welborn,97 L. Wen,141 T. Westphal,99 K. Wette,99 J. T. Whelan,201, 99 D. J. White,176 B. F. Whiting,96 R. D. Williams,92 A. R. Williamson,181 J. L. Willis,222 B. Willke,108, 99 M. H. Wimmer,99, 108 W. Winkler,99 C. C. Wipf,92 H. Wittel,99, 108 G. Woan,127 J. Worden,128 J. L. Wright,127 G. Wu,97 J. Yablon,172 W. Yam,101 H. Yamamoto,92 C. C. Yancey,153 M. J. Yap,111 H. Yu,101 M. Yvert,98 L. Zangrando,133 M. Zanolin,187 J.-P. Zendri,133 M. Zevin,172 F. Zhang,101 L. Zhang,92 M. Zhang,208 Y. Zhang,201 C. Zhao,141 M. Zhou,172 Z. Zhou,172 X. J. Zhu,141 M. E. Zucker,92, 101 S. E. Zuraw,191 and J. Zweizig92 (LIGO Scientific Collaboration and Virgo Collaboration) †Deceased, May 2015. ‡Deceased, March 2015. 1Institut d’Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC) - Universitat Politècnica de València. C/ Paranimf 1 , 46730 Gandia, Spain. 2GRPHE - Université de Haute Alsace - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568 - 68008 Colmar, France 3Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició,08800 Vilanova i la Geltrú,Barcelona, Spain 4Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany 5Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille, France 6APC, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, 75205 Paris, France 12 7IFIC - Instituto de F́ısica Corpuscular c/ Catedraático José Beltrán, 2 E-46980 Paterna, Valencia, Spain 8LAM - Laboratoire d’Astrophysique de Marseille, Pôle de l’Étoile Site de Château-Gombert, rue Frédéric Joliot-Curie 38, 13388 Marseille Cedex 13, France 9INFN - Laboratori Nazionali del Sud (LNS), Via S. Sofia 62, 95123 Catania, Italy 10Nikhef, Science Park, Amsterdam, The Netherlands 11Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, The Netherlands 12Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Science Park 105, 1098 XG Amsterdam, The Netherlands 13INFN -Sezione di Roma, P.le Aldo Moro 2, 00185 Roma, Italy 14Dipartimento di Fisica dell’Università La Sapienza, P.le Aldo Moro 2, 00185 Roma, Italy 15Institute for Space Science, RO-077125 Bucharest, Măgurele, Romania 16INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, 40127 Bologna, Italy 17INFN - Sezione di Bari, Via E. Orabona 4, 70126 Bari, Italy 18Géoazur, UCA, CNRS, IRD, Observatoire de la Côte d’Azur, Sophia Antipolis, France 19Univ. Paris-Sud , 91405 Orsay Cedex, France 20University Mohammed I, Laboratory of Physics of Matter and Radiations, B.P.717, Oujda 6000, Morocco 21Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Emil-Fischer Str. 31, 97074 Würzburg, Germany 22Institut d’Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC) - Universitat Politècnica de València. C/ Paranimf 1, 46730 Gandia, Spain. 23Dipartimento di Fisica e Astronomia dell’Università, Viale Berti Pichat 6/2, 40127 Bologna, Italy 24Laboratoire de Physique Corpusculaire, Clermont Université, Université Blaise Pascal, CNRS/IN2P3, BP 10448, F-63000 Clermont-Ferrand, France 25Also at APC, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, 75205 Paris, France 26INFN - Sezione di Catania, Viale Andrea Doria 6, 95125 Catania, Italy 27LSIS, Aix Marseille Université CNRS ENSAM LSIS UMR 7296 13397 Marseille, France ; Université de Toulon CNRS LSIS UMR 7296 83957 La Garde, France 28Institut Universitaire de France, 75005 Paris, France 29Royal Netherlands Institute for Sea Research (NIOZ), Landsdiep 4,1797 SZ ’t Horntje (Texel), The Netherlands 30INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy 31Dipartimento di Fisica dell’Università, Via Dodecaneso 33, 16146 Genova, Italy 32Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany 33Moscow State University,Skobeltsyn Institute of Nuclear Physics,Leninskie gory, 119991 Moscow, Russia 34Mediterranean Institute of Oceanography (MIO), Aix-Marseille University, 13288, Marseille, Cedex 9, France; Université du Sud Toulon-Var, 83957, La Garde Cedex, France CNRS-INSU/IRD UM 110 35Dipartimento di Fisica ed Astronomia dell’Università, Viale Andrea Doria 6, 95125 Catania, Italy 36Direction des Sciences de la Matière - Institut de recherche sur les lois fondamentales de l’Univers - Service de Physique des Particules, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France 37INFN - Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy 38Dipartimento di Fisica dell’Università, Largo B. Pontecorvo 3, 56127 Pisa, Italy 39INFN -Sezione di Napoli, Via Cintia 80126 Napoli, Italy 40Université de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg, France - CNRS, UMR7178, 67037 Strasbourg, France 41now at INFN - Sezione di Bari, Via E. Orabona 4, 70126 Bari, Italy 42Dipartimento di Fisica dell’Università Federico II di Napoli, Via Cintia 80126, Napoli, Italy 43III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany 44University of Adelaide, Adelaide, South Australia 5005, Australia 45Dept. of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA 46CTSPS, Clark-Atlanta University, Atlanta, GA 30314, USA 47School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA 48Dept. of Physics, Southern University, Baton Rouge, LA 70813, USA 49Dept. of Physics, University of California, Berkeley, CA 94720, USA 50Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 51Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany 52Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany 53Physikalisches Institut, Universität Bonn, Nussallee 12, D-53115 Bonn, Germany 54Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium 13 55Vrije Universiteit Brussel, Dienst ELEM, B-1050 Brussels, Belgium 56Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 57Dept. of Physics, Chiba University, Chiba 263-8522, Japan 58Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand 59Dept. of Physics, University of Maryland, College Park, MD 20742, USA 60Dept. of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA 61Dept. of Astronomy, Ohio State University, Columbus, OH 43210, USA 62Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark 63Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany 64Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 65Dept. of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2E1 66Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland 67Dept. of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium 68Dept. of Physics and Astronomy, University of California, Irvine, CA 92697, USA 69Dept. of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA 70Dept. of Astronomy, University of Wisconsin, Madison, WI 53706, USA 71Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706, USA 72Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany 73Université de Mons, 7000 Mons, Belgium 74Technische Universität München, D-85748 Garching, Germany 75Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA 76Dept. of Physics, Yale University, New Haven, CT 06520, USA 77Dept. of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK 78Dept. of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA 79Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA 80Dept. of Physics, University of Wisconsin, River Falls, WI 54022, USA 81Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm, Sweden 82Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA 83Dept. of Physics, Sungkyunkwan University, Suwon 440-746, Korea 84Dept. of Physics, University of Toronto, Toronto, Ontario, Canada, M5S 1A7 85Dept. of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA 86Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA 87Dept. of Physics, Pennsylvania State University, University Park, PA 16802, USA 88Dept. of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA 89Dept. of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden 90Dept. of Physics, University of Wuppertal, D-42119 Wuppertal, Germany 91DESY, D-15735 Zeuthen, Germany 92LIGO, California Institute of Technology, Pasadena, CA 91125, USA 93Louisiana State University, Baton Rouge, LA 70803, USA 94Università di Salerno, Fisciano, I-84084 Salerno, Italy 95INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy 96University of Florida, Gainesville, FL 32611, USA 97LIGO Livingston Observatory, Livingston, LA 70754, USA 98Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France 99Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany 100Nikhef, Science Park, 1098 XG Amsterdam, Netherlands 101LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 102Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil 103INFN, Gran Sasso Science Institute, I-67100 L’Aquila, Italy 104INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy 105Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India 106International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560012, India 107University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA 108Leibniz Universität Hannover, D-30167 Hannover, Germany 109Università di Pisa, I-56127 Pisa, Italy 110INFN, Sezione di Pisa, I-56127 Pisa, Italy 111Australian National University, Canberra, Australian Capital Territory 0200, Australia 112The University of Mississippi, University, MS 38677, USA 113California State University Fullerton, Fullerton, CA 92831, USA 14 114LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91400 Orsay, France 115Chennai Mathematical Institute, Chennai 603103, India 116Università di Roma Tor Vergata, I-00133 Roma, Italy 117University of Southampton, Southampton SO17 1BJ, United Kingdom 118Universität Hamburg, D-22761 Hamburg, Germany 119INFN, Sezione di Roma, I-00185 Roma, Italy 120Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-14476 Potsdam-Golm, Germany 121APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France 122Montana State University, Bozeman, MT 59717, USA 123Università di Perugia, I-06123 Perugia, Italy 124INFN, Sezione di Perugia, I-06123 Perugia, Italy 125European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy 126Syracuse University, Syracuse, NY 13244, USA 127SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom 128LIGO Hanford Observatory, Richland, WA 99352, USA 129Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary 130Columbia University, New York, NY 10027, USA 131Stanford University, Stanford, CA 94305, USA 132Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy 133INFN, Sezione di Padova, I-35131 Padova, Italy 134CAMK-PAN, 00-716 Warsaw, Poland 135University of Birmingham, Birmingham B15 2TT, United Kingdom 136Università degli Studi di Genova, I-16146 Genova, Italy 137INFN, Sezione di Genova, I-16146 Genova, Italy 138RRCAT, Indore MP 452013, India 139Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia 140SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom 141University of Western Australia, Crawley, Western Australia 6009, Australia 142Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, Netherlands 143Artemis, Université Côte d’Azur, CNRS, Observatoire Côte d’Azur, CS 34229, Nice cedex 4, France 144MTA Eötvös University, “Lendulet” Astrophysics Research Group, Budapest 1117, Hungary 145Institut de Physique de Rennes, CNRS, Université de Rennes 1, F-35042 Rennes, France 146Washington State University, Pullman, WA 99164, USA 147Università degli Studi di Urbino “Carlo Bo,” I-61029 Urbino, Italy 148INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy 149University of Oregon, Eugene, OR 97403, USA 150Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France, F-75005 Paris, France 151Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland 152VU University Amsterdam, 1081 HV Amsterdam, Netherlands 153University of Maryland, College Park, MD 20742, USA 154Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA 155Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5306, 69622 Villeurbanne, France 156Laboratoire des Matériaux Avancés (LMA), IN2P3/CNRS, Université de Lyon, F-69622 Villeurbanne, Lyon, France 157Università di Napoli “Federico II,” Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy 158NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA 159Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8, Canada 160Tsinghua University, Beijing 100084, China 161Texas Tech University, Lubbock, TX 79409, USA 162The Pennsylvania State University, University Park, PA 16802, USA 163National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic of China 164Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia 165University of Chicago, Chicago, IL 60637, USA 166Caltech CaRT, Pasadena, CA 91125, USA 167Korea Institute of Science and Technology Information, Daejeon 305-806, Korea 168Carleton College, Northfield, MN 55057, USA 169Università di Roma “La Sapienza,” I-00185 Roma, Italy 15 170University of Brussels, Brussels 1050, Belgium 171Sonoma State University, Rohnert Park, CA 94928, USA 172Northwestern University, Evanston, IL 60208, USA 173University of Minnesota, Minneapolis, MN 55455, USA 174The University of Melbourne, Parkville, Victoria 3010, Australia 175The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA 176The University of Sheffield, Sheffield S10 2TN, United Kingdom 177University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy 178Montclair State University, Montclair, NJ 07043, USA 179Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy 180INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy 181Cardiff University, Cardiff CF24 3AA, United Kingdom 182National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 183School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom 184Indian Institute of Technology, Gandhinagar Ahmedabad Gujarat 382424, India 185Institute for Plasma Research, Bhat, Gandhinagar 382428, India 186University of Szeged, Dóm tér 9, Szeged 6720, Hungary 187Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA 188University of Michigan, Ann Arbor, MI 48109, USA 189Tata Institute of Fundamental Research, Mumbai 400005, India 190American University, Washington, D.C. 20016, USA 191University of Massachusetts-Amherst, Amherst, MA 01003, USA 192West Virginia University, Morgantown, WV 26506, USA 193Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain 194University of Bia lystok, 15-424 Bia lystok, Poland 195SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom 196IISER-TVM, CET Campus, Trivandrum Kerala 695016, India 197Institute of Applied Physics, Nizhny Novgorod, 603950, Russia 198Pusan National University, Busan 609-735, Korea 199Hanyang University, Seoul 133-791, Korea 200NCBJ, 05-400 Świerk-Otwock, Poland 201Rochester Institute of Technology, Rochester, NY 14623, USA 202Monash University, Victoria 3800, Australia 203Seoul National University, Seoul 151-742, Korea 204University of Alabama in Huntsville, Huntsville, AL 35899, USA 205ESPCI, CNRS, F-75005 Paris, France 206Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy 207Southern University and A&M College, Baton Rouge, LA 70813, USA 208College of William and Mary, Williamsburg, VA 23187, USA 209Instituto de F́ısica Teórica, University Estadual Paulista/ICTP South American Institute for Fundamental Research, São Paulo SP 01140-070, Brazil 210University of Cambridge, Cambridge CB2 1TN, United Kingdom 211IISER-Kolkata, Mohanpur, West Bengal 741252, India 212Rutherford Appleton Laboratory, HSIC, Chilton, Didcot, Oxon OX11 0QX, United Kingdom 213Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362 USA 214National Institute for Mathematical Sciences, Daejeon 305-390, Korea 215Hobart and William Smith Colleges, Geneva, NY 14456, USA 216Andrews University, Berrien Springs, MI 49104, USA 21785The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA 218Università di Siena, I-53100 Siena, Italy 219Trinity University, San Antonio, TX 78212, USA 220University of Washington, Seattle, WA 98195, USA 221Kenyon College, Gambier, OH 43022, USA 222Abilene Christian University, Abilene, TX 79699, USA