RESSALVA Atendendo solicitação do(a) autor(a), o texto completo desta dissertação será disponibilizado somente a partir de 17/02/2026 HAYLLA DE FARIA HORTA SALIVARY CHANGES ASSOCIATED WITH HYPOMINERALIZED SECOND PRIMARY MOLARS (HSPM) AND MOLAR INCISOR HYPOMINERALIZATION (MIH) Araçatuba - SP 2025 HAYLLA DE FARIA HORTA SALIVARY CHANGES ASSOCIATED WITH HYPOMINERALIZED SECOND PRIMARY MOLARS (HSPM) AND MOLAR INCISOR HYPOMINERALIZATION (MIH) Dissertação apresentada à Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, para obtenção do título de Mestra. Área de Concentração: Saúde Bucal da Criança Orientador(a): Profa. Dra. Cristina Antoniali Silva Coorientador(a): Profa. Dra. Cristiane Duque Araçatuba - SP 2025 Catalogação-na-Publicação (CIP) Diretoria Técnica de Biblioteca e Documentação – FOA / UNESP Horta, Haylla de Faria. H821s Salivary changes associated with Hypomineralized Second Primary Molars (HSPM) and Molar Incisor Hypomineralization (MIH) / Haylla de Faria Horta. - Araçatuba, 2025 63 f. : il. ; tab. Dissertação (Mestrado) – Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Araçatuba Orientadora: Profa. Cristina Antoniali Silva Coorientadora: Profa. Cristiane Duque 1. Molar hypomineralization 2. Saliva 3. Oxidative stress 4. Biomarkers I. T. Black D27 CDD 617.645 Claudio Hideo Matsumoto – CRB-8/5550 Eu dedico esse trabalho à minha família. Sem vocês, esse sonho não seria possível. AGRADECIMENTOS Agradeço primeiramente a Deus, por me dar forças e sabedoria para alcançar meus objetivos da melhor maneira possível. Agradeço à minha mãe, Simoni, que sempre me apoiou e torceu por mim todos os dias. Sua dedicação e resiliência serviram de exemplo para que eu nunca desistisse dos meus sonhos e lutasse pelo melhor. Agradeço ao meu irmão, Hyago, por todas as conversas sinceras e pelos conselhos valiosos. Muito obrigada por estar sempre ao meu lado e por ser esse irmão incrível que tanto admiro. Agradeço à minha avó materna, Maria Inez, por todo amor que me proporcionou. Desde a infância, meus dias foram preenchidos com suas histórias e momentos que guardo com muito carinho. Agradeço ao Aison, por toda paciência, carinho e incentivo durante esses anos. Aos amigos que me acolheram em Araçatuba: Mariana, Alanna, Brenda, João, Geórgia, Tamires, Patrícia e Mayra. À Laura, que mesmo distante, irradia uma luz incrível. A presença de vocês com certeza fez a minha pós-graduação ser mais leve. Sou grata por cada conversa e cada troca de conhecimento, que me ajudaram a crescer tanto profissional quanto pessoalmente. À minha orientadora, Cristina Antoniali, por sua orientação, profissionalismo durante esses dois anos. Sua dedicação em revisar cada detalhe dos artigos submetidos e orientar com paciência, fez desse momento uma oportunidade valiosa de aprendizado e aprimoramento. Agradeço por cada ensinamento e pela generosidade em investir seu tempo para que eu pudesse evoluir academicamente. Obrigada pelas inúmeras caronas e conversas produtivas que pude ter com a senhora. Sua orientação foi um presente para mim! À minha co-orientadora, Cristiane Duque, por sempre ser tão prestativa e atenciosa. Agradeço de coração por todo o conhecimento que me proporcionou, pelo incentivo constante e por transmitir fora de sala exatamente o que é – uma pessoa com o coração lindo, que ama o que faz. Tenho muita sorte em ter você como co- orientadora! Às professoras Cristiane Duque, Jackeline Gallo e Vanessa Rodrigues por todos os conhecimentos clínicos que vocês me proporcionaram. Cada orientação prática não só aprimorou minha formação, como também fortaleceu minha confiança para enfrentar os desafios da área. Aos professores Caio Sampaio e Antônio Hernandes, cuja colaboração foi essencial na condução dos ensaios laboratoriais. Um agradecimento especial aos mestrandos Larissa e Renan, sem a colaboração de vocês, este estudo não teria alcançado a qualidade e profundidade desejadas. Aos colegas e preceptores do Projeto Sorriso Feliz, minha profunda gratidão. A experiência de participar desse projeto de extensão tão lindo, impactou minha formação. A dedicação e o conhecimento de cada um de vocês foram fundamentais para essa iniciativa, que transforma a vida de tantas crianças. Aos amigos da Class: Nathalia, Renato, Marco, Ana, Évely, Élen, Vinícius, Eduardo, Bruno e Thiago, minha gratidão por cada treino ou corrida compartilhado, cada palavra de incentivo e de superação ao lado de vocês. A presença de vocês fez toda diferença em uma rotina de bem-estar. Agradeço ao Curso de Pós-graduação em Ciências da Faculdade de Odontologia de Araçatuba, na pessoa do coordenador Prof. Associado Juliano Pelin Pessan. Agradeço à CAPES e a FUNDUNESP pelo financiamento com minha pesquisa. O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001 e bolsa de Desenvolvimento Tecnológico (Coordenadoria de Convênios e Projetos da FUNDUNESP). Agradeço à Pró-Reitoria de Extensão Universitária e Cultura da UNESP pelo financiamento do Projeto Sorriso Feliz – Fortalecimento da Atenção Primária à Saúde Bucal na Primeiríssima e Primeira Infância na Educação Infantil do Estado de São Paulo – DRSII (PEU-EDITAL-VTM-2023 - Alínea A - Edital “Vamos Transformar o Mundo” - Proposta 2023/1502). “Science is more than a body of knowledge; it is a way of thinking. It is a bright light at the end of a dark tunnel – the darkness of fear, superstition, ignorance, dogma, and manipulation. The light of reason, criticism, and the pursuit of truth. The fact that we are here is a testament to our ability to escape that darkness.” Carl Sagan HORTA, H.F. Alterações salivares associadas à Hipomineralização de Segundos Molares Decíduos (HSMD) e Hipomineralização Molar Incisivo (HMI). 2025. Dissertação (Mestrado) – Faculdade de Odontologia, Universidade Estadual Paulista (UNESP), Araçatuba, 2025. RESUMO Este estudo teve como objetivo avaliar as alterações salivares e os fatores associados em crianças com ou sem Hipomineralização de Segundos Molares Decíduos (HSMD) ou Hipomineralização Molar-Incisivo (HMI). O estudo incluiu 45 crianças (com idades entre 2 e 11 anos), divididas em três grupos: controle (n = 15), HSMD (n = 15) e HMI (n = 15), classificadas de acordo com a Academia Europeia de Odontopediatria (EAPD), considerando opacidades demarcadas e a extensão do defeito. Um questionário foi utilizado para coletar informações sobre condições sistêmicas nos primeiros três anos de vida e durante a gestação materna. A saliva foi coletada utilizando Salivette®. As análises incluíram taxa de fluxo salivar, pH, capacidade tampão da saliva, concentrações de cálcio, fosfato, flúor, proteínas, atividade da amilase, capacidade oxidativa total, peroxidação lipídica (TBARS), capacidade antioxidante total e ácido úrico. Para avaliar os parâmetros salivares relacionados às opacidades demarcadas (Branco/Creme ou Amarelo/Marrom) e a extensão do defeito (menor que 1/3, menor que 1/3 e maior que 2/3 e maior que 2/3) nos parâmetros salivares, os grupos HSPM e MIH foram combinados para melhor compreensão. Os resultados obtidos foram analisados: Os dados qualitativos foram avaliados pelos testes de Kruskal- Wallis e Dwass-Steel-Critchlow-Fligner. Os dados quantitativos foram analisados pelos testes One-Way ANOVA e Tukey. Os dados não paramétricos (mediana e intervalo interquartile) foram analisados pelo teste de Kruskal-Wallis; os dados paramétricos (média ± DP) foram analisados pelos testes ANOVA e Tukey. As diferenças foram significativas quando p < 0.05. Trabalho de parto prolongado e febre no primeiro ano de vida foram os únicos fatores etiológicos associados aos grupos HMI e HSMD. As análises salivares mostraram um aumento nos níveis de cálcio e redução de fosfato no grupo HMI, enquanto o grupo HSMD apresentou menores níveis de proteínas e maior capacidade antioxidante total. Opacidades amarelas/marrons foram associadas ao aumento do dano oxidativo por peroxidação lipídica e à atividade antioxidante. Os resultados indicam que HSMD e HMI são influenciados por fatores individuais e ambientais. O trabalho de parto prolongado e a febre na infância foram identificados como fatores associados importantes. Além disso, as alterações salivares relacionadas à composição mineral, aos níveis de proteínas e ao equilíbrio redox destacam sua relevância no manejo dessas condições. Palavras-chave: Hipomineralização Molar Incisivo, Saliva, Estresse Oxidativo, Biomarcadores HORTA, H.F. Salivary changes associated with Hypomineralized Second Primary Molars (HSPM) and Molar Incisor Hypomineralization (MIH). 2025. Dissertação (Mestrado) – Faculdade de Odontologia, Universidade Estadual Paulista (UNESP), Araçatuba, 2025. ABSTRACT This study aimed to evaluate salivary changes in children and the associated factors with, or without, Hypomineralized Second Primary Molars (HSPM) or Molar Incisor Hypomineralization (MIH) The study included 45 children (aged 2 -11 years), divided into control (n=15), HSPM (n = 15) and MIH (n = 15) classified by European Academy of Paediatric Dentistry (EAPD), considering demarcated opacities and extent of the defect. A questionnaire gathered information on systemic conditions during the first three years of life and maternal pregnancy. Saliva was collected using Salivette®. Analyses included salivary flow rate, pH, salivary buffering capacity, calcium, phosphate, fluoride, protein concentration, amylase activity, total oxidative capacity, lipid peroxidation (TBARS), total antioxidant capacity, and uric acid. To evaluate the salivary parameters related to demarcated opacities (White/Creamy or Yellow/Brown) and the extent of the defect (less than 1/3; greater than 1/3 and less than 2/3 and greater than 2/3) on salivary parameters, the HSPM and MIH groups were combined for a better understanding. The obtained results were analyzed: Qualitative data were evaluated by Kruskal-Wallis and Dwass-Steel-Critchlow-Fligner tests. The quantitative data were analyzed with One-way ANOVA and Tukey tests. Non-parametric data (median and interquartile range) were analyzed by Kruskal-Wallis’ test; parametric data (mean ± SD) were analyzed with ANOVA and Tukey Tests. Differences were significant when p < 0.05. Prolonged labor and fever in the children’s first year of life were the only etiological factors associated with MIH and HSPM groups. Salivary analyses revealed increased calcium and reduced phosphate in MIH, while HSPM exhibited lower protein levels and higher total antioxidant capacity. Yellow/Brown opacities were associated with increased lipid peroxidation and antioxidant activity. HSPM and MIH are influenced by individual and environmental factors. Prolonged labor and early-life fever were key associated factors. Salivary changes related to mineral composition, protein levels, and redox equilibrium, highlighting their importance in management of MIH and HSPM. Keywords: Molar Hypomineralization, Saliva, Oxidative Stress, Biomarkers LISTA DE FIGURAS Fig. 1 – Percentage of molars with HSPM and molars/incisors with MIH (A) in the children. Percentage of children presenting HSPM or MIH, according to the color (B) and severity (C). 28 Fig. 2 – Comparison of salivary parameters among Control, HSPM (Hypomineralized Second Primary Molars), and MIH (Molar Incisor- Hypomineralization) groups. (A) Salivary flow (μL/min); (B) Salivary pH; (C) Buffering capacity (mL lactic acid/mL of saliva); (D) Salivary calcium (mg of Ca²⁺/mL); (E) Salivary phosphate (μg of PO₄³⁻/mL); (F) Salivary fluoride (μM); (G) Total salivary protein (g/L); (H) Salivary amylase activity (U/dL of total protein); (I) Salivary total oxidant capacity (TOC) (μmol of H₂O₂ g/total protein); (J) TBARS (mmol/g of total protein); (K) Salivary total antioxidant capacity (TAC) (μmol of Fe²⁺/g of total protein); (L) Salivary uric acid (mg/g of total protein). 30 Fig. 3 – Comparison of salivary parameters among Control and demarcated opacities (White/Creamy and Yellow/Brown). 32 Fig. 4 - Comparison of salivary parameters among Control and extension of the defect of the White/Creamy opacities. 34 Fig. 5. Comparison of salivary parameters across Control and extension of the defect of the Yellow/Brown opacities. 37 LISTA DE TABELAS Table 1 – Population´s characteristics and variables related to etiology of MIH/HSPM 26 LISTA DE ABREVIATURAS E SIGLAS AMELX Amelogenin AMNB Ameloblastin ANOVA Analysis of Variance ART Atraumatic restorative treatment CAAE Ethical Appreciation Submission Certificate CPP-ACP Phosphopeptide-amorphous calcium phosphate DNA Deoxyribunucleic Acid EAPD European Academy of Paediatric Dentistry ENAM Enamelin ESRRB Estrogen-related receptor β g/L Grams per liter HOPT Hypomineralization of Other Permanent Teeth HSPM Hypomineralized Second Primary Molars MDA Malondialdehyde mg/g Miligrams per gram MIH Molar Incisor Hypomineralization Min Minutes mL/min Milliliters per minute mM Milimolar mmol/L Milimoles per gram mol/L Moles per liter NADPH Nicotiamide Adenine Dinucleotide Phosphate nm Nanometer OR Odds Ratio OS Oxidative stress PEB Post-eruptive breakdown pH Power of Hydrogen ROS Reactive Oxygen Species rpm Revolutions per minute SD Standard Deviation SOD Superoxide dismutase TAC Total antioxidant capacity TBARS Thiobarbituric Acid Reactive Substances TCLE Informed Consent Form TOC Total Oxidant Capacity TPTZ 2,4,6-Tris(2-pyridyl)-s-triazine UA Uric Acid WHO World Health Organization μL Microliter μmol Fe2+/g Micromoles of Fe²⁺ per gram μmol/g Micromoles per gram SUMÁRIO Abstract 14 1. Introduction 15 2. Materials and methods 17 3. Results 25 4. Discussion 38 5. Conclusion 46 6. References 47 ANEXOS 56 47 6. References [1] K.L. Weerheijm, B. Jälevik, S. Alaluusua, Molar–Incisor Hypomineralisation, Caries Res 35 (2001) 390–391. https://doi.org/10.1159/000047479. [2] K.L. Weerheijm, Molar incisor hypomineralisation (MIH)., Eur J Paediatr Dent 4 (2003) 114–20. [3] S.A. Bhaskar, S. Hegde, Molar-incisor hypomineralization: Prevalence, severity and clinical characteristics in 8- to 13-year-old children of Udaipur, India, Journal of Indian Society of Pedodontics and Preventive Dentistry 32 (2014) 322–329. https://doi.org/10.4103/0970-4388.140960. [4] A. Schmalfuss, K.R. Stenhagen, A.B. Tveit, C.-G. Crossner, I. Espelid, Canines are affected in 16-year-olds with molar–incisor hypomineralisation (MIH): an epidemiological study based on the Tromsø study: “Fit Futures,” European Archives of Paediatric Dentistry 17 (2016) 107–113. https://doi.org/10.1007/s40368-015-0216-6. [5] A. Kevrekidou, I. Kosma, I. Kotsanos, K.N. Arapostathis, N. Kotsanos, Enamel opacities in all other than Molar Incisor Hypomineralisation index teeth of adolescents, Int J Paediatr Dent 31 (2021) 270–277. https://doi.org/10.1111/ipd.12735. [6] Z. Zhang, Y. Liu, Y. Zhu, J. Guo, M. Yang, Y. Lu, Y. Zhang, J. Jia, Association of Molar Incisor Hypomineralization with Hypomineralized Second Primary Molars: An Updated Systematic Review with a Meta- Analysis and Trial Sequential Analysis, Caries Res (2024) 1–13. https://doi.org/10.1159/000540752. [7] N.A. Lygidakis, G. Dimou, D. Marinou, Molar-Incisor-Hypomineralisation (MIH). A retrospective clinical study in Greek children. II. Possible medical aetiological factors, European Archives of Paediatric Dentistry 9 (2008) 207–217. https://doi.org/10.1007/BF03262637. 48 [8] M.J. Silva, N.M. Kilpatrick, J.M. Craig, D.J. Manton, P. Leong, D. Burgner, K.J. Scurrah, Etiology of Hypomineralized Second Primary Molars: A Prospective Twin Study, J Dent Res 98 (2019) 77–83. https://doi.org/10.1177/0022034518792870. [9] L.R.S. Lima, A.S. Pereira, M.S. de Moura, C.C.B. Lima, S.M. Paiva, L. de F.A. de D. Moura, M. de Deus Moura de Lima, Pre‐term birth and asthma is associated with hypomineralized second primary molars in pre‐ schoolers: A population‐based study, Int J Paediatr Dent 30 (2020) 193– 201. https://doi.org/10.1111/ipd.12584. [10] A.L. Fatturi, L.M. Wambier, A.C. Chibinski, L.R. da S. Assunção, J.A. Brancher, A. Reis, J.F. Souza, A systematic review and meta‐analysis of systemic exposure associated with molar incisor hypomineralization, Community Dent Oral Epidemiol 47 (2019) 407–415. https://doi.org/10.1111/cdoe.12467. [11] M.J. Silva, K.J. Scurrah, J.M. Craig, D.J. Manton, N. Kilpatrick, Etiology of molar incisor hypomineralization – A systematic review, Community Dent Oral Epidemiol 44 (2016) 342–353. https://doi.org/10.1111/cdoe.12229. [12] R.J.P.B. Teixeira, N.S. Andrade, L.C.C. Queiroz, F.M. Mendes, M.S. Moura, L. de F.A. de D. Moura, M.D.M. Lima, Exploring the association between genetic and environmental factors and molar incisor hypomineralization: evidence from a twin study, Int J Paediatr Dent 28 (2018) 198–206. https://doi.org/10.1111/ipd.12327. [13] L.F.P.G. Tourino, P. Corrêa-Faria, R.C. Ferreira, C.B. Bendo, P.M. Zarzar, M.P. Vale, Association between Molar Incisor Hypomineralization in Schoolchildren and Both Prenatal and Postnatal Factors: A Population- Based Study, PLoS One 11 (2016) e0156332. https://doi.org/10.1371/journal.pone.0156332. [14] G. Fonseca-Souza, A.L. Fatturi, F.C. Fraiz, L.R. da S. Assunção, J. Feltrin- Souza, What are the Systemic Factors Associated with the Molar-Incisor 49 Hypomineralization Etiology?, Pesqui Bras Odontopediatria Clin Integr 21 (2021). https://doi.org/10.1590/pboci.2021.130. [15] S.-Y. Cho, Y. Ki, V. Chu, Molar incisor hypomineralization in Hong Kong Chinese children, Int J Paediatr Dent 18 (2008) 348–352. https://doi.org/10.1111/j.1365-263X.2008.00927.x. [16] V. Soviero, D. Haubek, C. Trindade, T. Da Matta, S. Poulsen, Prevalence and distribution of demarcated opacities and their sequelae in permanent 1st molars and incisors in 7 to 13-year-old Brazilian children, Acta Odontol Scand 67 (2009) 170–175. https://doi.org/10.1080/00016350902758607. [17] J.J. Ng, O.C. Eu, R. Nair, C.H.L. Hong, Prevalence of molar incisor hypomineralization (MIH) in Singaporean children, Int J Paediatr Dent 25 (2015) 73–78. https://doi.org/10.1111/ipd.12100. [18] M.E.C. Elfrink, J.S.J. Veerkamp, I.H.A. Aartman, H.A. Moll, J.M. Ten Cate, Validity of scoring caries and primary molar hypomineralization (DMH) on intraoral photographs, European Archives of Paediatric Dentistry 10 (2009) 5–10. https://doi.org/10.1007/BF03262693. [19] B. Sluka, U. Held, F. Wegehaupt, K.W. Neuhaus, T. Attin, P. Sahrmann, Is there a rise of prevalence for Molar Incisor Hypomineralization? A meta- analysis of published data, BMC Oral Health 24 (2024) 127. https://doi.org/10.1186/s12903-023-03637-0. [20] E. Garot, P. Rouas, C. Somani, G.D. Taylor, F. Wong, N.A. Lygidakis, An update of the aetiological factors involved in molar incisor hypomineralisation (MIH): a systematic review and meta-analysis, European Archives of Paediatric Dentistry 23 (2022) 23–38. https://doi.org/10.1007/s40368-021-00646-x. [21] Y. Quintero, M. Restrepo, D.F. Rojas-Gualdrón, A.L. de Farias, L. Santos- Pinto, Association between hypomineralization of deciduous and molar incisor hypomineralization and dental caries, Braz Dent J 33 (2022) 113– 119. https://doi.org/10.1590/0103-6440202204807. 50 [22] M. Lagarde, E. Vennat, J. Attal, E. Dursun, Strategies to optimize bonding of adhesive materials to molar‐incisor hypomineralization‐affected enamel: A systematic review, Int J Paediatr Dent 30 (2020) 405–420. https://doi.org/10.1111/ipd.12621. [23] B. Jälevik, G. Klinberg, Treatment outcomes and dental anxiety in 18‐year‐ olds with MIH, comparisons with healthy controls – a longitudinal study, Int J Paediatr Dent 22 (2012) 85–91. https://doi.org/10.1111/j.1365- 263X.2011.01161.x. [24] R.N. Cerqueira Silva, C.C.B. Lima, C.B. Bendo, L.R.S. Lima, M.S. de Moura, L. de F.A. de D. Moura, M. de D.M. de Lima, Impact of hypomineralised second primary molar on preschoolers’ oral health– related quality of life—A hierarchical approach, Int J Paediatr Dent 32 (2022) 194–203. https://doi.org/10.1111/ipd.12844. [25] A. Ghanim, R. Mariño, M. Morgan, D. Bailey, D. Manton, An in vivo investigation of salivary properties, enamel hypomineralisation, and carious lesion severity in a group of Iraqi schoolchildren, Int J Paediatr Dent 23 (2013) 2–12. https://doi.org/10.1111/j.1365-263X.2011.01215.x. [26] I. Miletich, Introduction to Salivary Glands: Structure, Function and Embryonic Development, in: Salivary Glands: Development, Adaptations and Disease, 2010: pp. 1–20. https://doi.org/10.1159/000313703. [27] M.A. Javaid, A.S. Ahmed, R. Durand, S.D. Tran, Saliva as a diagnostic tool for oral and systemic diseases, J Oral Biol Craniofac Res 6 (2016) 67– 76. https://doi.org/10.1016/j.jobcr.2015.08.006. [28] S.P. Humphrey, R.T. Williamson, A review of saliva: Normal composition, flow, and function, J Prosthet Dent 85 (2001) 162–169. https://doi.org/10.1067/mpr.2001.113778. [29] N. Ismayilova, O.E. Gungor, H. Karayilmaz, Assessment of severity and mineral composition of saliva in schoolchildren with molar-incisor 51 hypomineralization (MIH), Journal of Clinical Pediatric Dentistry 48 (2024) 86–93. https://doi.org/10.22514/JOCPD.2024.024/HTM. [30] K. Bekes, G. Mitulović, N. Meißner, U. Resch, R. Gruber, Saliva proteomic patterns in patients with molar incisor hypomineralization, Sci Rep 10 (2020) 7560. https://doi.org/10.1038/s41598-020-64614-z. [31] A.G. Kovalčíková, Ľ. Tichá, K. Šebeková, P. Celec, A. Čagalová, F. Sogutlu, Ľ. Podracká, Oxidative status in plasma, urine and saliva of girls with anorexia nervosa and healthy controls: a cross-sectional study, J Eat Disord 9 (2021) 54. https://doi.org/10.1186/s40337-021-00408-6. [32] M. Maciejczyk, K. Taranta-Janusz, A. Wasilewska, A. Kossakowska, A. Zalewska, A Case-Control Study of Salivary Redox Homeostasis in Hypertensive Children. Can Salivary Uric Acid be a Marker of Hypertension?, J Clin Med 9 (2020) 837. https://doi.org/10.3390/jcm9030837. [33] M. Maciejczyk, J. Szulimowska, K. Taranta-Janusz, K. Werbel, A. Wasilewska, A. Zalewska, Salivary FRAP as A Marker of Chronic Kidney Disease Progression in Children, Antioxidants 8 (2019) 409. https://doi.org/10.3390/antiox8090409. [34] V.I. Lushchak, Free radicals, reactive oxygen species, oxidative stress and its classification, Chem Biol Interact 224 (2014) 164–175. https://doi.org/10.1016/j.cbi.2014.10.016. [35] H.C. Araujo, A.C.M.S. Nakamune, W.G. Garcia, J.P. Pessan, C. Antoniali, Carious Lesion Severity Induces Higher Antioxidant System Activity and Consequently Reduces Oxidative Damage in Children’s Saliva, Oxid Med Cell Longev 2020 (2020) 1–9. https://doi.org/10.1155/2020/3695683. [36] A.O. Lopes, R.N. de Freitas, G.A. Fiais, H. de F. Horta, A.R. Mateus, H.C. Araujo, A.M. Aranega, B. Díaz-Fabregat, A.H. Chaves-Neto, C. Antoniali, Atraumatic restorative treatment induces transient changes in salivary total protein and redox biomarkers in children with caries: A non- 52 randomized clinical study, J Dent 153 (2025) 105521. https://doi.org/10.1016/j.jdent.2024.105521. [37] M. Maciejczyk, J. Szulimowska, K. Taranta-Janusz, A. Wasilewska, A. Zalewska, Salivary Gland Dysfunction, Protein Glycooxidation and Nitrosative Stress in Children with Chronic Kidney Disease, J Clin Med 9 (2020) 1285. https://doi.org/10.3390/jcm9051285. [38] P.V. da Silva, J.A. Troiano, A.C.M.S. Nakamune, J.P. Pessan, C. Antoniali, Increased activity of the antioxidants systems modulate the oxidative stress in saliva of toddlers with early childhood caries, Arch Oral Biol 70 (2016) 62–66. https://doi.org/10.1016/j.archoralbio.2016.06.003. [39] L.V. Sampaio, H.R. dos S. Landim, A.R. Vazão, G.A. Fiais, R.N. de Freitas, A.S.C. Veras, R.C.M. Dornelles, W.D. Fakhouri, R.R. Lima, G.R. Teixeira, A.H. Chaves-Neto, Effects of a supraphysiological dose of testosterone cypionate on salivary gland function in adult male Wistar rats, J Steroid Biochem Mol Biol 243 (2024) 106587. https://doi.org/10.1016/j.jsbmb.2024.106587. [40] G.L. Vogel, L.C. Chow, W.E. Brown, A Microanalytical Procedure for the Determination of Calcium, Phosphate and Fluoride in Enamel Biopsy Samples, Caries Res 17 (1983) 23–31. https://doi.org/10.1159/000260645. [41] C.H. Fiske, Y. Subbarow, THE COLORIMETRIC DETERMINATION OF PHOSPHORUS, Journal of Biological Chemistry 66 (1925) 375–400. https://doi.org/10.1016/S0021-9258(18)84756-1. [42] C. Sampaio, A.C.B. Delbem, T.Y. Hosida, A.V.P. Fernandes, G. dos S.G. Alves, J.A.S. Souza, D.R. Monteiro, J.P. Pessan, Buffering Capacity and Effects of Sodium Hexametaphosphate Nanoparticles and Fluoride on the Inorganic Components of Cariogenic-Related Biofilms In Vitro, Antibiotics 11 (2022) 1173. https://doi.org/10.3390/antibiotics11091173. 53 [43] E.F. Hartree, Determination of protein: A modification of the lowry method that gives a linear photometric response, Anal Biochem 48 (1972) 422– 427. https://doi.org/10.1016/0003-2697(72)90094-2. [44] Á. Nagy, A. Barta, G. Varga, T. Zelles, Changes of salivary amylase in serum and parotid gland during pharmacological and physiological stimulation, Journal of Physiology-Paris 95 (2001) 141–145. https://doi.org/10.1016/S0928-4257(01)00018-3. [45] O. Erel, A new automated colorimetric method for measuring total oxidant status, Clin Biochem 38 (2005) 1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008. [46] J.A. Buege, S.D. Aust, [30] Microsomal lipid peroxidation, in: 1978: pp. 302–310. https://doi.org/10.1016/S0076-6879(78)52032-6. [47] I.F.F. Benzie, J.J. Strain, The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay, Anal Biochem 239 (1996) 70–76. https://doi.org/10.1006/abio.1996.0292. [48] R.C. Trivedi, L. Rebar, E. Berta, L. Stong, New enzymatic method for serum uric acid at 500 nm., Clin Chem 24 (1978) 1908–11. [49] A. Ghanim, M. Morgan, R. Mariño, D. Bailey, D. Manton, Molar-incisor hypomineralisation: prevalence and defect characteristics in Iraqi children, Int J Paediatr Dent 21 (2011) 413–421. https://doi.org/10.1111/j.1365- 263X.2011.01143.x. [50] E. Garot, D. Manton, P. Rouas, Peripartum events and molar-incisor hypomineralisation (MIH) amongst young patients in southwest France, European Archives of Paediatric Dentistry 17 (2016) 245–250. https://doi.org/10.1007/s40368-016-0235-y. [51] C. Chooi, J.J. Cox, R.S. Lumb, P. Middleton, M. Chemali, R.S. Emmett, S.W. Simmons, A.M. Cyna, Techniques for preventing hypotension during spinal anaesthesia for caesarean section, Cochrane Database of 54 Systematic Reviews (2017). https://doi.org/10.1002/14651858.CD002251.pub3. [52] L.J.S. Lima, M.L. Ramos-Jorge, M.E.C. Soares, Prenatal, perinatal and postnatal events associated with hypomineralized second primary molar: a systematic review with meta-analysis, Clin Oral Investig 25 (2021) 6501– 6516. https://doi.org/10.1007/s00784-021-04146-6. [53] N. Sidhu, Y. Wang, E. Barrett, M. Casas, Prevalence and presentation patterns of enamel hypomineralisation (MIH and HSPM) among paediatric hospital dental patients in Toronto, Canada: a cross-sectional study, European Archives of Paediatric Dentistry 21 (2020) 263–270. https://doi.org/10.1007/s40368-019-00477-x. [54] C. Vlachou, A. Arhakis, N. Kotsanos, Distribution and morphology of enamel hypomineralisation defects in second primary molars, European Archives of Paediatric Dentistry 22 (2021) 241–246. https://doi.org/10.1007/s40368-020-00543-9. [55] R. Elzein, E. Chouery, F. Abdel-Sater, R. Bacho, F. Ayoub, Molar incisor hypomineralisation in Lebanon: prevalence and clinical characteristics, European Archives of Paediatric Dentistry 21 (2020) 609–616. https://doi.org/10.1007/s40368-019-00505-w. [56] E.C. Küchler, G.D. Pecharki, M.L. Castro, J. Ramos, F. Barbosa Jr., J.A. Brancher, A.R. Vieira, R.F. Gerlach, P.C. Trevilatto, Genes Involved in the Enamel Development Are Associated with Calcium and Phosphorus Level in Saliva, Caries Res 51 (2017) 225–230. https://doi.org/10.1159/000450764. [57] R. Akter, M.A. Asgor Moral, K. Md, B. A. K. M., Biomimetic Effect of Saliva on Human Tooth Enamel: A Scanning Electron Microscopic Study, Int J Dent 2025 (2025). https://doi.org/10.1155/ijod/1664620. 55 [58] E. Reynolds, Calcium phosphate‐based remineralization systems: scientific evidence?, Aust Dent J 53 (2008) 268–273. https://doi.org/10.1111/j.1834-7819.2008.00061.x. [59] A.M. Biondi, S.G. Cortese, L. Babino, D.E. Fridman, Comparison of Mineral Density in Molar Incisor Hypomineralization applying fluoride varnishes and casein phosphopeptide-amorphous calcium phosphate., Acta Odontol Latinoam 30 (2017) 118–123. [60] I. Messana, R. Inzitari, C. Fanali, T. Cabras, M. Castagnola, Facts and artifacts in proteomics of body fluids. What proteomics of saliva is telling us?, J Sep Sci 31 (2008) 1948–1963. https://doi.org/10.1002/jssc.200800100. [61] E. Pappa, H. Vastardis, M. Makridakis, J. Zoidakis, K. Vougas, G. Stamatakis, M. Samiotaki, C. Rahiotis, Analysis of Human and Microbial Salivary Proteomes in Children Offers Insights on the Molecular Pathogenesis of Molar-Incisor Hypomineralization, Biomedicines 10 (2022) 2061. https://doi.org/10.3390/biomedicines10092061. [62] P. Ahmad, A. Hussain, A. Carrasco-Labra, W.L. Siqueira, Salivary Proteins as Dental Caries Biomarkers: A Systematic Review, Caries Res 56 (2022) 385–398. https://doi.org/10.1159/000526942. [63] B. Sun, L. Yu, C. Xu, Y. Li, Y. Zhao, M. Cao, L. Yang, NAD(P)HX epimerase downregulation promotes tumor progression through ROS/HIF‐ 1α signaling in hepatocellular carcinoma, Cancer Sci 112 (2021) 2753– 2769. https://doi.org/10.1111/cas.14925. [64] N. Couto, J. Wood, J. Barber, The role of glutathione reductase and related enzymes on cellular redox homoeostasis network, Free Radic Biol Med 95 (2016) 27–42. https://doi.org/10.1016/j.freeradbiomed.2016.02.028. [65] I.L.C. Chapple, J.B. Matthews, The role of reactive oxygen and antioxidant species in periodontal tissue destruction, Periodontol 2000 43 (2007) 160– 232. https://doi.org/10.1111/j.1600-0757.2006.00178.x. 56 [66] N. Kirschvink, B. de Moffarts, P. Lekeux, The oxidant/antioxidant equilibrium in horses, The Veterinary Journal 177 (2008) 178–191. https://doi.org/10.1016/j.tvjl.2007.07.033. [67] I. Túnez, M. Feijóo, G. Huerta, P. Montilla, E. Muñoz, A. Ruíz, E. Collantes, The effect of infliximab on oxidative stress in chronic inflammatory joint disease, Curr Med Res Opin 23 (2007) 1259–1267. https://doi.org/10.1185/030079907X187955. [68] I. Peluso, A. Raguzzini, Salivary and Urinary Total Antioxidant Capacity as Biomarkers of Oxidative Stress in Humans, Patholog Res Int 2016 (2016) 1–14. https://doi.org/10.1155/2016/5480267. [69] M. Sundaram, B. Kumarasamy, K.P. Subbian, M.K. Perumal, K. Balu, S. Manikandan, Comparative Assessment of Total Antioxidant Capacity of Unstimulated Saliva Which Can Reflect the Oxidative Stress between Autism Children and Normal Children, J Pharm Bioallied Sci 16 (2024) S1811–S1814. https://doi.org/10.4103/jpbs.jpbs_1182_23. [70] D. V. Sculley, S.C. Langley-Evans, Salivary antioxidants and periodontal disease status, Proceedings of the Nutrition Society 61 (2002) 137–143. https://doi.org/10.1079/PNS2001141. Diretoria Técnica de Biblioteca e Documentação – FOA / UNESP